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Hierarchical Divergence-Conforming
Vector Bases for Pyramid Cells

Roberto D. Graglia , Life Fellow, IEEE

Abstract— Divergence-conforming hierarchical vector bases
for the pyramid consist of face- and volume-based functions
obtained by a simple procedure that uses a new paradigm
recently introduced by this author to produce pyramid bases.
In order to define the bases’ order, the procedure starts by
mapping the pyramids into a cube of a new Cartesian space,
which we call the grandparent space, where the basis functions
and their divergences take on polynomial form. Then we get
the face-based functions of zero polynomial order and the
volume-based functions of the first order. Functions of arbitrarily
high order are obtained by multiplying the vector functions of the
lowest order by independent scalar polynomials of higher order.
Our face-based functions conform to those of other differently
shaped elements to allow the use of hybrid meshes, while the
multiplicative construction technique generates right away the
volume-based basis functions. The completeness of the bases is
demonstrated and all the basis functions we obtain are suitably
normalized; their expression involves orthogonal polynomials
which are easy to implement and alleviate the loss of linear
independence.

Index Terms— Electromagnetic fields, finite-element methods,
higher-order vector elements, numerical analysis, pyramidal
elements.

I. INTRODUCTION

SUCCESSFUL 3-D electromagnetic codes must be able to
model complicated geometries using higher-order vector

basis functions on all four types of geometrical shapes: tetra-
hedra, hexahedron (bricks), prisms, and pyramids. As illus-
trated in [1], a conceptually simple method for constructing
vector bases of polynomial order p for tetrahedral, brick, and
prismatic cells is to take the product of the zeroth-order basis
vectors of Nédélec [2] type with a set of scalar polynomials
complete to the pth order, to obtain a set of vector functions of
the Nédélec type; the base is then extracted from this set by
eliminating any redundancy, that is all dependent functions.
The curl- (divergence-) conforming bases thus obtained are
complete to the pth order if able to represent any vector
of polynomial order p, and if the curl (divergence) of any
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vector of order (p + 1), yielding a vector (scalar) of order p,
can always be expressed as a linear combination of the
curl (divergence) of such bases. Hence, when complete, our
bases span the mixed-order spaces of Nédélec [2] (some-
times known as reduced gradient spaces for curl-conforming
functions). The complete hierarchical and interpolatory bases
reported in [1] were all constructed using this multiplicative
construction method, and are associated with a De Rham exact
discretized sequence.

Despite this, unfortunately, there is still no generally
accepted method that works equally well on pyramids, that
is on cells with four triangular faces and one quadrilateral
face. On the contrary, the few methods so far introduced
in [3], [4], [5], [6], [7], [8], [9], [10], and [11] to build the
pyramidal bases require specialized knowledge and skills to
be understood and have produced higher-order bases different
from each other. Although the literature on this topic is
not consolidated, as already discussed in the Introduction
of [12], the results in [10] nevertheless deserve particular
attention.

The main merit of [10] is to construct bases in such a
way that they describe finite-dimensional subspaces associated
with a De Rham exact discretized sequence. In particular,
for pyramids, this leads to subdividing the volume-based
divergence- (curl-) conforming functions into different families
of functions, that is those with zero divergence (curl) and
others with non-zero divergence (curl). This obviously cannot
be obtained with a multiplicative construction technique like
ours, and it is of little use if one wants to obtain interpolatory
bases such as those in [1]. For our purposes, the main result
of [10] is the number of volume-, face-, and edge-based
functions associated with a pyramid cell (the edge-based are
needed only to build curl-conforming bases); numbers that
are identical to those we find for our bases obtained with the
multiplicative technique.

The relatively small amount of existing literature along
with the complex construction of the pyramid bases becomes
annoying when one is forced to use pyramids to apply an
adaptive technique; pyramids are in fact the natural fillers for
hybrid meshes made up of a mixture of tetrahedra, brick, and
prismatic cells [5]. At the same time, there is also a lot of
interest in increasing the order of the elements, whatever their
shape, because as follows.

