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Abstract
Innovative meta-materials offer great flexibility for manipulating sound waves and assure unprecedented functionality in 
the context of acoustic applications. Indeed, they can exhibit extraordinary properties, such as broadband low-frequency 
absorption, excellent sound insulation, or enhanced sound transmission. These amazing properties have drawn the eye of the 
transport industry, especially for aeronautic applications where objects like these can be combined and coupled with primary 
structures aiming to reduce exterior and interior noise without increasing weight. However, the design of acoustic meta-
materials with exciting functionality still represents a challenge, therefore there is a huge interest about the conceptualization 
and design of innovative acoustic solutions making use of meta-material resonance effects. The main target of the present 
research work is to obtain an accurate prediction of the tuning frequency of a Helmholtz-resonating device, whose resonance 
properties are exploited in a wide part of acoustic meta-material design. In this context, an investigation on a correction factor 
for the classical formulation used to estimate the Helmholtz resonance frequency starting from its geometric characteristics, 
accounting for different-shaped resonators with varying neck/cavity ratios, is performed. More specifically, a set of numeri-
cal simulations for several geometric configuration is considered in order to demonstrate the limits of pre-existing formulas, 
and a new correction factor formula is developed after theoretical considerations where it is possible. In the end, results in 
terms of correction factors are provided in both graphical and semi-analytical form, compared with Finite Element data.

Keywords Acoustics · Meta-material · Helmholtz · Resonator

1 Introduction

Nowadays transport industry has to cope several not-trivial 
problems without affecting performance of the present mod-
els and/or relative costs. One of the most important is surely 
noise disturbance produced by each structure that vibrates. 
For instance, an aircraft design procedure cannot neglect 
sound emission considerations, and an aircraft which is too 
noisy will never be sold or certified. On the other hand, a 
sound suppression system should be as light as possible and 
placed in established and very limited spaces. It is easy to 
understand that conventional solutions are not accountable 
for transport field applications, above all for the aeronautic 
industry. Acoustic meta-materials are introduced to success-
fully overcome these severe transport boundary conditions 
[1, 2]; their design is based on substructures that, if correctly 
shaped and arranged, can perform a robust sound absorp-
tion or suppression [3], also compared to active-controlled 
solutions [4]. Aiming at this goal, different objects could 
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be investigated and adopted in order to consider them as a 
unit cell of the acoustic meta-material: for example, porous 
media, whose foam cavities dissipate the energy by vis-
cous and thermal losses [5], show very good performance 
at high frequencies [6], while tunable acoustic devices, 
such as Helmholtz resonators (HRs), perform better at low 
frequencies.

The concept of Helmholtz resonance and the associated 
classical theory have been applied in the design and analy-
sis of various systems, including: tuned intake manifolds of 
vehicles [7–9], noise attenuation in pipelines [10], attenua-
tion of aircraft propeller noise [11], combustion instabilities 
for gas-turbine engines [12]. With reference to this class of 
devices, Alster [13] obtained the classical formula for calcu-
lation of resonant frequencies of HRs, under the assumptions 
that all mass significant for oscillation of a resonator is con-
centrated in the neck of the resonator and that the spring con-
stant is given by the volume of the resonator [14]. Tang et al. 
[15] derived the theory of a generalized HR, based on the 
jet-flow model that is manifested in the non-linearity of the 
neck flow upon the passage of a high intensity wave. Fahy 
et al. [16] coupled a single HR to an enclosure and tuned it to 
the natural frequency of one of its low order acoustic modes, 
also analyzing the effect on the free, and forced, vibrations 
of the fluid in the enclosure. Chanaud [17] developed an 
equation for the resonance frequency of a HR from the wave 
equation for the case of a cavity volume that has the shape 
of a cuboid and orifices of different geometries. de Bedout 
et al. [18] presented a tunable Helmholtz resonator and a 
feedback-based control law that achieves optimal resona-
tor tuning for time-varying tonal noise control applications. 
Lei et al. [19] proposed a strategy to characterize power and 
ground-plane structures using a full cavity-mode frequency-
domain resonator model. Griffin et al. [20] demonstrated that 
mechanically coupled resonators can be used for designing 
a particular transmission loss response, generating attenu-
ation in a wider bandwidth, and adapting the transmission 
loss characteristics of a structure to attenuate disturbances 
at a desired frequency. Tang [21] experimentally and theo-
retically investigated the acoustical properties of HRs with 
necks having cross-section dimensions decreasing away 
from the entry of the resonator cavities. Park [22] introduced 
micro-perforated panel absorbers backed by HRs with the 
aim to improve sound absorption in the low-frequency range, 
where classical micro-perforated panel absorbers do not 
provide sufficient performance. As a consequence, HRs are 
analyzed by several researcher for their interesting behavior; 
apparently, these ones do not change with the HR shape. 
Nevertheless, resonance frequency prediction formulas are 
not so much faithful for shapes that are different respect to 
those that are typically analyzed in literature (e.g.: cylinder 
neck - cylinder cavity); furthermore, a classic geometry like 
cylinder neck - cylinder cavity can have a different resonance 

