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Abstract

Due to the operating frequency and signal bandwidth of communication applications,
the electromagnetic simulation and modeling of modern electronic systems are
essential. This is particularly problematic when attempting to solve problems
that involve computationally expensive analysis (e.g., full-wave simulations) and
parametric optimization. To address these problems, the use of fast and accurate
surrogate models appears to be effective.

To this end, this study is divided into two parts. First, instead of attempting
to characterize the entire system using Maxwell’s equations, the overall system
(such as a multilayer printed circuit board) is first divided into substructures (such
as coupled line interconnects, vias, connectors, etc.), each of which is then further
characterized using the standard macromodels (i.e., reduced-complexity behavioral
models). As a result, the electrical interconnects at the board level and circuit
components are effectively analyzed by using corresponding macromodels requiring
limited computing resources.

Focusing on the black-box macromodeling approach, a rational approximation
based on the integral operator is proposed. By integrating the data on several different
intervals, a system of equations is formed, then the pole/residue values of the rational
function are obtained by the conventional least-squares method. Finally, the stability
of the model is guaranteed by using a closed-loop control technique and considering
a controller coefficient. Also, using this parameter, the designer can increase the
stability margin of a system with poor stability conditions. The introduced method
has the potential to be used for a wide range of practical applications since there is
no specific restriction on the use of this method. The only requirement that should
be considered is the Dirichlet condition for the original data, which is usually the
case for physical systems. The performance evaluation of the proposed method has
been investigated in comparison with the well-known vector fitting (VF) method.
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Also, the results show that the performance of the proposed method is less affected
by input noise, and this is an important point because in most cases the measurement
data is noisy.

In the second part, a new non-iterative optimization method based on the
inverse modeling technique and its applications in the design and optimization
of microwave components is presented. The proposed inverse model accepts
the high-dimensional S-parameters computed at many frequency points as the
input and estimates the optimal geometrical/physical parameters of the microwave
component as its output. The Least-Square Support Vector Machine regression is
combined with the Principal Component Analysis to simultaneously overcome both
the high-dimensional input space and ill-posed challenges of the inverse modeling.
We also propose a new empirical method to find the optimum number of principal
components (i.e., compression level) for each example, in an automated way. This
makes our proposed model general and easy to use compared with the existing
data-driven inverse modeling techniques. The inverse model is trained by a set
of scattering parameters computed via a 2D/3D electromagnetic solver for a few
configurations of the geometrical parameters. The feasibility and the accuracy of the
proposed optimization scheme are investigated by comparing its predictions with the
corresponding optimal configuration estimated via a commercial solver.
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Chapter 1

Introduction

1.1 Research Background

Understanding the behavior of structures and systems in practically higher frequencies
requires numerical modeling and simulation [1]. For instance, evaluating the
signal/power integrity issues of a generic PCB at microwave frequencies require
full-wave EM simulations over a large domain, including dielectric and metal passive
structures with small geometrical details connected to localized nonlinear devices
as termination networks. Direct methods, such as characterizing the entire system
with Maxwell’s equations and then simulating it on an appropriate computer, are
impractical for this purpose [1].

The hybrid simulation techniques have proven to be good alternatives for reducing
this complexity and carrying out effective numerical simulations with realistic
runtimes [2]. This way, the overall system is usually divided into well-defined
substructures (e.g., narrow traces, vias, integrated circuits, passive interconnects,
connectors) so that each one can first be separately characterized through reduced
complexity surrogate models, a.k.a macromodels (see the conceptual Figure 1.1).

Terminal responses in the time or frequency domain can be used to identify
macromodels, which results in concise behavioral representations of the structure.
These macromodels are connected once they are available to create an approximation
but accurate representation of the entire system, which can subsequently be solved
using limited computing resources. Indeed, complex system-level evaluations based
on numerical simulations can be greatly simplified using macromodels, leading
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to a major acceleration in simulation time, almost without loss of accuracy (e.g.,
a speedup up to 700X in power integrity transient simulation of a Low DropOut
(LDO) voltage regulator in electronic systems [3]). Therefore, we need reliable and
stable algorithms for constructing a macromodel that makes such an efficient process
possible.

Fig. 1.1 A conceptual example of the application of the macromodel in accelerating the
simulation of complex electronic devices. From left to right, full-wave simulation of a
generic complex PCB, macromodeling of the specific passive substructure of the PCB, and
its synthesized equivalent circuit netlist to be used in SPICE-like time domain solver.

1.2 Literature Review

A variety of macromodel techniques have been developed for passive electrical
interconnects [1]. Among the black-box macromodeling techniques, two well-known
are the Vector Fitting (VF) [4, 5], and the Loewner Matrix [6, 7]. The above are
able to extract a rational approximation of the transfer function of the system
under test through robust algorithms. The resulting mathematical expressions
are easily converted to ordinary differential equations (ODEs) and synthesized
by equivalent circuits (Figure 1.1) compatible with standard circuit solvers (e.g.,
SPICE) [8]. We assume that the component response can be reproduced by a linear
time-invariant system (LTI). Therefore, such a macromodel is applicable both to
inherently linear structures such as passive interconnects, and to active nonlinear
components represented by a small signal transfer function (such as [3]).

According to the standard approach, a macromodel is first constructed using
full-wave simulation (or measurement) data to extract the port response (e.g., frequency
dependent scattering matrix) of the structure. Then, by applying the appropriate
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algorithms, we obtain a rational approximation for the response so that the resulting
macromodel is converted to a format compatible with circuit solvers (e.g., SPICE).
However, when the structure of interest is dependent on one or more design variables,
the entire process of creating the macromodel (i.e., full-wave simulations, rational
approximation, etc.) must be repeated for each different combination of the parameters,
making this process impractical.

In recent decades, rapid advances in the field of microwaves have led to the
production of compact passive components with higher operating frequencies. Also,
these high frequency components are quite sensitive to dimensional changes so
a small change in geometry can lead to significant differences in their overall
performance. To get the optimum dimensions for high-frequency devices, multiple
simulation iterations are usually required during the design stage. As a result, there
is a strong demand for microwave device models that are accurate, dimensionally
dependent, fast-simulation-speed, and simulator compatible [9]. Specifically, these
models should be available as needed for any configuration of design variables,
including geometric parameters (such as the width and spacing of the transmission
lines on PCBs, substrate height, etc.) or material parameters (such as electrical
conductivity, permittivity, etc.). A model with such features is called a parameterized
macromodel

Other common modeling methods that are widely used for microwave components
are equivalent circuit models [10], EM physical models [11] and S-parameter
models [12]. Due to its fast evaluation and the capability of including geometrical
parameters, the equivalent circuit models are ideal for parametric optimization.
However, as the operating frequency increases, the accuracy of the equivalent circuit
model degrades exponentially because a large number of parasitic elements become
prominent at higher frequency ranges that are not included in the model. The primary
reason for this is that accurately identifying such parasitic elements is difficult and
time-consuming. In contrast, the EM physical models are generally accurate even
for higher frequencies. But they require a high computation time and memory
making them unsuitable for parametric simulations, in particular for cases with many
geometrical parameters [13].

Data-driven surrogate models are suitable solutions to many practical modeling
problems [9]. Their main advantages are versatility, low evaluation costs, a wide
selection of well-established methods, as well as the availability of ready-to-use



4 Introduction

toolboxes to implement these methods in popular programming environments such
as MATLAB. However, these models have serious limitations. Major problems arise
from the high cost of providing the training data, the curse of dimensionality, as well
as the wide range of parameters for which the model must be valid [13]. Even in the
case of high-frequency structures such as microwave components and antennas, we
will face more problems, including the severity of the system’s response to parameter
changes, as well as dealing with vector-valued outputs [14].

1.3 Organization of the Thesis

In this research, we look for modeling methods that are much less computationally
expensive than full-wave solvers, also referred to as surrogates. The focus is on
modeling passive PCB interconnects and components at microwave frequencies.
Considering the surrogate modeling and surrogate-based design of high-frequency
structures, the thesis is organized into two main parts.

In the first part, the state-of-the-art macromodeling technique is introduced as a
standard for the analysis of electrical interconnects at the chip, package, or board
level, and microwave components. Chapter 2 reviews the state-of-the-art systematic
method for signal integrity analysis of high-speed interconnects. The macromodel
is identified from terminal responses in the frequency domain (e.g., S-parameters).
Frequency samples of the scattering matrix of the whole structure are obtained from
different cascaded components (transmission line, vias, connectors, packages, etc.)
whose individual scattering matrix is obtained by fast 2D (for transmission lines) or
full-wave (for connectors, vias, and other structures with unusual shapes) solvers.
Then, the macromodel of the interconnects is constructed by fitting a rational function,
which is synthesizable by equivalent circuits compatible with circuit-based solvers
(e.g., SPICE, ADS) to be used in conjunction with other nonlinear components for
transient time-domain simulations. To do this, a variety of nonlinear component
models available from the ADS library could be used for transient simulations. In
Chapter 3, a rational macromodel based on data integration is proposed with the aim
of utilizing all available information, reducing the order of the model and relative
resistance to noise. Finally, the stability of the model is guaranteed by using the
closed-loop control technique and considering a control coefficient. The performance
evaluation of the proposed method in comparison with the well-known VF method
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has been investigated in several practical examples. The main goal is to develop
efficient algorithms that model high-speed interconnects to be used in a circuit-based
solver such as ADS.

In the second part, Chapter 4, the parameterized macromodel is introduced which
includes external parameters (e.g., geometrical and physical parameters or even
external incident field parameters) other than the frequency as an enabling factor for
design optimization of electronic devices based on conventional iterative optimizers.
Also in this chapter, we propose a data-driven model based on a completely different
approach, so-called "Inverse Modeling", to optimize passive microwave components,
which, unlike conventional repetitive optimization methods, is very efficient and does
not require repetition. Accordingly, an inverse model based on the machine learning
regression technique is proposed to optimize microwave components, addressing
two main challenges of the inverse modeling microwave problems. We evaluate
the feasibility and accuracy of the proposed method by optimizing two microwave
application examples and comparing them with similar results from the commercial
optimizer available in ADS. Chapter 5 deals with the conclusions and suggestions
for further work.



Chapter 2

Macromodeling Technique and
Applications (state-of-the-art)

The development of advanced modeling and simulation techniques enables electronic
device designers to fully identify electromagnetic compatibility (EMC) related issues
which have a detrimental effect on signals within a system. In this context, innovative
modeling methods have been recently researched according to EM fields, electrical
interconnects, circuits, and components [1].

One of the main research activities in this field is macromodeling of electrical
interconnects. It is aimed at providing the designers of electronic systems with
accurate and efficient models of electrical interconnections. These may include
connectors, packages, transitions, junctions and discontinuities, vias on printed
circuit boards (PCBs), and also transmission lines. All these structures have a
significant influence on the signals that propagate through them. Our research is
focused on the development of efficient macromodeling procedures leading to circuit
models characterized by good accuracy and by reduced complexity. This involves
the theoretical development of the macromodeling algorithms and their validation of
realistic structures.

Macromodeling based on rational function approximation (rational macromodel)
is a standard method in various applications. In this method, the frequency response
of the desired structure is first extracted by the full-wave simulation or measurement
(e.g., frequency-dependent scattering parameters). Then, by applying the appropriate
curve fitting algorithms, a rational function approximation of the frequency response
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is obtained. Such a macromodel is available in a form that is directly usable within
standard SPICE-like circuit solvers.

2.1 Introduction to Macromodel Technique

Macromodeling techniques developed for various applications to signal and power
integrity characterization and simulation, computational electromagnetics, small
signal linearized modeling of biased nonlinear components, high voltage power
systems, etc. These examples demonstrate that, as far as the linearity and time
invariance assumptions hold, all the developed macromodels provide excellent tools
for the generation of reduced complexity behavioral models [1].

One of the most common applications of macromodels is to design electronic
systems under signal and power integrity constraints. Modern computing systems,
such as high-end servers or laptops, smartphones, or tablets, operate at frequencies
where the electromagnetic properties of the system, combined with nonideal material
properties, can cause serious performance issues and malfunction. A systematic
analysis must be performed from the beginning of the design process in order
to estimate the transient waveforms of both sensitive signals and supply voltages
and to ensure that they meet proper design constraints. For example, to ensure
the appropriate operation of the logic devices connected to the power distribution
network, the power supply voltage at any location of the system must not drop below
a certain safety threshold.

Furthermore, high-speed signals transmission via nonideal interconnects must be
immune to dispersion and attenuation caused by losses, reflection from discontinuities,
crosstalk, and interference from surrounding interconnects. Even between the
signal and the power distribution network, the electromagnetic coupling can occur.
Signal/power integrity assessments are best performed through system-level transient
simulations using circuit solvers. On the other hand, all the relevant electromagnetic
effects, such as the losses, dispersion, etc., are well characterized in the frequency
domain through numerical discretization of Maxwell’s equations, resulting in tabulated
frequency responses (e.g., S-parameters). The macromodeling technique can be seen
as a promising approach to tackle this mixed frequency/time problem by providing a
bridge between frequency and time domains through fitting rational macromodels that
match the scattering responses from the field solvers, and which can be seamlessly
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used in circuit solvers. Figure 2.1 shows the generic framework of the macromodeling
application to signal/power integrity analysis of a high-speed channel in the printed
circuit board.

Fig. 2.1 A practical example of the signal/power integrity analysis framework using the
macromodel techniques.