1) Models that use higher-order elements use fewer degrees
of freedom (DoF), i.e., fewer unknowns [1].

2) Sophisticated parallel solution strategies can benefit
from the use of higher-order elements [13].
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3) Mesh refinement occurs more naturally when the mesh
cells are defined by higher-order shape functions.

4) h- or p-adaptive techniques provide faster convergence
as the order of the elements increases [14], [15], [16].

Given the growing interest in hybrid models that use differ-
ently shaped cells, and in consideration of all the difficul-
ties encountered so far in building conforming higher-order
pyramids, the new paradigm recently proposed in [12] seems
to be a turning point as it allows to easily produce higher
order pyramidal bases having simple and easily implementable
expressions. Indeed [12] discusses in depth new hierarchical
curl-conforming bases for the pyramid that complement and
are compatible with the families reported in [1], with contin-
uous tangential components across adjacent cells in the mesh;
that is, the families first presented individually in [17], [18],
and [19]. Similarly, the present article uses the same paradigm
as [12] to build hierarchical divergence-conforming bases
for pyramids that complement the families reported in [20]
(as well as in [1]), with continuous normal components across
adjacent cells in the mesh.

The basis functions presented here avoid spurious modes
and solutions because of divergence-conforming. They are
constructed from orthogonal polynomials by a process similar
to that used to generate the vector bases in [20], and are
shown to alleviate the loss of linear independence. As regards
spurious modes and solutions, we recall in passing that they
are encountered every time the null space of the operator at
issue is badly approximated, for example when using scalar
representations with the common equations describing elec-
tromagnetic fields, specifically the integral equations (electric-
field, magnetic-field and combined-field), the curl-curl form of
the Helmholtz vector equation, and the first-order Maxwell’s
equations. In this regard, we may observe that the literature
on spurious solutions of integral equations is not as extensive
as that in the context of the finite element method (FEM), due
to the ease of implementation of the divergence-conforming
functions normally used for the solution of surface integral
equations, such as the zero-order RWG functions, which have
been around for more than 40 years [21], or the higher order
GWP basis functions, published more than 25 years ago [22].

As said, a brief historical review of research devoted to
the development of basis functions for pyramidal cells can
be found in the Introduction of [12]. Here we just reiterate
that, in our opinion, the main problem that researchers have
had so far in building the bases for the pyramid is to find
the simplest and most direct way to build the volume-based
vector functions that here, as in [12], we get thanks to sim-
ple analytical and geometric considerations. The divergence-
conforming face-based functions are in fact derived from the
known expression of the face-based functions of the remaining
elements of different shapes that may have a triangular or
quadrilateral face in common with the pyramid (so to speak,
by imposing the normal continuity at the boundary of the cell).

The remainder of the article is structured as follows.
Section II reviews the different spaces and variables introduced
to describe the pyramidal elements. Section III presents the
lowest order base given in [5] and its main properties. Fun-
damental, first-order volume-based functions are discussed in

Fig. 1. Child pyramids are all obtained by mapping onto the observer’s space
a single parent pyramid through suitable shape functions. The figure shows
a child pyramid on the left and the parent pyramid in the center. Shape and
basis functions take polynomial form in the grandparent space (η, ξ5) where
the pyramid domain is the unit cube shown on the right.

Section IV and higher-order bases are presented in Section V.
Numerical results are provided in Section VI. Readers may
find it helpful to review [5], [12] for a detailed introduction
to the notation and other background information. Preliminar
results of this work were presented in [23].