frequency shift depending on the radii ratios. The scope of 
this paper is to obtain an accurate prediction of the tuning 
frequency of a HR device, for several combination of neck-
cavity geometries. In detail, the present manuscript wants 
to further improve the results already obtained by Catapane 
et al. [23], by taking into account the limits of the poly-
nomial resonance prediction and proving that a new semi-
analytical approach can overcome this problem for specific 
geometries.

The present work is structured as follows: in Sect. 2, 
Helmholtz resonators are thoroughly introduced, together 
with some details about geometric properties 2.1) and Finite 
Element (FE) implementation (Sect. 2.2). Successively, in 
Sect. 3, the correction factor study is herein presented and 
discussed, with the introduction of a graphical-polynomial 
method for the resonance frequency estimation (Sect. 3.1), 
showing the main advantages and drawbacks of the current 
approach (Sect. 3.2). Subsequently, in Sect. 4, the semi-
analytical estimation is described, with its methodologi-
cal framework (Sect. 4.1), and the discussion of its results 
(Sect. 4.2). In conclusion, in Sect. 5, the main achievements 
of the present research are summarized and some possible 
future expansions are identified.

2  Definition of the problem

A Helmholtz resonator (HR) is a tunable device with rigid 
walls and filled of fluid, whose geometry is usually repre-
sented by a neck followed by a cavity. With reference to 
acoustic applications, HRs exhibit a single resonance fre-
quency; thus, they are commonly defined as 1-Degree-of-
Freedom (DoF) systems. Indeed, HR may be conceptually 
assimilated to a mass-spring system, in which the the volume 
acts as a spring, and the fluid in the neck represents the mass, 
with expressions which are respectively: 

 where �0 is the density of the fluid, c0 is the speed of sound 
in the fluid, Sneck is the area of the section of the neck, Vcavity 
is the volume of the cavity, and lneck is the main length of the 
neck. In detail, the stiffness expression can be determined 
by considering a piston inside the neck pushed of a cyanx̄ 
quantity: the volume of the cavity is consequently changed 
of a quantity ΔVcavity = −Sneckx̄ , resulting in a condensa-
tion Δ𝜌∕𝜌 = ΔV∕V = Sx̄∕V  and hence a pressure increase 
p = 𝜌c2Δ𝜌∕𝜌 = 𝜌0c

2Sneckx̄∕Vcavity As a consequence, the 
force against this displacement is F = pSneck = Kx̄ with K 
having the expression of Eq. 1a. Furthermore, the radiation 
mass must be considered as the mass of the fluid contained 

(1a)K = �0c
2

0
S2
neck

∕Vcavity,

(1b)M = �0Sneck lneck ,
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in the neck plus a ΔV = SneckΔL due to connection between 
neck and cavity. The mass expression of Eq. 1b will be hence 
changed by considering the effective length Leff = lneck + ΔL

:

The equation of the inward displacement x̄ for a Helmholtz 
Resonator can be written as:

with fei�t = SneckPe
i�t the instantaneous complex driving 

force produced by a pressure wave of amplitude P impinging 
on the device neck. It is easy to derive the natural frequency 
of the system as:

The resistance of the system is neglected, assuming that this 
term has no meaningful effect on the resonance frequency 
of the system in the case of rigid walls or materials that are 
generally used for the fabrication of such a device. Further-
more, the theory herein reported can be more extensively 
investigated in the books of Kinsler [14] and Long [24]. 
Eq. 4 can be easily solved by knowing the geometric prop-
erties of the Helmholtz Resonator, except for Leff  , which 
needs more considerations. The first length correction for a 
HR tuning frequency fres(Rayleigh) was proposed by Rayleigh 
[25] as:

where (4∕3�)dneck is an end-correction introduced for 
accounting neck-cavity junction effects due to an abrupt 
change between the circular cross sections. This change 
leads to an additional impedance, defined as discontinuity 
inductance. The physical phenomenon is well explained by 
Karal [26], who relates the discontinuity inductance to the 
ratio between the tube radii. This additional impedance can 
be conceptually interpreted as an increase in the length of 
the tube; moreover, if the ratio of the tube radii is unitary, 
the circular section is unchanged and thus the length does 
not need any corrections; on the other hand, for a ratio equal 
to zero (an open tube fitted with an infinite flange), the cor-
rection factor corresponds to the Rayleigh’s one. Thus, it is 
logical that Rayleigh’s correction works well for low value 
of tube radii ratio, while it needs further considerations 
when the ratio is increasing.

Successively, Ingard [27] modified Rayleigh’s formula by 
increasing its complexity in order to provide an alternative 

(2)M = �0SneckLeff .

(3)M
d2x̄

dt2
+ Kx̄ = fei𝜔t,

(4)fres =
c0

2�

√
Sneck

VcavityLeff
.

(5)fres(Rayleigh) =
c0

2�

√√√
√

Sneck

Vcavity(lneck +
4

3�
dneck)

,

estimation of HR frequency, which has explicit dependence 
on � , defined as the ration between the representative lengths 
in the section plane of the neck and the cavity, respectively 
labeled as dneck and dcavity:

Ingard developed this approach for three geometric configu-
rations (cylindrical neck and cylindrical cavity, cylindrical 
neck and cuboid cavity, cuboid neck and cuboid cavity). 
Analogously to Ingard’s approach, also Rayleigh’s formula 
can be written by outlining its dependence from � , in the 
form of:

Finite Elements results demonstrate that Rayleigh’s and 
Ingard’s estimations perform well in a limited range of � , 
while sensibly differing from FE results for values of � out-
side of it. Thus, a new empirical prediction of HR frequency 
is developed herein, with the aim of obtaining a more accu-
rate evaluation compared with those already available in 
the relevant literature. This is done starting from Eq. 7, and 
investigating the correction factor cf  , which plays the role 
defined as follows:

The objective of the present work is to extend the results 
obtained and presented at the CEAS Aerospace Europe Con-
ference 2021 by Catapane et al. [23]; thus, a part of the work 
is an improvement of the previous paper, where important 
details are modified, and necessary considerations about lim-
its of the polynomial-graphical approach are discussed; the 
last part, instead, introduces a semi-analytical approach for 
the geometric couplings in order to further improve the pre-
vious correction factor estimation method. The latter method 
deletes completely scalability limits.

2.1  Geometric properties

Six different geometric configurations are considered herein 
(Fig. 1). A summary of the studied configurations is reported 
in Table 1 with a precise explanation of the characteristic 
lengths of necks and cavities for the studied configurations. 
As shown in the sub-figures and the table description, con-
figurations with cuboid shape have a square surface area, 
but the same approach can be easily extended to even more 
complex geometries.

(6)� = dneck∕dcavity.

(7)fres(ξ,Rayleigh) =
c0

2�

√√√
√

Sneck

Vcavitylneck(1 +
4

3�

dcavity

lneck
�)
.

