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1. Introduction

Massive deformations of extended supergravity play an important role in the description of

superstring and M-theory compactifications in the presence of fluxes [1]–[5], either induced

by p-forms or by S-S generalized dimensional reduction [6].

In these compactifications to four dimensions one often encounters non-standard super-

gravities in that some of the scalars have been replaced by antisymmetric tensor fields [7]–

[11], which, when fluxes are turned on, may become massive vector fields [11, 12, 13]. The

advantage of introducing antisymmetric tensor fields is that one can introduce two kinds

of mass-deformations, one of electric and the other of magnetic type. N = 2 → N = 1

reduction of Calabi-Yau compactifications of type-IIA and type-IIB theories [14, 15, 16],

corresponds to Calabi-Yau orientifolds [17]–[23], and one encounters in this context such

kind on antisymmetric tensor couplings to gravity as coming from NSNS and RR 2-forms
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or 4-forms. In the present paper we consider, in full detail, such reductions, for the case

of different N = 2 → N = 1 truncations which correspond to heterotic string or Calabi-

Yau orientifolds with different kind of orientifolding. The paper is organized as follows.

In section 1 we describe the N = 2 effective supergravity as coming from type-IIB com-

pactifications on a Calabi-Yau 3-fold [24]–[27]. In section 2 to 5 we discuss the different

truncations which give different N = 1 theories, in the presence of general fluxes. In the

remaining sections we discuss the nature of the vacua, the supersymmetric configurations,

and the classification of vacua in the case of cubic prepotentials for a given set of electric

and magnetic charges.

2. D = 4, N = 2 supergravity from type-IIB flux compactification

The general N = 2 supergravity theory coupled to tensor and vector multiplets has been

discussed in references [8, 9, 10]. We recall the field content of the effective theory which,

following the notations and conventions of [28, 10], is given by:

• the gravitational multiplet

(V a
µ , ψµA, ψ

A
µ , A

0
µ) ,

where A = 1, 2 is the SU(2) R-symmetry index of the gravitinos ψ, lower and upper

index referring to their left or right chirality respectively, and V a
µ , A

0
µ are the vierbein

and the graviphoton;

• nV vector multiplets

(Ai
µ, λ

Ai, λı̄
A, z

i, z̄ ı̄) ,

where the chirality convention for upper and lower R-symmetry indices A of the

gauginos λ is reversed, and zi, i = 1 . . . nV are the complex coordinates of the special

Kähler manifold MSK ;

• a scalar-tensor multiplet

(ζα, ζ
α, qu, BIµν) ,

where I = 1, . . . , nT , label the tensor fields, ζα, ζα are the (anti)-chiral fermions

(”hyperinos”) α = 1, . . . , 2nH , transforming in the fundamental of Sp(2nH), and qu

are the coordinates of the manifold MT associated to the scalar-tensor multiplets,

with u = 1, . . . , 4nH − nT .

If we think of this theory as coming from standard N = 2 supergravity, nH denotes the

number of hypermultiplets and nT the number of quaternionic coordinates which, being

axionic, have been dualized into antisymmetric tensors. In the following we shall consider

the particular case of a N = 2 theory resulting from compactification of type-IIB theory

on a Calabi-Yau 3-fold. Therefore the scalar-tensor multiplet will contain just two tensors

B1 µν , B2 µν , which in the ten dimensional interpretation come from the ten dimensional

NSNS and RR 2-forms respectively. Therefore in the following we set nT = 2 so that
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I = 1, 2. Note that in our conventions the index I = 1 for the charges are related to RR

fluxes while the index I = 2 to NSNS fluxes:

e1Λ, m
1Λ ↔ RR fluxes ,

e2Λ, m
2Λ ↔ NS fluxes . (2.1)

The lagrangian and transformation laws of the theory have been given in reference [10].

The analysis of the truncation of such theory to N = 1 can be done by a careful

investigation of the supersymmetry transformation laws, which are given below (up to

3-fermion terms):

δψA|µ = ∇µεA −M IJH̃JµωI A
BεB +

[

iSABηµν + εABT
−
µν

]

γνεB , (2.2)

δλkA = i∂µz
kγµεA +Gk−

µν γ
µνεBε

AB +W kABεB , (2.3)

δζα = iPuAα∂µq
uγµεA − iM IJH̃JµUIAαγ

µεA +NA
α εA , (2.4)

δV a
µ = −iψAµγ

aεA − iψ
A
µ γ

aεA , (2.5)

δAΛ

µ = 2LΛψ
A
µ ε

BεAB + 2L
Λ
ψAµεBε

AB +

+
(

ifΛ

k λ
kA
γµε

BεAB + if
Λ

k̄ λ
k̄
AγµεBε

AB
)

, (2.6)

δBIµν = − i

2

(

εAγµνζαUI
Aα − εAγµνζ

αUIAα

)

−

−ωIC
A
(

εAγ[µψ
C
ν] + ψ[µAγν]ε

C
)

, (2.7)

δzk = λ
kA
εA , (2.8)

δzk̄ = λ
k̄
Aε

A , (2.9)

δqu = P u
Aα

(

ζ
α
εA + C

αβεABζβεB

)

. (2.10)

Here and in the following we give, for the sake of simplicity, the transformation laws for

the left-handed spinor fields only.

Notations are as follows:

• we have collected the nV + 1 vectors into AΛ
µ = (A0

µ, A
i
µ), with Λ = 0, . . . , nV , and

we have defined:1

H̃Iµ = εµνρσH
νρσ
I ; HI µνρ = ∂[µB|I νρ] ; (2.11)

• the covariant derivative on the ε parameter is given by:

∇µεA ≡ ∂µεA − 1

4
ωab

µ γabεA +
i

2
QµεA + ω B

µA εB , (2.12)

Qµ ≡ i

2

(

∂iK ∂µz
i − ∂ı̄K ∂µz

ı̄
)

, (2.13)

ω B
A =

i

2
ωx σx B

A , (2.14)

1We use boldface indices for the N = 2 vector multiplets since we want to reserve the plain capital Greek

letters Λ, Σ . . . to label the N = 1 vector multiplets.
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where ωab, Q(z, z̄), ωB
A (qu) denote the Lorentz, U(1)–Kähler and SU(2) 1-form con-

nections, respectively. Here K is the special geometry Kähler potential;

• the transformation laws of the fermions (2.2), (2.3), (2.4) also contain the further

structures SAB, W
kAB, NA

α , named “fermion shifts” (or generalized Fayet-Iliopoulos

terms) which are related to the presence of electric and magnetic charges (eI
Λ
,mI Λ),

and which give rise to a non trivial scalar potential. Their explicit form is:

SAB =
i

2
σx

ABω
x
I (LΛeIΛ −MΛm

IΛ) , (2.15)

W kAB = igk ¯̀
σAB

x ωx
I (f̄Λ

¯̀ − h̄¯̀Λm
IΛ) , (2.16)

NA
α = 2Uα

AI(L̄
ΛeIΛ − M̄Λm

IΛ) ; (2.17)

• besides H̃Iµ the transformation laws contain additional I-indexed structures (I =

1, 2), namely UI
Aα(qu), ωIA

B(qu) and MIJ(qu) (M IJ will denote its inverse matrix),

which satisfy a number of relations that can be found in ref [8] . We observe that,

if one thinks of this theory as coming from the N = 2 standard supergravity [28],

the previous I-indexed quantities can be interpreted as the remnants of the original

vielbein UAα
û , of the SU(2) 1-form connection ω B

ûA and of the quaternionic metric

in the I, J directions, after dualization of the axionic qI coordinates (qû = (qu, qI))

parametrizing the original quaternionic manifold;

• the quantity PAα = PuAα(qu)dqu appearing in equations (2.4), (2.10) is a “rectangular

vielbein” [8] related to the metric guv of MT by the relation Pu
AαPvAα = guv, and

P uAα = guvPv
Aα. It is related to the original vielbein UAα

û by:

Pu
Aα = UAα

u +AI
u UAα

I , (2.18)

where AI
u = M IJ hJu and hûv̂ is the original quaternionic metric. Since the quater-

nionic vielbein satisfies the reality condition UAα? = εABCαβ UBβ , C being the

Sp(2nH) invariant metric, an analogous reality condition holds for PAα;

• all the other structures appearing in the transformation laws depend on the scalar

fields zi, z ı̄ of the special geometry of the vector multiplets. Here we just recall the

fundamental relations obeyed by the symplectic sections of the special manifold:

DiV = Ui ,

DiUj = iCijkg
kk̄Ūk̄ ,

DiU̄ = gi̄V̄ ,

DiV̄ = 0 , (2.19)

where i, j = 1, . . . , nV , Di is the Kähler and (generally) covariant derivative, and

V = (LΛ,MΛ) , Ui = DiV = (fΛ

i , hΛi) Λ = 0, . . . , nV ; (2.20)

MΛ = NΛΣL
Σ , hΛi = NΛΣf

Λ

i , (2.21)
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and NΛΣ is the kinetic vector matrix. Then the “dressed” field-strengths T−
µν and

Gk−
µν appearing in the transformation laws of the gravitino and gaugino fields are

given by:

T−
µν = 2i ImNΛΣL

ΣFΛ−
µν , (2.22)

Gi−
µν = −gi̄f̄Γ

̄ ImNΓΛF
Λ−
µν . (2.23)

• Finally the scalar potential of the theory can be computed from the shifts (2.15),

(2.16), (2.17)and is given by:

V = 4 (MIJ − ωx
Iω

x
J)
(

mIΛMΛ − eIΛL
Λ
)

(

mJΣMΣ − eJΣL
Σ
)

+

+ωx
Iω

x
J

(

mIΛ, eIΛ
)

S
(

mJΣ

eJ
Σ

)

, (2.24)

where the matrix S is a symplectic matrix given explicitly by:

S = −1

2

(

IΛΣ +
(

RI−1R
)

ΛΣ
−
(

RI−1
)

Λ

Σ

−
(

I−1R
)Λ

Σ I−1|ΛΣ

)

. (2.25)

where RΛΣ and IΛΣ denote ReNΛΣ and ImNΛΣ respectively . Furthermore the

electric and magnetic charges must satisfy the the “generalized tadpole condition”:

eIΛm
JΛ − eJΛm

IΛ = 0 , (2.26)

as a consequence of the supersymmetry Ward identity of the scalar potential and/or

the invariance of the lagrangian under the tensor-gauge transformation:

δBI µν = ∂[µΛIν] ; δAΛ

µ = −2mΛ IΛIµ . (2.27)

ΛIµ being an arbitrary vector.