II. PYRAMID GEOMETRY REPRESENTATIONS

A pyramid is described using five parent variables
{ξ1, ξ2, ξ3, ξ4, ξ5} and its faces are numbered to match the
indexing of the associated parametric coordinate [5], [12];
that is, the i th face of the pyramid is the zero-coordinate
surface for the normalized coordinate ξi . More specifically,
with reference to Fig. 1, the fifth face with parametric equation
ξ5 = 0 is always quadrilateral, the remaining four triangular
faces have equation ξ j = 0, for j from 1 to 4. We choose as
independent coordinates ξ1, ξ2 and ξ5, so that ∇ξ5 ·(∇ξ1×∇ξ2)

is strictly positive, while ξ3 and ξ4 are dependent coordinates.
The dependency relations in the parent space are [5], [12]

ξ1 + ξ3 + ξ5 = 1
ξ2 + ξ4 + ξ5 = 1. (1)

In addition to the parent space, it is convenient to define
and work in the grandparent space obtained by introducing
the four scaled coordinates [10], [12]

η j =
ξ j

1 − ξ5
(2)

∇η j =
∇ξ j + η j∇ξ5

1 − ξ5
(3)

with j = 1, 2, 3, 4. The coordinate ξ5 remains an independent
coordinate of the grandparent space. In this case, for ξ5 ̸= 1,
the dependency relations (1) become

η1 + η3 = 1; η2 + η4 = 1 (4)

and, in the grandparent space, the pyramid is a cubic cell [12].
Then, as shown in Fig. 1, the parent and the grandparent cell
are mapped into the observer space (x, y, z) through the use
of appropriate shape functions [5], [12] which are polynomials
of the grandparent variables. Although the shape functions
are beyond the scope of this article, in Table I we report
the interpolatory shape functions of [5] outlining the first-
order mapping, by way of example. In fact, to simplify the
construction of hybrid “conforming” meshes, we find it more
convenient to use interpolatory shape-functions as done in [1]
for all other cells of different shapes (tetrahedrons, prisms and
bricks), although we would not mind at all immediately using



9336 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 71, NO. 12, DECEMBER 2023

TABLE I
NODAL SHAPE FUNCTIONS FOR THE PYRAMID, FROM [5]

shape functions like those used in computer graphics, such
as NURBS (non-uniform rational B-splines) or similar. This
means that the shape functions we use must be interpolatory
polynomials of three parent variables on each triangular face
of the mesh, and of four parent variables on each quadrilateral
face. In order for this to happen, bearing in mind that on each
face one of the parent variables of the cell vanishes, the shape
functions of the pyramid turn out to be fractional functions
of the parent variables (see [5, Table I]) while, as shown here
in Table I, they are polynomials of the grandparent variables.
When using pyramidal fillers, the shape functions of Table I
are in general sufficient because in most cases the faces are
mapped by interpolatory polynomials of the first or second
degree; higher grade mappings are rarely needed.

III. ZEROTH-ORDER BASE AND THE BUBBLE IT HIDES

The pyramidal base of the lowest possible order is reported
in [5] together with the proof of its completeness. For the

reader’s convenience, Table II summarizes the expressions and
the main properties of this base, as well as the formulas for cal-
culating the generally non-constant values of the Jacobian (J ),
of the gradient vectors (∇ξa), and of the edge vectors (ℓab) of a
pyramidal cell. Using the grandparent variables (see Fig. 1 on
the right), the lambda functions of Table II are derived from the
fractional functions provided in [5] by replacing each parent
variable ξγ with (1 − ξ5)ηγ . The lambda functions of Table II
form a polynomial base of order zero in the grandparent space.

1) Because in the grandparent space the singularities disap-
pear and the lambdas have a polynomial and no longer
fractional form as in [5].

2) Because of the completeness identities reported in the
second row on the right of Table II which prove
that any constant vector of arbitrary direction is a
linear combination of these functions, apart from the
1/J factor.

3) Because they are functions with constant divergence,
apart from the factor 1/J .

4) Because they have a non-zero constant normal (CN)
component on the face identified by their subscript, with
a zero normal component on the remaining faces.