(8)fres(�) =
c0

2�

√
Sneck

Vcavitylneck(1 + cf �)
.
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The dimensions of HRs are chosen in order to be suf-
ficiently big to avoid manufacturing issues, while also 
being sufficiently small to preserve their interest in terms 
of acoustic applicability in the fields of transport engineer-
ing (e.g.: aerospace, automotive, etc.). More specifically, 
the neck and cavity dimensions are reported in Table 2. 
In detail, dcavity always depends on dneck by the parametric 
value � , which is varied from 0.05 to 0.95 with a step of 
0.05. Thanks to this, 114 different geometrical configura-
tion are numerically studied.

Fig. 1  Representation of the studied configurations, numbered as indicated in Table 1

Table 1  Characteristic lengths of necks and cavities for six different geometric configurations, where � = dneck∕dcavity

C. Neck Shape Cavity Shape dneck dcavity

1 Cylinder Cylinder Diameter of the cylinder Diameter of the cylinder
2 Cuboid Cylinder Length of the square base of the cuboid Diameter of the cylinder
3 Cylinder Cuboid Diameter of the cylinder Length of the square base of the cuboid
4 Cuboid Cuboid Length of the square base of the cuboid Length of the square base of the cuboid
5 Cylinder Sphere Diameter of the cylinder Diameter of the sphere
6 Cuboid Sphere Length of the square base of the cuboid Diameter of the sphere

Table 2  Dimensions of neck and cavity for each configuration

C. dneck [mm] lneck [mm] dcavity [mm] lcavity [mm] �

1 4 5 d
neck

∕� 25 0.05:0.05:0.95
2 5 5 d

neck
∕� 25 0.05:0.05:0.95

3 5 4 d
neck

∕� 35 0.05:0.05:0.95
4 5 4 d

neck
∕� 35 0.05:0.05:0.95

5 4 30 d
neck

∕� d
neck

∕� 0.05:0.05:0.95
6 4 30 d

neck
∕� d

neck
∕� 0.05:0.05:0.95
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2.2  Finite element implementation

For what concerns the FE implementation, the module 
“Pressure Acoustics, Frequency Domain” of COMSOL Mul-
tiPhysics is used both as modeling tool and numerical solver. 
For all configurations presented in this work, the mesh con-
sists of tetrahedral elements generated through physics-con-
trolled algorithms that are pre-implemented in the software. 
Nevertheless, the authors verified that the maximum element 
size of each HR meshed is always lower then 1/6 of the 
minimum wavelength � ; in practice, for each configuration, 
the maximum tunable frequency of the studied Helmholtz 
Resonators is limited by its minimum wavelength, which in 
any case must be greater than the dimension of six elements 
of the model, as recommended in literature [28]. In Table 3, 
the average number of FE mesh elements for each of the 
studied configurations are reported.

The analyzed HRs are filled by air, whose properties are: 
density �0 = 1.225 [kg/m3 ], speed of sound c0 = 343 [m/s]. 
The forced-response analyses are carried out considering 
an excitation of 1Pa over the free end of the neck, while the 
HR walls are modeled through Sound Hard Boundary Wall 
(SHBW) conditions, which means that the normal compo-
nent of the acceleration (and thus the velocity) is zero. A 
detailed description of classical FE formulation and equa-
tions can be easily found in the context of the relevant lit-
erature [29].

3  Polynomial fitting of Helmholtz 
resonances

In this section, the six configurations previously defined 
are studied, and some results are presented as functions 
of the ratio � . Present numerical results are already well 
described in the research presented at the CEAS Aerospace 
Europe Conference 2021 by Catapane et al. [23]; graphical 
and polynomial approximation is limiting for several rea-
sons, well explained in Sub-Section 3.2. Even though the 
numerical campaign is updated and improved respect to the 
above-mentioned work, the scope of the present study is to 
depict limits of a graphical/polynomial approach for tuning 

the resonance frequency of a Helmholtz Resonator, and to 
overcome them with a new semi-analytical investigation 
(Sect. 4).