2.2 Rational Macromodel

At high frequencies, some geometric structures/devices (e.g., three-dimensional
transmission lines, non-uniform transmission lines, vias, packages, on-chip passive
components, etc.) show complicated electrical behavior for which there is no
analytical model or an equivalent circuit. However, from the network point of
view, these devices could be realized in three forms; transfer function (Y , Z, S,
etc.), state-space equations, or circuit realization (R, L, C, controlled current/voltage
sources, etc.).
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It is well known that the port behavior of any linear network could be characterized
by its transfer function (e.g., Y /Z/S-parameters). In its simplest form, if it exists, the
transfer function f (x) of a general physical network comes in the form of a ratio
of two polynomials like (2.1), which can be easily converted to other forms, e.g.,
pole/residue, etc.

f (x) =
P(x)
Q(x)

=
pmxm + pm−1xm−1 + ...+ p1x+ p0

qnxn +qn−1xn−1 + ...+q1x+1
(2.1)

where, the variable x can be considered as frequency or Laplace variable s (complex
frequency), and the degree of the prescribed numerator and denominator polynomials
P(x) and Q(x) are m and n, respectively. When m= n, the transfer function is referred
to as a "proper transfer function".

Given the following requirements, the transfer function (2.1) represents a stable
physical system.

• Real-valued coefficients of P(x) and Q(x) (i.e., pi,qi ∈ R)

• All the roots of Q(x) and P(x) are either real or come in complex-conjugate
pairs

• All the poles of the transfer function are stable by being located at the LHS of
the s-plane

• The highest power of the P(x) and Q(x) can not differ by more than unity

Given the response samples of the device under modeling f (xi) at discrete points
xi, i = 1,2, ...,M, the goal is to approximate these data by a closed-form transfer
function (2.1). In general, curve fitting techniques may frequently be encountered as
a general mathematical tool for finding a closed-form representation for a given data
series, which is basically obtained based on the minimization of the error between
the approximating function and the data. However, in rational macromodeling,
despite providing an analytical approximation for a given data set, the resulting
rational function needs to inherit all the important characteristics of the device under
modeling, such as stability, passivity, etc.

A primitive idea can be through equating the transfer function with the data at
every given frequency point, leading to the following over-determined system of
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equations to solve.

φu = v (2.2)

u =
[

p0 · · · pN q1 · · · qN

]T

v =
[

f (x1) f (x2) · · · f (xM)
]T

φ =

1 · · · xN
1 −x1 f (x1) · · · −xN

1 f (x1)
... . . . ...
1 · · · xN

M −xM f (xM) · · · −xN
M f (xM)


It is assumed that coefficient matrix φ is not a zero matrix. Typically, the number of
equations M is greater than the unknown number 2N+1, resulting in an overdetermined
system. Therefore, by assuming that the matrix φ T φ is left-invertible, the following
equation is the unique solution to the least-squares problem (2.2) [15].

ũ =
(
φ

T
φ
)−1

φ
T v (2.3)

It is clear that the above solution is not an exact answer for any choice of u. The
solution defined by (2.3) is the vector that minimizes the sum of squares of the error
vector E defined as the Euclidean norm of the residual as follows [16].

E = ||φ ũ−v||2 (2.4)

Such approaches which are based on a direct and primitive formulation can not
handle modern applications in general due to the following limitations,

• Not able to handle the wide frequency band (i.e., from DC to a few GHz)

• The matrixe φ easily becomes ill-conditioned (a.k.a Vandermonde matrix)

• Can not achieve higher-order approximations

In the next section, the well-known vector fitting method is introduced which is
based on a partial fraction of the pole/residue representation and is able to tackle
some aforementioned limitations in the direct formulation.

It is important to remark that, rational macromodeling techniques are solely
not suitable for modeling the distributed structures (i.e., when the system under
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investigation is electrically large so that the effects of finite propagation speed are
visible in its terminal responses) because they theoretically impose an infinite order
on the rational function. One may modify the aforementioned rational model form
by embedding explicit delay terms when modeling distributed structures [1].

2.3 Vector Fitting

Here, the vector fitting (VF) approach [4] for fitting a rational function (model) to a
set of frequency-domain data is described. VF is largely based on solving a series of
linear problems with robust numerical properties, and it finds its solution through
iterations. The objective is to approximate a frequency response f (s), (generally, a
vector; hence, the designation VF) with a rational function

f (s)≈
N

∑
n=1

cn

s−an
+d + sh (2.5)

where, cn, an correspond to residues and poles respectively, which are either real
or come in complex conjugate pairs, and d, h are real unknowns, s is the Laplace
variable s (complex frequency), and N is the order of the rational function.

Consider the approximation of partial fraction form (2.5), the goal is to determine
all the unknowns cn, an (for n= 1,2, ...,N), d, and h in such a way that a least-squares
approximation is achieved over the desired frequency range. As can be seen from
(2.5), a nonlinear optimization problem is encountered since the unknowns exist
in the denominator. Although numerous techniques for the numerical solution of
nonlinear least-square and global nonlinear optimization have been proposed [17],
their application is not strong enough for the general situation. As a result, various
more reliable methods are preferable to brute-force direct nonlinear optimization.

The VF, in particular, solves the original nonlinear problem in two steps as a
linear problem with known poles. First, an initial pole set ān is distributed over
the desired frequency range to be replaced iteratively with an improved pole set
through a scaling process until the desired accuracy is achieved [4]. In addition, an
unknown frequency-dependent scale function σ(s) is introduced that is precisely
fitted to predetermined poles. The new pole set is then obtained from the fitted
function, which is used in the second step to fit the scaleless function. The VF fitting
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algorithm can be considered as a pole displacement process, meaning that it modifies
an initial pole set in an iterative manner to converge very quickly to the dominant
poles of the system.

Considering a set of initial poles ān (n = 1, ...,N) and unknown scaling function
σ(s), the VF first identifies the poles of f (s) by solving in the least-squares sense,
the linear problem [4],

σ(s) f (s) = p(s) (2.6)

where

σ(s) = 1+
N

∑
n=1

c̃n

s− ān
(2.7)

p(s) =
N

∑
n=1

cn

s− ān
+d + sh (2.8)

where p(s) is generally a vector.

Writing the (2.6) at frequency sample points si (i = 1, ...,M) results in the
following system of equations which could be solved as a least square problem
to find unknowns collected in vector x.

φx = b (2.9)

x =
[
c1 · · · cN d h c̃1 · · · c̃n

]T

b =
[

f (s1) f (s2) · · · f (sM)
]T

φ =


1

s1−ā1
· · · 1

s1−āN
1 s1

− f (s1)
s1−ā1

· · · − f (s1)
s1−āN

...
...

...
...

1
sM−ā1

· · · 1
sM−āN

1 sM
− f (sM)
sM−ā1

· · · − f (sM)
sM−āN


Considering the rational function approximation for f (s) from (2.6), the zeros and
poles of f (s) could be interprented as the zeros zn of approximated p(s) and the
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zeros z̃n of σ(s), repectively, as follows.

p(s) = h
∏

N+1
n=1 (s− zn)

∏
N+1
n=1 (s− ān)

, σ(s) =
∏

N+1
n=1 (s− z̃n)

∏
N+1
n=1 (s− ān)

(2.10)

f (s) =
p(s)
σ(s)

= h
∏

N+1
n=1 (s− zn)

∏
N+1
n=1 (s− z̃n)

(2.11)

Therefore, by calculating the zeros of the approximated function σ(s), a new set
of poles of f (s) is obtained to be used as starting poles for the next iteration. The
iteration continues until the maximum difference between the new and old poles is
less than a threshold, as a result of which the algorithm converges to the dominant
poles of the system. In this process, if some new poles obtained are unstable (RHS
of the s-plane), by inverting the sign of their real parts the stability is guaranteed.
More details about calculation of zeros from the partial fractions representation and
formation of the system of equations (2.9) for the complex-conjugate poles/residues
are given in [4].

The vector fitting pseudocode algorithm is summarized as follows:

• Step 1: Use an initial guess of poles an = ān and form the matrix equation
(2.9)

• Step 2: First least square solution to find x

• Step 3: Compute the zeros of scaling function σ(s) to be used as the (new)
improved poles

• Step 4: Repeat the steps 2 and 3 until poles converge!

• Step 5: For the final poles run the second round of least square to find the
residues. The results are poles and residues of the f (s)
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Given the poles {a1, ...,aN} and the residues {c1, ...,cN ,d}, the state-space realization
of the model simply writes:

ẋ(t) = Ax(t)+Bu(t) (2.12)

y(t) = Cx(t)+Du(t)

A =

a1
. . .

aN

 , B =
[
1 1 · · · 1

]T
, C =

[
c1 · · · cN

]T
, D = d

where, u(t) and y(t) are the LTI system input and output, respectively, and x(t)
collects the state variables.

2.3.1 Example: Microstrip Line

A single trace PCB, as shown in Figure 2.2a with a length of 10 cm is considered in
this example. The width of the strip and substrate height is about 1.55 mm, 0.8 mm,
respectively. The applied substrate is FR4 with a relative permittivity of εr = 4.3.
The S-parameters of this structure ranged between 0 and 5 GHz are extracted by
CST microwave studio time-domain simulation.

The results of MATLAB and the CST built-in VF algorithms for this example
are compared in Table 2.1. The CST VF algorithm is not available and only some
parameters including the number and increasing rate and the maximum number of
initial poles, and the desired accuracy is adjustable. The toolbox is first run with the
defined initial pole number. If the desired accuracy of the approximation is not met,
the VF algorithm is repeated with an increased number of poles until the desired
accuracy or the maximum number of poles is reached. Therefore, it can not be
claimed that the model obtained through this scenario is optimal. Here we use the
results of the CST VF toolbox only as a reference for evaluating the VF algorithm
implemented in MATLAB. Figure 2.3 shows a good fit of S-parameters amplitude of
microstrip using MATLAB VF with N = 20 uniformly distributed complex conjugate
poles after 1 iteration.
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(a)

(b)

Fig. 2.2 (a) Microstrip structure, and (b) amplitude of microstrip S-parameters obtained from
simulation in CST.

Table 2.1 VF algorithm performance for microstrip example.

MATLAB VF Toolbox CST VF Toolbox
Fitting error (MSE) 3.6379e-06 3.148827e-06

Pole number 20 20
Computational cost (sec) 0.11 0.14
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Fig. 2.3 Resulting S-parameters amplitude fit (red dashed line) for microstrip example after 1
iteration of the VF algorithm with N = 20 complex conjugate poles.

2.4 Synthesis of Equivalent Circuit

The general flow of the macromodeling based on data from full-wave solvers is shown
in Figure 2.4. After applying the fitting algorithm and generating macromodels in
a pole-residue form, it is necessary to synthsize the equivalent netlist to be used
in circuit solvers for transient simulations. Various methods for equivalent circuit
synthesis of the S, Y , or Z transfer functions are researched [18, 19]. Here, we have
adopted the Direct State-Space Synthesis method [1].

Also, the ADS is used as an external circuit solver to evaluate the generated
equivalent netlist (for example see Figure 2.8a). It should be noted that CST also
generates the equivalent SPICE-compatible netlist, which we use it here as a reference
to validate our synthesis method. To do this, the synthesized netlist of the microstrip
example is imported to ADS and simulated again to regenerate the S-parameters as
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shown in Figure 2.5. It can be seen that the netlist is capable of regenerating the
original S-parameters in Figure 2.2.

Fig. 2.4 Macromodeling flow based on data from full-wave solvers (given from [1]).

Fig. 2.5 Regenerated S-parameters of the synthesized netlist in ADS for microstrip example.
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Table 2.2 VF algorithm performance for multilayer PCB example.

MATLAB VF Toolbox CST VF Toolbox
Fitting error (MSE) 1.8245e-04 8.06757e-04

Pole number 10 20
Computational cost (sec) 0.022618 0.03415

2.4.1 Example: Multilayer PCB Structure

The second example is a multilayer PCB structure including microstrip to stripline
transition shown in Figure 2.6a. In this structure, a microstrip trace with a width and
length of 1.18 mm, and 8.49 mm, respectively, in the signal layer is connected to a
stripline trace in the third layer with a width and length of 0.47 mm, and 22.64 mm,
respectively using a via. The copper planes in layers 2 and 4 are regarded as ground.
Also, the signal via is surrounded by several ground vias that provide local electrical
continuity between two ground planes and a shielding effect that limits the coupling
of energy with other parts of the PCB. An FR4 substrate with relative permittivity,
loss tangent, and height of 4.3, 0.02, and 0.6 mm, is used for this example. The
structure is terminated matched load (50 Ohms impedance).

By this complicated example, we show that the netlist generated by CST is
not able to perfectly regenerate the original S-parameters obtained from full-wave
simulation. To this end, given the S-parameters of multilayer PCB shown in
Figure 2.6, both the CST and MATLAB VF toolbox are used to build the rational
macromodels with parameters collected in Table 2.2. Figure 2.7 shows the perfect fit
of MATLAB VF rational macromodel. It should be noted that according to Table
2.2, the macromodel obtained from MATLAB VF Toolbox is efficient with respect
to the CST VF Toolbox in terms of the accuracy and the model’s order.
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(a)

(b)

Fig. 2.6 (a) Multilayer PCB structure, and (b) the S-parameters obtained from simulation in
CST.

Fig. 2.7 Fitting the S-parameters of the multilayer PCB example (blue line) using the
MATLAB VF Toolbox (red dashed line) with N = 10 complex conjugate poles after 1
iteration.
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Then, the corresponding synthesized netlists are simulated in ADS to regenerate
the S-parameters as shown in Figure 2.8. The results show that the CST netlist
(black dotted line) has failed to regenerate the original magnitude responses S11 and
S22 (e.g., the notch frequency of |S22| is about 300 MHz shifted from the original
response) and phase response ∠S11, as well. But our netlist (i.e., VF Netlist red
dashed line), generated by Direct State-Space Synthesis [1], is able to regenerate the
original S-parameters responses very well.

2.5 Passivity Enforcement

In the macromodeling procedure, the passivity of the model may be lost for several
reasons [1]. When working with measurement data, the presence of noise or
inappropriate calibration, etc. may cause local passivity [1]. In cases where we
use full-wave simulation data, it should also be noted that the answers are obtained
through a discretization process that is never accurate, and in fact, the inevitable
error of numerical approximation may be the reason why the model is non-passive.
Improper settings of the full-wave solver and non-physical assumptions on the
materials used can also be the cause of this problem.