To build higher-order bases it is also important to emphasize
that the zeroth-order functions

3γ (r) =
ηγ+2

J
ℓγ−1,5 − B0(r) (5)

contain a component

B0(r) = ξ5

(
η1ℓ

1
+ η2ℓ

2
− ℓ5)

2J
(6)

whose divergence

∇ · B0(r) =
1

(1 − ξ5)J
−

3
2J

(7)

is singular. B0(r) is a bubble function, where by bubble
we mean a divergence-conforming function with zero normal
component on all faces of the pyramid, that is a volume-based
function. Now, by evaluating the divergence of (5) to get

∇ · 3γ (r) =
3

2J
(8)

it can be observed that the divergence of B0 cancels the
singularity of the divergence of the first component to the
right of (5). Notice here that B0 cannot be represented by
polynomial basis functions, nor can it be a basis function of
a polynomial base due to the singularity in its divergence;
yet, B0 is a component of as many as four basis functions
of order zero. That said, by considering the expression of
the divergence (7), and trying to increase the order of the
functions, it is reasonable to expect (1 − ξ5)B0 to be a
polynomial bubble. This is the case only if both (1−ξ5)B0 and
its divergence are polynomials (we establish the order of this
bubble only after this has been verified). In fact, we obtain

2(1 − ξ5)B0 = ξ535 (9)

∇ · [2(1 − ξ5)B0] = ∇ · [ξ535] =
4ξ5 − 1
J

. (10)
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TABLE II
PYRAMID’S GEOMETRY REPRESENTATION AND LOWEST ORDER DIVERGENCE-CONFORMING BASE

Since 35 is of order zero, ξ535 is a first-order function with
the linear (i.e., first order) divergence (10); therefore (9) is a
first-order bubble.

To grow polynomial bases in a hierarchical way from zero
to higher orders, and in particular to define the basis subset of
bubble functions, we must introduce other polynomial bubbles
beyond (9) that we construct, whatever their order, starting
from the fundamental bubbles presented in Section IV.

IV. FUNDAMENTAL BUBBLES

Reiterating our intention to form polynomial vector bases
in space (η, ξ5), we observe that the lowest-order bubble
functions we are interested in finding are those with linear
divergence, since it is clear that there are no bubble functions
with constant divergence other than zero. The lowest-order
bubbles are identified by observing that on the left of the two
equations

(1 − ξ5)η131 + (1 − ξ5)η333 + ξ5 35/2 = 0
(1 − ξ5)η232 + (1 − ξ5)η434 + ξ5 35/2 = 0 (11)

reported at the bottom of Table II, we are adding up
dependent functions. We can therefore consider the functions

(1 − ξ5)η131 and (1 − ξ5)η232 as dependent on the three
independent bubbles

(1 − ξ5)η333, (1 − ξ5)η434, 2(1 − ξ5)B0. (12)

Using the definition (5) of 3γ , we see that the two functions
to the left of (12) contain the higher order bubbles (1 −

ξ5)η3 B0 and (1 − ξ5)η4 B0 which we promptly remove, and
this is the last step that, starting from (12), yields the three
fundamental bubbles of the first order 3B1

3B2
3B3

 =
(1 − ξ5)

J

 η3η1ℓ
1

η4η2ℓ
2

ξ5
(
ℓ5

− η1ℓ
1
− η2ℓ

2)
 (13)

with first-order divergence

∇ ·

 3B1
3B2
3B3

 =
1
J

 1 − 2η1
1 − 2η2
1 − 4ξ5

. (14)

The divergences (14) are special cases of the more general
result

∇ · ηα
1 η

β

2 ξ δ
5

 3B1
3B2
3B3

 =

(1 + α) − (2 + α)η1

(1 + β) − (2 + β)η2

(1 + δ) − (4 + δ)ξ5

ηα
1 η

β

2 ξ δ
5

J
(15)
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TABLE III
NORMALIZED ORTHOGONAL POLYNOMIALS USED TO BUILD DIVERGENCE-CONFORMING BASES

which stems from the fact that the divergence of any linear
combination of terms such as ηα

1 η
β

2 ξ δ
5 (1 − ξ5)ℓ

a (where the
superscript a in ℓa is 1, 2, or 5) takes a polynomial form
in the grandparent space (η, ξ5) (of course, each term of
these linear combinations can have different values of the
exponents α, β, and δ).