3.1  Development of graphical and polynomial 
approaches for the correction factor estimation

A FE parametric test campaign is carried out with the aim to 
estimate the resonance frequency of HRs for Configurations 
1 - 6, varying the main neck-cavity length ratios � from 0.05 
to 0.95. Starting from this set of data, Eq. 8 is inverted and 
fres is set to fres(FEM) to obtain the value of the correction 
factor cf (FE) as:

Such values of the correction factor are shown in Fig. 2a). It 
may be interesting to notice that, for all the analyzed con-
figurations, in the range 0.05 < 𝜉 < 0.3 the values of cf (FE) 
sharply change with a descending pattern, while increasing 
smoothly in the range 0.3 < 𝜉 < 0.95 . In addition, the Ray-
leigh formulation of Eq. 7 works consistently up to � = 0.3 , 
but its prediction is not anymore acceptable for 𝜉 > 0.3 , as 
it is possible to see in Fig. 2b), which shows the values of 

100 ⋅
||
||

fres(Rayleigh)−fres(FE)

fres(FE)

||
||
 , confirming the limitations of the prob-

lem concerning Helmholtz resonance frequency estimation 
through Eq. 7. These almost coincident ranges can be inter-
preted in a very simple way just taking into account Eq. 7: 
in the first range, the effective length is adjusted just with the 
neck diameter, and it works well because the cavity section 
area is quite bigger than the neck one. In that region, the 
correction factor can be evaluated ignoring the geometry of 
the cavity, and hence neglecting the influence of � . On the 
other hand, when the cavity section area is comparable with 
the neck one, Eq. 7 it is not anymore valid and the correction 
factor must be evaluated in a different way. Fig. 2a) may be 
intended as a carpet plot, in which the potential user may 
enter with a designed value of � , choose the appropriate 
curve according to the considered geometry, and obtain a 
value of cf  that can be used in Eq. 8 in order to predict the 
resonance frequency of a specific HR device.

With the objective of developing an alternative approach 
to the graphical estimation of the correction factor cf  , and 
consequently of the HR frequency fres , a 3rd-order poly-
nomial approximation of the correction factors is proposed 
herein. Since Rayleigh’s formula reported in Eq. 7 performs 
for ratios 0.05 < 𝜉 < 0.3 with a level of accuracy that is defi-
nitely acceptable, and considering that, as already under-
lined, in the range 0.05 < 𝜉 < 0.3 the values of cf  vary mean-
ingfully, while changing less in the range 0.3 < 𝜉 < 0.95 , 

(9)cf (FE) =
( c2

0

4�2

Sneck

f 2
res(FE)

Vcavitylneck
− 1

)
�−1.

Table 3  Average number of FE mesh elements

Configuration Domain Boundary Edge

1 5652 1130 149
2 3021 682 114
3 5846 985 127
4 6731 1044 133
5 2828 656 116
6 3007 702 125
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then it may be convenient to directly rely on Eq. 7 up to 
� = 0.3 , and to contextually develop a polynomial approxi-
mation for higher values of �.

As it may be noticed from Fig. 3, which shows the HR fre-
quencies of the six studied configurations, for 0.05 < 𝜉 < 0.3 
Rayleigh’s formula is always able to catch the FE behavior 
with a negligible accuracy error, while for 𝜉 > 0.3 the pro-
posed 3rd-order polynomial approximations almost perfectly 
follow FE values, with a maximum relative error respect 
to the FE values not greater than 2%. Clearly, if one wants 
to derive a polynomial expression with reasonable validity 
in the whole � range, a higher-order polynomial would be 
needed. The above-mentioned polynomial expressions are 
derived using MATLAB’s built-in polyfit function and are 
meant to be used in Eq. (8) with the aim of mathematically 
calculating the resonance frequency of a HR. The expres-
sions that refer to Configurations 1 - 6 are reported in Eq. 10.

