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ABSTRACT This paper studies the drone-aided last-mile delivery problem with shared depot resources. Our
research motivation comes from E-commerce logistics, where big companies such as Amazon, are already
filing up patents for the development of drone-friendly fulfillment centers towers that could serve as both
charging hubs and convenient pit stops for delivery drones to pick up and drop off packages efficiently.
We mainly focus on the tactical decisions about the selection of shared fulfillment centers used as the
drone launch and retrieve stations and the fleet size plans. The operational drone route decisions are also
incorporated into a unified framework to account for the mutual impact between tactical and operational
plans. Moreover, we consider explicitly the non-linear and load-dependent nature of the energy consumption
function for drone batteries. The problem is formulated as a mixed integer program with linear constraints,
developed in the realm of layered networks, where the non-linear nature of energy consumption and its
load dependency are incorporated and efficiently handled without the need of approximating non-linear
terms. The proposed model is tested on an extensive set of instances with up to 75 customers, showing its
computational efficiency. Insights about the route costs and spatial configuration of depots are also discussed.

INDEX TERMS Last-mile delivery, E-commerce, drone delivery, UAV, non-linear energy consumption,
multi-depot routing problem.

I. INTRODUCTION
The two digits growth of e-commerce is reshaping the
distribution of goods in our cities and the associated logistic
business processes and models. Its disruptive impact on the
delivery process has dramatically challenged transportation
companies [1], [2], not only for the increased volume of
last-mile deliveries, but also for the consequent change in
customers, more connected and informed, and whose orders
are smaller, more frequent and normally characterized by
very tight time-windows (up to one hour). This prompted
companies to explore new delivery methods, such as cargo
bikes, lockers, and delivery robots [3], [4]. One of the more
interesting options, both from an industrial and an academic

The associate editor coordinating the review of this manuscript and
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point of view, is represented by Unmanned Aerial Vehicles
(UAVs), also known as drones. The scope of applications
for UAVs technology is quite broad ranging from target
hunting [5], wildfires monitoring [6], military and civil
surveillance [7] to post-disaster management and commercial
deliveries [8], [9], [10], [11], [12].

Drone-aided deliveries offer significant benefits in terms
of cost and delivery time savings [13], [14], [15] together
with lower CO2 emissions and congestion [16], especially
compared to terrestrial vehicles. In addition, drones often
represent the unique option to get access to distant and/or
isolated areas [17], for their ability to travel across different
directions and altitudes. Acknowledging such potentials,
Amazon released a number of patents for multi-level
Fulfillment Centers (FC)s that facilitate drone landing
and take-off within the delivery operations, especially in
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populated urban settings [18], but other similar systems
are under test, as Google’s ‘‘Project Wing’’ [19], DHL’s
‘‘Parcelcopter’’ [20], and the joint venture between Swiss
Worldcargo (the air freight division of Swiss International Air
Lines) and the California-based start-up Matternet [21].

Generally speaking, FCs are, in fact, drone stations that are
centrally controlled and are built in a beehive-like tower shape
to ease the accommodation of a large number of drones. The
FCs also provide retail companies with a variety of different
services from package handling to recharge operations. The
use of such facilities, in a shared way can be an opportunity
for retail companies interested in drone delivery services.

Although the idea of shared FCs seems so appealing,
there are some tactical challenges to cope with. In practice,
the agreement between the retailer and the FCs owner is a
long-term contract to specify the set of shared FCs selected
by the retailer and the required amount of space at each
center for stocking the parcels. This also depends on the fleet
size, which is another important decision the retailer should
take in advance. Since tactical and operational decisions are
highly connected and influenced by each other, addressing
the tactical decisions without considering the impact of
operational plans may lead to system failure and severe
losses. To account for such mutual effect, the tactical and
operational plans should be addressed simultaneously in a
unified framework. Moreover, drone battery consumption
plays a key role in the planning and optimization of drone
operations. Unfortunately, this component is highly non-
linear, with a consequent increase in the complexity of the
problem at hand.