Equation (14) proves that 3B1, 3B2, 3B3 belong to the same
space and are of the same order, i.e., the first order. This result
would not be so evident if we wrote these functions in terms
of zero-order basis vectors, as follows: 3B1

3B2
3B3

 =

 (1 − ξ5)η3η1(33 − 31)

(1 − ξ5)η4η2(34 − 32)

−ξ535

. (16)

V. HIGHER ORDER BASES

Higher-order hierarchical bases are obtained in a direct and
clear way thanks to the new paradigm presented in [12] which
for divergence-conforming sets is stated as follows.

1) The vector components and the divergence of the basis
functions are polynomials of the grandparent variables
{η, ξ5}. Unisolvency and base completeness must be
proved in the grandparent space.

2) Each higher order vector function is obtained by mul-
tiplying one vector function of zero order, or a com-
bination of zero order functions (as it happens for
the fundamental bubbles of Section IV), by a scalar
generating polynomial which, in turn, is the product of

normalized orthogonal polynomials (the same was done
in [1] and [20]).

3) The multiplicative polynomials are defined in the grand-
parent cubic cell of Fig. 1 (whose vertices are points of
intersection of only three edges and faces).

4) On the pyramid border, the multiplicative polynomials
that generate the face-based functions coincide with
those for the adjacent elements, no matter what shape
they have.

Notice here that we can discuss on the order of the bases pre-
cisely because, or only when, the basis vectors are expressed
in the grandparent space, which is precisely the only space
in which they, together with their divergence, take on a
polynomial expression. The basis vectors are defined using
the orthogonal normalized sets of shifted Jacobi’s polynomials
listed in Table III. Some of these sets have already been used
elsewhere (for example in [12]) to form curl-conforming bases.
The polynomials we use here are marked with a tilde on their
symbol to avoid any possible confusion with the definitions
given in previous articles.

According to our paradigm, for the face-based polynomial
functions shown in Table IV it will be sufficient to demonstrate
the continuity of the normal component through adjacent cells
that may have different shapes, which we do in the following
Sections V-A and V-B. To this end, we recall that to ensure
conformity, the face-based function straddling two adjacent
cells must be oriented so as to have continuous normal
component on the common face. Currently we guarantee that
this happens only afterward using the procedure explained
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TABLE IV
DIVERGENCE-CONFORMING, FACE-BASED FUNCTIONS SUBSET OF ORDER p STRUCTURED IN HIERARCHICAL FORM

in [20, Sec. III], and in [1] to adjust, if necessary, the sign
of the face-based vector function on one of the two adjacent
cells; the correct sign of the face-based functions can be
embedded a priori in the expression of the functions with more
sophisticated techniques.

A. Functions Based on Triangular Faces

For the pyramid, the divergence-conforming p-order com-
plete set has a total of 2(p + 1)(p + 2) functions based
on triangular faces because each zero-order function 3γ (for
γ = 1 to 4) generates (p+1)(p+2)/2 functions hierarchically
organized as shown in the left column of Table IV. The
multiplicative polynomials

Fγ

i0k = (1 − ξ5)
i Ãi

(
ηγ+1

)
C̃ (i)

k (ξ5) (17)

of Table IV which generate these functions can be written as
follows:

Fγ

i0k = Qi
(
ξγ+1, ξγ−1

)
C̃ (i)

k (ξ5) (18)

where Qi (ξγ+1, ξγ−1) is the normalized, shifted scaled Leg-
endre polynomial defined in [12]. Expression (18) clarifies
that, in the end, Fγ

i0k depends only on the variables used to
parameterize face γ , namely the three face variables ξγ+1,
ξγ−1, and ξ5, with ξ5 +ξγ+1 +ξγ−1 = 1. The polynomials Fγ

