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Abstract Current research on Digital Twin (DT) based Prognostics and Health Management

(PHM) focuses on establishment of DT through integration of real-time data from various sources

to facilitate comprehensive product monitoring and health management. However, there still exist

gaps in the seamless integration of DT and PHM, as well as in the development of DT multi-field

coupling modeling and its dynamic update mechanism. When the product experiences long-period

degradation under load spectrum, it is challenging to describe the dynamic evolution of the health

status and degradation progression accurately. In addition, DT update algorithms are difficult to be

integrated simultaneously by current methods. This paper proposes an innovative dual loop DT

based PHM framework, in which the first loop establishes the basic dynamic DT with multi-filed

coupling, and the second loop implements the PHM and the abnormal detection to provide the

interaction between the dual loops through updating mechanism. The proposed method pays atten-

tion to the internal state changes with degradation and interactive mapping with dynamic param-

eter updating. Furthermore, the Independence Principle for the abnormal detection is proposed to

refine the theory of DT. Events at the first loop focus on accurate modeling of multi-field coupling,

while the events at the second loop focus on real-time occurrence of anomalies and the product

degradation trend. The interaction and collaboration between different loop models are also dis-

cussed. Finally, the Permanent Magnet Synchronous Motor (PMSM) is used to verify the proposed

method. The results show that the modeling method proposed can accurately track the lifecycle per-

orr
ec
net syn-

mailto:shaopingwang@buaa.edu.cn
https://doi.org/10.1016/j.cja.2023.12.031
https://doi.org/10.1016/j.cja.2023.12.031
http://www.sciencedirect.com/science/journal/10009361
https://doi.org/10.1016/j.cja.2023.12.031
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.cja.2023.12.031


26

27

2829

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

2 H. GUO et al.

CJA 2896 No. of Pages 18

3 January 2024

Please cite this article in press as: GUO H e
chronous motor, Chin J Aeronaut (2024), htt
formance changes of the entity and carry out remaining life prediction and health management

effectively.

� 2023 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134
1. Introduction

Due to the significant impacts of product degradation and fail-
ure, such as production disruptions, safety hazards, and higher

maintenance costs, the Prognostics and Health Management
(PHM) technology is widely used in aerospace system.
Through real time monitoring the product states, PHM can
detect product performance degradation, predict remaining life

and diagnose the fault. However, the progress and develop-
ment of product degradation are difficult to reflect from exter-
nally detectable sensors, which are the result of internal states

changes with the coupling effect of multiple fields. Therefore, it
is vital to develop effective health monitoring techniques that
can characterize the internal changes under load action. Coin-

cidentally, the Digital Twin (DT) method has emerged, and
has received increasing attention through creating a high-
fidelity digital mirror of physical entity.1 Michael2 is credited

with proposing DT as a solution for complex product opera-
tions. The aim of DT is to establish a virtual representation
that mirrors the physical entity,3 enabling the tracking of state
variables and parameter changes. On the other aspect, the

development of multi-filed coupling modeling provides more
detailed possibilities for digital representation of the product
internal state. DT have the potential to monitor the state, man-

age the lifecycle, and optimize decision-making for the physical
entity. The integration of the Internet of Things (IoT) and
information systems also brings new energy to the parallel

interaction between the physical and cyber domains. Conse-
quently, DT can be seen as highly precise integrated sensors,
capturing and representing a wealth of data from physical enti-
ties in a virtual environment. Hence, DT-based PHM was first

adopted in the aerospace industry,4 which not only changes
with changes in physical entity through real time updating
DT parameters, but also reflects the changes in the internal

state of the product under working conditions.
Although DT can synchronously change with changes of

physical entity in an ideal state, product degradation is related

to multiple factors, and the variation law is very complex in
real practice. The synchronous evolution DT is difficult to
accurately describe the product lifecycle changes through the

entire service life. This paper presents a dual loop DT-PHM
framework to perform accurate internal state monitoring and
product degradation characterization through real time data
updating from physical entities to their virtual counterparts.