In addition, although the fitting algorithm can produce very accurate and stable
approximations even for complex structures, these models may not be passive. The
passivity of an LTI system could be simply assessed by checking the singular values
of the S transfer matrix in the desired frequency range, that no value is greater than
one. For example, Figure 2.9 shows the singular values of the matrix S for the
multilayer PCB example before and after applying the VF algorithm. It can be seen
that the macromodel approximated is not passive in the range [0,560] MHz as one
of the corresponding singular values has exceeded the 1 in this range.



2.5 Passivity Enforcement 21

(a)

(b)

Fig. 2.8 (a) Netlist of the multilayer PCB example and (b) the S-parameters of the netlists
generated by CST and direct state-space synthesis (VF Netlist) methods obtained from
simulation in ADS.
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Fig. 2.9 Full frequency sweep of the singular values of the multilayer PCB scattering matrix
before and after fitting.

2.6 Non-iterative Proposed Rational Macromodel based
on Data Integration

In this section, a mathematical method for developing a rational-based transfer
function model for practical applications is introduced; addressing the challenges of
low complexity and less sensitivity to noisy data. This method is developed based
on the integration of the original simulated or measurement data at several specified
intervals to decrease data losses and increase the accuracy of the final outcome. For
the number of integration intervals, a number of equations are obtained. The result
is a system of linear equations. Then, using the Least Square Method (LSM), the
required values, including poles and residues of the rational form of the model are
determined. To ensure the stability condition of the final response, a closed-loop
model is attributed to the understudying system. This goal will be met by defining a
stability controller coefficient for the closed-loop model. Several practical examples
are provided to evaluate the performance of the proposed method.
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2.6.1 Formulation

As discussed in section 2.2, a direct formulation (2.2) of the rational approximation
is affected by several issues. First, the high power of frequency sn(s = jω) in (2.2)
will result in Vandermonde matrices in the least-squares problem to be solved, which
are known to be ill-conditioned even for relatively modest values of N. Second, in
this method, information between two adjacent samples is not used. If the goal is to
use all the information, the number of unknowns, being the degree of the numerator
and the denominator polynomials of (2.1), increases dramatically.

To tackle the above issues, multiplying both side of (2.1) by its denominator
Q(x), and integrating both sides over an interval [xi,x f ] leads to:∫ xmax

xmin

{
p0 + p1x−q1 f (x)x+ p2x2}dx+∫ xmax

xmin

{
−q2 f (x)x2 + ...+ pnxN−qn f (x)xN}dx =

∫ xmax

xmin

f (x)dx (2.13)

For a given desired data, the integration result for both the left and right-hand sides
of the above equation could be calculated. The unknown numbers are 2N+1. Hence,
at least 2N + 1 independent equations are required. In practical application, it is
assumed that the desired data are available from frequency interval ω ∈ [ωmin,ωmax].
As mentioned before, x could be considered as a complex frequency s = jω . Hence,
x is varying over the interval x ∈ [xmin,xmax], where xmin and xmax correspond to a
minimum and maximum frequency, respectively. By dividing the distance xmin ≤ x≤
xmax to M equal segments as the integral intervals xm ≤ x≤ xm+1, m = 1,2, ...,M, the
required number of equations will be obtained. In physical problems, the frequency
is in the range of GHz. Hence, to avoid computational complexity, before incoming
the process, the variable x can be normalized to its maximum value.

By specifying the upper and lower limits of the integration interval, only the
coefficient’s qi, pi remains unknown. As a result, a linear system of M equations and
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2N +1 unknown is made. This equation system and its solution are as follows.

ψu = w (2.14)

u =
[

p0 · · · pN q1 · · · qN

]T
(2.15)

w =
[∫ x2

x1
f (x)dx · · ·

∫ xM+1
xM

f (x)dx
]T

(2.16)

ψ =


∫ x2

x1
dx · · ·

∫ x2
x1

xNdx −
∫ x2

x1
x f (x)dx · · · −

∫ x2
x1

xN f (x)dx
... . . . ...∫ xM+1

xM
dx · · ·

∫ x2
x1

xNdx −
∫ x2

x1
x f (x)dx · · · −

∫ xM+1
xM

xN f (x)dx

 (2.17)

ũ =
(

ψ
T

ψ

)−1
ψ

Tw (2.18)

where ψ is M× (2N +1) coefficient matrix, u is (2N +1)×1 column vectors, in
which holds the unknowns, and w is M×1 column vectors that include the desired
data.

It should be noted that the proposed linearization (2.13) (which is essentially
an improved version of Levy’s linearization [1] with the additional use of integral
operators) inherently acts as a weighting function, hence (2.18) is the solution of
a weighted LS problem, with a weighting matrix defined by the magnitude of the
model denominator. In general, this produces a well-known systematic bias problem
that Vector Fitting does not have [1]. In some practical cases, using equation (2.18) is
not a good solution, especially when ψ is an ill-conditioned matrix, and it may cause
a low accuracy in the final answer. In these cases, using a modified QR factorization
technique leads to an increase in computational efficiency, where P is the permutation
matrix [1].

ũ = PR−1QTw (2.19)

ψP = QR (2.20)

It could be seen that the integral responses in (2.14) are independent of variable x.
This ensures that the proposed method is less affected by any unwanted noise or
disturbance. In other words, the integral operator is resistant to noise. In former
research, they use only samples of the available data. This means that, in these
methods, all observable output of the system is not used properly and there is a data
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loss problem, while in the proposed technique, all available data are used in the
integration process, and there is not any data loss.

According to equation (2.14), three conditions should be met. First, available data
should be absolutely integrable over any interval. Second, available data should be of
bounded variation in any given bounded interval. Third, available data should have a
finite number of discontinuities in any given bounded interval, and the discontinuities
cannot be infinite. In summary, the Dirichlet condition should be met as follows
[20]. ∫

x
| f (x)|dx < ∞ (2.21)∫

x
| f (x)xn|dx < ∞; n is integer (2.22)

The computational complexity of (2.14) is dependent on the value of M. The Nyquist
theorem can be helpful to determine the sampling rate ∆. For arbitrary available data,
the following equation can be used to the first approximation of M [21].

∆≤ |xmax− xmin|
4N

(2.23)

M ≥ 8N
|xmax− xmin|

(2.24)

In other words, the number of integration intervals is considered equal to the number
of samples. It should be noted that the above equations are obtained, assuming that
the integration intervals have equal lengths. In some cases, intervals of equal length
may not produce acceptable results. For these cases, the number of integral intervals
of a range of x that are more important could be increased. Correspondingly, for
regions of x where the original data is less important, less number of integral intervals
could be considered. For example, if the original data is the frequency response
of a bandpass filter, the number of integral intervals in the passband range will be
considered greater than the number of integral intervals in the stopband range.

After determining the unknown coefficients qi, pi using (2.14), poles, and zeros
of equation (2.1) should be determined. The poles and zeros are eigenvalues of the
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following matrixes [22].

TP =


− pN−1

pN
− pN−2

pN
· · · − p0

pN

1 0 · · · 0
... . . . ...
0 0 1 0


N×N

(2.25)

TQ =


−qN−1

qN
−qN−2

qN
· · · − 1

qN

1 0 · · · 0
... . . . ...
0 0 1 0


N×N

(2.26)

By specifying the poles and zeros of the system, available data could be expressed
in poles-residues form as (2.5). After specifying the poles and residue, the rational
form can be easily rescaled to its normal case.

In some cases, the obtained poles may be placed in an unstable region. In
the following, a simple technique will be introduced to overcome this problem.
The general form of a closed-loop system with forward transfer function G(x) and
feedback transfer function F(x) is presented in Figure 2.10. The transfer function of
the closed-loop system is as follows.

T F (x) =
G(x)

1+G(x)F (x)
(2.27)

For simplicity, it is assumed that the feedback transfer function is equal to one and
the forward transfer function could be expressed as a ratio of two polynomials. This
system is considered a macromodel of the understudying system as follows.

F (x) = 1, G(x) = k
B(x)
A(x)

→ T F(x) =
k B(x)

A(x) + k B(x)
(2.28)

Therein, parameter k is a stability controller coefficient, using which the stability of
the model could be controlled. By comparing equation (2.28) with (2.1), we have:

f (x) =
kB(x)

A(x)+ kB(x)
=

kB(x)
C (x)

= k
bNxN +bN−1xN−1 + ...+b1x+b0

cNxN + cN−1xN−1 + ...+ c1x+ c0
(2.29){

cn = qn + kpn n = 1,2, ...,N
c0 = 1+ kp0
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Fig. 2.10 Block diagram of a closed-loop system.

In this situation, the proposed procedure is applied to a new case. In other words,
equation (2.14) should be rewritten for a new case.

ψ =
[
ψb ψa

]
(2.30)

ψb = k


∫ x2

x1
h(x)dx · · ·

∫ x2
x1

h(x)xNdx
... . . . ...∫ xM+1

xM
h(x)dx · · ·

∫ xM+1
xM

h(x)xNdx

 (2.31)

ψa =

 −
∫ x2

x1
x f (x)dx · · · −

∫ x2
x1

xN f (x)dx
... . . . ...

−
∫ xM+1

xM
x f (x)dx · · · −

∫ xM+1
xM

xN f (x)dx

 (2.32)

h(x) = 1− f (x) (2.33)

As a result, by changing the parameter k, the stability condition could be met.
In other words, unstable poles could be moved toward the stable region. Another
solution is to plot the root locus of the system and determine the acceptable value of
k that guarantees the stability condition.

Passivity can be achieved through the conventional two-step methods introduced
in [1]. In this way, the first step comprises approximation with stable poles. Then,
using the method of iterative perturbation in the residues, a passive macromodel
could be achieved. Also, the proposed method could be easily extended for Multi
Input Multi Output systems (MIMO) using the introduced procedure in chapter 8 of
[1].
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Table 2.3 Poles and residues of the TF of theoretical example

Poles(GHz) Residues (GHz)
-0.6132±j3.4551 -0.9877±j0.0809
-0.3940±j7.3758 -0.2067±j0.0131

-0.0880±j14.3024 -0.1382±j0.0145
-0.4097±j17.7864 -0.1182±j0.0166
-0.2991±j28.4622 -0.2426±j0.0145
-0.6447±j35.2669 -0.4043±j0.0297
-1.0135±j37.9655 -0.6787±j0.1465
-0.5711±j57.4748 -0.2626±j0.1037

r0=0.1

2.6.2 Practical Examples

In this section, the performance of the proposed rational macromodel will be
demonstrated using several examples. It should be noted that the purpose of this
validation is not to show the overall superiority of the proposed method over the VF
algorithm. Here, the relaxed VF algorithm "vectfit3.m" is used as a known method to
compare the results [5].

Example: Noisy data

The first test case is a theoretical example to illustrate the performance of the
proposed method for noise-infected data in frequencies ranging from 0 to 10 GHz.
This example includes a synthetic transfer function with 16 poles described in Table
2.3 [23]. First, the synthetic transfer function is considered to be noise-free. Figure
2.11 shows the obtained results of the proposed method with N=12 and the VF
algorithm with N=16. The performance of the proposed method is clearly better than
the VF.
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(a)

(b)

Fig. 2.11 (a) Magnitude, and (b) phase of synthesized transfer function of theoretical example
in the absence of noise.

Now, consider the same transfer function in the presence of noise. Both real
and imaginary parts of the transfer function are infected by white Gaussian noise.
The noise level considered for this example is set to 20 dB signal-to-noise ratios
(SNRs). The synthesized results of both VF and the proposed method with noisy
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data are depicted in Figure 2.12. Due to numerous fluctuations, it is not possible to
compare the results from the figures correctly. For this reason, the diagram of the
Mean Squares Error (MSE) in dB for both methods is also shown. It is observed that
the proposed method has a lower MSE than VF, for about 2.8 dB average. In other
words, the proposed method has more immunity with respect to noise. It should be
noted that the noisy transfer function does not show smooth behavior and includes
several sudden jumps versus frequency.

(a)

(b)
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(c)

Fig. 2.12 (a) Magnitude, (b) phase, and (c) mean square error of synthesized transfer function
of theoretical example with noise.

Example: Coupled Microstrip Line

As the second example, a coupled microstrip line using TLY062 substrate with
relative permittivity of 2.2, a thickness of 1.56 mm, and loss tangent 0.009 is
considered [24]. The length and width of the board are 50 mm. The culprit and
victim strip width are set to 4.8 mm, and the distance between the two traces is
about 0.5 mm. The measured far-end crosstalk is regarded as original data [24]. The
fabricated of the understudying structure is shown in Figure 2.13 [24].

The magnitude and phase of rational approximation using the proposed method
with N = 9,10, and vector fitting algorithm with N = 14 poles are shown in Figure
2.14. It can be seen that the proposed method with N = 9 shows a small deviation in
magnitude in low frequencies. However, by increasing the pole number to N = 10,
the synthesized error is decreased. Although the accuracy of VF and the proposed
method for N = 10 is almost acceptable, the proposed method with a smaller number
of poles shows better performance.
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Fig. 2.13 The fabricated structure of coupled microstrip line [25].

(a)

(b)

Fig. 2.14 (a) Magnitude, and (b) phase of the synthesized far-end crosstalk of coupled
microstrip line.
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Table 2.4 Comparison of the condition number of the Vandermonde and the proposed
coefficients matrix for all examples.