In the following we shall be concerned with a theory coming from type-IIB compactification

on a Calabi-Yau 3-fold. In this case the first term is zero, due to the peculiar properties of

the special geometry derived from a cubic prepotential, so that the scalar potential contains

only the second term, namely:

V = ωx
Iω

x
J

(

mIΛ, eIΛ
)

S
(

mJΣ

eJ
Σ

)

. (2.28)

3. Conditions for a consistent N = 2 → N = 1 truncation

We know that in a special quaternionic manifold MQ we can always identify a universal

hypermultiplet which is uniquely selected by the isometries of MQ [29]. In the dualized

theory we are considering, the universal hypermultiplet becomes a double tensor multiplet

(B1µν , B2µν , C0, ϕ) ,
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where C0 is the ten dimensional axion of type-IIB theory, ϕ is the four dimensional dilaton

and B1µν , B2µν are the the four dimensional 2-forms coming from the NSNS and RR two

forms of the type-IIB theory.

The possible truncations to N = 1 can be obtained setting to zero a linear combination

of the supersymmetry parameters (ε1, ε2). It is easy to see that there are three essentially

different truncations, all the others being equivalent, modulo SU(2) rotations. Two of them

will be seen to correspond to Z2 orientifold projections of type-IIB supergravity on a Calabi-

Yau 3-fold, while the third one corresponds to the same compactification of heterotic string.

To understand why we have three different truncations, let us start with the simplest

choice, following the guidelines of [14], that is, let us set to zero the parameter ε2:

ε2 = ψ2µ = 0 . (3.1)

Considering the surviving ψε currents in the supersymmetry transformation laws of the

tensors (2.7):

δBIµν =
i

2
ω

(3)
I (ε1γ[µψ

1
ν] + ε1γ[µψν]1) + · · · (3.2)

we recognize that in order to truncate one or both of the two tensors BI , we have to set

to zero the corresponding structure ω
(3)
I . As we have six ωx

I , with I = 1, 2, x = 1, 2, 3,

by means of an SU(2) transformation we can always set to zero three of them. A possible

choice is the one given in reference [29], that is in our notations:

ω
(1)
I = −1

2
e2ϕ

(

0

Imτ

)

; ω
(2)
I =

(

0

0

)

; ω
(3)
I = −1

2
e2ϕ

(

1

Re τ

)

, (3.3)

where τ = −C0+4 i e−ϕ+
KQ

2 , KQ being the Kähler potential of the special Kähler manifold

contained in the quaternionic-Kähler manifold MQ, and ϕ − KQ

2 is the ten-dimensional

dilaton.

If we want to consider other possible truncations we have to set to zero different

combinations of (ε1, ε2). For this purpose we can act with a rigid SU(2) transformation

on the theory and then set to zero the new ε2 parameter. There are essentially two more

different possibilities which fulfill our requirements, which are obtained by means of a

rotation of θ = π
2 on the (x = 1, x = 3) and (x = 2, x = 3) planes in R

3 respectively. They

correspond to setting to zero ε′2 or ε′′2, namely:

ε′2 =
1√
2
(−iε1 + ε2) = 0 , (3.4)

or

ε′′2 =
1√
2
(−ε1 + ε2) = 0 . (3.5)

It will be seen that in these cases we obtain the N = 1 theory corresponding to the

O(5)/O(9) or O(3)/O(7) orientifold projection of type-IIB theory on a Calabi-Yau 3-fold,

respectively. The corresponding values of the rotated ωx
I are given by:

O(5)/O(9) case:

ω
(1)
I =

1

2
e2ϕ

(

1

Re τ

)

; ω
(2)
I =

(

0

0

)

; ω
(3)
I = −1

2
e2ϕ

(

0

Imτ

)

. (3.6)
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O(3)/O(7) case:

ω
(1)
I = −1

2
e2ϕ

(

0

Imτ

)

; ω
(2)
I = −1

2
e2ϕ

(

1

Re τ

)

; ω
(3)
I =

(

0

0

)

, (3.7)

Given the correspondence between the choice of the particular supersymmetry param-

eter to be set to zero and of the values of the corresponding structures ωx
I , in order to

analyze the three cases (3.1), (3.4), (3.5), we will set ε2 = ψ2µ = 0 in equations (2.2)–

(2.10) and then specify the connections ωx
I according to the case (3.3), (3.6), (3.7) for an

explicit solution of the constraints.

3.1 Truncation of the gravitational multiplet

Let us first consider the gravitino transformation law (2.2) and analyze the consequences

of the truncation ε2 = 0 which do not depend of the three different choices (3.1), (3.4),

(3.5). Following the same steps as in [14], setting ε2 = ψ2µ = 0 in equation (2.2) gives, for

A = 1 the supersymmetry transformation law of the N = 1 gravitino:

δψ1µ = ∇µε1 −M IJH̃Jµω
1

1 ε1 + iS11γµε
1 , (3.8)

while for A = 2 we obtain the following consistency condition:

δψ2µ = ω 1
µ2 ε1 −M IJH̃JµωI 2

1ε1 +
[

iS21ηµν + ε21T
−
µν

]

γνε1 = 0 , (3.9)

which implies:

ω 1
µ2 = ω 1

u2 ∂µq
u = 0 , (3.10)

S21 =
i

2
σx

21ω
x
I (LΛeIΛ −MΛm

IΛ) = 0 , (3.11)

M IJH̃JµωI 2
1 = 0 , (3.12)

T− ≡ 2iImNΛΣL
ΛF−Σ = 0 . (3.13)

The last condition can be solved as in reference [14] since, apart from the fermionic shift

related to the scalar potential, the vector multiplet sector is untouched by the dualization

in the hypermultiplet sector. A short account of the results given in [14] is reported in the

next paragraph.

Conditions (3.12) and (3.11) depend on the choice of one of the three aforementioned

cases and will be analyzed separately in the next sections. In this section we concentrate

on those conditions which do not depend on the choice of the structure of ωIA
B. Condition

(3.10) differs from the one in reference [14] because here there appears the SU(2) connection

ωx(qu) of the reduced quaternionic manifold [8], instead of the connection ω̂x(qû) of the

quaternionic manifold of standard N = 2 supergravity [28].2 In fact, using the expression

of the SU(2) curvature ΩA
B as given in [8], we have:

Ω1
2 ≡ dω 1

2 + ω 1
2 ∧ ω 1

1 + ω 2
2 ∧ ω 1

2 + ∇
(

AI ∧ ω 1
I 2

)

+ P2α ∧ P 1α . (3.14)

2We recall that the tensors of the scalar-tensor multiplet come from the axionic scalars of the N = 2

quaternionic manifold which have been dualized implying that the residual N = 2 manifold is no more

quaternionic.
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The consistency condition Ω1
2 = 0 gives:

∇
(

AI ∧ ω 1
I 2

)

= 0 , (3.15)

P2α ∧ P 1α = 0 . (3.16)

Since equation (3.15) depends on ωIA
B it will be dealt with later. To analyze the

consequences of (3.16), we observe that the holonomy of the scalar manifold MT for the

N = 2 tensor coupled theory is contained in SU(2)×Sp(2nH)⊗SO(nT = 2) [8]. Performing

the truncation from N = 2 to N = 1 the holonomy must reduce according to:

Hol(MN=2
Q ) ⊂ SU(2) × Sp(2nH) ⊗ SO(2) → Hol(MN=1

Q ) ⊂ U(1) × SU(nH) . (3.17)

We split therefore the symplectic index α of PAα as follows:

α→ (α̂, α̇) ∈
(

Û(1) × ŜU(nH)
)

×
(

U̇(1) × ˙SU(nH)
)

. (3.18)

The reality condition on the vielbein PAα becomes:

P1α̂ ≡ (P 1α̂)∗ = Cα̂β̇P
2β̇ , (3.19)

P2α̂ ≡ (P 2α̂)∗ = −Cβ̇α̂P
2β̇ , (3.20)

where the symplectic metric has been decomposed according to:

Cαβ =

(

0 Cα̂β̇

Cα̇β̂ 0

)

, (3.21)

with Cα̂β̇ = −Cβ̇α̂ = δα̂β̇ . Therefore the constraint (3.16) can be rewritten as:

Cα̂β̇P
α̂
2 ∧ P 1β̇ + Cα̇β̂P

α̇
2 ∧ P 1β̂ = 0 , (3.22)

which can be solved setting, for instance:

P2α̇ = 0 ⇔ P1α̂ = 0 . (3.23)

Equation (3.23), implies further constraints using the results of reference [8] for the covari-

ant derivatives of PAα, namely:

dP2α̇ + ω 1
2 ∧ P1α̇ + ω 2

2 ∧ P2α̇ + ∆ β̇
α̇ ∧ P2β̇ + ∆ β̂

α̇ ∧ P2β̂ + F I ∧ UI2α̇ = 0 , (3.24)

dP1α̂ + ω 1
1 ∧ P1α̂ + ω 2

1 ∧ P2α̂ + ∆ β̂
α̂ ∧ P1β̂ + ∆ β̇

α̂ ∧ P1β̇ + F I ∧ UI1α̂ = 0 . (3.25)

Taking into account equations (3.23), (3.10) we obtain the consistency constraints:

F IUI2α̇ = F IUI1α̂ = 0 , (3.26)

∆ β̇
α̂ = ∆ β̂

α̇ = 0 . (3.27)

Furthermore, considering the curvature associated to the vanishing connections (3.27) it is

not difficult to see, taking into account the previous constraints, that its vanishing implies:

Ωα̇β̇γ̂δ̇ = 0 , (3.28)

– 8 –



J
H
E
P
0
3
(
2
0
0
5
)
0
5
2

where Ωαβγδ is the completely symmetric tensor entering the expression of the symplectic

curvature of the quaternionic manifold MQ as well in MT [28, 10]. Note that this same

constraint was obtained for the truncation N = 2 −→ N = 1 of the standard N = 2

supergravity [14].