In the first loop, the virtual replica system of physical product
is established through gathering the data by sensors, updating
the DT and mapping the virtual model. When the process of

product starts degradation, the DT-based PHM model is
switched to the second loop through abnormal detection.
The real time data is fed into the DT-based PHM according

to the degradation state from time to time, and the entire pro-
cess DT-based PHMmodel enables a nearly accurate represen-
tation during the lifecycle operation through dynamical

updating of parameters. The DT-based PHM can foresee

Unc
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probable future issues, and decrease product faults and unnec-
essary maintenance. In the process of abnormal detection, a
theory of Independent Principle is proposed, which supple-
ments the theoretical system of DT. In this way, DT-based

PHM evolves from multi-filed coupling, thus optimizing the
updating parameters, increasing the precision of health state
recognition and remaining useful life estimation. The Perma-

nent Magnet Synchronous Motor (PMSM) is used to validate
the framework and simulate the wide range of scenarios during
the entire operation process. The results show that the PHM

DT helps to improve the reliability and maintenance efficiency
of complex product. Compared with previous research, the
proposed DT-based PHM can accurately describe the working
behaviors of the physical entity and the accuracy is improved

compared with that of the previous methods.
The contributions of this study are highlighted as follows:

(1) Considering the difference between normal state DT and
degradation DT of product, a dual loop DT based PHM
framework is provided, in which the first loop provides

the Basic DT (BDT) based on the dynamic updating,
and the second loop focuses on the DT-based PHM
(PHM-DT) for characterizing the degradation process

of product through monitoring the changes in health
status.

(2) The BDT and PHM-DT interaction updates through
abnormal detection based on the ‘‘Independent Princi-

ple”, which is a significant contribution to the theory
of DT. With regular real-time updates, the comprehen-
siveness and accuracy of the interaction will steadily

increase over time.

At the end of this paper, we validate our approach based on

a case study of PMSM. Compared with traditional prediction
methods, the method proposed in this paper can better accom-
pany the characteristic change of the entity and the accuracy is
improved by about 37%. The rest of the paper is organized as

follows: Section 2 introduces the research related to DT and
PHM; Section 3 describes the dual closed-loop DT-based
PHM framework; Section 4 introduces the DT updates mech-

anism; Section 5 carries out the case study on PMSM; Section 6
gives conclusions.

2. Related work

2.1. Modeling of DT

Back in 2011, NASA experts presented the three-dimensional
DT that included the physical entity, DT and their bridge, in

which the information generated in the physical world was
gathered to create and implant DT. This approach emphasizes
seamless integration of the IoT and information systems. By

harnessing advanced information interaction technologies,

ted
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industrial sectors have been pushed towards greater levels of
informatization, digitization, and intelligence. This conver-
gence holds immense potential for driving efficiency, innova-

tion, and optimization across various industries.5 Sensors
and other devices that collect accurate data on the state of pro-
cess provide the real time updating strategy to replicate what

actually occurs. Building mathematical DT with a sufficient
level of complexity are important to forecast real-life behaviors
in various contexts.

Many manufacturers have already applied the DT concept
to actual production. In order to improve the design perfor-
mance of the product, Marr developed DT for vehicles, which
helps to realize the optimal design through information inter-

action between the vehicle and the factory.6 Boeing CEO said
that as we enter the next decade, DT, due to its potential for
increased efficiency and improved performance, holds promise

for revolutionizing global aircraft manufacturing. In the realm
of manufacturing, companies, such as Siemens7 and the F-35
manufacturer Lockheed Martin,8 are increasingly building vir-

tual workshops and digital factories to map physical spaces
into cyberspace. This innovation holds potential for streamlin-
ing operations, optimizing resource allocation, and enhancing

collaboration.
By now, the industrial application of DT technology is

mainly concentrated in the fields of production, design, and
prediction.9 DT modeling methods are mainly divided into

four types: Finite Element Modeling (FEM), multi-
disciplinary modeling language, neural network, and mathe-
matical model. Tao et al. 10 defined DT as the all-factor recon-

struction and digital mapping of the operational state and
operational progress of the physical entity and also informa-
tion space of the product. Fan et al. 11 proposed a DT visual-

ization architecture for Flexible Manufacturing Systems
(FMS), and explored modeling multi-source heterogeneous
information. Dang et al. 12 proposed a DT framework based

on cloud computing and deep learning, taking bridge as
objects to establish DT. Castellani et al. 13 used the Modelica
language to build a DT of a company’s power, heating, venti-
lation and air conditioning systems, and obtained the normal

working data of the actual system through the operation of
the established DT. Wang et al. 14 established a DT of the
image convolutional neural network of the welding process,

and obtained the current penetration information by acquiring
the weld pool image and current data. Venkatesan et al. 15

developed a neural network DT that conforms to the running

state of the motor according to the running time, distance of
the vehicle and the health state of the onboard motor. Mogha-
dam et al. 16 established a torsional dynamic DT for offshore
wind turbines, and gave a related parameter estimation algo-

rithm. Li et al. 17 proposed an adaptive extension-based filter
that is robust and accurate in estimating DT parameters for
both Li-ion and Lead-acid batteries in the state of charge.