N Vandermonde matrix Proposed method
Noisy data 16 3.4643e+163 6.1996e+13

Coupled microstrip line 10 9.6081e+103 3.4439e+09

The condition numbers of the Vandermonde (2.2), and the proposed coefficient
matrix (2.18) for all examples are reported in Table 2.4. It can be seen that the
condition number of the proposed coefficient matrix is very small in comparison
to the Vandermonde matrix in all application examples. Large condition numbers
mean numerical difficulties in the computation of the poles and residues of the final
model [1]. So, Table 2.4 shows that the proposed method has created an extreme
improvement in the condition number of the coefficient matrix compared to the LSM
method. This has led to a significant reduction in the computational error of the
introduced method.

2.7 Parameterized Macromodel

Due to the complexity of modern electronic systems, we need fully automated design
and optimization workflows. In this scenario, the physical layout of a given structure
or subsystem is finalized as a result of lengthy optimization processes that select the
best candidate among many possible options while maximizing some cost functions
related to system performance. This optimization is usually achieved by repeating
system-level simulations for different combinations of design variables; Therefore,
the availability of a model of each component is necessary for this process. These
models should be available as needed for any configuration of design variables,
including geometric parameters (such as the width and spacing of the transmission
lines on PCBs, substrate height, etc.) or material parameters (such as electrical
conductivity, permittivity, etc.). A model with such features is called a parameterized
macromodel.

According to the standard approach (see Figures 2.1 and 2.4), a macromodel
is first constructed using full-wave simulation (or measurement) data to extract the
port response (e.g., frequency-dependent scattering matrix) of the structure. Then,
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by applying the appropriate algorithms, we obtain a rational approximation for the
response so that the resulting macromodel is converted to a format compatible with
circuit solvers (e.g., SPICE). However, when the structure of interest is dependent
on one or more design variables, the entire process of creating the macromodel
(i.e., full-wave simulations, rational approximation, etc.) must be repeated for each
different combination of the parameters, making this process impractical.

In previous sections, we discussed the rational macromodels in which the model
transfer function had only one independent variable (i.e., the complex frequency s).
But in practice, in addition to frequency, other geometrical or material parameters are
also involved in the design process which should be determined based on performance
optimization. Standard macromodeling approaches can be generalized in such cases
to include a closed-form dependence on a few external parameters, λi (i = 1, ..., l),
(e.g., geometrical or material parameters) into the model transfer function, resulting
in parameterized macromodel as follows.

H(s;λλλ ) = H(s;λ1, ...,λl) (2.34)

In the simplest form, the rational approximation (2.1) discussed before could be
simply rewritten as parametric form (2.35), in which the numerator and denominator
coefficients (or poles/residues equivalently) are considered as a function of external
parameters.

H(s;λλλ )≈ P(s;λλλ )
Q(s;λλλ )

=
pm(λλλ )sm + pm−1(λλλ )sm−1 + ...+ p1(λλλ )s+ p0(λλλ )

qn(λλλ )sn +qn−1(λλλ )sn−1 + ...+q1(λλλ )s+1
(2.35)

Constructing the parameterized macromodels in a functional form, for example,
the rational closed-form (2.35), is quite challenging, mainly due to the stability
of the polynomial coefficients (or poles/residues) in the whole desired frequency
and parameter ranges, because these formulations will be severely degraded when
dependent on external parameters. Various parameterized model forms have been
proposed, with related fitting algorithms for transmission line structures, connectors,
vias, passive elements, etc. [25–28].

Most of these methods are efficient in applications with a limited number of
external parameters (e.g., |λλλ |= 1,2) and show poor performance in high dimensional
cases [1]. In particular, the complexity of these methods directly depends on the
parameter space dimensionality. To overcome this dependence, a parameterized
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macromodel based on radial basis functions is proposed, which is successful in
applications with ten external parameters (i.e., |λλλ |= 10) [29].

Different from the closed-form models, Artificial Neural Networks (ANNs) have
been recently demonstrated as efficient parameterized macromodels which are able
to learn the port response behavior with respect to external parameter changes and
can be further used in EM design optimization where the geometrical variables are
repetitively changed [30]. The neuro-transfer function (neuro-TF) method [31] is an
advanced ANN parameterized modeling approach that addresses the situation where
a suitable equivalent circuit model is not available. Transfer functions are employed
as prior knowledge to develop the neuro-TF parameterized macromodel.

Let λλλ , w, and H̃ represent the input, weighting, and output of the ANN model,
respectively. Defining the vector p containing all the transfer function parameters
(e.g., rational function coefficients, or poles/residues), i.e., p = [p0 p1...pmq1...qn],
they are neural network functions of λλλ and w. Hence, the output of the neuro-TF
model is generally formulated as

H(s;λλλ )≈ H̃(s;p(λλλ ,w)) (2.36)

Given a set of training samples {λλλ k}L
k=1 and {Hk, j(s j;λλλ k)}L,F

k, j=1, where L and F are
the number of training samples (various geometrical configurations) and frequency
points, respectively, and Hk, j denotes the response samples from EM solvers of the
kth sample at the jth frequency. First, before neuro-TF model training, the vector
fitting is performed to generate the transfer function parameters p versus geometrical
parameters λλλ for all training samples. Then, the ANN model is trained by optimizing
the weighting parameters to get the minimum training error. The interested reader is
referred to [31] for a detailed description of the two-stage neuro-TF model training.

Although the parameterized macromodeling is a fundamental enabling factor
for the design process, the design optimization is usually performed by repeating
system-level simulations to minimize a cost function. In such a repetitive optimization
scheme, the convergence and the overall runtime depend on several factors like the
optimizer algorithm type used or the nonlinearity relation of the transfer function to
the design parameters variation.

Feature-based optimization approaches [32], using the fact that the nonlinear
behavior of frequency response characteristics (e.g., bandwidth and central frequency
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of a microwave filter, etc.) relative to the change of design parameters is much less
than nonlinearity of frequency response samples, allow improving the convergence
and runtime of the repetitive optimizer. However, the application is limited because
defining the cost function based on response features depends on each problem at
hand, and sometimes it is difficult to accurately extract the response features.

Considering these issues, in Chapter 4, we propose a completely different
approach called Inverse Modeling to design optimization of microwave components,
which differs from conventional repetitive optimizers, is very efficient, and does not
require any iteration. Given the desired response samples (e.g., frequency dependent
S-parameter samples) of a microwave component, the goal is to build a data-driven
macromodel that could be used to design and optimize the geometrical parameters of
that component. Since the S-parameters of the system under consideration depend on
external parameters other than the independent variable (here the complex frequency
s), the proposed inverse model could be considered as a parameterized macromodel
which models the input-output relation of a parametric transfer function.



Chapter 3

Basics of Data-driven Surrogate
Modeling

Due to its versatility, low evaluation cost, and widespread available toolboxes,
data-driven model is popular among surrogate models [33]. In this chapter, a brief
overview of approximation-based modeling including sampling strategies, different
modeling methods (e.g., support vector regression), and model validation approaches
is introduced.

The following are the steps involved in creating a data-driven surrogate:

1. Sampling Strategy: defines the training samples allocation within the design
space and depends on the data source (e.g., full-wave simulations) and available
computational budget.

2. Training Data Acquisition: In microwave applications, data is usually obtained
from 2D or 3D simulations

3. Model Identification: finding the model’s parameters either analytically, by
addressing an appropriate linear regression problem [34], or by minimizing a
suitably formulated cost function (e.g., Kriging [35]), or neural networks [36].

4. Model Validation: Verifying the approximation capability (i.e., approximating
the training data) and the generalization capability (i.e., ability to predict
unseen data) of the model. In practice, a trade-off between model approximation
and generalization capabilities is required [37].
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In general, the desired quality of approximating the training samples (a.k.a
model’s bias) could be decreased by using the complex models, but this usually
causes increasing the sensitivity of the modle’s output (a.k.a model’s variance) to
particular data sets. In contrast, using regularization (i.e., penalizing the model
complexity to achieve a smooth model) helps to reduce the model’s variance but
results in increasing the bias. To reduce both the bias and variance, a larger data set
is usually required which is not feasible if the computational budget is limited.

3.1 Latin Hypercube Sampling Strategy

The sampling strategy is an important step of the surrogate modeling process because
it defines how information about the system of interest is gathered. The amount of
data about the system is clearly dependent on the size of the training set. Regardless,
the number of samples that can be assigned is usually limited by the available
computing budget. There are three main categories of sampling strategies: factorial,
space-filling, and sequential sampling methods [33]. This section outlines one of
the most popular space-filling sampling strategies, i.e., Latin Hypercube Sampling
(LHS) [38], which is used in this research. In cases the system of interest’s data
comes from deterministic simulations, it is not necessary to spread out the samples
for reducing the random errors resulting from imperfect measurements. Therefore,
the space-filling strategy is utilized to allocate the sample points uniformly within
the design space. In particular, when our knowledge of the system is limited.

In the LHS algorithm, to allocate L samples, each parameter range is divided into
L bins yielding a total of Ln bins for a n-dimensional design space. Then, the samples
are divided into the bins according to the following two rules: (i) each sample is
randomly placed inside a bin, and (ii) there is exactly one sample in each bin for all
1D projections of the L samples and bins.

3.2 Model Identification: Lease Square Support Vector
Machine Regression

There are a number of well-known and commonly used data-driven modeling
techniques, including neural networks [39], support vector regression [36], gaussian
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process regression [40] , polynomial regression [34], polynomial chaos expansion
[41], kriging [35], etc.

In this section, the basics of the Least Square Support Vector Machine (LS-SVM)
regression are introduced to be used in the next sections for building our data-driven
model. In the following, the training samples will be denoted as {xi}L

i=1, whereas
the corresponding response samples as f (xi). The data-driven model is constructed
by approximating the data pairs {xi, f (xi)}L

i=1.

The LS-SVM is a statistical-learning strategy that replaces the original SVM’s
quadratic loss function with a least-squares linear scheme [36]. The LS-SVM
approach has been effectively used for pattern recognition, time-series prediction,
and nonlinear-function estimation issues due to its unique qualities such as its
simple algorithm, quick convergence, and strong prediction ability [42]. It has been
mathematically proven that SVM with RBF kernel can approximate any continuous
nonlinear function arbitrarily well over a compact set to any degree of accuracy (a.k.a
Universal Approximation) [43]. The RBF kernel-based LS-SVM is more effective at
estimating nonlinear functions and can reduce the system noise, hence it has a good
generalization ability.

Let us consider the nonlinear function for system response f of the following
form:

f (x) = wT
φ(x)+b, (3.1)

where, x ∈Rn, f (x) ∈R and function φ(·) : Rn→Rnh is the mapping from the input
space to a higher dimensional (potentially infinite dimensional) feature space. The
w ∈ Rnh , and b are the weight vector in primal space, and bias term, respectively.

The following constrained optimization problem in the primal weight space could
then be developed given a training set {xi, f (xi)}L

i=1.

min
w,b,e

J(w,e) =
1
2
∥w∥2 +

1
2

γ

L

∑
i=1

e2
i (3.2)

s.t. ei = f (xi)−wT
φ(xi)−b, for i = 1, . . . ,L.

where γ is the regularization parameter. The optimization problem in (3.2) tries to
minimize both the squared of the error computed on the training samples and the
squared of the ℓ2-norm of the coefficients in the vector w, also known as Tikhonov
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Regularizer. The regularizer parameter γ , usually referred to as hyperparameter,
provides a trade-off between the model accuracy and its flatness.

It should be noted that (3.2) is nothing more than a feature space formulation of
a ridge regression cost function. It can be seen that the primal space formulation
in (3.1) turns out to be a parametric model in which the number of regression
unknowns (i.e., the cardinality of the weight vector w) is equal to the number of basis
functions collected in the vector φφφ . Therefore, the above formulation suffers from
the curse-of-dimensionality. In particular, when w becomes infinitely dimensional,
this primal problem is hard to solve [36].

Therefore, by constructing a Lagrangian including both the cost function and the
constraints in (3.2), the dual problem could be derived by finding the saddle point of
the following function,

L (w,b,e;β ) = J(w,e)−
L

∑
i=1

βi{ f (xi)−wT
φ(xi)−b− ei} (3.3)

where, βi ∈ R are Lagrange multipliers which are used as support values. According
to the Kuhn-Tucker theorem, there are values of Lagrange multipliers for which the
minimax of (3.3) equals the minimum of (3.2) [44].

The following solution is obtained by employing optimality conditions (i.e.,
∂L
∂w , ∂L

∂b , ∂L
∂e ,and ∂L

∂β
= 0) and removing the variables w and e.[

0 1T

1 ΩΩΩ+ I
γ

][
b
βββ

]
=

[
0
f

]
(3.4)

where f = [ f (x1), . . . , f (xL)]
T , 1 = [1, . . . ,1]T and βββ = [β1, . . . ,βL]

T . The ΩΩΩ matrix
elements are calculated by the so-called kernel trick [36] as,

Ωkl = φ(xk)
T

φ(xl) = K(xk,xl) (3.5)

The positive real constant γ determines the relative importance of K(xk,xl) terms; in
this case, a smaller γ value could be used to avoid overfitting. The resulting LS-SVM
regression model for estimating the nonlinear function (with scalar output f (x) ∈ R)
becomes then,

f (x) =
L

∑
i=1

βiK(xi,x)+b, (3.6)
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where K(., .) is the kernel function of the two vectors, and βi and b are called
regression coefficients and bias, respectively, which are the solution to the linear
system (3.4).

For the kernel, the different nonlinear transformations could be applied, i.e.,
polynomial, radial basis function (RBF) and hyperbolic tangent kernel [45]. Throughout
this research, the RBF kernel is used as,

K(xi,x) = exp

(
∥xi−x∥2

σ2

)
, (3.7)

The complexity of the model is regulated by the kernel function parameter σ and
the regularization parameter γ , which should be adjusted appropriately so that the
model does not over-fit the training data. A large γ value will result in a model with
less error, but overfitting can occur, while a small γ value minimizes the complexity
of the model. Also, the larger σ indicates a stronger smoothing. These parameters,
known as hyperparameters, are adjusted during model training, generally, through
cross-validation [45].