To cope with these issues, the main contributions of this
paper are the following.

• We present an integrated model to jointly address both
tactical and operational decisions arising in the drone-
aided delivery context.

• Differently from the majority of the literature, we inte-
grate the non-linear drone battery energy consumption.
In particular, Dorling et al. [22] showed that drone
energy consumption is a non-linear function of drone
payload and travel time. Clearly, considering the highly
non-linear nature of the energy consumption function
enhances the realism of the models, but exacerbates their
complexity.

• We formulate the drone routing problem with non-linear
and load-dependent energy consumption as a Mixed
Integer Linear Problem (MILP).

• We conduct an extensive set of computational experi-
ments, using data that reflect the main issues involved in
the problem.

The rest of the paper is organized as follows. In Section II,
we review the relevant contributions to the drone-aided rout-
ing problem. In Section III, we describe the problem, provide
a brief discussion on drone battery energy consumption,
and present the MILP. In Section IV, we comment on the
computational experiments. Finally, Section V summarizes
the paper and presents directions for future research.

II. LITERATURE REVIEW
In this Section, we briefly cover the literature on the pure-play
drone-based models which focus on drone usage to deliver
parcels directly from depots to customer sites. In order to
place our contribution in the right perspective, among the
pure drone routing problem contributions, we also address
those involving depot/drone base/station/fulfillment center
location/selection decisions.

The literature clearly states the importance of consid-
ering explicitly the technological issues in drone delivery
as the integration with blockchain [23], IoT [24], edge
computing [25], 5g/6g telecommunications [26], [27], and
ad-hoc wireless networks [28]. One of the most critical
aspects is battery consumption, due to safety and security
problems. This highlights the importance of the adoption of
appropriate energy consumption models, considering energy
consumption as an explicit non-linear function of drone
payload and travel time. The work of Dorling et al. [22]
is one of the first studies that acknowledge the non-linear
nature of energy consumption in drone batteries. To avoid
the computational intractability of non-linear constraints,
the energy consumption function is replaced by its linear
approximation. The authors proposed two multi-trip drone
routing formulations with different objective functions (either
total operating cost or total delivery time) and designed a
simulated annealing heuristic to solve the model. Similarly,
Cheng et al. [29] applied a linear approximation of the
load-dependent energy consumption function in a multi-
trip drone routing problem. The model is enriched by valid
cuts embedded into a branch-and-cut algorithm. In [30],
the drone’s maximum payload, maximum flight duration,
and customers’ time windows are considered in a multi-trip
routing context. The energy consumption is approximated
as a linear function of drone weight and travel time.
Rabta et al. [31] studied a drone routing problem for parcel
delivery with the possibility of en-route charge from a
single depot, considering the energy consumption linearly
dependent on the distance and the payload. The model is
tested on a small example with one depot, one recharging
station, and five customers.

In a recent paper, Du et al. [32] proposed a MILP
formulation for the drone routing problem with the aim of
minimizing the total customer service time and drone flight
time. The model considered constraints on drone payload,
maximum flight distance, and customer time windows. The
authors applied a Dantzig–Wolfe decomposition approach to
solve an instance of the problem for medical supply delivery.

Regarding the scientific literature in the location-routing
field, some authors adopted a hierarchical approach in which
first the location decisions are tackled separately and next
the operational drone-routing plans are addressed; others
addressed the strategic/tactical location plans and operational
routing decisions simultaneously. Clearly, the suitability
of each approach depends on the application context; for
instance, in a server-centric application, where the strategic
location decisions are irreversible and costly, especially
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TABLE 1. Summary of multi-depot drone routing problems.

compared to the operational routing decisions, it makes sense
to adopt a hierarchical framework; on the contrary, in a
customer-centric context, where the delivery plans are highly
affected by the location of drone bases, it is more reasonable
to simultaneously handle both location and routing decisions.

Table 1 categorizes the recent multi-depot drone routing
scientific literature. Specifically, we classify the contributions
based on Depot selection/location decisions (whether
addressed hierarchically or simultaneously), Fleet sizing
decisions, critical energy consumption-related features such
as Drone payload, Flight distance/duration constraints (used
as a proxy for the energy consumption) and Explicit energy
consumption constraints.