3.2  Limitations of the graphical and polynomial 
approaches

Previous results are an update of the work submitted and 
presented at the CEAS Aerospace Europe Conference 2021 

(10)

cf (poly,1) = −3.72�3 + 9.31�2 − 5.89� + 2.20,

cf (poly,2) = −5.16�3 + 12.9�2 − 8.20� + 2.89,

cf (poly,3) = −5.98�3 + 14.8�2 − 9.75� + 3.60,

cf (poly,4) = −6.79�3 + 16.7�2 − 10.2� + 3.73,

cf (poly,5) = −0.30�3 + 6.49�2 − 2.18� + 0.60,

cf (poly,6) = −0.26�3 + 8.18�2 − 2.52� + 0.65.

by Catapane et Al. [23]. In detail, the previous work consid-
ered sphere, cylinder and cube as main geometries, which 
are combined in a reasonable way to design Configurations 
1 - 6; the study was carried out by varying the geometric 
properties of the cavity without regarding the resonance fre-
quency, thus resulting in a frequency range that was much 
wider than that which is actually interesting for industrial 
application. In the present work, as it is possible to see in 
Fig. 3, the maximum resonance frequency is always below 
3000Hz; therefore, each analyzed HR can be used for a 
real low-frequency application, since at higher frequencies 
a tonal solution would not be as efficient as a foam (e.g.: 
melamine, polyurethane). Furthermore, Configurations 3 - 4 
presented in the conference paper [23] showed an anomalous 
trend: FEM resonance frequency is always coincident with 
Rayleigh prediction (Fig. 4). These results are not trivial 
to motivate, but the geometry has a strong influence on the 
results: Configurations 3 - 4 are made with cubic cavity, 
which lead to a Correction Factor not dependent by any geo-
metric property of the Helmholtz Resonator. This is valid 
just for an exactly cubic cavity, and it is a specific result that 
will be demonstrated in next section with the new semi-
analytical approach (Sect. 4). In the end, the cubic geom-
etries are replaced by cuboid cavities, in order to provide 
more general results. Thanks to Figs. 2 and  3, it is possible 
to understand that Rayleigh formulation is not always valid, 
and extended geometrical considerations must be done in 
the design phase of an Helmholtz Resonator. The pattern of 
Correction Factor is almost similar for each configuration, 
which leads to the consideration that an absolute evalua-
tion, regardless of the primitives and the geometrical ratios, 
is feasible. The applications of such approach are reason-
ably bounded by industrial applications and manufacturing 

Fig. 2  a FE estimation of the correction factor for the six studied HR configurations, as functions of � ; b Evaluation of the relative errors of Ray-
leigh’s formula, with reference to Finite Element results, for the six studied HR configurations, as functions of �
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issues; nevertheless, a graphical and polynomial approxi-
mation is affected by scalability problem. Furthermore, the 
current approach is based on the assumption that the cor-
rection factor depends on the ratio between dneck and dcavity , 

according to Ingard intuition [27], but it cannot be excluded 
that other parameters, such as lneck and lcavity may have con-
siderable effects.

Fig. 3  Comparison of Helmholtz resonance frequency estimations for each analyzed configuration
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4  Semi‑analytical estimation of scalable 
Helmholtz resonances

As well explained in previous section, graphical and pol-
ynomial estimations are not exact solutions and can be 
affected by scaling problems. This leads to the necessity 
to find an exact method, which does not depend on specific 
dimensions: the semi-analytical approach proposed herein 
is able to overcome this limit for two different configura-
tions. This approach has been developed taking into account 
that, after 3000Hz, a tonal solution cannot be competitive 
with foams, and Helmholtz resonator thickness dimensions 
( Lneck + Lcavity ) are not bigger than 10cm. With these maxi-
mum dimensions, an acoustic resonator studied herein can 
be designed and applied for a transport engineering applica-
tion, even for aeronautical applications, where space limita-
tions are severe and difficult to match with performance.