The above dual formulation, i.e., primal space (3.1) and dual space (3.6) of the
LS-SVM regression equations provides a non-parametric model. In fact, the dual
space formulation in (3.6) provides a non-parametric model in which the number of
regression coefficients βi is independent of the dimensionality of x. This allows for
reducing the number of regression unknowns and thus improving the convergence of
the model accuracy with respect to the number of training samples.

3.3 Surrogate Model Validation

The goal of model validation is to assess the predictive power of the model. Two
main parts of the validation process are the error function selection and the approach
used for estimating the predictive power capability which is briefly discussed in this
section.

The error function, as well as the surrogate’s target accuracy, are often problem
dependent. In most cases, some awareness of the structure of the system response is
necessary, as well as a thorough understanding of the meaning of the generalization
estimator to be utilized [46]. Absolute and relative error functions are the two types



42 Basics of Data-driven Surrogate Modeling

of error functions. Because relative error metrics are more context-independent, they
are often preferred. some of the most prominent relative error functions write [33]:

Average relative error (ARE):
1
N

N

∑
i=1

|yi− ỹi|
|yi|

(3.8)

Root relative square error (RRSE):

√
∑

N
i=1(yi− ỹi)2

∑
N
i=1(yi− yi)

2
(3.9)

Bayesian estimation error quotient (BEEQ):

(
N

∏
i=1

∑
N
i=1 |yi− ỹi|

∑
N
i=1 |yi− yi|

) 1
N

(3.10)

where, N, yi, ỹi, and yi denote the number of samples, the actual, the predicted, and
averaged response samples, respectively.

Following the selection of the error function, the model generalization capability
can be calculated using a variety of methods. It is obvious that evaluating the model
solely based on the training set is not reliable, because the interpolative models
have always a zero error therein. Some modeling techniques identify a surrogate
model as well as an estimate of the associated approximation error (e.g., kriging [35]).
Alternatively, there are approaches that can be utilized independently to test a model’s
prediction capabilities beyond the set of training points. The split-sample method
[34] is probably the most often used strategy, in which part of the available data set
(the training set) is used to develop the surrogate, while the remaining (the test set)
is used solely for model validation. The error predicted by this method, however, is
highly dependent on how the set of data samples is partitioned. Furthermore, if only
a few testing points are available, it may produce very biased results.

The model generalization error can be more accurately estimated via cross
validation [45]. The method divides the data set into K subsets and uses each of
these subsets as a testing set for a surrogate built on the other (K−1) subsets in a
sequential manner. All of the K error metrics obtained during this method can be
used to determine the prediction error (e.g., as an average value). In its most severe
form, the Leave-One-Out error, only one point at a time is used to estimate error.
Cross-validation produces a less biased error estimate than the split-sample method.
This method has the drawback of requiring the surrogate to be built multiple times. It
is worth mentioning that choosing the error function, calculating the generalization
capability, and determining the target accuracy are all difficult tasks. In practice,
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these factors are assumed at first, and the model is built after the training data is
obtained. A visual evaluation of the model answers and their consistency with
the system outputs is usually the deciding stage. Depending on the results of this
evaluation, the modeling step may need to be repeated with the new arrangement
[33].

The data-driven modeling flow, which includes allocating samples, collecting
data, identifying, and validating the models, can be repeated until the desired
surrogate accuracy level is achieved. Each iteration adds a new set of training
samples to the previous ones. Some sample allocation strategies, try to improve the
model’s overall accuracy by introducing new samples where the predicted modeling
error is highest [33].



Chapter 4

Inverse Modeling Optimization

In this chapter, we propose a completely different approach called Inverse Modeling
to design optimization of microwave components, which is different from conventional
repetitive optimizers, is very efficient, and does not require any iteration. Given
the desired response samples (e.g., frequency dependent S-parameter samples) of a
microwave component, the goal is to build a data-driven macromodel that could be
used to design and optimize the geometrical parameters of that component.

4.1 Literature Review

In recent years, machine learning (ML) regression techniques have been recognized
as powerful tools in microwave modeling and design [47]. Applications have been
reported in parametric modeling of microwave components [48], microstrip patch
antenna and printed microstrip radial stub [49], broadband Doherty and continuous
class-F power amplifier design [50, 51], and compact microwave components [13],
all of which use the ML techniques as a forward model according to common
practice. Forward modeling is the process of training an ML-based technique to
directly model the electromagnetic (EM) behavior of generic microwave components
in terms of frequency/time responses (e.g., S-parameters, voltage/current waveforms,
etc.), by using as input its physical and electrical parameters. For design purposes,
the problem to be solved goes in the opposite direction, i.e., given the desired
specification of electrical responses, we are looking for the optimal configuration of
the geometrical/physical parameters of the microwave component. The optimization
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based method is the traditional way to solve such an inverse problem [52–54], where
the forward model is evaluated iteratively until the optimal geometrical/physical
parameters are found, such that the model output matches the electrical goals and
constraints. However, especially for the case of multi-objective optimization, such
a conventional optimization scheme can be rather expensive, since it may require
many iterations to converge [55, 56].

Inverse models represent a promising alternative to solve the inverse problem
required by the optimization task[57]. Unlike the common optimization method
based on the forward map, starting from the desired EM behavior of the device
under modeling, the inverse model allows predicting directly the corresponding
values of geometrical/physical parameters, without requiring any iteration or iterative
algorithm based on the forward model. As a result, the inverse modeling approach
outperforms the optimization-based method in terms of computational time. Indeed,
inverse surrogate models can be used to speed up the geometry scaling of compact
microwave passives [58], as well as the rapid EM-driven antenna dimension scaling
[59].

The inverse model is usually trained via a data-driven regression approach since
in most cases its analytical formulation is not available [57]. One may argue that
providing the training data (which is usually acquired from full-wave simulations) for
an ML-based inverse model is still time-consuming, but it should be noted that this
step could be accelerated using the parallelized computation techniques [60], while
parallelization is not applicable to plain iterative optimization schemes[61], where
the result of each iteration is required to be known before starting a new iteration.

Even if the optimization based on the inverse modeling approach is usually
faster compared with the performance of classical optimization schemes adopted for
microwave design optimization, two main challenges usually exist in practice. First,
an inverse model is generally ill-posed, in the sense that a given set of electrical
responses might be generated by more than one combination of the component
parameters. This means that the inverse model is usually a one-to-many map suffering
from nonuniqueness [57]. Since it is generally impossible to train a data-driven
model to fit multiple output values for the same input values at the same time, the
training error will remain high, and the model accuracy will be poor. As a result, it
is difficult to train the model in many practical inverse problems [62]. Second, the
construction of the inverse model for microwave design problems is rather complex
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and challenging, since the dimensional of its input space is defined by the number of
frequency/time points used to characterize the response of interest of the component
(e.g., for the case of S-parameters, the dimensionality of the input space turns out
to be defined as the number of frequency samples multiplied by the number of
S-parameters of interest). This means that the regression technique used for training
the inverse model should be able to learn a nonlinear function in high-dimensional
input space. This might lead to accuracy issues, a curse of dimensionality, and an
enormous demand for training samples [63].

Regularization methods have been demonstrated to be an effective tool for
solving ill-posed inverse problems [64]. Also, ML techniques have emerged as
a data-driven alternative to traditional inversion approaches in recent years, thus
showing significant advances in dealing with both the ill-posedness and the high
dimensionality of a variety of inverse problems, such as imaging [65, 66], tomography
[67], nonlinear electromagnetic inversion [68]. A specific review of the neural
network based inverse modelling techniques for microwave applications is presented
in [69]. Both the direct inverse modeling with derivative division [57], and the
multivalued neural network inverse modeling technique [62] methods address the
problem of nonuniqueness. Also, a hybrid deep neural network inverse model with
high dimensional inputs has been proposed in [63] for the inverse problems without
nonuniqueness issue, where a big data set including thousands of training samples is
required to train the inverse model. However, none of these existing strategies are
solely applicable to inverse problems with both nonuniqueness and high-dimensional
inputs issues [69].

Here, we propose a compressed ML-based inverse model [70] to handle both of
the issues discussed above. Starting from the desired frequency-domain ideal mask,
the inverse model built via this approach is able to inexpensively predict the optimal
geometrical parameters of the microwave filters, without using computationally
expensive iterative optimization algorithms. Due to its simplicity, the capability of
providing compact non-parametric models, and implicit regularizer, the least-square
support vector machine (LS-SVM) regression [36] has been considered to construct
the advocated inverse model. Also, a data compression strategy based on the principal
component analysis (PCA) has been utilized to mitigate the high dimensionality of
the input space issue, followed by a qualitative approach [71] based on variability
analysis to find the appropriate number of PCA coefficients.
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The computational advantages are due to the compressed training set having a
lower dimensionality than the original one, which translates into the better predictive
power of the inverse model even when utilizing limited-cardinality training datasets
[71]. Nevertheless, the advantages of the discussed inverse modeling methodology
are deteriorated by the high sensitivity of the inverse model accuracy to the number of
PCA coefficients used as its input. Indeed, this hyperparameter plays a significant role
in the proposed inverse modeling scheme to simultaneously mitigate the ill-posed
and high-dimensional input space challenges, thus needs to be accurately tuned.
Therefore, also a new method is proposed (see section 4.4) to find the optimum
number of PCA coefficients (i.e., the compression level) for each problem at hand.
This way, the ill-posedness of the inverse problem is tackled by choosing the optimal
dimension for the new compressed input space with orthonormal PCA coefficients,
along with the regularization technique.

In order to validate the inverse model performance, a new error function is
proposed as a result of combining the inverse and forward ML-based models, which
improves the reliability and the interpretability of the resulting error. The presented
approach has a significant advantage over the prior development that makes it general
and easy to use for microwave applications compared with the existing data-driven
inverse modeling techniques.

In summary, the main contributions of this section include significantly: a detailed
theoretical formulation and discussion of the proposed compact inverse model; a
deeper discussion of the ill-posed issue; a new complicated microwave example; and
the proposal of a new empirical technique to automatically tune the number of PCA
coefficients.

4.2 Inverse Model Formulation and Challenges

Most of the optimization algorithms used for the design of microwave components
rely on the information provided by the forward model. The forward model
provides a map between the configuration of the device parameters (e.g., geometrical,
physical, and electrical parameters), and the corresponding responses in frequency-
or time-domain (e.g., S-parameters, voltage/current waveforms, etc...). Without loss
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of generality, the mathematical formulation of a forward model writes:

y = M (x) (4.1)

where the forward model is a vector function M : Rm→R(n×no) mapping the system
parameters x = [x1, . . . ,xm]

T into the output vector y = [y1, . . . ,y(n×no)]
T , which can

be interpreted as vectorization of a matrix DY ∈ Rn×no collecting n time/frequency
points and for each of the no-variable of interest. As an example, for the case of the
S-parameters of a 2-port structure, n would be the number of frequency samples and
no = 4 represents the number of S-parameters Si j for i, j = 1,2. The forward model
M can be a full-computational model (e.g., analytic formula, equivalent circuits,
full-wave simulations) or a fast-to-evaluate data-driven model (e.g., ML-based model)
constructed using the training samples usually provided by full-computational models
[9].

Given a set of constraints on the responses of a generic microwave component,
the forward model is called several times during the optimization process with
the aim of exploring the parameters space and getting the optimal configuration
of the input parameters. Such an iterative approach is required within the design
optimization because the forward model is used to solve an inverse problem. Indeed,
the most natural way to tackle an optimization problem is to use the so-called inverse
model. The underlying idea is to build a model in which the inputs and outputs are
reversed with respect to the forward model (i.e., M−1 : R(n×no)→ Rm), such that:

x = M−1(y). (4.2)

The inverse model goes in the opposite direction with respect to the forward
model and allows to efficiently and inexpensively perform the optimization task
via a simple function evaluation, without requiring any iteration. Unfortunately,
in most cases, the inverse model is not available in closed form, since it would
require an accurate and invertible analytical formulation of the forward model.
Therefore, a numerical approximation M̂−1≈M−1 is usually constructed by means
of data-driven regressions starting from a set of training samples computed via the
standard forward model [47].

Despite the apparent simplicity and extreme efficiency, the construction of
the inverse model for microwave applications via regression techniques is rather
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challenging and complicated. Specifically, this contribution deals with the development
of a modeling approach that is able to deal with the following challenges:

• the dimensionality of the input space of the inverse model (i.e., the cardinality
of |y|= n×no) can be extremely high;

• the problem is ill-posed;

• the inverse model should be trained using a small set of training samples (e.g.,
≪ 1000 samples).

4.3 Proposed Scheme for the Inverse Model Construction

This section describes the modeling procedure adopted hereafter to overcome the
above challenges. The proposed methodology is based on a two-step modeling
scheme: (i) the dimensionality of the y vector used as input for the inverse model is
reduced via the compression provided by the PCA; (ii) the compressed representation
of the training set is used to train the inverse model based on the LS-SVM regression.

4.3.1 Dimensionality compression via PCA

In microwave applications, the dimensionality of the input space of the inverse model
(i.e., |y| = n× no) is usually extremely high. Indeed, the vector y collects all the
frequency/time points of the responses for each variable of interest. Obviously, such
high-dimensionality of the input of the inverse model has a big impact on the model
accuracy [71]. Increasing the input dimension of a nonlinear function makes the
input-output relationship describing the inverse model more complicated to learn,
thus leading to a large training set and accuracy issues [63]. Such a problem can be
easily overcome by considering a subset of “pre-selected” frequency/time points to
describe the component responses, the so-called response features [72]. However,
the frequency response feature selection directly depends on the specific problem at
hand, which limits the model’s applicability and brings additional complexity to the
modeling process, since it would require a human-intensive feature definition and
extraction process.
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Here, we introduce an alternative approach based on PCA compression. Starting
from the complete set of responses (i.e., from the full vector y), PCA-based data
compression is adopted to exploit and remove redundant information from the
responses in the training set, thus leading to a compressed approximation with a
lower dimensionality with respect to the original data [73]. To this aim, the training
responses {yi}L

i=1 are collected in the matrix Y = [y1, . . . ,yL] ∈ R(n×no)×L. The
matrix Y is used within the PCA algorithm to find out the smallest set of “principal
components”, approximating the training responses {yi}L

i=1 as [74]:

yi ≈ µµµ +
ñ

∑
n=1

ỹn,iun (4.3)

for i = 1, ...,L, where L is the number of training samples.