Lei et al. 18 took the entire thermal power plant as the object,
and studied the four-layer architecture about 3D modeling,
mathematical modeling, rendering and real time monitoring.

Hu et al. 19 constructed a high-precision gas turbine DT, intro-
duced an error module and kernel density estimation self-
learning to optimize the update of DT, and carried out fault

status diagnosis of the gas turbine based on this method.

Unc
orr

e

252

Please cite this article in press as: GUO H et al. Dynamically updated digital twin f
chronous motor, Chin J Aeronaut (2024), https://doi.org/10.1016/j.cja.2023.12.031
2.2. PHM based on DT

PHM takes center stage in the Industry 4.0 revolution, where
the key challenges involve accurately detecting whether equip-
ment is operating normally and predicting when faults may

occur. Effective implementation of PHM holds the potential
to minimize the occurrence of catastrophic failures and reduce
costs associated with scheduled maintenance. Given the com-
plexity of understanding internal state changes during degra-

dation, DT emerges as a promising method to characterize
the internal health state across different fields and objects. Lev-
eraging its technical advantages, DTs enable better monitoring

and analysis of the health conditions of products, leading to
improved prognostics and decision-making processes. Bai
et al. 20 proposed a novel 3D multi-physics DT for proton

exchange membrane fuel cell based on the Proper Orthogonal
Decomposition (POD) method, and exhibited and analyzed
the DT results of voltage, temperature, membrane water con-

tent and liquid water saturation fields. Ye et al. 21 proposed a
reconfigurable Dynamic Bayesian Networks (DBN) method
that can capture interactions between damages. Their study
shows via a numerical example that the reconfigurable DBN

can accurately predict the crack growth acceleration caused
by bolt loosening. The method tracks multiple damages and
has good physical interpretability. Li et al. 22 proposed a

PHM system based on advanced DT technology for the
Five-hundred-meter Aperture Spherical radio Telescope
(FAST). The PHM system utilizes finite element analysis of

the DT to evaluate the safety status and predict the fatigue life
of FAST’s cable-net structure, enabling effective Condition-
Based Maintenance (CBM) and ensuring the healthy and safe
operation of the structure while improving maintenance effi-

ciency and reducing costs. Angjeliu et al. 23 established a
FEM DT for the Milan Cathedral, which can predict the
future damage trend of the building structure through the

analysis of the FEM. Liu et al. 24 took High-Speed Permanent
Magnet Motor (HSPMM) as an example, and comprehen-
sively discussed the issues that need to be considered in the

construction of a multidisciplinary DT of HSPMM and the
fault diagnosis of its electrical drive system. Aivaliotis et al.
25 presented a methodology for calculating machinery equip-

ment’s Remaining Useful Life (RUL) using physics-based sim-
ulation models and the DT concept, enabling predictive
maintenance for manufacturing resources. This method
involves modeling resources, gathering data from machine

controllers and sensors for tuning digital models, and using
simulation results to assess the condition and calculate RUL,
and allows for non-invasive monitoring and prediction of

machine status. Their methodology is validated through a case
study on predicting the RUL of an industrial robot. Oluwase-
gun et al. 26 proposed a conceptual framework for applying the

DT technology to predict the control element drive mechanism
and a data-driven method for abnormal detection by using coil
current curves to optimize the operation and maintenance pro-
cess of nuclear power plants. Peng et al. 27 conducted research

on the core technology of DT structural rolling bearings,
including detection, modeling and PHM technology, and ana-
lyzed the challenges and future research directions in the devel-

opment of rolling bearing DT technology. Booyse et al. 28

proposed to use the form of deep DT, which learns from the

ted
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distribution of health data, and uses its advantage of indepen-
dence from historical failure data to estimate asset health.
Correa-Jullian et al. 29 discussed the core aspects of the design,

development, and implementation of data-driven PHM appli-
cations, and demonstrated that they can improve reliability
evaluation in liquid hydrogen storage systems. Based on

DT’s PHM idea, Candon et al. 30 gave a comprehensive study
on DT in the form of machine learning models for aircraft load
monitoring, including linear regression models, traditional

artificial neural networks, and deep learning strategies. They
also discussed the need for time-series modeling and explored
potential solutions to the issues encountered in traditional or
modern aircraft data acquisition systems. Their findings hold

significant value for researching fatigue problems in mechani-
cal systems.