i0k
do not depend at all on the 3-D shape of the cell that rests
on face γ , be it pyramidal, tetrahedral or triangular prism-
shaped (the names, or better, the subscripts associated with
the parent variables {ξγ+1, ξγ−1, ξ5} may depend on the shape
of the cell, but clearly this does not change the substance of
things). Since Fγ

i0k does not depend on the 3-D shape of the
cell, we can then recognize that paying due attention to the
names and order of the subscripts, the set (17) coincides with
the polynomial set Fmn(ξ t ) given in [20, Table IV], except for

a sign factor (−1)m , with

(−1)m Fmn(ξ t ) = Fγ

n0m = Qn(ξγ+1, ξγ−1) C̃ (n)
m (ξ5) (19)

ξ t = {ξa, ξb, ξc} = {ξγ+1, ξγ−1, ξ5}. (20)

This occurs despite the fact that the Fmn(ξ t ) in [20, Table IV]
have been obtained with an ad hoc technique, i.e., by orthogo-
nalizing a polynomial set formed by the product of Legendre’s
polynomials. The sign of Fγ

i0k in Table IV (and of Fγ

n0m in [19])
is irrelevant because the continuity of the normal component
of the vector basis function that straddles two adjacent cells
having the triangular face in common is fixed a posteriori
simply by adjusting the sign of this function in one of the two
adjacent cells. In fact the polynomials Fγ

i0k are normalized
as in [20] so that the integral of the square of Fγ

i0k on the
triangular parent face ξγ = 0, i.e., on the simplex T 2, is equal
to unity∫ ∫

T 2

[
Fγ

i0k

(
ξ t

)]2 dT 2

=

∫ 1

0

∫ 1−ξ5

0

[
Fγ

i0k

(
ξγ+1, ξ5

)]2 dξ5 dξγ+1

=

∫ 1

0

∫ 1

0
(1 − ξ5)

[
Fγ

i0k

(
ηγ+1, ξ5

)]2 dξ5 dηγ+1 = 1. (21)

B. Functions Based on the Quadrilateral Face

The divergence-conforming p-order complete set has a
total of (p + 1)2 functions based on the quadrilateral face
ξ5 = 0 hierarchically organized as shown in the right column
of Table IV. The zero-order function 35 that generates the
higher order functions

35
i j0 = F5

i j035 (22)

∇ · 35
i j0 =

3
J

F5
i j0 (23)
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TABLE V
DIVERGENCE-CONFORMING, VOLUME-BASED FUNCTIONS SUBSET OF ORDER p STRUCTURED IN HIERARCHICAL FORM

contains the factor (1− ξ5), and this in any case would cancel
the singularity in ξ5 = 1 of the gradient of the multiplicative
functions of Table IV

F5
i j0 = Ãi (η1) Ã j (η2) (24)

of global order i + j , with 0 ≤ i, j ≤ p. Even better, in this
case, we get

35 · ∇F5
i j0 = 0. (25)

On the face ξ5 = 0, the polynomials (24) simplify into

F5
i j0

∣∣
ξ5=0

=
√

2i + 1
√

2 j + 1 Pi (ξ1 − ξ3) Pj (ξ2 − ξ4) (26)

and are therefore identical to the multiplicative polynomials
used in [20] to define the functions based on quadrilateral
faces, which demonstrates the continuity of the normal com-
ponent on the face in common to the adjacent cell, be it a
brick, a prism, or another pyramid.

C. Volume-Based Functions

In addition to the face-based functions of Sections V-A
and V-B, the divergence-conforming p-order complete set has
a total of 3p(p + 1)2 independent bubble functions hierarchi-
cally organized as shown in Table V. The number 3( p̃ −1) p̃ 2

of volume-based functions in [10] coincides with the number
of our bubbles by replacing p̃ with (p + 1).

Ultimately, for a given order p, our pyramid and brick
bases have the same number of independent bubbles, i.e., the
same number of internal DoF. More precisely, for both the
pyramid and the brick, the number of curl-conforming bubbles

is 3p2(p + 1) [12] while, as said, the divergence-conforming
families have 3p(p + 1)2 bubbles.