Concerning the first stream (hierarchical approach),
Torabbeigi et al. [33] proposed two mathematical formula-
tions involving strategic and operational plans to optimize
the drone routes for parcel delivery. At the strategic level,
a set covering model determines the minimum number of
required depots to cover all customers, next, at the operational
stage, a drone routing model is solved to find the optimal
drone routes minimizing the number of dispatched drones.
The authors included energy consumption constraints in the
problem, which are linear functions of the payload and the
travel time. A variable pre-processing algorithm and primal
and dual bound generation methods are developed to speed
up the computational performance. Kim et al. [34] proposed
a set covering model to find the optimal locations of drone
depots, followed by a multi-depot drone pickup and delivery
model, in a healthcare context. The cost of used drones
is minimized while the drone payload and the maximum
drone flight time constraints are satisfied. A pre-processing
algorithm, a partition method, and a Lagrangian relaxation
are developed as solution approaches.

In the location-routing context, Liu et al. [35] presented
a model in a drone patrol application to simultaneously
find the optimal location of drone launching bases and
the optimal drone routes minimizing the total cost (base
establishment cost, drone usage cost, and flight cost). The
authors imposed a maximum flight duration for drones. Two
heuristic algorithms combined with local search strategies
are designed and tested for 25 target points and 5 potential
base stations. Yak1c1 [12] proposed a selective location-
routing problem with the aim of maximizing the sum of
importance values corresponding to the covered points. The
model accounts for a maximum flight time and considers an
upper bound for the number of selected stations to be used.
An ant colony optimization metaheuristic is designed as a

solution approach. Kim et al. [10] proposed a drone routing
model with multiple depots, and multiple drones, allowing
multiple UAVs to deliver goods to one customer at the same
time. The objective function minimizes the delivery and
drone usage costs. The drone payload capacity and maximum
flight distance are considered as constraints. The optimal
location of selected depots, the fleet size, and the drone routes
are the outputs of the problem. The model is solved for
instances up to 75 customers. In another paper, Li et al. [36]
studied a multi-depot drone routing problem to minimize the
total number of drones used and the total traveled distance.
The model accounts for a maximum drone flight time. Since
not all the depots are required to be used, the optimal location
of used depots is an output of the problem. To solve the
problem, the authors developed a heuristic approach based
on a hybrid large neighborhood search.

In a recent paper, Grogan et al. [9] addressed a drone
application for relief operations conducted after a tornado.
The authors proposed a routing problem considering the
maximum drone endurance limit with the aim of minimizing
the maximum route duration. The number of dispatched
drones and occupied depots are the problem outputs.

To conclude, in order to address the energy consumption
concept in drone-aided last-mile delivery, the majority of
contributions only implicitly account for the limited battery
capacity imposing some constraints on the maximum drone
flight range. It is easy to note that, apart from the present
contribution, only Torabbeigi et al. [33] explicitly accounted
for the drone battery energy consumption. In this case,
however, a strong simplification of the problem is made
since battery consumption is expressed as a linear function
of payload and travel time. Clearly, this assumption makes
the problem more tractable but it raises questions about
the feasibility of designed routes, as we will show in the
computational results. The contribution is also different from
the present paper since the authors dealt with the depot
location plans and routing decisions separately.

In this paper, we aim to fill this gap since we explicitly
account for the non-linear nature of energy consumption
while tackling the tactical depot selection/fleet size and
operational routing decisions simultaneously. Clearly, this
exacerbates the computational intractability of the problem
but enables the decision-maker to adopt tactical policies
which enhance operational efficiency.

III. PROBLEM DESCRIPTION AND MATHEMATICAL
FORMULATION
In this Section, we introduce the Drone Routing Problem
with Shared Depots (DRP-SD) and provide a brief discussion
on the non-linear load-dependent drone energy consumption.
Next, we formulate the problem as an efficient MILP,
developed based on a load-indexed layered graph [37].

