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Influence of near fault records on the optimal 
performance of isolated continuous bridges  

Elena Miceli1[0000-0002-1262-3403] 

1 Politecnico di Torino, Corso Duca degli Abruzzi, 10129, Turin, Italy 
elena.miceli@polito.it 

Abstract. This study aims at evaluating the optimal value of the friction coeffi-
cient in case of multi-span continuous deck bridges equipped with single concave 
friction pendulum devices. The bridge is modelled with a six-degree-of-freedom 
system considering the presence of the isolator on top of both the abutment and 
the pier. The friction pendulum device behaviour is modelled by including the 
dependency of the friction coefficient on the velocity. The equation of motions 
have been solved by adopting a nondimensionalization with respect to the peak 
ground acceleration-to-velocity ratio, which is a measure for the ground motion 
period. A parametric analysis has been performed by using different values for 
the friction coefficient, for the pier and deck periods and the masses of the deck 
and of the pier. The uncertainty in the seismic input is included by considering 
40 near fault records. Finally, an optimal value for the friction coefficient able to 
minimize the substructure peak response is calculated as function of the peak 
ground acceleration-to-velocity ratio and the period of the deck. 

Keywords: continuous deck bridges, friction coefficient, optimal value. 

1 Introduction 

The seismic isolation is one of the largely adopted techniques to improve the seismic 
safety of civil structures [1]-[2]. In particular, the goal of the seismic isolation in case 
of bridges is to increase the period of the isolation system with the aim to reduce the 
inertia forces acting on the deck and subsequently transmitted to the substructure, i.e., 
the piers [3]. The advantage of using the friction pendulum systems (FPS) devices is to 
make the isolation period independent from the mass of the deck [4]-[5]. Big efforts 
have been made within the researchers to study how to model the FPS devices behav-
iour [6]-[10]. The existence of an optimal value of the friction coefficient, able to min-
imize the seismic response of the substructure, was first introduced by Jangid in [11]-
[12]. To this aim, the optimal friction coefficient is evaluated in [13]-[14] through a 
parametric analysis (i.e., by varying many properties of the structure and the seismic 
input). However, in these works the optimization is not independent from the seismic 
input.  

In this study, the optimal friction coefficient of multi-span continuous deck rein-
forced concrete (RC) bridges, isolated with single concave FPS devices, is analysed. 
The bridge is modelled through a six-degree-of-freedom (dof) system, where 5 dofs are 
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used to model the lumped masses of the pier and 1dof for the deck. The latter is con-
sidered infinitely rigid. Two FPS bearings are placed on top of the elastic RC pier and 
the rigid RC abutment, which is considered as a fixed support. The bridge is subjected 
to a set 40 of natural near fault records. Furthermore, many bridge models are consid-
ered by varying: the pier fundamental period, the ratio between the masses of the deck 
and the pier, the friction coefficient of the FPS devices and the ratio between the fun-
damental periods of the deck and of the ground motion. Nondimensional equation of 
motions have been solved such that the response becomes independent from the char-
acteristic of the records, expressed in terms of peak ground acceleration-to-velocity ra-
tio (PGA/PGV). The final result of this work is the computation of a linear regression 
in order to compute the nondimensional friction coefficient of the isolator as function 
of the deck period and the ground motion period, useful in the design phase of the FPS 
devices. 

2 Bridge model and equations of motion 

The seismic response of the bridge is evaluated by modelling a six-degree-of-freedom 
(dof) system, accounting for 5 dofs for the lumped masses of the pier and 1 additional 
dof to model the rigid RC deck. Previous studies have demonstrated that the use of 5 
lumped masses to model the pier allows to obtain enough accuracy of the results avoid-
ing larger computational efforts [13]-[14]. The friction pendulum system devices (FPS) 
are placed on top of the pier and the abutment, which is modelled as rigid and fixed. 
Fig. 1 shows the 6 dofs model adopted and their horizontal relative displacements. 