From the supersymmetry transformation laws of the hypermultiplet scalars, namely:

PuAαδq
u = ζαεA + Cαβζ

β
εB , (3.29)

using equation (3.23), we obtain that the truncated spinors of the scalar-tensor multiplet

are:

ζα̂ = ζα̂ = 0 , (3.30)

and imposing δζ α̂ = δζα̂ = 0, namely:

δζα̂ = iP 1α̂
u ∂µq

uγµε1 − iM IJH̃µJU1α̂
I γmε1 +N α̂

1 ε
1 = 0 , (3.31)

δζα̂ = iPu1α̂∂µq
uγµε1 − iM IJH̃µJUI1α̂γmε

1 +N1
α̂ε1 = 0 , (3.32)

we obtain the following further conditions:

M IJH̃µIUJ |2α̇ = M IJH̃µIUJ |1α̂ = 0 , (3.33)

N α̂
1 = N1

α̂ = 0 . (3.34)

Vice versa, the supersymmetry transformation laws of the retained spinors ζα̇ (2.4) imply

that the vielbein on the reduced manifold must be related to P1α̇ (and its complex conjugate

P2α̂), for which the reduced torsion equation becomes:

dP1α̇ +
i

2
ω(3)P1α̇ + ∆ β̇

α̇ P1β̇ + F IUI|1α̇ = 0 ,

m

dP2α̂ − i

2
ω(3)P2α̂ + ∆ β̂

α̂ P2β̂ + F IUI|2α̂ = 0 . (3.35)

In the sequel we shall derive the precise relation between P 1α̇ and the vielbein of the N = 1

manifold.

3.2 Truncation of the vector multiplets

As far as condition (3.13) is concerned, it can be solved exactly as in reference [14], since

the vector multiplet sector is untouched by the dualization of the hypermultiplets. Some

differences arise just for the gauge terms and they are discussed in the following. Therefore,

in the sequel, we just give a short account of the derivation of the results given in [14].

We recall that the truncation in the vector multiplet sector (including the graviphoton)

depends on the way the constraint (3.13) is satisfied. Denoting by LΛ the symplectic section

of the special Kähler manifold MN=2
SK of complex dimension nV of the N = 2 standard

theory, the most general solution of the constraint is obtained by splitting the index Λ of

LΛ as follows:

Λ = 0, 1, . . . , nV → (X = 0, 1, . . . , nC , Λ = 1, . . . , n′V ) , (3.36)
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with nC + n′V = nV . If we set LΛ = 0 the remaining nC + 1 sections LX parametrize a

submanifold MN=1
V of complex dimension nC of the N = 1 scalar manifold. If we further

set FX
µν = 0 we satisfy the constraint (3.13) and only n′

V vectors AΛ
µ remain in the spectrum.

According to the structure of the N = 1 multiplets it is easy to see that nC is the number

of the N = 1 chiral multiplets and n′V the number of the N = 1 vector multiplets.

Consequently we also split the index k = 1, . . . , nV which labels the coordinates

(1, zk) = LΛ/L0 of the Special Kähler manifold according to k → (k̇, k̂), where k̇ =

1, . . . , nC refers to the scalars of the chiral multiplets which parametrize the Kähler-Hodge

manifold MN=1
V , while k̂ = 1, . . . , n′V labels the scalars which must be truncated out.

According to the previous considerations the N = 2 gaugini λkA therefore decompose

as follows:

λkA → (λk̇1, λk̇2, λk̂1, λk̂2) . (3.37)

Defining

λΛ
• ≡ −2fΛ

k̂
λk̂2 . (3.38)

where fΛ
k is the special geometry object with a world index in the (truncated) directions

dzk, it turns out that λΛ
• is the chiral gaugino of the N = 1 vector multiplet such that the

associated D-term is given by:

DΛ = i
(

ImN−1
)ΛΣ (

P 0
Σ + P 3

Σ

)

. (3.39)

The full analysis of reference [14] give furthermore a set of conditions on the special geom-

etry structures that are given by:

FX
µν = GXµν = 0 , (3.40)

LΛ = MΛ = fΛ
k̇

= hk̇Λ = 0 , (3.41)

fX
k̂

= hk̂X = 0 , (3.42)

NXΛ = 0 , (3.43)

W k̇21 = W k̂11 = 0 , (3.44)

Ck̇ ˙̀m̂ = g
k̇ˆ̀ = 0 , (3.45)

where GXµν is the dressed field-strength dual to FX
µν , and Ck̇ ˙̀m̂ and g

k̇ˆ̀ are components

of the three index tensor and of the Kähler metric of the special geometry with the given

particular structure of indices.

4. The heterotic case

Let us consider now the constraints (3.12), (3.15), (3.26), (3.33) for the case (3.1) when

the ωx
I are specified in equation (3.3). Let us first analyze the constraint (3.12). Since

ωI2
1 = i

2ω
x
I σ

x 1
2 , using the connections (3.3), the constraint (3.12) implies

H̃2
µ = 0 , (4.1)
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being ω
(1)
I=2 the only non-vanishing component of ωI2

1. Equation (4.1), explicitly reads:

0 = H̃2
µ = M21H̃1µ +M22H̃2µ . (4.2)

As shown in the appendix M 22 6= 0 and M12 ∝ Reτ , therefore the solution is given by:

H̃2µ = 0; M12 = 0 ⇔ Reτ = 0 . (4.3)

Since

∇(AI ωI)2
1 = d(AI ωI1

2) + ω2
1 ∧AI ωI1

1 + ω2
2 ∧AI ωI2

1 = 0 , (4.4)

taking into account eq. (3.10) and the fact that ω 1
I2 6= 0 only for I = 2, we see that the

constraint (3.15) is solved if we set:

A2 = 0 . (4.5)

Using equation (4.1) into equation (3.33) we obtain:

U(I=)1|2α̇ = U(I=)1|1α̂ = 0 . (4.6)

Equation (4.6) together with the constraint (4.3) satisfies equation (3.26).

The consistency condition:

δB2µν = − i

2
(ε1γµνζαU1α

(I=)2 − ε1γµνζ
αU(I=)2|1α +

+
i

2
ω

(3)
2 (ε1γ[µψ

1
ν] + ε1γ[µψν]1) = 0 , (4.7)

implies again: ω
(3)
2 ∝ Reτ = 0 and furthermore:

ζαU1α
(I=)2 = ζαU(I=)2|1α = 0 , (4.8)

which thanks to equation (3.30) gives the following constraints:

U(I=)2|1α̇ = U(I=)2|2α̂ = 0 . (4.9)

We now consider the conditions on the fermionic shifts. Let us start with the gravitino

shift (3.11), where we take into account condition Reτ = 0 and equation (3.41). Then we

have:

S12 =
i

4
e2ϕ(LXe1X −MXm

1X) = 0 (4.10)

which implies:

e1X = m1X = 0 . (4.11)

The conditions on the hyperino shifts (3.34), are satisfied in virtue of condition Reτ = 0

and equations (4.9), (4.11). Finally the condition from the gaugino shift (3.44) is satisfied

if we set:

fΛ
k̂
e2Λ − hΛk̂m

2Λ = 0 , (4.12)

which implies that

e2Λ = m2Λ = 0 . (4.13)
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The manifold MN=1
T obtained from the reduction of the scalar-tensor multiplet has 2nH−1

dimensions and must be the product of a Kähler manifold parametrized by nH −1 complex

coordinates and a one dimensional manifold parametrized by the scalars sitting in the linear

multiplet.

In order to identify the vielbein of the Kähler-Hodge manifold and the einbein of the

linear multiplet we consider the equation

Puα[AUα
B]I = 0 , (4.14)

which is one of the constraints defining the scalar tensor geometry of MT [8]. We introduce

nH − 1 complex coordinates ws (s = 1, . . . , nH − 1) and one real coordinate w0 = w̄0 and

proceed as in reference [14] setting:

Pu1α̇dq
u =

1√
2
Psα̇dw

s ; Pu2α̂dq
u =

1√
2
Ps̄α̂dw̄

s̄ (s = 0, . . . , nH − 1) (4.15)

Thanks to equations (4.15), the N = 2 relation [8]:

PuAαP
Aα
v = guv , (4.16)

reduces to:

Psα̇P
α̇
r̄ = gsr̄ , (4.17)

gsr̄ being the metric of MN=1
V . In virtue of equations (3.23), (4.15), condition (4.14) reduces

to:

Psα̇U α̇
I2dw

s = Ps̄α̂U α̂
I1dw̄

s̄, ; s = 0, . . . , nH − 1 , (4.18)

which implies

P0α̇U α̇
I2 = P0α̂U α̂

I1 ,

Psα̇U α̇
I2 = Ps̄α̂U α̂

I1 = 0 ; (s = 1, . . . , nH − 1) . (4.19)

Taking also α̇ running from 0 to nH − 1 we can solve the orthogonality relation (4.19) by

setting U1α̇
I = 0 except the α̇ = 0 component (see the appendix for an explicit representation

of U), by taking Psα̇=0 = 0 for s = 1, . . . , nH − 1 and requiring i P0α̇U α̇
I2 to be real. Note

that with this position equation (3.35) implies that the Kähler-Hodge manifold MN=1
Q has

a torsionless vielbein Psα̇, α̇ = 1, . . . , nH − 1.

According to these considerations, the hyperini ζα̇ will be also split into one ζ =

{ζ•, ζ•} which belongs to the linear multiplet and nH − 1 ζs = {ζs
• , ζ

•s} belonging to the

chiral multiplets.

In summary the reduced N = 1 theory has a σ-model given by the manifold:

M(N=1)
V ⊗M(N=1)

Q ⊗ R , (4.20)

where M(N=1)
V is the Kähler-Hodge manifold of complex dimension nC obtained from the

reduction of the vector multiplet sector, parametrized by the coordinates z k̇, M(N=1)
Q is

again a Kähler-Hodge manifold of complex dimension nH − 1 obtained by the truncation
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in the scalar-tensor sector and parametrized by the coordinates ws, and R is the one

dimensional real manifold parametrized by the scalar ϕ of the residual linear multiplet.