4.1  Methodological framework

The following method is based on the resonance frequency 
properties of tonal sources like Helmholtz resonators and 
Quarter Wavelength Tubes (QWT). Previous sections are 
very useful to understand how strong the correction factor 
may affect the resonance frequency of HRs, and that its 
value cannot be assumed only as a function of neck dimen-
sions. The correction factor must depend on � , defined as 
the ratio between the representative lengths in the section 
plane of the neck and the cavity, respectively labeled as 
dneck and dcavity . It is possible to notice that for � = 1 , dneck 
= dcavity ; this means that for neck and cavity with same 
geometry, the Helmholtz Resonator becomes a tube with 

constant section area. In detail, Configuration 1 and 4, 
respectively Cylinder neck - Cylinder cavity and Cuboid 
neck - Cuboid cavity, show the above-described behavior 
(Fig. 1). A tube with constant section area has specific 
resonance frequencies when the tube length is an odd-
integer multiple m of the quarter of the wavelength [24]. 
Therefore, such a system reaches its maximum absorption 
when the exciting frequency is equal to one of its reso-
nance frequencies, expressed as:

where L is the length of the tube, and in this case is 
L = Lneck + Lcavity when � = 1 . Hence, it is straightforward 
that Helmholtz resonance frequencies of Configuration 1 
and 4 when � = 1 should be equal to the first ( m = 1 ) QWT 
resonance:

With regards to Configuration 1 and 4,

thus, the equivalence can be written as:

Since the correction factor ( cf  ) is the only unknown term, it 
is possible to analytically derive it as:

(11)fQWT =
(2m − 1)c

4L
.

(12)
c0

4L
=

c0

2�

√
Sneck

Vcavitylneck(1 + cf )
.

(13)
Sneck∕Vcavity = D2

neck
∕D2

cavity
Lcavity = �2∕Lcavity = 1∕Lcavity,

(14)
c0

4(Lneck + Lcavity)
=

c0

2�

√
1

LcavityLneck(1 + cf )
.

Fig. 4  Comparison between Helmholtz resonance frequencies evaluated with Rayleigh formulas for Configurations 3 and 4 with a perfect cubic 
cavity [23]
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A new correction factor formula is obtained: QWT formula 
is used as a boundary condition, leading to an analytical for-
mulation of the correction factor which depends just on the 
geometric properties of the Helmholtz Resonator. Further-
more, Eq. 15 can be used even for Configuration 4, where 
Dneck = Lneck and Dcavity = Lcavity ; with few algebraic calcula-
tions, the correction factor for Cube - Cube Configuration is:

which does not depend on any geometrical property; due to 
this reason, as it is possible to see from Fig. 4, the previous 
Configuration 4 [23] had an anomalous trend: in the case of 
Cube - Cube Configuration, the correction factor is constant 
respect to any change in length.

4.2  Results and discussion

Fig. 5 aids to comprehend the physics of the problem: con-
sidering FE results as reference, it is clear that Rayleigh 
formula works well for low � values, but it is not consistent 
where the section area dimension of the neck is comparable 
with the section area dimension of the cavity. In particu-
lar, FE results are coherent with the assumption done in the 
previous section, since their resonance frequency at � = 1 
matches perfectly the QWT resonance frequency: the FE 

(15)cf =
4

�2

(Lneck + Lcavity)
2

LcavityLneck
− 1.

(16)cf (Cube−Cube) =
16

�2
− 1,

curve asymptotically tends to the QWT resonance frequency, 
actually reaching it at � = 1.

The semi-analytical curve is developed considering Eq. 8, 
with a slight change motivated by the fact that it has been 
empirically verified that the effective length depends on 
the second power of the ratio � , rather than on the first one 
(Fig. 6):

Indeed, the equivalent FE results correction factor, evalu-
ated with Eq. 9, is very similar to Rayleigh’s cf (Rayleigh) up to 
� ≈ 0.3 and then it follows asymptotically the line related to 
the proposed approach of equation cf ⋅ �.

It is noteworthy to highlight the difference between the 
Rayleigh cf  (Eq. 5), the graphical-polynomial cf  (Eq. 9) 
and new cf  of Eq. 15. Indeed, the Rayleigh cf  depends on 
the radius of the neck, the FE cf  depends on the ratio of the 
main dimension of the section area of the neck and the one 
of the cavity � , leading to the essential observation that 
other geometrical parameters are not considered for the 
correction factor estimation; as mentioned in Sect. 3.2, this 
can be one of the main limit of the graphical-polynomial 
approach. With regard to Eq. 17, where semi-analytical 
correction factor is firstly inserted, there is a correction 
factor which depends on Lneck and Lcavity , multiplied by �2 
which is (dneck∕dcavity)2 . Hence herein every geometrical 
parameter is taken into account and can affect the effective 
length that should be inserted in the resonance frequency. 
It is straightforward to define the new semi-analytical 