A. PROBLEM DEFINITION
The DRP-SD is a location routing problem that determines
the optimal subset of shared FCs used as drone launch and
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retrieve stations, the optimal size of the fleet to be deployed,
and the optimal drone routes. The choice of the FCs to use is
guided by the minimization of the total cost: the tactical cost
related to the FC tariffs (for packaging and handling services),
the fleet usage cost, and the operational delivery cost. The
retailer can afford to rent a limited number of FCs and each
FC can host up to a pre-specified number of drones.

A fleet of homogeneous drones is available to deliver
homogeneous parcels. The drone batteries are fully charged
at the beginning of the service. The drone routing decisions
define the FC that launches the drone, the order of customers
to be visited, and the FC that retrieves the drone, which
can be different from the starting FC. Once the route plans
are defined, the drone is appropriately loaded and visits the
subset of customers assigned. Clearly, the designed routes
should be energy feasible, i.e. the total energy consumption
should not exceed the battery capacity. Since the drone energy
consumption depends on travel time and (non-linearly) on the
drone payload, it is important to track, at each customer’s site,
the drone payload after dropping the parcel at the customer’s
doorstep. Finally, after delivering the last customer’s package,
the drone is retrieved at one of the FCs.

It is important to note that in the DRP-SD, the main
focus is on tactical plans such as the selection of FCs
and the fleet size decision, while the operational routing
plans are incorporated to account for the connection and
mutual interactions between such long-term and short-term
plans. At the time the tactical decisions are made, the exact
information on the parcels features such as weight is not
available and we should plan based on peak- or average-
demand scenario, depending on the risk aversion of the
decision maker.

Figure 1 represents a DRP-SD instance with four potential
FCs and three drones. In the colored squares above each
customer, the accumulated drone payload after departure
from the customer is reported. All parcels have a weight of
0.5 kg. Each drone is launched from a selected FC, serves
multiple customers and is finally retrieved at one of the active
FCs already used as drone launch points. As we can see, the
choice of FCs is selective and one FC (FC 4) is not used.

B. DRP-SD: MATHEMATICAL FORMULATION
Following Dorling et al. [22]’s approach, the energy con-
sumption (in Watt-hours, Wh) in a drone flying from point
i to point j with travel time tij while carrying a payload of
weight pij can be expressed as:

Eij =

√
g3

2 ρξh (ω + µ + pij)3/2 tij (1)

where g represents the gravity constant (in N/kg), ρ denotes
the fluid density of air (in kg/m3), ξ is the area of spinning
blade disc (in m2), h is the number of drone rotors and ω

and µ represent, respectively, the drone frame and battery
mass (in kg) [29]. Clearly, modeling the energy constraints
with non-linear payload-dependent energy function as in (1)
entails the definition of non-linear constraints. Thanks to the

FIGURE 1. Example of a DRP-SD instance.

use of load-indexed layered graphs, it is possible to embed
the non-linear energy consumption in a MILP.

The load-indexed layered graph is built upon indexed
levels, which correspond to different drone payloads. To be
more specific, let p be the parcel weight of each customer and
Q be the maximum payload capacity of the drone. Clearly, the
drone can serve up toN = ⌊

Q
p ⌋ customers. Now, if the parcels

have weight U , (U ≤ Q), the drone payload after delivering
the order of the r−th customer is (U − r p) that corresponds
to the load-index/level of (U − r p). When the drone is on
its trip back to the FC, its carrying payload is 0, which
corresponds to the load index of 0.Wemay represent the load-
indexed layered graph as displayed in Figure 2. This graph
includes different load levels from N to 0 where each load
index represents the drone carrying payload just after visiting
a customer. Any node in the graph represents either one of
the customers (denoted by squares and indexed from 1 to n),
or one of the FCs (displayed by circles and indexed from 0,
1, . . . ,m) and the level assigned to the node represents the
drone payload (the number of packages to be delivered) upon
arrival at the node and before serving it. The auxiliary node
0 is used to connect the starting FC to the first customer.
The last customer is followed by the FC that retrieves the
drone. Figure 3 displays the load-indexed layered graph
corresponding to the example in Figure 1. Notice that thanks
to the layered graph, the energy consumption associated to
each load level r can be easily evaluated as