D. Bases’ Completeness

Completeness to order p in the divergence can be proved
starting from (15). However, in this regard, it is much easier to
observe that completeness is a direct consequence of the fact
that the pyramid is mapped into a brick (i.e., the grandparent
cube), and of the fact that the number of bubbles of a brick
of order p is identical to what we obtained for the pyramid
of the same order.

Likewise, completeness of the p-order vector base follows
from the fact that the basis functions set contains all the face-
based functions up to the p-order which can be defined on
the bounding faces of the pyramid, plus all the volume-based
functions up to the p-order which can be defined on a brick.

E. First Order Base as an Example

The equality of the number of bubbles for the pyramid
with that of the brick is not surprising when we consider
that we have obtained these bases by working on a unitary
cube. The space (parent or grandparent) in which this cube is
located does not really matter. To clarify this, let us consider
for a moment the bubble functions of the first-order base
shown in Table VI, and in particular the divergence of these
(here we do this for convenience, because the divergence is
a scalar quantity, but the reasoning can be repeated for the
vector components of the basis functions). The divergence
of each bubble in Table VI is proportional to one of the
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TABLE VI
FIRST ORDER VOLUME-BASED FUNCTIONS SUBSET

scalar functions reported at the bottom of the same Table VI,
and any linear, bilinear or trilinear function is certainly a
linear combination of these scalar functions. As for divergence,
the zero-order face-based functions and the linear bubbles of
Table VI form a complete first-order set. To get the first-order
complete vector set, we simply add to it the first-order face-
based functions subset.

F. Number of DoF

The number of DoF for divergence-conforming bases of
order p on a pyramid may be determined as follows.

1) One component × ((p + 1)(p + 2)/2) DOF’s × four
triangular faces plus one component × (p + 1)2 DOF’s
× one quadrilateral face = (p + 1)(3p + 5) face DoF.

2) Three components × p(p + 1)2 DOF’s = 3p(p + 1)2

interior DoF.
For a grand total of DoF per pyramid equal to

DoF# = (p + 1)
(
5 + 6p + 3p2). (27)

Once again, by replacing p with ( p̃ − 1), the grand total of
DoF equals 3 p̃3

+ 2 p̃ and agrees with the number of DoF
previously determined in [10]. The number of DoF of the
pyramid is always lower than that of the brick, while it remains
higher than that of the triangular prism for p ≥ 1 (see Fig. 2).
Recall that pyramid and brick have the same number of interior
DoF [1].

VI. NUMERICAL RESULTS

Divergence conforming bases are usually employed in the
numerical solution of integral equations via the method of

Fig. 2. Total number of DoF for divergence-conforming vector bases of
order p on single, differently shaped canonical cells.

moments (MoM). The main problem encountered in the use
of hierarchical bases, not only the divergence-conforming but
also the curl-conforming ones, is that the linear independence
of the basis functions and the conditioning of the finite
problems to be solved get worse as the order of the base
increases [1]. In other words, the condition number (CN) of
the system matrices obtained with the MoM tends to worsen as
the order of the hierarchical base in use increases, although we
have “injected,” so to speak, some orthogonality into the set of
the basis-functions precisely to guarantee a good control on the
deterioration of the CN of the system matrices (by the way, this
is more easily achieved using the Galerkin testing technique).
In this regard, note that the advantages of using orthogonal
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bases are less evident in the solution of integral equations
than those commonly found while numerically solving partial
differential equations with orthogonal, curl-conforming bases.
This happens because the discretization of integral equations
involves singular integrals which gives rise to fully populated
matrices, while the discretization of differential problems
leads to sparse matrices and, above all, does not require the
computation of integrals with singular kernels (all this does
not happen by chance, since the polynomials used in the
construction of the hierarchical bases are precisely orthogonal
with respect to non-singular weight functions).