The PCA coefficients ỹn,i writes:

ỹn,i = uT
n (yi−µµµ), (4.4)

where µµµ is the row-wise mean, and the orthonormal principal components {un}ñ
n=1

are the left singular vectors calculated via the singular value decomposition applied
to matrix Y. According to (4.3) and (4.4), the training samples {yi}L

i=1 with yi ∈
R(n×no) can be approximated (with a tunable accuracy) via a compressed training set
{ỹi}L

i=1, in which ỹi = [ỹ1,i, ..., ỹñ,i]
T ∈Rñ, where ñ≪ (n×no). Now, the compressed

representation of the training input can be used to train a compact inverse model
M̃−1 : Rñ→ Rm, such that:

x = M̃−1(ỹ), (4.5)

where ỹ ∈ Rñ is the compressed representation of the vector y ∈ R(n×no).

The number of PCA coefficients ñ must be carefully tuned since it has a huge
impact on the performance of the inverse model. Specifically, if ñ is chosen too
small (i.e., high compression is used for the input space samples), the inverse map
that must be learned by the inverse model is simpler but is more affected by the
nonuniqueness issue. On the other hand, if ñ is too large (i.e., low compression), the
inverse model can suffer the infamous curse-of-dimensionality. A wise strategy is to
use only the PCA components, which show the largest variability in the compressed
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training set [71]. However, the above approach provides qualitative information on
the sensitivity of each PCA component, without providing a full understanding of the
model error as a function of the parameter ñ. Therefore a more advanced technique
for tuning the parameter ñ based on a double cross-validation scheme is introduced
in section 4.4.

4.3.2 LS-SVM regression: curse-of-dimensionality and ill-posed
problems

Unavoidably, the accuracy and reliability of the inverse model depend on the
regression technique used to train it. The regression technique should be able
to limit in somehow the detrimental effect of the ill-posedness of the inverse model,
but at the same time, it should be able to accurately predict the nonlinear input-output
relationship of the inverse model with a small set of training samples.

In the above scenario, LS-SVM regression (discussed in Chapter 3, section 3.2)
can be seen as a promising regression technique for constructing the advocated
inverse model. First of all, the LS-SVM uses a Tikhonov regularizer which allows
for limiting the issue related to the ill-posed nature of the inverse problem. Second,
thanks to the kernel trick, the LS-SVM regression admits a nonparametric formulation
(see (3.6)) in which the number of regression unknowns is independent of the
dimensionality of the input space, and it is equal to the number of training samples.
The latter feature limits the curse-of-dimensionality and improves the method
convergence in terms of training samples [36] compared to other techniques based
on the more flexible neural network and deep learning techniques [63].

Given the compressed training set {(xl, ỹl)}L
l=1, where xl ∈ Rm and ỹl ∈ Rñ, the

multioutput inverse model M̃−1 trained in the primal space formulation via the
LS-SVM regression writes [36]:

x j(ỹ) = M̃−1
j (ỹ) = ⟨w j,φφφ(ỹ)⟩+b j, (4.6)

for j = 1, . . . ,m, where m is the number of physical parameters.

In the above equation, φφφ(ỹ) = [φ1(ỹ), . . . ,φnh(ỹ)]
T is a vector function mapping

the input space into the feature space, such as φφφ(·) : Rñ→ Rnh and ⟨·, ·⟩ represented
the inner product in Rnh . The weight vector w j ∈ Rnh , and the bias term b j are the
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regression unknowns estimated by solving the following optimization problem [36],

min
w j,b j,e j

J(w j,e j) =
1
2

∥∥w j
∥∥2

+
1
2

γ j

L

∑
l=1

e2
j,l (4.7)

s.t. e j,l = x j,l−⟨w j,φφφ(ỹl)⟩−b j, for l = 1, . . . ,L.

Fortunately, the LS-SVM regression admits an equivalent dual formulation which
writes [36]:

x j = M̃−1
j (ỹ) =

L

∑
l=1

β j,lK j(ỹl, ỹ)+b j, (4.8)

where, K j(ỹl, ỹ) = ⟨φφφ(ỹl),φφφ(ỹ)⟩ is the so-called kernel function such that K j(·, ·) :
Rñ×ñ→ R, and the regression unknowns are the coefficient β j,i and the bias b j. For
the kernel, the RBF kernel is used as,

K j(ỹl, ỹ) = exp

(
∥ỹl− ỹ∥2

σ2
j

)
, (4.9)

where the parameter σ j is the kernel hyperparamter.

It is important to remark that the dual space formulation in (4.8) provides
a non-parametric model in which the number of regression coefficients β j,l is
independent of the dimensionality of ỹ. This allows for reducing the number of
regression unknowns and thus improving the convergence of the model accuracy
with respect to the number of training samples. Moreover, the regularizer used by
the LS-SVM regression allows limiting the detrimental effects introduced by the
considered ill-posed inverse problem [36].

The LS-SVM regression is already available in MATLAB within LS-SVMLab
Toolbox version 1.8 [75]. In such a tool, the regression hyperparameters (i.e., γ j

and σ j) are adjusted during model training via a cross validation scheme, being the
latter a common approach when a small set of samples are available [45]. However,
the tuning of the new hyperparameter ñ introduced by the PCA compression is not
addressed by the above algorithm. Therefore, the LS-SVM training algorithm should
be embedded within the advanced tuning procedure presented in section 4.4.

Throughout this section, the training samples for the specific case of the inverse
model have been generated around an initial design [62]. However, it is important
to remark that, the initial design is not directly used by the proposed inverse model.
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Indeed, different from the standard optimization scheme based on the forward model,
the inverse model is not influenced by the initial guess used during the training phase.

4.3.3 Discussion of the ill-posed challenge

Within the proposed modeling framework, the ill-posed nature of the inverse model
is tackled by combining both the benefits of the built-in regularizer of the LS-SVM
regression and by tuning the dimensionality of the input space of the inverse model
(i.e., the number of PCA coefficients used as input by the inverse model).

Indeed, even if the Tikhonov regularizer used by the LS-SVM regression allows
to limit ill-posedness issues related to the overfitting [76], it does not completely fix
the nonuniqueness issue[62] and might lead to inaccurate predictions. Therefore, in
our approach we are trying to overcome the ill-posedness of the inverse problem by
increasing the dimensionality of the input space of the inverse model (an increased
number of input data on the desired response must be used in order to get an accurate
prediction of the design parameters x [77]), thus assuming that the new inverse map
will be well-posed.

Here, we illustrate the ill-posed problem through a coupled-line microstrip filter
inverse modeling problem [71], shown in Fig. 4.4(a). The filter response magnitude
|S21| at f1 = 2500 MHz is used as the input to the inverse model, and the width of
the parallel coupled-lined section W3 is used as the output. The forward problem
relationship is shown in Fig. 4.1(a), in which for every input value, the output of this
forward problem is a single value (unique solution). The plot clearly highlights that
even if the forward map is well-posed, the inverse problem relationship (shown in
Fig. 4.1(b) with a solid blue line) is ill-posed. For instance, there are two different
values of W3 for which |S21( f1)|=0.3, namely 0.85, and 1.1 mm. The multivalued
output solutions for the same input, i.e., (x,y) = (0.85, 0.3) and (x,y) = (1.1, 0.3),
result in contradictory data for training a generic data-driven model, making the
inverse model ill-posed.

Indeed, the predictions in Fig. 4.1(b) (dashed red line) are of a plain inverse
model trained via the LS-SVM regression. The results show that the direct LS-SVM
regression inverse model with a single input, i.e., y = |S21( f1)|, cannot match the
nonunique input-output relation. A wise strategy is to use vector-valued inputs to
the inverse model containing multiple samples of the frequency response at different
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frequency points, with the aim that increasing the input dimensionality helps to
reduce the possibility of an ill-posed problem. For example, using an inverse model
with two samples of S-parameter magnitude |S21|, i.e., M−1 : R2→ R, improves
the inverse model accuracy as shown in Fig. 4.1(c), by introducing a new inverse
mapping with increased input dimensionality which is not ill-posed anymore.

The above simplified problem highlights the importance of two key points in the
proposed inverse modeling method, i.e., the regularization technique and the input
space dimension. The ill-posed issue in high dimensions is even more challenging
since it is not possible to visualize the contradicting data in multi-dimension space.
Therefore, a systematic approach to solving the ill-posed inverse problem is very
important. On the other hand, in our proposed method all available S-parameter
samples, i.e., |S21( fi)| and |S11( fi)| , ∀i, could be used thanks to the PCA compression
technique which exploits and removes the redundant information from the scattering
parameters, thus leading to a compressed approximation with orthonormal PCA
coefficients[78], to be used as input to the LS-SVM regression model. This way, by
using any PCA coefficient, new information (since is orthogonal to others) is being
used as additional input to the inverse model.
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(a)

(b)
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(c)

Fig. 4.1 Illustration of different inverse modeling techniques for the coupled-line microstrip
filter example. (a) Input-output relationship of the forward problem is unique. (b) Inverse
problem relationship (solid blue line) and LS-SVM direct inverse modeling techniques
training (dashed red line) results. The ML-based inverse model with only one input, i.e.,
y = |S21( f1 = 2500 MHz)|, cannot match the contradictory data (multivalued solutions).
(c) Training results of the direct inverse model with 2-vector input. Increasing the input
dimensionality, a new well-posed inverse mapping is introduced which helps the LS-SVM
regression to be well trained (dashed red line). Two S-parameter samples, i.e., |S21( f1)| and
|S21( f2)|, f1 = 2500 MHz and f2 = 2600 MHz, are used as the inverse model input.

4.4 Inverse Model’s Hyperparameters Optimization

The accuracy of the proposed inverse model mainly depends on the tuning of the
hyperparameter representing the number of PCA coefficients ñ used as input for the
inverse model. Such parameter provides information on the original response data
(e.g., scattering parameters), and also determines the input space dimensionality. In
this section, a new double cross validation technique based on the combination of
the inverse and forward model is proposed to find the optimal hyperparameter ñ in
an automated way.
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Unfortunately, the standard algorithms for the hyperparameters optimization
are not directly applicable for tuning ñ in our inverse model, since its output is not
unique in general [77]. As an example, let us assume to tune ñ by using the error
computed by the inverse model on a validation set V = {(xi, ỹi)}|V |i=1, by using the
following error function[47]:

err(ñ) =
1
2

|V |

∑
i=1

∥∥xi−M̃−1(ỹi; ñ)
∥∥2

=
1
2

|V |

∑
i=1
∥xi− x̂i∥2 . (4.10)

In the above equation, the error err(ñ) is calculated in the output space of the inverse
model. This can reduce the reliability and the interpretability of the resulting error
since the above estimator is not able to deal with the inherent ill-posedness nature of
the problem [77].

On the other hand, a combination of the inverse and forward ML-based models
could be used as a more reliable scheme for validating the inverse model performance
[57]. Therefore, a forward model M̂ : Rm→ Rn̂ is trained once, using the available
training set T = {(xi, ỹi)}|T |i=1, for which a fixed number of PCA coefficients n̂ is
considered in its ỹi samples, that in general, n̂ can be different from ñ. It should be
noted that due to the large variability of the parameter x used as input, the forward
model might not be able to accurately approximate the behavior of a large set of PCA
coefficients. However, by evaluating the forward model on the validation set and
looking at the scatter plots [77], the most first accurate PCA coefficients could be
selected as the optimal n̂ (see Fig. 4.6). It is important to remark that the experiment
results show that the proposed empirical method for tuning the ñ is not very sensitive
to the chosen n̂.

As shown in Fig. 4.2 (a), the trained forward model accepts the x̂i as its
input and estimates an n̂-value output vector ý containing the corresponding PCA
coefficients. Then, by using the transformation (4.3) with n̂, the full vector of
responses ŷ = [ŷ1, . . . , ŷn×no]

T is reconstructed as an estimation of the true response
y in the validation set, such that ŷ = M̂ (M̃−1(y; ñ)).