ϵr =

√
g3

2 ρξh (ω + µ + r p)3/2 (2)

and hence, becomes a parameter. Defining load-indexed
decision variables, as reported in Table 2 (where the whole
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FIGURE 2. Load-indexed layered graph.

notation is reported), the DRP-SD can be formulated as the
following MILP:

min :

∑
i∈C

∑
j∈C
j̸=i

∑
r∈L

cij yrij

+

∑
d∈D

∑
j∈C

∑
r∈L

νd p r yrdj

+

∑
j∈C

∑
r∈L

δyr0j (3)

∑
r∈L

xri = 1 i ∈ C (4)∑
r∈L

∑
j∈C

yr0j ≤ FS (5)

∑
i∈C

x1i =

∑
r∈L

∑
j∈C

yr0j (6)

x1j =

∑
i∈D

y0ji j ∈ C (7)∑
j∈C
j̸=i

yrij = xr+1
i i ∈ C, r ∈ L, r ̸= N (8)

∑
i∈C∪{0}
i̸=j

yrij = xrj j ∈ C, r ∈ L, r ̸= N (9)

yN0j = xNj j ∈ C (10)

FIGURE 3. Load-indexed layered graph for example in Figure 1.

∑
d∈D

yrdj = yr0j j ∈ C, r ∈ L, r ̸= 1 (11)∑
j∈C

y0jd ≤

∑
r∈L
r ̸=1

∑
j∈C

yrdj d ∈ D (12)

∑
j∈C

∑
r∈L

yrdj ≤ Capd d ∈ D (13)

zd ≥ yrdj d ∈ D, j ∈ C, r ∈ L, r ̸= 1 (14)∑
d∈D

zd ≤ T (15)

ed +

∑
r∈L
r ̸=1

ϵr tdjyr0j ≤ ej+

M ′
dj(1 −

∑
r∈L
r ̸=1

yrdj) d ∈ D, j ∈ C (16)

ei +
∑
r∈L
r ̸=N

ϵr tijyrij ≤ ej+

Mij(1 −

∑
r∈L
r ̸=N

yrij) i, j ∈ C, i ̸= j (17)

ej + ϵ0
∑
d∈D

tjdy0jd ≤ E j ∈ C, d ∈ D (18)

xri ∈ {0, 1} i ∈ C, r ∈ L (19)

yrij ∈ {0, 1} i, j ∈ D ∪ C ∪ D′, i ̸= j, r ∈ L (20)
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TABLE 2. Notation.

zd ∈ {0, 1} d ∈ D (21)

ei ≥ 0 i ∈ C (22)

ed = 0 d ∈ D (23)

The objective function (3) minimizes the total cost. Con-
straints (4) ensure that each customer is visited exactly once.
Constraint (5) expresses the restriction on the maximum
fleet size. Constraints (6) and (7) ensure that all the drones
are retrieved back at the end of the service. Constraints
(8)-(10) represent the connectivity constraints and express the
relation between the binary variables xri and yrij. According
to constraints (8), any customer i visited at the upper level
r+1 should be connected to exactly one customer (name it j)
at level r by traversing link (i, j). Constraints (9) guarantee
that each customer j visited at level r should be linked to
exactly one customer (assume i) or connected directly to
the auxiliary node 0 by the link (0, j) in the same level.
Constraints (10) require that customers visited at level N
should be visited right after the auxiliary node 0 via arc
(0, j) in the same level. Constraints (11) define the relation
between yr0j and y

r
dj variables. Constraints (12) ensure that

only the FCs selected as drone launch sites can retrieve the
drones back. Constraints (13) represent the restriction on
the FCs’ capacity. Constraints (14) allow drones to dispatch
only from selected FCs. Constraints (15) impose an upper
bound on the number of selected FCs. Constraints (16)-(18)
express the drone energy consumption: notice that thanks
to the load-indexed graph, the payload of the drone in each
level r can be represented as constant rp, as embedded
into the parameter ϵr . Constraints (16) are for the first
visited customers along each tour, and constraints (17) for
the remaining customers. Mij and M ′

dj are large enough
constants that make the constraints binding only when the
corresponding y variables take the value one. Constraints
(18) limit the total energy consumed to the battery capacity.
Finally, constraints (19)-(22) express the nature of variables
and constraints (23) set the initial accumulated energy
consumption.