We can derive the supersymmetry transformation laws for N = 1 supergravity coupled

to one linear multiplet performing the following identifications:

ψ•µ = ψ1µ ; ε• = ε1 , (4.21)

Bµν = B1µν , (4.22)

Pα̇sδw
s =

√
2Pu1α̇δq

u|MKH , (4.23)

dϕ = −P1 α̇=0 (4.24)

χk̇ = λk̇1 ; λΛ
• = −2fΛ

k̂
λk̂2 , (4.25)

ζs =
√

2P α̇sζα̇ ; ζ = −ζα̇=0 ; s = 1, . . . , nH − 1 , (4.26)

N s =
√

2P α̇sN1
α̇ ; N = −N1

α̇=0 , (4.27)

N k̇ = W 11k̇ ; DΛ = 2ifΛ
k̂
W 21k̂ , (4.28)

L = S11 , (4.29)

where for the N = 1 theory we denote left and right-handed spinors with a lower and upper

dot • respectively. We these identifications the supersymmetry transformation laws for the

N = 1 theory are:

δV a
µ = −iψ̄•µγ

aε• + h.c. , (4.30)

δψ•µ = ∇µε• + i e−2 ϕ H̃µε• + iLγµε
• , (4.31)

δAΛ
µ =

i

2
λ

Λ
• γµε

• + h.c. , (4.32)

δλΛ
• = F (−)Λ

µν γµνε• + iDΛε• , (4.33)

δχk̇ = i∂µz
k̇γµε• +N k̇ε• , (4.34)

δζs = i∂µw
sγµε• +N sε• , (4.35)

δzk̇ = χk̇ε• , (4.36)

δws = ζ
s
ε• , (4.37)

δϕ = ζ• ε• + h.c. , (4.38)

δBµν =
1

4
e2 ϕ ε• γµν ζ• −

1

2
e2 ϕ ε• γ[µψ

•
ν] + h.c. , (4.39)

δζ• = i∂µϕγ
µε• + 2e−2 ϕH̃µγ

µε• +Nε• . (4.40)

the last three transformation laws referring to the linear multiplet fields

{Bµν , ζ•, ζ
•, ϕ} .

The term M IJH̃Jµ appearing in equations (2.2), (2.4) has been reduced using the explicit

form of M IJ and UIAα given in the appendix. The covariant derivative in (4.31) is defined

as follows:

∇µε• ≡ ∂µε• −
1

4
ωabγabε• +

i

2
Qµε• (4.41)
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where

Qµ = Qµ + ω3
µ , (4.42)

is the U(1) connection on the N = 1 Kähler-Hodge manifold MN=1
V ×MN=1

T .

The superpotential L, the spin 1/2 fermion shifts and the D-term turn out to be:

L = −ieϕ+ K
2 (LXe2X −MXm

2X) , (4.43)

N k̇ = igk̇ ˙̀
eϕ+ K

2 (f̄X
˙̀
e2X − h̄

X ˙̀m
2X) = 2gk̇ ˙̀∇ ˙̀L , (4.44)

N s = 2
√

2P sα̇U1
(I=)2α̇(L̄Xe2X − M̄Xm

2X) = 2gss∇sL , (4.45)

N = 2 ieϕ+ K
2 (L̄Xe2X − M̄Xm

2X) = 2
∂

∂ϕ
L , (4.46)

DΛ = −1

2
e2 ϕ(ImN−1)ΛΣ(e1Σ −NΣΓm

1Γ) . (4.47)

Let us observe that the electric and magnetic charges entering the superpotential L satisfy

the equation (2.26) identically.

The scalar potential can be deduced from the above fermion shifts and reads:

V = −1

8
e4 ϕ

[

16 e−2 ϕ+KQ (e2X −NXYm
2Y )(ImN−1)Y Z(e2Z −NZWm2W ) +

+ (e1Λ −NΛΣm
1Σ)(ImN−1)ΛΓ(e1Γ −NΓ∆m

1∆)
]

. (4.48)

5. The O5/O9 case

The reduction corresponding to the case (3.5) is completely analogous to the heterotic case

provided we perform in all the equations the substitution I = 1 ↔ I = 2 . Thus, for

example, equation (3.12), when equations (3.6) are considered, gives the constraints:

H̃1
µ = 0 ⇔ B1µν = 0; Reτ = 0 (5.1)

replacing the conditions (4.1), (4.3). Proceeding as in previous section we now find that in

the O5/O9 case we obtain that the equations (4.6), (4.7), (4.8),(4.9), (4.11), (4.12) are valid

provided we perform the replacement I = 1 ↔ I = 2. In particular all the considerations

of the previous section after (4.12) for the identification of the fields of the N = 1 theory

remain the same provided we set Bµν = B2µν and replace in the fermion shifts, (4.43),

(4.44), (4.45), (4.46), (4.47), e2X → e1X , m
2
X → m1

X , e1Λ → e2Λ, m
1
Λ → m2

Λ. In particular,

the transformation laws of the N = 1 theory are the same except for the gravitino and the

spinor ζ• of the linear multiplet. Indeed the term M IJH̃Jµ appearing in equations (2.2),

(2.4) gives a different contribution due to the fact that now we have H̃1µ = 0 instead of

H̃2µ = 0. Using the expression of M IJ in the appendix we now obtain:

δψ•µ = ∇µε• − 2i
1

I−1|00
e−ϕ+KQ/2H̃µε• (5.2)

δζ• = i∂µϕγ
µε• +

1

I−1|00
H̃µγ

µε• +Nε• . (5.3)

As in the Heterotic case the electric and magnetic charges entering the superpotential L

satisfy the equation (2.26) identically.
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Finally the scalar potential for the O5/O9 case is:

V = −1

8
e4 ϕ

[

(e1X −NXYm
1Y )(ImN−1)Y Z(e1Z −NZWm1W ) +

+ 16 e−2 ϕ+KQ (e2Λ −NΛΣm
2Σ)(ImN−1)ΛΓ(e2Γ −NΓ∆m

2∆)
]

. (5.4)

6. The O3/O7 case

Let us consider the truncation corresponding to set to zero ε2 as given in (3.4) and with

the connections ωx
I given in equation (3.7).

We analyze first the constraint (3.12), which, thanks to the expression (3.7), gives the

conditions:

H̃1
µ = H̃2

µ = 0 → H̃1µ = H̃2µ = 0 . (6.1)

The same consideration holds for equations (3.15), which is solved setting:

F I = AI = 0 , I = 1, 2 . (6.2)

In virtue of equation (6.2) also the constraint (3.26) is satisfied and thus the constraint

(3.23) is consistent. Equations (3.31), (3.32) do not give any constraint on the UAα
I be-

cause of equation (6.1). All the conditions on the UAα
I come from the supersymmetry

transformation law of the tensors:

δBIµν = − i

2
(ε1γµνζαU1α

I − ε1γµνζ
αUI1α +

i

2
ω

(3)
I (ε1γ[µψ

1
ν] + ε1γ[µψν]1) = 0 . (6.3)

Since in this case ω
(3)
I = 0 identically, we have to impose:

UI1α̇ = UI2α̂ = 0 . (6.4)

Finally the torsion equation (3.35) for the vielbeins P1α̇, taking equations (4.19) and (3.28)

into account, becomes:

dP1α̇ + ω 1
1 P1α̇ + ∆ β̇

α̇ P1β̇ = 0 , (6.5)

ensuring the absence of torsion of the Kähler Hodge manifold.

As far as the fermion shifts are concerned from the gravitino shift we have the condition

(3.11):

S12 =
i

2
ω

(3)
I (LXeIX −MXm

IX) = 0 (6.6)

which is satisfied since ω
(3)
I = 0. Furthermore equation (3.34) is satisfied in virtue of (6.4).

Finally the constraint (3.44) imposes:

fΛ
k̂
eΛ − hΛk̂m

Λ = 0 (6.7)

eΛ = e1Λ + τe2Λ, m
Λ = m1Λ + τm2Λ . (6.8)

which implies that the Λ-indexed charges must be zero:

e1Λ = e2Λ = m1Λ = m2Λ = 0 . (6.9)
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The N = 1 theory has in this case a σ-model given by the product of two Kähler-Hodge

manifolds

M(N=1)
V ⊗M(N=1)

Q (6.10)

of complex dimension nC and nH respectively.

Performing the identifications:

ψ•µ = ψ1µ ; ε• = ε1 , (6.11)

Pα̇sδw
s =

√
2Pu1α̇δq

u|MKH , (6.12)

χk̇ = λk̇1 ; λΛ
• = −2fΛ

k̂
λk̂2 , (6.13)

ζs =
√

2P α̇sζα̇ ; s = 1, . . . , nH − 1 , (6.14)

N s =
√

2P α̇sN1
α̇ ; N = −N1

α̇=0 , (6.15)

N k̇ = W 11k̇ ; DΛ = 2ifΛ
k̂
W 21k̂ , (6.16)

L = S11 , (6.17)

the supersymmetry transformation laws of the N = 1 theory are given by:

δV a
µ = −iψ̄•µγ

aε• + h.c. (6.18)

δψ•µ = ∇µε• + iLγµε
• (6.19)

δAΛ
µ =

i

2
λ

Λ
• γµε

• + h.c. (6.20)

δλΛ
• = F (−)Λ

µν γµνε• + iDΛε• (6.21)

δχk̇ = i∂µz
k̇γµε• +N k̇ε• (6.22)

δζs = iPsα̇∂µw
sγµε• +Nα̇ε• (6.23)

δzk̇ = χk̇ε• (6.24)

δws = ζ
s
ε• (6.25)

where the fermion shifts are given by:

L = −1

4
e2ϕ(LXeX −MXm

X) (6.26)

N k̇ = −1

2
gk̇ ˙̀
e2ϕ(fX

˙̀
ēX − h

X ˙̀m̄
X) = 2gk̇ ˙̀∇ ˙̀L (6.27)

N s = 2
√

2P sα̇UI1α̂(L̄XeIX − M̄Xm
IX) = 2gss∇sL (6.28)

DΛ = 0 , (6.29)

and we have defined:

eX = e1X + τe2X ; mX = m1X + τm2X . (6.30)

In the present case both the NSNS and RR electric and magnetic charges enter the definition

of the superpotential (6.26). We see that the charges {e1
X , e

2
X} and {m1 X , m2 X} are

constrained by the tadpole condition:

m1Xε2X −m2Xε1X = m1Λ e2Λ −m2Λ e1Λ = 0 . (6.31)
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For e×m = 0 the scalar potential is given by [3]:

V = −1

8
e4 ϕ(eX −NXYm

Y )(ImN−1)XZ(eZ −NZWmW ) . (6.32)

On the other hand, if e×m 6= 0, N = 2 supersymmetry is broken but still the theory can

have an unbroken N = 1 sector. Indeed for e×m 6= 0 the scalar potential is given by [21]:

V = −1

8
e4 ϕ(eX −NXYm

Y )(ImN−1)XZ(eZ −NZWmW ) +
1

4
e4ϕ Imτ m× e . (6.33)

The potential (6.33) can be written in a manifestly N = 1 fashion:

V = eK(z, z̄)+K(τ, τ̄)+KD(w, w̄)
[

Gij̄ DiW Dj̄W +Gτ τ̄ DτW Dτ̄W
]

+ eKD(w, w̄)m× e , (6.34)

where the superpotential W has the form:

W = XX eX − FX mX , (6.35)

which is consistent with the general expression given in [1]. Note that since the first term

in (6.34) is separately N = 1 supersymmetric, the last term should be supersymmetric as

well. In fact it is a F.I. term. A similar term arise from a U(1) gauge field on a D7 brane

world volume with magnetic fluxes [30]. This term explicitly breaks N = 2 supersymmetry.