As a result, now the test error could be computed in the response domain (i.e., full
vector y-domain). In order to do this, we can recast the samples in the y-domain into a
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Fig. 4.2 (a) Successive combination of ML-based inverse and forward models used in CV
scheme for tuning the inverse model hyperparameter ñ. (b) Using the full computational
model (e.g., ADS) for the test of the inverse model predictions in practical microwave design
examples.

tensor Y ∈Rn×no×|V |, where the element yi, j,v corresponds to the i-th frequency/time
point of the j-th design response for the v-th validation sample. Using the above
notation, a new error function can be defined as:

err(ñ) =
1
|V |

no

∑
j=1

|V |

∑
v=1

√
∑

n
i=1

∣∣yi, j,v− ŷi, j,v
∣∣2√

∑
n
i=1

∣∣yi, j,v
∣∣2 (4.11)

As discussed in section 3.3, since a small training set is available (i.e., L is
small), the more reliable way of evaluating the above error function is the cross
validation (CV) scheme [45]. This allows us to use all data both for training and
for validation, resulting in a less biased model compare to other methods. In K-fold
CV, we randomly split the available training set T into K partitions with almost
equal sizes, called “folds”. Then going over K iterations, in each iteration, one of
the folds is reserved as V subset for model validation, while the K−1 remaining
folds are used as the T

′
subset for training the model. Fig. 4.3. shows an illustration

of 10-fold CV scheme (i.e., K = 10) for the case with L = 200 training samples.
Thus, by changing the model parameter ñ ∈S and using the K-fold CV scheme, an
K-by-|S | test error matrix err is built from (4.11), in which the err(k, ñ) = errk,ñ

denotes the test error of the model with hyperparameter ñ computed over the k-th
validation fold. Also, S is a pre-defined set of the candidate PCA coefficients
numbers that are being investigated for tuning the hyperparameter ñ. For each value
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Fig. 4.3 Illustrative example of K-fold cross validation scheme with K = 10 and 200 training
samples.

of ñ considred during the CV, the averaged CV err(ñ) and standard deviation CV std(ñ)
of the test error over K iterations is defined as follows [79],

CV err(ñ) =
1
K

K

∑
k=1

errk,ñ, (4.12)

and

CV std(ñ) =

√√√√ 1
K−1

K

∑
k=1

∣∣errk,ñ−CV err(ñ)
∣∣2. (4.13)

To find the optimum value ñopt , the criteria used is that, after a significant decrease
in mean error CV err(ñ) curve, the PCA coefficient ñ corresponding to the minimum
standard deviation of the CV err, i.e., CV std(ñ), is selected as the optimum number
ñopt (see application examples in section 4.5). This guarantee a low sensitivity of the
model accuracy with respect to both the training and validation samples.

The proposed CV scheme for tuning the hyperparameter ñ is illustrated in
Algorithm 1. In this algorithm, what we mean by "Use T ′ to build the model",
is that an LS-SVM regression model is built using the subset T ′ via the process
discussed in section 4.3, i.e., tuning the hyperparameters (γ ,σ ) and training the
model. Therefore, Algorithm 1, is a double CV scheme so that in the first level the
subsets T ′ and V are being used by the first CV scheme for tuning parameter ñ, and
at the same time, the subset T ′ is further split by the second CV scheme to tune
and train the hyperparameters (γ ,σ ) of the LS-SVM regression models. It should
be noted that the use of disjoint subsets (i.e., V ∪T

′
= T and V ∩T

′
= /0) in the
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Algorithm 1: K-fold CV for tuning parameter ñ

1. Build T = {xi, ỹi}|T |i=1 with maximum numbers of PCA coefficients in ỹi, using
(4.4)

2. Randomly split T into K partitions (folds) with almost equal sizes
3. for k = 1 to K do
4. V ← partition k from T
5. T ′← T \V
6. for ñ ∈S do
7. Use T ′ to build the inverse model M̃−1

8. Use the trained inverse model M̃−1 to predict V
9. errk,ñ← Use the forward model M̂ and (4.3) to evaluate predicted V in

y-domain, using (4.11)
10. end for
11. end for

proposed method, allows avoiding the so-called cheating in machine learning [37].
Although a total of K×|S |×m inverse models are being built through Algorithm
1, which may affect its computational cost, the tuning cost could be controlled by
choosing an appropriate small set S (e.g., a logarithmically spaced numbers) via a
coarse and fine-tuning strategy. Also, the common choice for K is usually 2, 5, or 10
[37], as these values have been shown empirically to yield test error rate estimates
that suffer neither from excessively high bias nor from very high variance.

It is important to remark that, even though the direct implementation of the full
computational model within the proposed CV scheme would provide a more precise
and reliable estimation of the hyperparameter ñ, compare to the proposed approach
based on a forward model M̂ , such a solution could be extremely inefficient in terms
of computation time in general. Indeed, since the simulation of many complicated
microwave structures requires a full-wave EM solver (e.g., the application Example
II section 4.5), using the full computational forward model makes the proposed
Algorithm 1 inefficient. However, developing an ML-based forward model could be
avoided when fast circuital simulations (e.g., less than 1 second) are provided by a
full computational forward model for the specific problem at hand.
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Table 4.1 Preliminar Design of the Proposed Microwave Filter

W1 1.0878 mm S1 0.9564 mm L1 11.2553 mm
W2 1.1925 mm S2 3.3199 mm L2 11.0942 mm
W3 1.1929 mm S3 3.8338 mm L3 11.0889 mm

4.5 Practical examples

4.5.1 Example I: The Inverse Modeling of a Coupled Line Microstrip
Filter

Let us consider the design of a pass-band microstrip filter with following specifications:

• Center frequency: FC = 2400MHz

• Bandwidth: BW = 100 MHz

• Insertion loss: IL = 5 dB

• Return loss: RL = 14 dB

• Out of band rejection: 60dB (@ f = 2300MHz).

Without loss of generality, we will focus on the 6-stage symmetric coupled-line
microstrip filter structure inspired by [80], and shown in Fig. 4.4(a). The filter is
designed for a 1.27 mm FR4 substrate with εr=9.6, tanδ=0.002, and σ = 5.78×
106 S/m. The overall filter structure is characterized by 9 geometrical parameters,
i.e., length Li, width Wi, and separation Si of the lines, for i = 1, . . . ,3. An initial
design of the above parameters obtained via analytic formulas [81] is collected
in Table 4.1, for which the corresponding filter frequency response is completely
deviated from the given design specifications. Hence, further tuning through design
optimization is required.

Our goal is to construct an inverse model x=M−1(y) to estimate the geometrical
parameters of the filter x = [S1,S2,S3,W1,W2,W3,L1,L2,L3]

T ∈ Rm=9 directly from
the desired spectra scattering parameters |S21| and |S11| (i.e., no = 2) defined for
n=1000 frequency points each, such that y = [|S11|, |S21|]T ∈ R2000, where |Si j|=
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Fig. 4.4 (a) 6-stage coupled-line microstrip filter considered in Example I [81]. (b) proposed
approach for design optimization based on the inverse model.

[
|Si j( f1)|, . . . , |Si j( fn)|

]
. The inverse model is trained using a training set {(xl,yl)}L

l=1

consisting of L=200 training pairs computed via a full computational forward
model implemented in ADS. The configurations of the geometrical parameters
corresponding to input vectors {xl}L

l=1 are randomly generated via a Latin Hypercube
Sampling (LHS) scheme by considering a uniform variation of 50% for Wi, Si and
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Fig. 4.5 Analysis of PCA coefficients number ñ by proposed 5-fold cross validation Algorithm
1, and with n̂ = 3. The optimum ñopt = 4 is selected for building the coupled line microstrip
inverse model.

10% for Li variables around the mean values specified in Table 4.1. The above
configurations are then used as input for a set of parametric simulations in ADS
to calculate the magnitude of the scattering parameters |S21| and |S11| collected in
the set {yl}L

l=1. For this practical example, each simulation to acquire the training
data is evaluated in less than one second (i.e., about 0.23 s from Table 4.4), using a
computer with a 3-GHz Core i7 CPU and 32-GB RAM. Such a low computational
cost is mainly due to the circuital simulations which are fortunately possible by
the 2D model (i.e., MCFil [82]) in ADS to design a microstrip coupled-line filter
component.

The PCA compression has been applied on the training samples {yl}L
l=1. Then,

the new compressed training set has been used to train the inverse model based on the
LS-SVM regression. The optimal value of the hyperparameter related to the number
of PCA coefficients ñopt= 4 is estimated by analyzing the CV error calculated via
Algorithm 1. The mean and the standard deviation of the CV error is shown in
Fig. 4.5, for which a set S containing the candidates for ñ, logarithmically spaced
in the range [1,40], is used. The CV err curve shows that an ñ from 4 to 15 could be a
choice for the number of PCA coefficients to be used in the inverse modeling, but
the optimal number is the one with minimum CV std which is ñ = 4. As discussed
in section 4.4, an ML-based forward model M̂ : R9→ Rn̂=3 has been developed to



64 Inverse Modeling Optimization

Fig. 4.6 Evaluation of the trained ML-based forward model M̂ : R9→Rn̂ of the coupled-line
microstrip filter in predicting the first ten PCA coefficients (i.e., n̂ = 1,2, ...,10), using 100
unseen validation samples. The LS-SVM regressions have already been trained using a
separate set of 100 samples.

be used in the aforementioned CV scheme, with the parameter n̂ = 3 determined by
scatter plot evaluation (shown in Fig. 4.6). As can be seen, the advocated forward
model accurately approximates the behavior of the first three PCA coefficients, so
the parameter n̂ is set to 3.

To evaluate the performance of the proposed inverse model, the model is fed with
the ideal Chebyshev mask shown in Fig. 4.7 (dashed-dotted green line), incorporating
all the specifications given by the problem. Then as shown in Fig. 4.2(b), the
filter geometry predicted by the inverse model has been used as input for the
full-computational forward model implemented in ADS. Fig. 4.7 (solid red line)
shows the optimized results computed via the proposed inverse model with ñ=4.
The results highlight the capability of the proposed compressed inverse model
of providing an accurate estimation of the optimal filter geometry with improved
performance with respect to the direct inverse modeling approach [77] in which
the LS-SVM regression is used alone without any data compression (dotted blue
line) [71].

Moreover, the results of the inverse model are compared with the ones predicted
by a conventional optimization approach available in ADS [82] by considering
following optimization “goals”:
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• Goal 1: |S21| ≤ 5 dB in the band pass;

• Goal 2: |S21| ≥ 60 dB @ 2300 MHz;

• Goal 3: |S11| ≥ 14dB in the band pass.

The ADS gradient optimizer[82] converged after 125 iterations in 14 min and
28 s (Table 4.4). The scattering parameters |S21| and |S11| for the optimized filter
geometry based on the ADS are shown in Fig. 4.7 (dashed black line) and are
reasonably in agreement with the ones obtained by the proposed inverse model.
However, as compared in Table 4.4, the whole proposed inverse modeling approach
(i.e., data acquisition, tuning the hyperparameters, and training) is faster for this
specific application example. Filter response specifications are collected in Table 4.2.

Table 4.2 Filter response specifications optimized by inverse model and ADS optimizer

FC (MHz) Insertion loss (dB) BW3dB (MHz)

ADS Optimizer 2403 4.4 125

Inverse Model 2424 5.25 99

Initial Design 2550 6.64 90

It is important to remark that different from the standard optimization approaches
based on the forward model, the obtained inverse model is tunable and can be suitably
adopted to optimize the filter geometry for a generic set of filter specifications, just
by changing the desired mask. To this aim, its performances have been assessed by
using two new specifications: (i)FC = 2700MHz and BW = 70MHz and (ii)FC =

2550MHz and BW = 50MHz. Two new masks, generated according to the above
specifications, have been used as input for the inverse model with ñ=4. Obviously,
the model tunability is limited to the range of x used during the model training as
confirmed by results of the optimized geometrical parameters in Fig. 4.8(a). Then,
the scattering parameters obtained from the optimal parameters predicted via the
inverse model are shown in Fig. 4.8(b). The results clearly highlight the capability
of the proposed inverse model of optimizing structures for different specifications.
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Fig. 4.7 Frequency responses of the initial design (dashed gray line) and the optimized filters
for the given goal specifications in section 4.5, obtained by ADS (dashed black line), inverse
model via LS-SVM (dotted blue line), and proposed compressed inverse model combining
LS-SVM and PCA (solid red line), also the ideal mask used as input of the inverse model
(dashed-dotted green line).

Although the geometrical parameters predicted by the inverse model (as shown
in Fig. 4.8(a)) should belong to the range of variability (domain) assumed for



4.5 Practical examples 67

the design parameters, there is no guarantee that for the case of the predictions
obtained by a standard LS-SVM regression problem. However, the consistency (i.e.,

(a)
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(b)

Fig. 4.8 Tunability assessment of the proposed inverse model with ñ= 4. (a) model tunability
is limited to the range of x used during the model training. (b) scattering parameters of the
optimized filter by changing given filter specifications in two cases: (i)FC = 2700MHz and
BW = 70MHz and (ii)FC = 2550MHz and BW = 50MHz.

xmin ≤ x ≤ xmax) of the optimal configuration of the design parameters estimated
by the inverse model can be easily checked a posteriori, also, such a constraint
could be used directly during the training of the inverse model, by reformulating the
training algorithm in term of constrained optimization regression. How to guarantee
a physically realizable optimized solution would be a potential future topic.

4.5.2 Example II: The Inverse Modeling of a Wideband Common
Mode Suppression Filter

In this example, the proposed method is further illustrated through the inverse
modeling of the compact common-mode suppression filter shown in Fig. 4.9 [83].
The filter structure is characterized by 6 geometrical parameters, i.e., line width
wi, spacing si and length li of coupled microstrip lines for i = 1, 2, and designed
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Fig. 4.9 Common-mode suppression filter with its geometrical parameters. (a) Cross-section.
(b) Top view. (from [84])

on Rogers RO4350B substrate with h=1.524 mm, εr=3.66, tanδ = 0.003, and σ =

4.1 ×107 S/m as a low-loss one allowing precise simulations close to measurements.
The performance of such a structure could be described using the following modal
S-parameters matrix [83],

Sm =


Scc11 Scc12 Scd11 Scd12

Scc21 Scc22 Scd21 Scd22

Sdc11 Sdc12 Sdd11 Sdd12

Sdc21 Sdc22 Sdd21 Sdd22

=

[
CC CD
DC DD

]
, (4.14)

where modal ports 1 and 2 consist of the single ended ports p1, p3 and p2, p4 in
Fig. 4.9, respectively, and could be excited by a common or differential mode signals.
The matrix entries Scci j and Sddi j are the scattering parameter related to a common
or differential mode signal going from port j to i (i, j=1,2), respectively. Whereas,
Scdi j refers to the conversion of a differential to common mode signal from port j to
i, and Sdci j is the opposite conversion. Only the Sddi j and Scdi j parameters will be
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Table 4.3 Initial Design of the Common Mode Suppression Filter

w1 1.8 mm s1 0.7 mm l1 28.55 mm
w2 0.6 mm s2 0.2 mm l2 10 mm

considered in the following optimization since coupled microstrip lines are typically
utilized to transmit differential signals.