(17)fres(�2) =
c0

2�

√
Sneck

Vcavitylneck(1 + cf �
2)
,

Fig. 5  Comparison between Helmholtz resonance frequencies evaluated with FEM, Rayleigh, QWT formulas and the new semi-analytical 
approach for Configurations 1 and 4 
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formulation as more complete respect to previous ones. 
Furthermore, comparing the Rayleigh formulation with 
the new one, it is possible to define a � range where there 
is just a strong dependency on the main dimension of sec-
tion area of the neck, and a � region where each geometri-
cal parameter must be taken into account for the correct 
evaluation of the correction factor. Indeed, even though the 

semi-analytical curves seem to be completely representa-
tive of the FE results in the overall range of � , it is noticed 
that the relative error of the semi-analytical approach is 
bigger than Rayleigh’s one for low values of � (Fig. 7).

Thus, a concrete possibility is to weight the two for-
mulas and definitively states a correction factor formula 
for an Helmholtz resonator, which has no limits in terms 
of dimensions.

Fig. 6  Comparison between the correction factor c
f
 derived by FE results through Eq. 9, by Rayleigh through Eq. 8, and c

f
 evaluated thanks to 

Eq. 15 for Configurations 1 and 4. The line of equation c
f
⋅ � is useful for the formulation of Eq. 17; again, c

f
 is evaluated thanks to Eq. 15

Fig. 7  Comparison between relative errors of the Rayleigh formula (Eq. 7), the semi-analytical approach (Eq. 17) and the resonance frequency 
derived through general resonance equation (Eq. 7), with c

f
 taken by Eq. 18 respect to FE results for Configurations 1 and 4 
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The weighted mean can be inserted in the resonance fre-
quency formula in Eq. 17, when the primitive geometry of 
the neck is coincident with the one of the cavity; with this 
formula, the Helmholtz resonance prediction problem is 
solved with high accuracy and without polynomial or graph-
ical predictions, which are surely useful but not comparable 
with a semi-analytical approach. In detail, the maximum 
relative error is about 3% for Configuration 1 and 5% for 
Configuration 4; both maximum relative errors are reached 
in correspondence of a �-value between 0.4 and 0.5, as it is 
possible to see through Fig. 7. It is reasonable that the maxi-
mum error is in that range of � , because Rayleigh formula 
works well for lower value of � , and Eq. 15 works perfectly 
while � tends to 1. On the other hand, Eq. 7 and Eq. 15 can 
be used respectively when � is closer to 0 and when � is 
approximately greater than 0.5.

5  Conclusions

The present work aims at obtaining an accurate prediction 
of the tuning frequency of Helmholtz-resonating devices, 
in order to design tonal devices for acoustic applications. 
To this scope, it is performed an investigation on a correc-
tion factor for the classical formulation used to estimate the 
Helmholtz resonance frequency starting from its geometric 
characteristics, in the case of different-shaped resonators 
with varying neck-cavity ratios. In detail, a set of Finite 
Element analyses are carried out, and results in terms of 
correction factors are firstly provided in both graphical and 
polynomial form, also demonstrating that the original for-
mulation is not exhaustive for the precise design of an Helm-
holtz Resonator. Moreover, results in terms of correction fac-
tors, resonance frequencies and relative errors are provided 
and discussed. Once explained the limits of both graphical 
and polynomial approaches, a semi-analytical method is pro-
posed, and relative results are plotted and motivated. With 
this method, it is possible to overcome limits of graphical 
and polynomial approaches in the case of specific geom-
etries. With reference to different neck- cavity geometric 
couplings, the polynomial and graphical estimations are still 
preferred compared to Rayleigh formulation. On the base of 
the current results, future research can be centered on the 
development of a semi-analytical method which could be 
generalized for each geometric configuration, as well as it 
may take into account the effects of the wall material.
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