Of all the existing works mentioned above, the DT-PHM

methods have the following core limitations: firstly, the estab-
lished DTs are discipline-specific, limiting their ability to com-
prehensively describe the equipment’s state; secondly, the

physical interpretation of parameters in DT, built using multi-
disciplinary language, neural network models, or finite element
methods, is unclear; thirdly, the established DTs are open-loop

models, lacking a corrective feedback loop for comparison;
lastly, most of the DTs are based on fixed-parameter models,
unable to adapt to changes in actual equipment states. There-
fore, the focus of this paper is to establish a multidisciplinary

coupling DT and its dynamic update mechanism. Moreover,
DT is combined with PHM to build a general DT operation
and maintenance framework.

3. Dual loop DT based PHM framework

With the long-term operation of actual equipment, the digital

model established according to traditional simulation has a
certain risk of errors. Due to the factors such as degradation
or failure, the parameters or the model will change accord-

ingly, resulting in deviation of DT performance from the
entity. Therefore, a closed-loop comparison link is needed to
ensure the consistency of the DT with the actual equipment.

The two main aspects of DT research are ‘‘establishment”
and its ‘‘application”. Based on this point, this paper presents
a dual closed-loop DT-based PHM framework, as shown in
Fig. 1.

(1) First Loop: Basic DT orr
ec
Fig. 1 Dual loop DT ba

Please cite this article in press as: GUO H et al. Dynamically updated digital twin f
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The first loop is used to establish the virtual model of the
physical product under the normal condition that consists of
four parts: physical entity, IoT, DT, and DT correction. The

physical entity serves as the foundation for DT modeling,
and acts as the starting point for the DT system. IoT estab-
lishes a data interconnection between the physical space and

virtual space. This information connection provides the neces-
sary ‘‘data nutrients” required for the dynamic updating of the
DT system. DT modeling serves as the essence of DT, encap-
sulating its very soul. Dynamicity and high accuracy form the

core essence of DT. We define DT as a dynamic model,
wherein the internal parameters are influenced by its self-
state and operating conditions, ensuring a continuous adapta-

tion to changing circumstances.

(2) Second Loop: PHM-DT

The second loop is used to establish the virtual model of
product during lifecycle degradation. Here, the PHM is the

core of DT. In the second loop, the health status can be
detected, faults can be diagnosed, and the remaining useful life
can be predicted with PHM-DT. In order to describe the PHM
scenarios at different levels, PHM-DT collects the observed

information on the physical product, iteratively updates the
parameters to the corresponding DT, and integrates compre-
hensive lifecycle DT. Since the degradation trend of physical

entity is closely related to the operational condition and uncer-
tainty factors, the evolution of product status is different under
the degradation scenario. In order to capture the degradation

state accurately, processing of the integrated data obtained
from the physical entity sensors is carried out, and updating
of the dynamic parameters is implemented from time to time.

(3) Interaction: Abnormal detection

As the physical entity operates, the DT remains in a

dynamic process of adaptation, and needs the model evolution
technology to drive self-updating of the virtual model. Abnor-
mal detection is the important interaction between the dual

loop DT. In this paper, we put forward a novel concept of
‘‘Independence Principle” in the abnormal detection process
to ensure the significance of the established DT. The specific

principle will be discussed in detail in the next section. This
paper transforms from basic DT to PHM-DT with abnormal
detection. Abnormal detection can establish the seamless con-

ted
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nection between basic DT and PHM-DT and automatically
respond to the changes in product status of entire lifecycle.

3.1. Basic DT modeling (1st loop DT)

In general, a DT is an integrated simulation of a physical entity
that encompasses multiple disciplines, such as mechanical and

electrical disciplines, across its operation (see Fig. 2). If the
operational physical mechanism is known, we should establish
the real-time dynamic operation process model of physical

entities with multi-field coupling. The basic DT, as the mirror
image of physical product, can be established by multi-field
coupling modeling.