The volume-based functions proposed here are orthogo-
nal for integrals on the volume of the pyramid, while the
face-based function subsets are orthogonal only for inte-
grals on the corresponding supporting face. However, as we
did in [20], it is possible to make the face-based func-
tions orthogonal also on the volume of the pyramid simply
by adding to each of these a suitable linear combination
of the volume-based functions. This has not been done
in the present article because it is not worth the trouble
for the intended MoM applications, as just said. Instead,
it remains of fundamental importance that the basis functions
are not only independent, but also properly normalized; this
is the main reason why we have used orthogonal poly-
nomials to construct our divergence-conforming hierarchical
bases.

For brevity and to avoid any loss of generality, we do
not consider any integral equation; we rather establish that
the degree of independence between the hierarchical basis
functions of the pyramid is substantially similar to that of the
basis functions for non-pyramidal cells by computing, as done
in [12], the CN of the Gram matrices obtained using bases of
different order on single straight cells, although admitting that
to better assess the linear independence of the basis functions
we should consider and study a large number of meshes,
including hybrid ones that use curved cells. However, the
advantage of doing as we do here is that the coefficients of
the matrices we study are given by simple, non-singular 3-D
integrals on the child cell.

Fig. 3 reports results for the individual element Gram-matrix
CNs for hierarchical vector bases of different order obtained
by considering rectilinear cells with equal edges and of unitary
length (note that the CNs shown in Fig. 3 do not depend
on the cells edge-length in the child space since the unitary
basis vectors and the Jacobian of the transformation from
parent to child space are constant for the cells considered
in Fig. 3).

Fig. 4 compares the individual element mass-matrix CNs
of the equilateral pyramid of Fig. 3 with those for pyramids
obtained by moving one vertex of the base of the equilateral
pyramid along its diagonal, doubling and tripling the length
of this diagonal as depicted in Fig. 5. These pyramids have
equal height and equal length for one of the diagonals of their
base, but the flat quadrilateral base of different shapes. The
ratio between the longest and the shortest side of each cell,
commonly known as aspect ratio (AR), is given in the captions
of Figs. 4 and 5. Note that unlike the equilateral pyramid, the
distorted pyramids considered in Fig. 4 do not have a constant

Fig. 3. Individual element Gram-matrix CNs grow exponentially with the
order of the hierarchical base in use. The figure shows results obtained by
considering differently shaped rectilinear cells whose edges have the same
unitary length. The CNs for the other differently shaped equilateral elements
of the same order are reported in [1, Chap. 5, Table 5.23].

Fig. 4. Individual element Gram-matrix CNs for the rectilinear pyramids
shown in Fig. 5, with AR = 1 (equilateral), AR =

√
5, and AR =

√
13.

Fig. 5. Figure shows pyramids of different AR already studied in [12]:
AR = 1 (equilateral) on the left, AR =

√
5 in the center, and AR =

√
13 on

the right. The Jacobian J of the transformation from parent-to-child space is
constant for an equilateral pyramid, while for distorted pyramids it can vary
within the cell. For example, we have J = K for the pyramid shown on the
left, while J = K (1 + η1 + η2) for the pyramid shown in the center, and
J = K (1 + 2η1 + 2η2) for the pyramid shown on the right.

Jacobian. In view of the results of Fig. 4, we recommend using
cells with AR near unity and less than 3 when using bases of
order higher than the first.

In the end, we find that for the pyramid the CN growth rate
of the Gram matrix is not substantially worse than that of the
hierarchical bases for other differently shaped cells (bricks,
triangular prisms, and tetrahedra).
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VII. CONCLUSION

This article presents a general very simple procedure to
obtain higher-order hierarchical divergence-conforming vector
basis functions for pyramidal elements. The functions can be
consistently used to deal with curvilinear elements and ensure
the continuity of the normal vector component across adjacent
elements of equal order but different shape. The properties
of the vector basis functions are discussed in detail. The
reported numerical results show that the degree of indepen-
dence between the hierarchical basis functions of the pyramid
is similar to that of the basis functions for the other non-
pyramidal cells.
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