When the structure is subjected to a seismic input, the equation of motion of the 6 
dofs, evaluated along the horizontal direction, are: 
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  (1a,b,c,d,e,f) 

where ud is the deck displacement relative to the pier top, upi is the relative displacement 
of the ith lumped mass of the pier with respect to the lower one, md is the mass of the 
deck, mpi is the mass of the ith lumped mass of the pier, while kpi is the corresponding 
stiffness. The viscous damping coefficient for the device and for the pier masses are, 
respectively, cd and cpi; t is the instant of time and the dots are used to indicate differ-
entiation. In the end, the resisting forces of the FPS bearings located on top of the abut-
ment and on the pier are, respectively, Fa(t) and  Fp(t). These forces can be expressed 
as the sum of an elastic component, coming from the pendular behaviour of the FPS 
device, and a viscous component, as follows [4]: 
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where Ra and Rp are the radii of curvature of the FPS devices placed on the abutment 
and on the pier, respectively and assumed equal, the stiffness of the deck is computed 
as / /d dk W R m g R  , half for the bearing on the abutment and half for the pier; g 

is the gravity constant;   is the sliding friction coefficient of the bearings. It is note-

worthy that the fundamental period of the deck can be expressed as 

2 / 2 / gd d dT m k R   , hence, it only depends on the geometrical property of 

the isolator (the radius of curvature), and not on the mass of the deck [4]. In literature 
[4],[6],[10],[15], many experimental evidences have emphasizes the dependence of the 
sliding friction coefficient on different parameters (e.g., sliding velocity, cumulative 
movements, temperature). In particular, the dependency of the sliding friction coeffi-
cient on the velocity is such that: 

      max max min expd du f f f u        (3) 

where maxf  and minf  define, respectively, the sliding friction parameter at large and null 

velocity,  governs the transition from low to large velocities. Experimental results 
suggest to assume max min3f f  and 30   [15]. 
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Fig. 1. Schematic representation of the six-degrees-of-freedom bridge model. 

The equation of motions in (1) are then expressed in a nondimensional form, accord-
ing to the Buckingham’s Π-theorem, as illustrated in [16]-[18]. In particular, a time 
scale and a length scale are introduced and adopted for the nondimensionalization. In 
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this study, the former is represented by  1/ g , whit 2 / /g gT PGA PGV   indi-

cating the circular frequency of the ground motion and herein evaluated as the peak 
ground acceleration-to-velocity ratio. The latter is assumed as 2

0 / ga   , where 0a is an 

intensity measure for the seismic input. The time scale is used to pass from the time t  
to gt   such that the ground motion input of equation (1) is expressed as: 

 0 0( ) ( ) ( )gu t a l t a     (4) 

where ( )l t is a nondimensional function of the seismic input indicating its variation 

over the time t , while ( )  contains the same information but in the time  .  

Finally, dividing the equations in (1) for the deck mass dm and introducing the time 

and length scales, the equations in terms of nondimensional parameters are: 
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where 2
0d d gu a   and 2

0pi pi gu a  are the nondimensional displacements,

d d dk m   and pi pi pik m  are the circular vibration frequencies, 

2d d d dc m   and 2pi pi pi pic m   are the damping factors (respectively for the 

deck and for the i-th lamped masses of the pier) and p pi pi dm m   is the mass ratio 

of the i-th lumped mass (assumed equal for all the lumped masses). Furthermore, the 
nondimensional parameters Π of the problem are: 
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  (6 a,b,c,d,e,f) 

To discard the dependency of   on the velocity, we considered *
max 0f g a  . 

3 Parametric analysis  

3.1 Ground motion records 

According to the Performance Based Earthquake Engineering approach (PBEE) [19]-
[20], the seismic intensity 0a  is represented by the parameter PGA (i.e., peak ground 

acceleration). Furthermore, a set of 40 near fault (NF) ground motion records is con-
sidered, with peak ground acceleration-to-velocity ratios between 0.21 and 0.97 (i.e., 
low ranges of PGA/PGV), magnitude between 6.19 and 7.62 and soil types B and C.  

3.2 Deterministic parameters 

The performance of the bridge isolated with FPS bearings is studied by including dif-
ferent values of the parameters involved in the problem. In particular, 2 pier periods are 
considered 0.05 ,0.2pT s s , 15 period ratios in the range 0.1 1.6d gT T   , 3 mass 

ratios 0.1,0.15,0.3p   and 85 values for the nondimensional friction coefficient *
  

between 0 and 1.5. The remaining parameters, i.e., 
d

  and 
p

  are set equal to 5% 

and 0% respectively [17],[21]-[24]. All the analyses have been solved in Matlab-Sim-
ulink [25]. To evaluate the performance of the bridge, the response parameter are cho-
sen in terms of normalized relative peak displacement the pier (i.e., 