As shown in Fig. 2, the physical entity and DT share the
same input U. The actual output from the physical product
is represented as O. Based on the first-principle structure, the
output of basic DT can be shown as

Ô ¼ fðx1; x2; � � � ; xm; xmþ1; � � � ; xn;UÞ þD ð1Þ
where Ô is the performance output of DT, U is the input of
DT, and D ¼ d1; d2; � � � ; dr½ � is the disturbance and uncertainty.
The parameters of DT is expressed as

X ¼ x1ðtÞ; x2ðtÞ; � � � ; xmðtÞ; xmþ1; xmþ2; � � � ; xn½ �, in which
x1ðtÞ; x2ðtÞ; � � � ; xmðtÞ½ � varies with the operational condition,
and xmþ1ðtÞ; xmþ2ðtÞ; � � � ; xnðtÞ½ � keeps constant like the geomet-

ric size. The impact on DT parameters of operational condi-
tion can be expressed as

xiðtÞ ¼ x0 þ qðc1; c2; � � � ; clÞ ð2Þ
where x0 is the initial value of the parameter, q represents the

operating conditions on the parameters, and C ¼ c1; c2; � � � ; cl½ �
is the set of condition parameters.

In certain scenarios, model-based approaches may not
effectively capture the complexities or uncertainties present

in real systems. In such cases, data-driven approaches can be
employed to complement the model and enhance its perfor-
mance. Data-driven methods leverage the analysis and mining

of extensive system data to extract valuable patterns, relation-
ships, and laws. By incorporating actual data, these
approaches can provide additional insights to improve the

accuracy and effectiveness of the model.
By leveraging their respective advantages, they complement

one another and aid in joint characterization of the target

object. This integration can be mathematically expressed as
Eq. (3) orr

e

Fig. 2 Basic DT modeling w
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Ô ¼ fð#ð�Þ; gð�Þ;UÞ þD ð3Þ
where #ð�Þ represents the model-driven model, gð�Þ represents
the data-driven model and the parameters X included in the

overall model.
Since the physical mechatronic product operates in multiple

disciplines such as mechanical, electrical, control et al., its
dynamics, electricity and another part directly affect product

performance. When the basic DT is applied to the physical
product, multi-field coupling DT is established based on the
dynamics equation and Newton’s law. In order to promote

the application of virtual spaces in the DT establishment,
information interaction is responsible for updating the DT
parameters collected from entity sensors. It is important to

note that when creating a DT for different objects, it is essen-
tial to incorporate the relevant disciplines specific to the enti-
ties. After establishing the basic DT based on multi-field

coupling, its parameter updating mechanism can be shown in
Fig. 3.

3.2. PHM based on DT (2nd loop DT)

Although basic DT can accurately map the physical product
with the changes under the operating condition, it is difficult
to express the physical product corresponding to the full life

cycle process. PHM DTs are different in differed health states
in 2nd loop DT.

This paper defines the health state index of product as

H ¼ 1� r0 � rt

rs
ð4Þ

where r0 represents the initial value of the key parameter, rt

represents the value of the key parameter at time t, and rs rep-
resents the degradation threshold value of the key parameter.

The health state index can reflect the degradation degree of
product within the range of 0 to 1. Let H ¼ H1;H2; � � � ;Hbf g
represents the product state from complete wellness, minor
fault, moderate fault to total failure. By assigning appropriate

degradation level to the actual situation, we can effectively
determine the operational status of an entity and build the
appropriate DT. Fig. 4 shows the PHM based on DT in the

2nd loop DT.
In Fig. 4, PHM-DT modeling results not only form the final

insights through model matching, but also realize the co-

evolution through model switching updating. For example, if
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we divide the health state into five parts, the product health

state index can be written as

H ¼

1;Normal

H1;Minor fault

H2;Moderate fault

H3; Severe fault

0;Failure

8>>>>>><
>>>>>>:

ð5Þ

The meaning of the health state of product is as follows:

(1) H ¼ 1 represents the normal state, in which the product
has no or a little change without affecting product

performance.
(2) H ¼ H 1 indicates the minor fault state, in which minor

degradation of the product occurs during the operation.

(3) H ¼ H 2 expresses the moderate fault state, in which
moderate degradation of the product arises after run-
ning a considerable period of time.

(4) H ¼ H 3 is the severe fault state, in which serious degra-
dation of the product occurs in the late stages of product
life.