Indeed form×e 6= 0, theN = 2 Ward identity for the scalar potential acquires an additional

contribution from the square of the gaugino shifts, which is not proportional to δB
A and has

the form:

εxyz ωx
I ω

y
J m

IΛ eJΛ σ
z B
A =

1

4
e4ϕ Imτ (m× e)σ3 B

A . (6.36)

From a microscopic point of view, the potential in the form (6.34) does not take into

account the contributions due to O3/O7 planes. These, as discussed in [21], have the effect

of canceling the last term, according to generalized tadpole cancellation condition. The

resulting potential will have the form in (6.32) with m× e 6= 0 and will in general have non

trivial vacua, as discussed in section 9.

7. Comparison with the orientifold projection

Let us now recover from the previous analysis the results of [18]. For this purpose let

us write down the relations between our notations given in the appendix and those of

reference [18].

ξ̃a → ρa ; ξ̃0 → q2 , (7.1)

ξa → ` ba − ca ; ξ0 = C0 → ` , (7.2)

Re(wa) → ba ; Im(wa) → va ; a = 1, . . . , h(1,1) , (7.3)

where ca and ba are the scalars coming from the RR and NSNS two-form respectively, va

are the scalars coming from the deformations of the Kähler class of the metric, while ρa
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are the scalars coming from the RR four-form. The scalars (q1, q2) in this context appear

dualized into rank two tensors (B1
µν , B

2
µν) [8] as they come from the NSNS and RR 2– form

respectively.

According to the Z2 orientifold projection, the quaternionic scalars may appear as

the coefficients of the expansion in H
(1,1)
+ or H

(1,1)
− forms. Moreover the real part of the

complex dilaton C0 and the NSNS and RR two forms B1, B2 may be even or not under the

Z2 projection. With the previous considerations, we can see, analyzing the truncation of

the scalar-tensor multiplet, that the second truncation corresponds to the O5/O9 planes

case, since C0 = B1 = 0, while the last corresponds to the O3/O7 planes case, since

B1 = B2 = 0. Further analyzing the condition (3.10) using the explicit parametrization

of [29] one can also check the consistency of the truncation for the remaining scalars in the

hypermultiplet sector.

The first truncation we considered corresponds instead to the orientifold projection of

the Heterotic string on a Calabi-Yau 3-fold. Nevertheless from the condition (3.10) we can

identify which are the two sets of scalars whose indices must be orthogonal. Furthermore,

considering that if the NSNS two forms survive then the scalars ba may be thought as the

coefficients of the H
(1,1)
+ expansion.

The results are summarized in the following table:

O5/O9 O3/O7 heterotic

bȧ, ρȧ ∈ H
(1,1)
− bȧ, cȧ ∈ H

(1,1)
− cȧ, ρȧ ∈ H

(1,1)
−

câ, vâ ∈ H
(1,1)
+ vâ, ρâ ∈ H

(1,1)
+ bâ, vâ ∈ H

(1,1)
+

C0 = 0, B1 = 0 B1 = 0, B2 = 0 C0 = 0, B2 = 0

(7.4)

where ȧ = 1, . . . , h
(1,1)
− , â = 1, . . . , h

(1,1)
+ .

As far as the vector multiplets are concerned, before the truncation we had h(2,1) + 1

vector multiplets labeled by Λ = 0, 1, . . . , h(2,1). We split Λ → (Λ, X) and retained the

vectors FΛ
µν and the symplectic sections (LX , MX). It is now clear that for the O5/O9 case

Λ = 1, . . . , h
(2,1)
− , in order to have h

(2,1)
− vector multiplets [18], while X = 0, 1, . . . , h

(2,1)
+

such that LX/L0 describe the scalars of h
(2,1)
+ chiral multiplets, while for the O3/O7 planes

case Λ = 1, . . . , h
(2,1)
+ , labels the h

(2,1)
+ vector multiplets, while X = 0, 1, . . . , h

(2,1)
− such

that LX/L0 are the scalars of h
(2,1)
− chiral multiplets.

Let us now consider the terms coming from the flux G = H2 + τH1.

For the O5/O9 case we have that

H2 ∈ H
(3)
+ ; H1 ∈ H

(3)
− (7.5)

therefore consistently we have the following fluxes:

(e1X , m
1X), X = 0, 1, . . . , h

(2,1)
+ ; (e2Λ, m

2Λ), Λ = 1, . . . , h
(2,1)
− . (7.6)

For the O3/O7 case we have that

H1 ∈ H
(3)
− ; H2 ∈ H

(3)
− (7.7)
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therefore consistently we have the following fluxes:

(e1X , m
1X), X = 0, 1, . . . , h

(2,1)
− ; (e2X , m

2X), X = 0, 1, . . . , h
(2,1)
− . (7.8)

As far as the heterotic truncation is concerned, we can rephrase equation (4.1) in the

Calabi-Yau language, as the condition:

H1 ∈ H
(3)
+ ; H2 ∈ H

(3)
− (7.9)

therefore consistently with (4.11), (4.12) one obtains the following fluxes:

(e1Λ, m
1Λ) , Λ = 1, . . . , h

(2,1)
− ; (e2X , m

2X) , X = 0, 1, . . . , h
(2,1)
+ (7.10)

which also means that we have h
(2,1)
− vector multiplets and h

(2,1)
+ hypermultiplets. Let us

finally observe that equations (6.32), (5.4) coincide respectively with the scalar potentials

obtained in reference [18] for the O3/O7 and O5/O9 planes truncations, and that equation

(6.26) gives the superpotential of reference [1].

8. Supersymmetric configurations

In the N = 2 theory we the following fluxes are present:

G(0,3) = e−
K
2 LΛ(eΛ −NΛΣm

Σ) , (8.1)

G
(1,2)
i = e−

K
2 fΛ

i (eΛ −NΛΣm
Σ) , (8.2)

G(3,0) = e−
K
2 L

Λ
(eΛ −NΛΣm

Σ) , (8.3)

G
(2,1)

k
= e−

K
2 f̄Λ

k
(eΛ −NΛΣm

Σ) , (8.4)

where we recall that K ≡ K(z, z̄) is the Kähler potential of the complex structure moduli

and

eΛ = e1Λ + τeΛ; mΛ = m1Λ + τm2Λ , (8.5)

and the flux parameters satisfy the tadpole cancellation condition:

e1Λm
2Λ − e2Λm

1Λ = 0 . (8.6)

The N = 1 scalar potential can be always written in the following form:

V = −1

8
e4ϕ(eΛ −NΛΣm

Σ)(ImN−1)ΛΓ(eΓ −NΓ∆m
∆)

=
1

4
e4ϕ+K

(

G(3,0)G(3,0) + gikG
(1,2)
i G(1,2)

k

)

, (8.7)

even in the case in which e×m 6= 0, as discussed at the end of section 6. The Minkowski

minimum corresponds to:

G(3,0) = G
(1,2)
i = 0 (8.8)

nevertheless the solutions of (8.8) are not consistent with the constraint (8.6).
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If we perform an N = 2 → N = 1 truncation the fluxes, according to equations (3.41),

(3.42), (3.43) reduce to:

G(0,3) = e−
K
2 LX(eX −NXYm

Y ) , (8.9)

G
(1,2)

k̂
= e−

K
2 fΛ

k̂
(eΛ −NΛΣm

Σ) , (8.10)

G
(1,2)

k̇
= e−

K
2 fX

k̇
(eX −NXYm

Y ) , (8.11)

G(3,0) = e−
K
2 L

X
(eX −NXYm

Y ) , (8.12)

G
(2,1)

k̂
= e−

K
2 f̄Λ

k̂
(eΛ −NΛΣm

Σ) , (8.13)

G
(2,1)

k̇
= e−

K
2 f̄X

k̇
(eX −NXYm

Y ) . (8.14)

Consider now the case (3.4) corresponding to the O3/O7 truncation. We report here the

scalar potential and the superpotential are given by equation (6.32), (6.26).

V = −1

8
e4ϕ(eX −NXYm

Y )(ImN−1)XZ(eZ −NZWmW )

=
1

4
e4ϕ+K

(

G(3,0)G(3,0) + g
˙̀k̇G

(1,2)
˙̀ G(1,2)

k̇

)

, (8.15)

L = −1

4
e2ϕ(LXeX −MXm

X) . (8.16)

We recall also the condition (6.7) for a consistent truncation:

fΛ
k̂
eΛ − hΛk̂m

Λ = fΛ
k̂

(eΛ −NΛΣm
Σ) = 0 . (8.17)

Therefore one can observe that the condition for a Minkowski vacuum requires:

G(3,0) = G
(1,2)
˙̀ = 0 , (8.18)

while the vacuum is supersymmetric if also the gravitino shift vanishes:

L = 0 ↔ G(0,3) = 0 . (8.19)

The condition (8.17) for a consistent truncation requires:

G
(1,2)
ˆ̀ = 0 . (8.20)

Therefore the theory admits a supersymmetric N = 1 Minkowski vacuum, just for (2, 1)

fluxes, according to the previous analysis [31, 17]. Note that the minimum condition of the

N = 1 theory, can not impose any constraint on the component of the (1, 2) flux along the

truncated scalars ˆ̀ (8.10). The absence of such a component comes from the constraint

(8.20) for a consistent truncation.