2
p,max p,max 0gu a  ) where the maximum pier response is intended as 

5

,max
1 max

p pi
i

u u


 
  
 
 . In the following, results are shown in terms of geometric mean 

(GM) and dispersion (  ) of the response parameter D (i.e., p,max ) considering the 

lognormality of the data [17], [26]-[38] as follows: 



6 

 

 

   
     

1

2 2

1

ln

... ;

ln ln ... ln ln

1

N
N

N

GM D d d

d GM d GM
D D

N
 

  

   
 



 (7a,b) 

where D is the generic response parameter, dj is the j-th realization of the response pa-
rameter and j=1,…,N with N=40 the total number of NF inputs. Then, the k-th percen-

tile of the response parameter is given by      expkd GM D f k D    , where 

 f k  [39] is equal to 0, 1 and -1 for the 50th, 16th and 84th percentile, respectively.  

4 Optimal sliding friction coefficient 

The response parameter ,maxp  corresponding to the normalized value of the maximum 

pier top displacement is illustrated in terms of geometric mean and dispersion as func-

tion of the normalized friction coefficient *
  and the ratio /d gT T  for the two values 

of the pier fundamental periods pT  and the three quantity of p . The geometric mean 

of the normalized response of the pier (Fig. 2a-b) increases for lower value of /d gT T  

since the lower the period of the deck, the larger are the forces acting on it and thus 
transmitted to the substructure. Furthermore, ,max( )pGM   tends to decrease for larger 

values of the mass ratio. In addition, there is a slight decrease followed by an increase 
in the maximum normalized response of the pier top with the growth of the normalized 

friction coefficient, suggesting the evidence of an optimal value of  *
  able to mini-

mize the substructure response. Regarding the dispersion  ,maxp  , the trend tends to 

slightly decrease in correspondence of the optimal value of the friction coefficient and 
turns out to be almost independent form the other parameters (Fig. 2c-d). The above 
mentioned considerations have resulted in the calculation of the optimal value for the 

normalized friction coefficient *
,opt  as function of the ratio /d gT T  for the two values 

of pT  and the three quantity of p , computed in terms of the 16th, 50th and 84th percen-

tiles. In Fig.3 , the results corresponding to only the 50th percentile are shown. It can be 

noted that *
,opt  decreases with larger /d gT T  ratios. Furthermore, Fig. 3 shows that 

there is not a large influence of both the pier fundamental period and the mass ratio in 

the computation of *
,opt . This suggests to perform a linear regression of the data to 

obtain the value of *
,opt  as only function of the parameter 

g as follows: 

 *
, 1 2 0

gopt c c       (8) 

where the coefficients 1c  and 2c  together with the R-squared values are in Table 1.  
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Fig. 2. Maximum normalized displacement of the pier top in terms of a-b) geometric mean and 
c-d) dispersion as function of *

  and /d gT T  for 0.05 0.2pT s   and 0.1,0.15,0.2p  . 
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Fig. 3. Optimal value of the normalized friction coefficient as function of /d gT T for a) 

0.05pT s and b) 0.2pT s and for the three values of 0.1,0.15,0.2p  . 

Table 1. Linear regression parameters for the optimal normalized friction coefficient 

 50th  16th  84th  

R-squared 0.9292 0.8872 0.8588 

1c  -0.0093 -0.0130 0.0172 

2c  0.5430 0.5190 0.5069 
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Fig. 4. Linear regression for the optimal value of the friction coefficient able at minimizing the 
a) 50th percentile b) 16th percentile and c) 84th percentile of the substructure response.  

5 Conclusions 

This study analyses the optimal value of the friction coefficient in case of seismic iso-
lation of bridges with FPS devices. Many bridge models were considered within a par-
ametric analysis. Then, each bridge model has been subjected to 40 near fault seismic 
records. The response of the substructure (i.e., the pier) has been evaluated in terms of 
nondimensional peak displacement normalized with respect to the ground motion char-
acteristics through the acceleration-to-velocity (PGA/PGV) ratio. Results have shown 
the evidence of an optimal value of the friction coefficient able to minimize the sub-
structure peak response. Hence, a linear regression of the data has led to an expression 
to compute the normalized optimal friction coefficient as function of the ratio between 
the fundamental period of the ground motion and of the deck.  
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