IV. COMPUTATIONAL RESULTS
In this Section, we report the computational results conducted
on two sets of instances with 50 and 75 customers. The data
set with 50 customers is taken from the benchmark [29].
In order to test the model on larger instances with
75 customers, we have extended the 50-customer instances
by adding 25 new customers where the demand and the
coordinate location of the new customers were randomly
generated from the range of demand and coordinate locations
for the 50-customer instances. As in [29], the travel time
between customers i and j is set equal to the travel distance
between nodes i and j, calculated according to the Euclidean
norm. The delivery cost is set as cij = α tij where
α = 0.94 $/h is the delivery cost per hour. The drone usage
cost δ was set to 0.7 $ and the FC tariff is computed as νd =

δ
γ

(the parameter γ ∈ {5, 10} represents the proportion between
the FC tariff and the drone usage cost). For all experiments,
we have considered five potential FCs with Capd = 5 and
T = 4. Depending on the instance size, we have set
FS= 10 or FS= 12.

Regarding the spatial configurations of the FCs, we have
considered a Centered configuration, where the FCs are
located close to the center of the delivery area, and aMarginal
configuration, where the facilities are marginally located
around the outskirt of the area. In more details, let (Xi, Yi) be
the location coordinates of customer i in the 2-dimensional
space, we define

X̄ =
1
n

∑
i∈C

Xi

Ȳ =
1
n

∑
i∈C

Yi

RX = Xmax − Xmin
RY = Ymax − Ymin (24)

where Xmin = min
i∈C

Xi, Xmax = max
i∈C

Xi,Ymin =

min
i∈C

Yi, Ymax = max
i∈C

Yi For thecentered configuration the
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coordinates of the FCs are:
FC1 : (X̄ , Ȳ )
FC2 :(X̄ , Ȳ − βRY )
FC3 : (X̄ , Ȳ + βRY )
FC4 :(X̄ − βRX , Ȳ )
FC5 : (X̄ + βRX , Ȳ )
where the input parameter β ∈ (0, 1) controls the dispersion
among the FCs for the centered configuration (we set
β = 0.2 in all experiments). For the marginal configuration,
the coordinates of the FCs are:
FC1 : (Xmin,Ymin)
FC2 : (Xmax ,Ymin)
FC3 : (Xmin,Ymax)
FC4 : (Xmax ,Ymax)
FC5 : (Xmin+Xmax2 ,Ymin)
We have considered a MATRICE 600 PRO drone with a

payload of 6 kg and six TB47S batteries with a power of
0.099 kWh. The estimated parcel weight is 0.8 kg.

Even if Model (3)-(23) belongs to the class of NP-hard
problems, it can be easily solved by a general-purpose
state-of-the-art solver. In particular, all the experiments
have been performed on an Intel® Core i7-10750H, with
2.60 GHz CPU, 16 GBRAMworking underWindows 10 and
Gurobi 9.1 has been used as MILP solver.

A. ENERGY CONSUMPTION VERSUS FLIGHT RANGE
In order to highlight the importance of dealing with
energy consumption in the drone delivery context, we have
first carried out a set of experiments on the instance
50 − 5 and marginal configurations of the FCs, with
the following input parameters T = 4, Capd = 2,
FS= 6, γ = 5. For the considered drone, the flight time
endurance is ζ = 16 minutes. This flight time has been
evaluated considering the drone always flying fully loaded.
This is quite a conservative assumption since, in practice, the
drone is never in this situation. Despite this, in the results,
we will show that it may happen that the drones do have not
enough energy to complete the route.
We have compared three different models reflecting different
modeling approaches for drone endurance: the Energy-based
Model, Flight Range Model and the No Energy Model.