In the next section, we will show that conditions (8.18), (8.19), (8.20) do not admit

a non trivial solution in the charges if (8.6) holds. The only case in which e ×m can be

different from zero after truncation to N = 1 is the O3/O7 case, in which condition (8.6)

is indeed relaxed according to the discussion at the end of section 6. In virtue of this in

the O3/O7 truncation conditions (8.18), (8.19), (8.20) do admit a non-trivial solution.
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9. Vacua of IIB on CY3 orientifolds

Let us now study the vacua of type-IIB string theory compactified on a CY3 orientifold.

We start by recalling some general properties of the scalar potential which hold in all the

three truncations considered earlier. To this end we shall write the potential in a general

N = 1 form which will yield the expressions in eqs. (4.48), (5.4), (6.32) upon performing

the corresponding truncation on the fields and charges. The complex 3-form flux across a

3-cycle of the CY3 can be expanded in a basis of the corresponding cohomology group:

G(3) = H2 + τ H1 = eΛ β
Λ +mΣ αΣ ,

eΛ = e1Λ + τ e2Λ ; mΛ = m1Λ + τ m2Λ . (9.1)

Let

Ω(z) =

(

XΛ(z)

FΣ(z)

)

, (9.2)

be the holomorphic section on the Special Kähler manifold depending only on the complex

structure moduli zi (i = 1, . . . , h(2,1)). According to our previous analysis, the above

quantities can be specialized to the three truncations as follows:

• Heterotic case: set Re(τ) = 0, XΛ = FΛ = 0, (Λ = 1, . . . , h2,1
− ), e1X = m1X = e2Λ =

m2,Λ = 0, (X = 0, . . . , h2,1
+ ).

• O5/O9 case: set Re(τ) = 0, XΛ = FΛ = 0, (Λ = 1, . . . , h2,1
− ), e2X = m2X = e1Λ =

m1,Λ = 0, (X = 0, . . . , h2,1
+ ).

• O3/O7 case: set XΛ = FΛ = 0, eΛ = mΛ = 0, (Λ = 1, . . . , h2,1
+ ).

The general form of the GVW superpotential in the low-energy N = 1 theory [1] is

W (τ, zi) = eΛX
Λ −mΣ FΣ , (9.3)

and the potential has the form:

V = eK(z, z̄)+K(τ, τ̄)+KD(w, w̄)
[

Gij̄ DiW Dj̄W +Gτ τ̄ DτW Dτ̄W
]

, (9.4)

where K(z, z̄), K(τ, τ̄), KD(w, w̄) are the contributions to the Kähler potential of the N =

1 manifold related to the submanifolds parametrized by the complex structure moduli zi,

the ten dimensional axion/dilaton τ and the Kähler moduli in the ten dimensional Einstein

frame wa. By comparing the expression of the potential (9.4) with the results obtained in

the previous sections we find the following identification:

eK(τ, τ̄)+KD =
1

4
e4 ϕ =

1

4
e4 φ+2 KQ =

1

4
eφ+KD ,

K(τ, τ̄) = − ln[−i (τ − τ̄)] + const. ; KD(w, w̄) = −2 ln

(

1

3!
dabcv

avbvc

)

, (9.5)
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where va = Im(wa) are Kähler moduli in the Einstein frame. To understand the identifi-

cations in (9.5), recall that from type-II string theory point of view KQ is related to the

volume of the CY3 expressed in the ten dimensional string frame:

KQ = − ln

(

1

3!
dabcv

a
sv

b
sv

c
s

)

, (9.6)

where va
s are Kähler moduli in the string frame. Since the Kähler moduli v in the two

frames are related in the following way va
s = va e

φ

2 , if we define:

KD(w, w̄) = −2 ln

(

1

3!
dabcv

avbvc

)

, (9.7)

we have

2KQ = KD − 3φ . (9.8)

The potential V is extremized if DτW = DiW = 0. However if in addition we also require

supersymmetry, we have to impose that 0 = DwaW . This implies W = 0, since W is

wa-independent and thus DwaW ∝W .

We further note that, being K(τ, τ̄) = − ln(−i(τ − τ̄)) + const.:

DτW =
1

(τ̄ − τ)
Ŵ ; Ŵ = eΛX

Λ −mΣ FΣ , (9.9)

the minimum conditions can then be written in the following form:

DτW = DiW = 0 ⇔ eΛ −NΛΣm
Σ = 0 . (9.10)

The above equation clearly has solutions only if m × e > 0. This is a consequence of the

following relation which holds at the minimum:

m× e = m1Λe2Λ −m2Λe1Λ =
1

Imτ
Im(m̄e) = − 1

Im(τ)
m̄T ImN m > 0 . (9.11)

Note that in both the heterotic and the O5/O9 truncations m×e = 0 and thus the potential

has no non-trivial vacua. Only in the O3/O7 case we can have m× e > 0. In what follows

we shall focus on this latter case and, with an abuse of notation, we shall use the index Λ

to label the surviving charges: Λ = 0, . . . , h2,1
− .

Supersymmetry further requires W = 0, namely:

(eΛ −NΛΣm
Σ)XΛ = 0 . (9.12)

According to Michelson’s analysis [5] the vector of electric/magnetic charges can always be

reduced to a form defined by the following non-vanishing entries (Michelson’s basis):

e0 = e10 + τ e20 ; e1 = e11 ; m0 = m1 0

m× e = m1 0e20 > 0 , (9.13)
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which we shall refer to as Michelson’s charge basis QM . From eqs. (9.10) the minimum

conditions read:

N 0,0 =
e20τ + e10
m1 0

; N 0,1 = N0,1 =
e11
m1 0

; N 0,k = 0 k 6= 0, 1 . (9.14)

If we also look for supersymmetric vacua should require eq. (9.12), namely

(e0 −N0,0m
0)X0 + (e1 −N1,0m

0)X1 = 0 ⇒ X0 = 0 , (9.15)

where we have used the reality of N0,1 and the fact that (e0 − N0,0m
0) 6= 0 (since (e0 −

N 0,0m
0) = 0 and being the imaginary part of N0,0 always non-vanishing). This minimum,

having X0 = 0 cannot be described in the ordinary special coordinate patch in which

X0 6= 0.

In [21] supersymmetric vacua of an STU model (corresponding in the O3/O7 case

to h2,1
− = 3) have been studied in the special coordinate frame, making for the elec-

tric/magnetic charges, which are eight complex in general, the following choice:

QL = {mΛ, eΣ} = {−1, 0, 0, τ, −τ, 0, 0, −1} , m× e = 2 . (9.16)

The scalar fields of this model, denoted by s, t, u, in the special coordinate basis are given by:

s =
X1

X0
; t =

X2

X0
; u =

X3

X0
; X0 6= 0 . (9.17)

We can also define a Michelson’s basis QM for the STU model in which the non vanishing

electric and magnetic charges correspond to Λ = 0, 3. The symplectic bases QL and QM

(in which m10 = 2/e20 if we require m× e = 2) are related by a symplectic matrix A given

in eq. (B.1) in appendix B:

QM = A QL =

{

2

e20
, 0, 0, 0, e10 + τ e20, 0, 0, e11

}

. (9.18)

In appendix B, eq. (B.2), the reader may also find the explicit form of the period matrix

N for the STU model in the special coordinate frame. In the special coordinate basis, with

the choice of charges QL, conditions (9.10) and (9.12) have the following solution [21]:

τ = −u ; s = −1

t
. (9.19)

Upon application of A to Ω we obtain the holomorphic section Ω′ in Michelson’s basis as

function of s, t, u:

Ω′ = A Ω =

{

−1 + st

e20
, s, t,

(1 − st)(e10 − e20u)

e20e
1
1

, st(−e10 + e20u), tu, su, −e11st
}

. (9.20)

Conditions (9.10) and (9.12) are clearly satisfied by the same values of the moduli (9.19).

On this vacuum in the new basis X ′0 = 0. It seems that if, in Michelson’s basis, we have

both electric and magnetic charges in the direction of X ′0 6= 0 (graviphoton) supersym-

metry is broken. Therefore in the symplectic basis Ω′ we can use special coordinates to
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describe the supersymmetric vacuum (9.19), in a patch X ′i 6= 0 only if i 6= 0. In what

follows we shall consider the patch X ′1 6= 0. We refer the reader to appendix B, eq. (B.3),

for the explicit form of the period matrix in Michelson’s basis at s = −1/t and τ = −u.
Note that the expression of the components N0,0 and N0,3 in eq. (B.3) are consistent with

conditions (9.14), recalling that in this case m10 = 2/e20.

Let us write the prepotential in Michelson’s basis as a function of s, t, u:

F =
1

2
X ′ΛF ′

Λ =
t

s2

(

e10 t

e20
+

(

1

s
− t

)

u

)

. (9.21)

We may express the above prepotential in terms of new special coordinates s′, t′, u′ in the

patch X ′1 = 1:

s′ =
X ′2

X ′1
; t′ =

X ′0

X ′1
; u′ =

X ′3

X ′1
. (9.22)

We refer the reader to eq. (B.4) of appendix B for the explicit form of these coordinates

as functions of the old ones s, t, u. The prepotential in these variables is:

F =
e10 s

′

e20
+
e20 e

1
1 t

′ u′

2
−
e11

√

−4 s′ + (e20)
2
t′2 u′

2
. (9.23)

One may check that:

F ′
0 = ∂t′F ; F ′

2 = ∂s′F ; F ′
3 = ∂u′F ,

F ′
1 = 2 F − t′ ∂t′F − s′ ∂s′F − u′ ∂u′F . (9.24)

10. Cubic prepotentials

Let us consider a special Kähler geometry with a generic cubic prepotential:

F =
1

6
κijk z

i zj zk . (10.1)

Let us denote the real components of zi as zi = xi + i λi. The metric has the form:

Gij = −3

2

(

κij

κ
− 3

2

κi κj

κ2

)

, (10.2)

where

κ = κijk λ
i λj λk ; κi = κijk λ

j λk ; κij = κijk λ
k . (10.3)

The real and imaginary components of the period matrix NΛΣ are then computed to be:

Re(N ) =

( 1
3 κijk x

i xj xk −1
2 κijk x

j xk

−1
2 κijk x

j xk κijk x
k

)

,

Im(N ) =
1

6
κ

(

1 + 4Gij x
i xj −4Gij x

j

−4Gij x
j 4Gij

)

. (10.4)

The positivity domain of the lagrangian requires κ < 0.