The optimization “goals” for the considered structure are the following:

• Goal 1: |Scd21| ≥ 20 dB, 10MHz < f < 6GHz

• Goal 2: |Sdd21| ≤ 0.6 dB, 10MHz < f < 6GHz

In this example the inverse model uses as input the magnitude of the scattering
parameters |Scd21| and |Sdd21| (i.e., no = 2) defined for n=600 frequency points
equally spaced in [10, 6000] MHz, such that y= [|Scd21| , |Sdd21|]T ∈R1200, whereas
it provides as output m = 6 geometrical parameters collected in the vector x =

[s1,w1, l1,s2,w2, l2]
T ∈ R6. Hence, in this example we are looking for an inverse

model such that M−1 : R1200→ R6.

A training set {(xi,yi)}L
i=1 with L=200 is randomly generated via an LHS scheme

by considering a uniform variation of 50% for wi, si and li variables around the
mean values specified in Table 4.3, taken from [84]. The corresponding scattering
parameters {yi}L

i=1 are computed via full-wave simulation in ADS Momentum tool.
As shown in Table 4.4, training data acquisition takes 1 h 55 min for this practical
example using a computer with a 3-GHz Core i7 CPU and 32-GB RAM. It should
be noted that in this practical example where the full computational model (i.e.,
the full-wave EM model) is computationally expensive, it is necessary to develop a
surrogate forward model to be efficiently used in the proposed double CV scheme
Algorithm 1. To this end, an ML-based forward model M̂ : R6 → Rn̂ has been
developed with the parameter n̂=5 determined by scatter plots evaluation.

Having the aforementioned dataset, the proposed cross validation Algorithm
1 is used to find the optimum number of PCA coefficients to be ñopt=3 as shown
in Fig. 4.10. Then, the 6 inverse models in (4.8) have been built by using the
compressed training set {(xi, ỹi)}L

i=1 in which ñ=3 PCA coefficients in (4.3) are used
to approximate original set.
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Fig. 4.10 Analysis of PCA coefficients number ñ by proposed 5-fold cross validation
Algorithm 1, and with n̂ = 5. The optimum ñopt= 3 is selected for building the common
mode suppression filter inverse model.
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Fig. 4.11 Frequency responses of the initial (dashed-dotted green line) and the optimized
design for the common mode suppression filter, obtained by ADS (dashed black line), and
the proposed inverse model combining LS-SVM and PCA (solid red line). Also, the ideal
goal mask used as input for the inverse model (dashed-dotted blue line).

To evaluate the performance of the proposed inverse model, the ideal mask shown
in Fig. 4.11 (dashed-dotted blue line), calculated starting from the average of the
training responses based on the design goals, has been used as input for the trained
inverse models. Then as shown in Fig. 4.2(b), the optimal filter geometry estimated by
the inverse models is simulated via ADS to get corresponding scattering parameters
shown in Fig. 4.11 (solid red line). Also in this example, the performances of the
proposed inverse model have been compared with the ones of the conventional ADS
optimizer based on the full-wave simulations run in the Agilent ADS Momentum
tool. The ADS gradient solver[82] has been converged after 14 iterations in 1 h
and 42 min (Table 4.4). The S-parameters |Scd21| and |Sdd21| obtained by the ADS
optimizer and by the proposed inverse model are shown in Fig. 4.11. The ADS
results (dashed black line) show a good agreement with the given specifications,
even if a small violation of Goal 2 (i.e., |Sdd21| ≤ 0.6dB) is observed at the end of
the frequency band. As an overall metric of common-mode voltage suppression, the
average value of |Scd21| over the frequency range for initial design, ADS optimizer,
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and inverse model prediction are 24.97, 28.1 and 29.85 dB, respectively, which
shows the 1.75 dB superiority of the common mode suppression ability of filter
designed by the inverse model compared to ADS optimizer result. On the other hand,
the results of the inverse model (solid red line) highlight once again the capability of
the proposed approach of providing a design satisfying the optimization goals.

From Table 4.4, we can find that even though the proposed inverse modeling
approach is overall more expensive than the direct optimization by ADS optimizer,
the major part of this cost is due to the data acquisition via full-wave simulations
in this particular example. Indeed, considering the fact that this step (i.e., data
acquisition) could be accelerated using the parallelized computation techniques [60],
the proposed inverse model itself is extremely efficient compared to the conventional
direct optimization techniques. It is important to remark that, for the sake of a
specific and technically solid comparison of the computational costs, the same initial
design values and the same variation of design parameters around them are used for
design optimizations implemented on the same computer (i.e., 3-GHz Core i7 CPU
and 32-GB RAM).

In both application examples, L=200 training samples are used to build the
inverse models. Generally, the amount of data required for different examples
depends on many factors: the complexity of the problem, the complexity of the
learning algorithm, etc. To the best of our knowledge, there is not a consolidated
scheme for automatically selecting the number of training samples so far. However,
the LS-SVM regression has good generalization capability when training data are
limited. Here, considering the performance and computational cost of the proposed
Algorithm 1, we have chosen L=200 and K=5 which results in a validation and
training set of size 40 and 160, respectively, to be used in each iteration of a 5-fold
CV scheme. Moreover, by varying L and looking at the output of Algorithm 1, a
lower bound for the L values could be defined such that finding an optimal ñopt is
possible. Based on our experiments, the minimum required L for both application
examples is L=110.
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Table 4.4 The Computational Cost of the Inverse Modeling and Direct Optimization of
Practical Examples in section 4.5

Example I Example II

Dataset acquisition (200 samples) 46 s 1 h 55 min

Forwad model development 10 s 10 s

Proposed Algorithm 1 3 min 2 min 25 s

Inverse model training 7 s 5 s

Direct optimization (Gradient) 14 min 28 s 1 h 42 min



Chapter 5

Conclusion

This research is conducted in two parts. In the first part, a mathematical method
for developing a rational transfer function model (i.e., rational macromodel) in
practical applications with the aim of low complexity was presented. In the proposed
method, the data obtained from the measurement/simulation is approximated in
a closed-form rational function which is easily synthesizable to an equivalent
circuit (netlist) compatible with SPICE-like circuit solvers. To this end, a rational
macromodel based on data integration is proposed with the aim of utilizing all
available information, reducing the order of the model and relative resistance to
noise. Finally, the stability of the model is guaranteed by using the closed-loop
control technique and considering a control coefficient. The performance evaluation
of the proposed method in comparison with the well-known VF method has been
investigated in several practical examples. The results show that the performance
of the proposed rational macromodel is less affected by noise in the data, and
this is an important feature because in most cases the measurement data is usually
accompanied by noise. The main goal is to develop efficient algorithms that model
high-speed interconnects to be used in a circuit-based solver such as ADS.

In the second part, a completely different approach called "Inverse Modeling" is
introduced to optimize passive microwave components, which, unlike conventional
optimization methods based on iterative algorithms, is very efficient and does not
require either an external optimizer algorithm or repetition. In this context, an
efficient and compact inverse model based on the machine learning regression
technique is proposed to address two major challenges in the inverse modeling of
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microwave devices, namely the ill-posed problem and high-dimensional input space
issues.

The proposed inverse model is constructed by combining the LS-SVM regression
with the PCA compression technique, which allows estimating the optimal geometry
of microwave devices directly from the desired frequency domain mask without the
need for computationally expensive iterative optimization algorithms. In addition,
a new method based on cross validation is proposed to automatically determine
the optimal number of PCA coefficients to be used for decreasing the input space
dimensionality of the inverse problem at hand. In comparison to existing data-driven
inverse modeling techniques, this makes our method more general for design
optimization in microwave applications. The latter is critical for overcoming both the
high-dimensional input space and the ill-posed challenges in the proposed inverse
modeling approach. A distinctive feature of the proposed inverse modeling approach
over existing methods is that it could be constructed using a limited dataset (e.g.,
200 samples as shown in Table 4.4). The feasibility, accuracy, and tunability of the
proposed optimization scheme were investigated using two examples in microwave
applications by comparing its predictions with those computed using a commercial
solver.

As a data-driven model, the general attractive feature of the proposed inverse
model are:

• It is based on data obtained from the system of interest (usually through
full-wave EM simulation in the case of high-frequency structures), hence no
prior knowledge of the system of interest is required.

• It is generic, thus it can be used in a variety of microwave applications that
use S-parameters.

• Since the model is based on explicit analytical formulations, It is computationally
inexpensive to evaluate.

Specifically, the proposed inverse model has several advantages making it generic
to be used in microwave applications. First, the proposed inverse model is a
data-driven model, which uses data obtained from the system of interest. Second,
the inverse model is constructed based on S-parameters computed at many frequency
points (as commonly available data in various microwave applications) and there is
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no need to extract the frequency response features. Lastly, an automated algorithm
based on a cross-validation technique is proposed to find the optimum parameters
of the model by using only a limited dataset. However, once the inverse model is
built, a frequency domain ideal mask (incorporating all the specifications given by
the problem) should be used as input for the inverse model to predict the optimal
geometry of the microwave component.

5.1 Future work

The advantages and challenges of the proposed inverse model are summarized as
follows:

• A compact and efficient macromodel to design optimization of microwave
components without any requirement of external repetitive algorithms

• Due to using the S-parameters, the proposed inverse model could be generalized
in various microwave applications, not depending on response features

• The capability of solving multi-objective optimization microwave problems
by using vectorized multiple S-parameter responses

• An inverse model for high-dimensional and ill-posed microwave problems

• Efficient inverse data-driven model for applications with a relatively high
number of design variables and minimum available data set

− The predictive power of the model is limited to the range of geometrical
parameters training set

− The algorithm used for tuning the number of PCA coefficients is not efficient
in complex applications

− Unlike conventional optimizers, in the proposed inverse approach, the weighting
of design specifications (response features) is not directly possible.

Although the inverse model proposed in this thesis yielded good results and
proved to be effective in microwave applications. The followings things can be
considered as future work in this framework.
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1. Increasing the predictive power of the inverse model by reformulation the
regression problem (i.e., (4.7)) as a constrained optimization with a pre
determined range of geometrical parameters.

2. Constraining the initial dataset to relatively ideal responses using the domain
confinement [85] to improve the proposed inverse model accuracy and efficiency.

3. Assessment and development of the proposed inverse model in applications
with nonlinear and active microwave components (such as mixers, oscillators,
power amplifiers, etc.) considering their special features such as transient
instability, dispersion, etc.

4. Using the proposed inverse model in combination with the ML classification
techniques [86] in applications with multiple structural microwaves such as
nanophotonics, metasurface, etc.

5. Development of an inverse model in order to use the training set obtained
from measurements, considering two specific characteristics of noise and the
limited number of frequency samples. In such cases, other information like
phase response, delay, etc. may be used along with amplitudes.
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List of Contributions

1. Development of a Non-Iterative Macromodeling Technique by Data Integration
and Least Square Method [87].

M Sedaghat, ZH Firouzeh, H Aliakbarianb

International Journal of Engineering (IJE) 34 (11), 10

Abstract: In this paper, a new method is introduced to synthesize the original
data obtained from simulation or measurement results in the form of a rational
function. The integration of the available data is vital to the performance of the
proposed method. The values of poles and residues of the rational model are
determined by solving the system of linear equations using the conventional
Least Square Method (LSM). To ensure the stability condition of the provided
model, a controller coefficient is considered. Also, using this parameter, the
designer can increase the stability margin of a system with poor stability
conditions. The introduced method has the potential to be used for a wide
range of practical applications since there is no specific restriction on the use
of this method. The only requirement that should be considered is the Dirichlet
condition for the original data, usually the case for physical systems. To verify
the performances of the proposed method, several application test cases are
investigated and the obtained results are compared with those gathered by the
well-known vector fitting algorithm. Also, the examinations show that the
method is efficient in the presence of noisy data.

2. Compressed Machine Learning-Based Inverse Model for the Design of
Microwave Filters [71].



88 List of Contributions

M Sedaghat, R Trinchero, F Canavero

2021 IEEE MTT-S International Microwave Symposium (IMS)

Abstract: This paper presents an inverse model for the optimization of the
geometrical parameters of a parallel coupled-line pass-band filter. Given
the overall structure of the filter, the least square support vector machine is
combined with the principal component analysis with the aim of constructing
an inverse model able to estimate the geometrical parameters of the filter
starting from a frequency-domain mask. Such model is trained via a set of
scattering parameters computed via a 2D solver for few configurations of the
filter geometrical parameters. The feasibility and the accuracy of the proposed
optimization scheme is investigated by comparing its predictions with the
corresponding optimal configuration estimated via a commercial tool.

3. Compressed Machine Learning-Based Inverse Model for Design Optimization
of Microwave Components [70].

M Sedaghat, R Trinchero, ZH Firouzeh, F Canavero

IEEE Transactions on Microwave Theory and Techniques, 13

Abstract: This article presents a new noniterative inverse modeling technique
based on machine learning regression and its applications to microwave design
optimization. The proposed inverse model accepts the high-dimensional
S-parameters computed at many frequency points as the input and estimates the
optimal geometrical/physical parameters of the microwave component as its
output. The least-squares support vector machine regression is combined
with the principal component analysis to simultaneously overcome both
the high-dimensional input space and ill-posed challenges of the inverse
modeling. We also propose a new empirical method to find the optimum
number of principal components (i.e., the compression level) for each example
in an automated way. This makes our proposed model general and easy
to use compared with the existing data-driven inverse modeling techniques.
The inverse model is trained by a set of scattering parameters computed
via a 2-D/3-D solver for few configurations of the geometrical parameters.
The feasibility and the accuracy of the proposed optimization scheme are
investigated by comparing its predictions with the corresponding optimal
configuration estimated via a commercial solver.
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