The Energy-based Model incorporates (1) embedded into
the MILP model, as discussed in Section III; the Flight
Range Model implicitly accounts for the limited battery
consumption, limiting instead the total flight time for each
drone. To be more precise, the energy-related variables ei and
their corresponding constraints are removed; instead, a set of
continuous variables ti, i ∈ D∪C are introduced denoting the
flight duration upon arrival at node i. Also, constraints (25)-
(28) are added into the model to set the flight duration upon
arrival at a customer and to limit the flight duration.

ti +
∑
r∈L

tijyrij = tj i ∈ C ∪ D, j ∈ C, i ̸= j (25)

tj +
∑
i∈D

tjiy0ji ≤ ζ i ∈ D, j ∈ C (26)

TABLE 3. Comparative results: energy consumption versus flight range.

ti = 0 i ∈ D (27)

ti ≥ 0 i ∈ C (28)

The No Energy Model is obtained by excluding the variables
ei and the corresponding set of constraints.

Table 3 reports the comparative results for the models
discussed earlier. The energy consumption and flight duration
are specified in columns with headings EC and FD,
respectively.

As can be observed in Table 3, in both the Flight Range
Model and No Energy Model some drones violate the battery
capacity which means the routing plans specified by an
asterisk are neither valid nor reliable in practice. On the other
hand, the Energy-based Model not only provides feasible
routes, but it also gives more balanced solutions, where the
drones are evenly used. In fact, the average flight duration
(in minutes), for the Flight Range Model is 11.67 with a
variation among drones of 7.38 minutes. The same values for
the No Energy Model are 11.43 and 6.54 minutes while for
the Energy-based Model, we get 10.54 and 3.30 minutes. It is
interesting to note that the Energy-based Model provides the
best performance especially compared to the Flight Range
Model. In fact, not only the Flight Range Model fails to
provide energy-feasible routes, but it even results in higher
flight times both in terms of the average value and the spread
amongst different drones.

B. MODEL VALIDATION AND DISCUSSION
Table 4 displays the results for instances with 50 customers
where for each instance, we have considered two different
γ values (5 and 10) and two FC configurations, for a total
of 20 instances. The first three columns in Table 4 display
the instance-related information for each case: the instance
name, the γ parameter, and the FC configuration set for the
instance.

In terms of computational time, all the instances are solved
in less than 11 minutes and, on average, the CPU time
is about 3 minutes. The columns FCC and VC represent,
respectively, the percentage of the tactical Fulfillment Center
Cost and the Vehicle Cost over the total costs expressed as

FCC=

∑
d∈D

∑
j∈C

∑
r∈L

νd p r yrdj

Obj 100 and VC=

∑
j∈C

∑
r∈L

δyr0j

Obj 100. In a
similar way, DC represents the percentage of the operational

Delivery Cost over the total costs DC=

∑
i∈C

∑
j∈C

∑
r∈L

cij yrij

Obj 100.
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TABLE 4. Computational results: benchmark instances.

We have also reported the average Arrival Time (AvgAT) to
the customers and the average Energy Consumption over all
the drones (AvgEC) as important Key Performance Indicators
(KPIs). Finally, the last column reports the number of drones
(out of eight) that require at least 80% of a fully charged
battery to complete the route.