– 24 –



J
H
E
P
0
3
(
2
0
0
5
)
0
5
2

As we have seen for Michelson’s basis of charges where e0,m
0 6= 0, the existence of

supersymmetric vacua implies X0 = 0. Consider the case of a cubic prepotential and

charges in Michelson’s basis, but with no charge along the 0-direction:

ei0 = e2i0 τ + e1i0 ; ej = e1j ; i0, j 6= 0 ; i0 6= j ,

mi0 = m1 i0 . (10.5)

The minimum conditions (9.14) becomes:

N i0i0 =
e1i0 + τ e2i0
m1i0

; N i0j =
e1j
m1i0

; N i0k = 0 k 6= i0, j . (10.6)

Using eqs. (10.4) we can write the minimum conditions (10.6) as follows:

conditions on Im(N ) :











Gi0i0 = − 3
2 κ

e2

i0

m1 i0
τ2 ,

Gi0k = 0 k 6= i0 ,

Gi0k x
k = 0 ,

(10.7)

conditions on Re(N ) :























κi0i0k x
k =

e2

i0
τ1+e1

i0

m1 i0
,

κi0jk x
k =

e1

j

m1 i0
,

κi0kl x
l = 0 k 6= i0, j ,

κi0kl x
k xl = 0 .

(10.8)

From eqs. (10.7), (10.8) it follows that, if ei0 , ej 6= 0:

xi0 = xj = 0 . (10.9)

If we further require supersymmetry we need to impose:

Xi0 = 0 . (10.10)

In the special coordinate basis there are components X i0 which can vanish, their imaginary

part should not correspond to Cartan isometries, e.g. brane coordinates.

Let us specialize to cubic prepotentials defining homogeneous spaces. The general form

of F is given in [32]:

F =
1

2
[z1 (z2)2 − z1 (zµ)2 − z2 (zu)2 + γµuv z

µ zu zv] , (10.11)

where zµ = {z3, zα} is a vector in the fundamental of SO(1 + q), zu = {zr, zn} (u =

1, . . . , 2 ds) transforms in the spinorial representation of SO(1 + q), zr, zn being the chiral

components with respect to SO(q), and γµ are the generators of the corresponding Clifford

algebra. The expression (10.11) can be recast in the following form:

F = stu− s

2
(zn)2 − u

2
(zr)2 − t

2
(zα)2 + γαkr z

α zn zr ,

α = 1, . . . , q ; n = 1, . . . , ds ; r = 1, . . . , ds , (10.12)

if we identify s = z2 + z3, u = z2 − z3 and t = 2 z1.
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Since s, t, u are moduli whose imaginary parts are related to Cartan isometries, namely

Im(s) = −eφs , Im(t) = −eφt , Im(u) = −eφu , they cannot be set to zero. Only the remain-

ing moduli zα, zn, zr can be set to zero, and thus, in the study of supersymmetric vacua,

we shall consider three different cases in which the charges ei0 , m
i0 are chosen along the

directions Xα = zα, Xn = zn, Xr = zr.

Case i0 = ᾱ. Let us start from the conditions (10.8). The first equation gives

κᾱᾱt x
t =

1

m2 ᾱ
(e1ᾱ τ1 + e2ᾱ) . (10.13)

The remaining conditions depend of the choice of the index j of the additional electric

charge ej . Choosing j = β 6= ᾱ or j = s, t, u, conditions (10.8) imply ej = 0. The only

cases in which ej can be non-vanishing correspond to:

j = n̄ ⇒
{

κᾱ n r x
r = e1

n

m1 ᾱ δnn̄

κᾱ r n x
n = 0

,

j = r̄ ⇒
{

κᾱ r n x
n =

e1

j

m1 ᾱ δrr̄

κᾱ n r x
r = 0

. (10.14)

The last of conditions (10.8) does not imply any new constraint.

Let us now consider the implications of conditions (10.7). From eq. (10.2) we can

write:

Gᾱk = −3

2

(

κᾱk

κ
− 3

2

κᾱ κk

κ2

)

, (10.15)

we may distinguish two cases: κᾱ = 0 and κᾱ 6= 0. In the former case vanishing of Gᾱt = 0,

which is satisfied if κᾱt = κᾱᾱt λ
ᾱ = 0 which in turn implies λᾱ = 0. This latter condition,

together with xᾱ = 0 from eqs. (10.7), fixesX ᾱ = 0 and thus the vacuum is supersymmetric.

The remaining conditions in eqs. (10.7) imply:

κᾱᾱt λ
t =

e2ᾱ
m1 ᾱ

τ2 , (10.16)

0 = κᾱn = κᾱnr λ
r , (10.17)

0 = κᾱr = κᾱnr λ
n . (10.18)

Eqs. (10.13), (10.16) imply that the complex scalar t is fixed to the complex value:

t = t0 =
eᾱ

κᾱᾱtmᾱ
. (10.19)

The scalars zβ , β 6= ᾱ are moduli in this supersymmetric vacuum.

Relaxing condition κᾱ = 0 which imply unbroken supersymmetry, we obtain involved

non-linear equations to be solved. We shall not discuss here the most general solution of

these equations.

– 26 –



J
H
E
P
0
3
(
2
0
0
5
)
0
5
2

Case i0 = n̄. The first of eqs. (10.8) gives

κn̄n̄s x
s =

1

m2 n̄
(e1n̄ τ1 + e2n̄) . (10.20)

Let us discuss the remaining conditions for various choices of the electric charge ej . For

j = n 6= n̄ or j = s, t, u, conditions (10.8) imply ej = 0. The only cases allowing non-

vanishing ej correspond to:

j = ᾱ ⇒
{

κn̄ α r x
r =

e1

j

m1 n̄ δαᾱ

κn̄ r β x
β = 0

,

j = r̄ ⇒
{

κn̄ r β x
β =

e1

j

m1 n̄ δrr̄

κn̄ β s x
s = 0

. (10.21)

The last of conditions (10.8) does not imply any new constraint.

As far as conditions (10.7) are concerned, the relevant components of the metric are:

Gn̄i = −3

2

(

κn̄i

κ
− 3

2

κn̄ κi

κ2

)

. (10.22)

We start discussing the κn̄ = 0 case. The vanishing of Gᾱs = 0, which is satisfied if κᾱs = 0

implies λn̄ = 0. This condition, together with xn̄ = 0 from eqs. (10.7), fixes X n̄ = 0 and

thus ensures supersymmetry of the vacuum. The remaining conditions in eqs. (10.7) imply:

κn̄n̄s λ
s =

e2n̄
m1 n̄

τ2 , (10.23)

0 = κn̄α = κn̄αr λ
r , (10.24)

0 = κn̄r = κn̄rα λ
α . (10.25)

Eqs. (10.20), (10.23) imply that the complex scalar s is fixed to the complex value:

s = s0 =
en̄

κn̄n̄smn̄
. (10.26)

The scalars zn, n 6= n̄ are moduli in this supersymmetric vacuum.

Also in this case relaxing condition κn̄ = 0, which imply unbroken supersymmetry, we

have to solve involved non-linear conditions. We shall not discuss here the existence of a

non-trivial solution.

Case i0 = r̄. This case is analogous to the previous one upon substituting r ↔ n and

s↔ u.

We now show that in the spacial cases ofL(0, P, Ṗ ), L(q, 0) manifolds, all vacua are

supersymmetric. Consider first the q = 0 case defining the L(0, P, Ṗ ) manifold. If we take

i0 = k̄ from eqs. (10.7) we derive

Gk̄t =
9

2

κk̄ λ
s λu

κ2
= 0 → κk̄ = 0 ⇒ λk̄ = 0 , (10.27)

the last condition, together with xk̄ = 0 ensures supersymmetry of the vacuum.

Similarly if we take i0 = r̄, from Gr̄t = 0 we derive λr̄ = 0 and thus that the vacuum

is supersymmetric.

The same arguments apply to the L(q, 0).
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Sp(6)/U(3) example. The coordinates of the six-dimensional special Kähler manifold

are given by the independent entries of a symmetric U(3) complex tensor Z ij , i, j = 1, 2, 3.