The following observations can be drawn from the results.
On average, FCC and VC are about 39% and 54% of the
total cost, while DC is limited to 7%. Such results are
expected since, in general, tactical costs are higher than
operational costs. The average customer’s waiting time is just
about 3 minutes, showing a speedy delivery and implying
good customer satisfaction. In addition, the average energy
consumption is about 79% of a fully charged battery. This
is an informative insight since the fluctuations in energy
consumption, mostly due to weather-related disruptions can
drastically affect the validity of designed routes. In this case,
an energy buffer of 20% contributes to the robustness of the
routing plans. When γ = 10, the contribution of FCC and
VC are, on average, 30.86% and 61.72% of the total costs
incurred to the system showing that the VC is two times the

FCC. Instead, in the case of γ = 5 (that corresponds to
doubled FC tariffs), the average share of FCC and VC are
equal to 47.14%. In terms of the delivery cost, no significant
variation is observed (the average DC of 5.75% in the case of
γ = 5 compared to the average DC of 7.47% corresponding
to γ = 10). Second, in terms of KPIs, the average arrival time
clearly is not affected by the increase in FC tariffs, and the
slight variation in the average energy consumption is related
to the flexibility of the proposed model to choose any of the
FCs as the drone retrieve sites as long as the battery capacity
is respected.

Regarding the spatial configuration of FCs, we can draw
two important insights. First, by switching from the centered
to the marginal configuration and under the same tariff
setting, the total system cost slightly increases due to the
increase in the total traveling cost. Needless to say, marginal
areas of the city are less populated while most of the
customers are closer to the city center and farther from the
marginal FCs. Clearly, when the tariffs are the same, it is more
beneficial to utilize the FCs near the city center which ensures
speedy delivery and lower energy usage.
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TABLE 5. Computational results: larger instances.

The second insight comes from the comparison of the
centered configuration with higher tariffs (γ = 5) and the
marginal one with lower tariffs (γ = 10). In many real-
world applications, the FCs located on the outskirts of the
city incur in lower tariffs compared to those in the city
center. Nonetheless, the marginal configuration can be quite
appealing since the tactical costs can be reduced. If the
marginal configuration is adopted, the drones should fly
longer distances to reach the customers and this, in turn,
will increase the operational delivery cost, and other time or
distance-related KPIs.

For instance, under the marginal configuration, the tactical
cost decreases by 50% but, instead, the delivery costs increase
from 2% and up to 8%. In addition, the AvgAT KPI,
under the marginal case, is always worse than the centered
one (at least 4% and at most 21.57% higher). Under the
centered case at most half of the drones consume an amount
of energy that is more than 80% of the drone capacity
while under the marginal setting, this value may increase
with an average energy consumption always above the
0.078 kWh (this value is below 0.076 kWh under the centered
configuration).

Table 5 reports the results for the larger instances with
75 customers. The optimal fleet size is equal to 11 drones for
all cases and the average CPU time is about 17 minutes; as
expected, the solution time increases with the instance size.
We observe that if γ = 5, FCC and VC are comparable,
instead for γ = 10, VC is almost double FCC. The AvgAT
values are always below 4 minutes and the AvgEC is at most
87% of the drone battery. Under the centered setting, at most
45% of the drones consume more than 80% of the drone
battery while this value increases to 63% if the marginal
setting is selected.

V. CONCLUSION
In this paper, we have investigated a drone delivery problem
to address the tactical decisions arising in last-mile applica-
tions where the connection with operational plans is taken
into account. The problem deals with the tactical selection
of a subset of FCs to launch and retrieve the drones, and
the fleet sizing decisions on the optimal number of drones to
be employed. We have incorporated the non-linear and load-
dependent energy consumption function into the definition of
a load-indexed layered network, leading to the definition of a

18568 VOLUME 11, 2023



M. E. Bruni et al.: Energy Efficient UAV-Based Last-Mile Delivery: A Tactical-Operational Model

MILP that can be efficiently solved for instances with 50 and
75 customers. There are several fruitful directions for future
research. The use of shared depots implies for the drones the
freedom to choose different FCs for departure and arrival.
Anyway, a drawback may exist in the considered scenario,
since we should have enough drones in each FC for the next
period. The extension of the present model to themulti-period
location routing case, where the location decisions are taken
once and the routing plans are addressed within each period,
is an interesting issue for future research. Moreover, the
design of heuristic and self-adaptive approaches to alleviate
the computational burden for larger instances deserves further
attention, as well as the extension of the present model to en-
route drone charging.
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