Choosing:

z1 = Z11 ; z2 = Z22 ; z3 = Z33 ; z4 = −Z23 ; z5 = −Z13 ; z6 = −Z12 ,

(10.28)

the prepotential F has the form of the following U(3)-invariant polynomial

F =
1

6
εijkεlmn Z

il Zjm Zkn = z1 z2 z3 − z1 (z4)2 − z2 (z5)2 − z3 (z6)2 − 2 z4 z5 z6 . (10.29)

Equation (10.29) is consistent with the general form of the cubic polynomial for homoge-

neous manifolds given in [33], which, for the present L(1, 1) case, reads:

κ(h) = 6[h1(h2+h3)(h2−h3)−(h2−h3)(h5)2−(h2+h3)(h6)2−h1(h4)2−2h4 h5 h6] . (10.30)

In this case we may identify the coordinates s, t, u parametrizing the [SU(1, 1)/U(1)]3 sub-

manifold, with z1, z2, z3 respectively, and zα = z5, zk = z4, zr = z6. Consider taking

ei0 , m
i0 along the direction k = 4. Conditions (10.7) imply:

G4s = −18

κ2
(λ4 λ5 + λu λ6) (λ4 λ6 + λt λ5) = 0 ,

G4t = −18

κ2
(λs λu + λ2

5) (λ4 λs + λ6 λ5) = 0 ,

G4u = −18

κ2
(λs λt + λ2

6) (λ4 λs + λ6 λ5) = 0 ,

G45 =
18

κ2
(2λ1 λ2 λ4 λ5 + λ1 λ2 λ3 λ6 + λ1 λ4

2 λ6 + λ2 λ5
2 λ6 − λ3 λ6

3) = 0 ,

G46 =
18

κ2
(λ1 λ2 λ3 λ5 + λ1 λ4

2 λ5 − λ2 λ5
3 + 2λ1 λ3 λ4 λ6 + λ3 λ5 λ6

2) = 0 ,

G44 =
18

κ2
(λ1

2 λ2 λ3 + λ1
2 λ4

2 − λ1 λ2 λ5
2 + 2λ1 λ4 λ5 λ6 − λ1 λ3 λ6

2 + 2λ5
2 λ6

2)

= − 3

2κ

e1i0
m2i0

τ2 . (10.31)

According to our general analysis condition

κ4 = −4 (λ2 λ4 + λ5 λ6) = 0 , (10.32)

characterizes the supersymmetric vacuum which always exists. In this case there are no

other solutions.
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A. Quaternionic geometry

In the present appendix we recall our notations. The metric of the original quaternionic

manifold is [29]:

ds2 = hûv̂ dq
v̂ = KQ ab̄ ∂µw

a∂µw̄b̄ +(∂ϕ)2 +
e4 ϕ

4
(∂a−V ×∂V )2− e2 ϕ

2
∂µV M ∂µV , (A.1)

where KQ ab̄ = ∂a∂b̄KQ and we have denoted the scalar fields by {ϕ, a, wa, ξΛ, ξ̃Λ},3 V in

(A.1) is the symplectic vector defined as:

V = {ξΛ, ξ̃Λ} , (A.2)

and “ × ” denotes the symplectic invariant scalar product:

V ×W = V ΛWΛ − VΛW
Λ . (A.3)

The matrix M in (A.1) is negative definite and has the following form:

M =

(RI−1 R + I RI−1

I−1 R I−1

)

, (A.4)

where R and I are the real and imaginary parts R = Re(M), I = Im(M) of the “period

matrix” MΛΣ associated to the special Kähler submanifold parametrized by za.

The scalar fields dual to the NSNS and RR tensors Bµν , Cµν are a, ξ̃0 respectively

while ξa and ξ̃a, a = 1, . . . , h1,1, are the remaining RR scalars originating from the 2-form

and the 4-form respectively. Finally ξ0 corresponds to the ten dimensional axion, ϕ is the

four dimensional dilaton and wa are the Kähler moduli. The metric MIJ = hIJ , where the

values I, J = 1, 2 label the scalars a, ξ̃0 respectively, and its inverse M IJ have the following

form:

MIJ =
e4 ϕ

4

(

1 −ξ0
−ξ0 (ξ0)2 − 2 e−2 ϕI−1| 00

)

,

M IJ = − 2

I−1| 00
e−2 ϕ

(

(ξ0)2 − 2 e−2 ϕ I−1| 00 ξ0

ξ0 1

)

. (A.5)

3In the present paper we have chosen to denote the axions deriving from the RR forms by the letter ξ

instead of ζ, which is more often used in the literature, in order not to create confusion with the hyperinos.
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Note that the expression of MIJ coincides with that of ωx
Iω

x
J given by:

ωx
Iω

x
J =

e4 ϕ

4

(

1 −ξ0
−ξ0 (ξ0)2 + 16 e−2 ϕ+KQ

)

, (A.6)

only in the case of cubic quaternionic geometries for which the following relation holds:

eKQ = −1

8
I−1| 00 . (A.7)

Using the explicit metric (A.1) and eqs. (A.5) we can now compute the quantities AI
u:

AI
udq

u = M IJ hIu dq
u (A.8)

=
1

I−1|00

[(−I−1|00 ξa + ξ0 I−1|0a

I−1|0a

)

dξ̃a + +

( I−1|00 ξ̃Λ + ξ0 (RI−1)Λ
0

(RI−1)Λ
0

)

dξΛ
]

.

If we redefine a → a − ξΛ ξ̃Λ the metric will no more depend on ξ̃ and AI
u will have the

form:

AI
udq

u =
1

I−1|00

[(−2 I−1|00 ξa + 2 ξ0 I−1|0a

I−1|0a

)

dξ̃a +

(

2 ξ0 (RI−1)Λ
0

(RI−1)Λ
0

)

dξΛ
]

. (A.9)

Let us define the following forms:

v =
1

2
e2 ϕ [−2 e−2 ϕ dϕ− i (da+ ξ̃T dξ − ξT dξ̃)] ,

u = i eϕ+
KQ

2 ZT (M dξ + dξ̃) ,

E = i eϕ−
KQ

2 P N−1 (M dξ + dξ̃) ,

e = P dZ , (A.10)

where ZΛ = {1, wa} and the matrices P and N are defined as follows:

P a
0 = −eb

aZb ; P a
b = eb

a (b, a = 1, . . . , h2,1) , (A.11)

NΛΣ =
1

2
Re(

∂2FQ

∂ZΛ∂ZΣ
) . (A.12)

FQ being the prepotential of the special Kähler manifold embedded in the quaternionic

manifold, ea
b being the corresponding vielbein (the underlined indices are the rigid ones).

One can check that in terms of the forms in (A.10), the metric (A.1) has the simple

expression:

ds2 = v ⊗ v + u⊗ u+ E ⊗ E + e⊗ e . (A.13)

Let us now give the expression for the vielbein U . In the heterotic case we have:

U1α̇ =

(

v

ea

)

; U1α̇ =

(

u

Ea

)

. (A.14)

For the O5/O9 case we simply exchange U1α̇ ↔ U2α̇. In particular we can compute the

components of UAα̇
I where I = 1 is the component along da and I = 2 along dx̃i0, a, ξ̃0
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being the scalars dual to B1µν and B2µν respectively. We obtain in the heterotic case:

U1α̇
I=1 = − i

2
e2 ϕ

(

1

0(nH−1)

)

; U1α̇
I=2 =

i

2
e2 ϕ

(

ξ0

0(nH−1)

)

,

U2α̇
I=1 =

(

0

0(nH−1)

)

; U2α̇
I=2 = i eϕ+

KQ

2

(

1

e−KQ P a
ΛN

−1|Λ0

)

, (A.15)

where the first entry of the above vectors corresponds to α̇ = 0. We note that in the

heterotic case ξ0 = 0 so that U1α̇
I=2 = U2α̇

I=1 = 0, consistently with equations (4.6), (4.9). In

the O5/O9 case, exchanging U1α̇ ↔ U2α̇ we obtain the corresponding conditions.

B. Special Kähler geometry in two different symplectic bases

The matrix A relating the two relevant symplectic bases QM and QL is:

A =





























− 1
e2

0

0 0 0 0 0 0 − 1
e2

0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0
e1

0

e2

0
e1

1

0 0 − 1
e1

1

− 1
e1

1

0 0 − e1

0

e2

0
e1

1

0 0 0 0 −e20 0 0 −e10
0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −e11





























. (B.1)

The period matrix in the special coordinate basis is

N 0,0 = −
s2
(

tu− t u
)2

+ s2
(

tu− tu
)2− 2ss

(

t2 uu+ t
2
uu+ t t

(

u2 − 4uu+ u2
)

)

2 (s− s)
(

t− t
)

(u− u)
,

N 0,1 =
stu− tsu− uts+ stu

2 (s− s)
,

N 0,2 =
stu− tsu+ uts− stu

2 (s− s)
,

N 0,3 =
stu+ tsu− uts− stu

2 (s− s)
,

N 1,1 = −(t− t)(u− u)

2 (s− s)
,

N 1,2 =
u+ u

2
,

N 1,3 =
t+ t

2
,

N 1,1 = −(s− s)(u− u)

2 (t− t)
,

N 2,3 =
s+ s

2
,

N 3,3 = −(s− s)(t− t)

2 (u− u)
. (B.2)
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The period matrix in the new basis Ω′ at s = −1/t and τ = −u reads:

N 0,0 =
1

2
e20 (e10 − ue20) ,

N 0,1 = 0 ,

N 0,2 = 0 ,

N 0,3 =
1

2
e20 e

1
1 ,

N 1,1 =
2 t2 t

2
(u− u)

(

e10 − e20 u
)

e10
(

t− t
)2 − e20

(

t2 u+ t
2
u+ 2 t t (u− 2u)

) ,

N 1,2 =
e20 u

(

t2 u+ t
2
u− 2 t t u

)

− e10

(

−2 t t u+ t2 u+ t
2
u
)

−e10
(

t− t
)2

+ e20

(

t2 u+ t
2
u+ 2 t t (u− 2u)

) ,

N 1,3 = − e20 e
1
1 t t

(

t+ t
)

(u− u)

−e10
(

t− t
)2

+ e20

(

t2 u+ t
2
u+ 2 t t (u− 2u)

) ,

N 2,2 =
2 (u− u)

(

e10 − e20 u
)

e10
(

t− t
)2 − e20

(

t2 u+ t
2
u+ 2 t t (u− 2u)

) ,

N 2,3 =
e20 e

1
1

(

t+ t
)

(u− u)

−e10
(

t− t
)2

+ e20

(

t2 u+ t
2
u+ 2 t t (u− 2u)

) ,

N 3,3 =
−e20 (e11)

2 (
t− t

)2

2
(

−e10
(

t− t
)2

+ e20

(

t2 u+ t
2
u+ 2 t t (u− 2u)

)) . (B.3)

In this basis we can define special coordinates referred to the patch in which X ′1 6= 0 (we

have rescaled Ω′ by s):

s′ =
X ′2

X ′1
; t′ =

X ′0

X ′1
; u′ =

X ′3

X ′1

s =
−
(

e20 t
′
)

±
√

−4 s′ + (e20)
2
t′2

2 s′
; t =

−
(

e20 t
′
)

±
√

−4 s′ + (e20)
2
t′2

2
;

u =
e10
e20

± e11 u
′

√

−4 s′ + (e20)
2
t′2

, (B.4)

we shall use the first solution (with the“+” sign).
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