(5) H ¼ 0 represents the failure state, which means the pro-

duct reached its lifespan.
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Different health state corresponds to different parameters

or models within the DT. Therefore, it is necessary to
update the DT based on the current health state of equip-
ment by detecting its status changes. For example, the val-

ues of key parameters within the DT may vary through
updating the algorithm when the equipment deteriorates
from minor fault to moderate fault state. Hence, by employ-

ing appropriate algorithms, the DT is updated by consider-
ing the current health state of the equipment to ensure its
alignment with the physical entity. In the case study of this
paper, we utilize the recursive least squares method to

update the flux wf, resistances R, and inductance L in the

PMSM DT based on the current state of health, which
ensures that the DT remains consistent with the entity

across different health stages.
In summary, adjusting the parameters or structure of the

DT based on the equipment’s health state is a crucial step in
ensuring its consistency with the actual equipment. By updat-

ing the DT using suitable algorithms when the equipment’s
state changes, the reliability and adaptability of the DT can
be enhanced. Such update strategies help monitor and main-

tain the entity more effectively and provide accurate predic-
tions and decision support.
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4. Dynamic update mechanism of dual loop DT based PHM

framework

It is obvious that abnormal detection is the most important

interaction of dual loop DT based PHM framework. Accord-
ing to the health state of physical entity, abnormal detection
can be triggered between BDT and PHM-DT. This paper pre-

sents ‘‘indices” of abnormal detection as a trigger to update the
DT appropriately. Because the indices are independent of pro-
duct output and internal parameters, we define the idea as
‘‘Independence Principle”. According to this principle, anoma-

lies in DT should be identified based on ‘‘indices”, and the DT
is subsequently updated based on the characteristic informa-
tion of the real equipment. In other words, it is not meaningful

to directly compare the output or the main parameters
between DT and the physical entity, because we can already
obtain information about the target by detecting the signals

from the entity. The purpose of building DT is not simply to
create it, but rather to improve its accuracy by incorporating
relevant and independent indices.

As shown in Fig. 3, the differences between DT and entity
are initially identified through abnormal indices. If the differ-
ence detection is passed, the DT is considered reliable and

doesn’t require updates, and the output result Ô of the DT

can be directly utilized. Once the DT’s consistency is con-
firmed, the corresponding output result can be provided to
external sources. If the performance of a physical entity

degrades and abnormal detection is triggered, the parameters
of the DT are needed to be updated using parameter estima-
tion techniques. Furthermore, if the DT still fails to pass

abnormal detection after several parameter updates, it suggests
the occurrence of a change in the mechanism or structure of
the entity.

Consequently, the DT needs to be remodeled through sys-
tem identification and other appropriate methods. It is essen-
tial for all updated DTs to successfully pass the consistency
measure before they can be deemed consistent with the techni-

cal state of the physical entity.

4.1. Definition of the trigger based on abnormal indices

Components in actual equipment will degrade or fail as the

operating time increases, which will cause the entity to deviate
from the state of the DT. To ensure consistency between DT
and the entity, we utilize the indices as the triggering criteria.
The abnormal trigger is defined as

trig ¼ gðG0
entity ;Gt

entity ;GDTÞ ð6Þ

where G0
entity is the abnormal index at the previous moment of

physical entity, Gt
entity is the abnormal index at time t of entity,

and GDT is the abnormal index at the current moment of DT.
When the threshold is not satisfied, the abnormal trigger is ini-
tiated, which indicates that the DT needs to be updated. The

abnormal trigger is a function that depends on three abnormal

indices (G0
entity ;Gt

entity ;GDT) selected from the DT system. Its

functional relationship can be described by the function gð�Þ.
The specific form of gð�Þ is not fixed, and determining the
appropriate pattern for obtaining abnormal triggers based on
the abnormal indices requires consideration of different
objects and actual situations.
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In the following are the guidelines of Independent Principle:

(1) The abnormal factor G� is a parameter that can effec-

tively characterize the abnormal features between DT
and physical entity.

(2) Try to avoid selecting output or key internal parameters

as abnormal indices. Since the relevant parameters can
already be obtained by traditional means, the existence
of parameters derived from DT becomes meaningless.

However, the specific process of selecting these factors
should be based on the unique characteristics of the actual
equipment. It is essential to consider the factors such as design,

functionality, and operational environment of the equipment.
By thoroughly understanding these characteristics, we can
determine the specific abnormal factors that are most relevant

and significant for detecting deviations in the equipment’s
performance.

4.2. DT updates

For different form DT, parameter updates need to be com-
bined in different ways to achieve the best results. According

to the description of the model correction link in the previous
chapter, the update of DT can be divided into parameter
update and model update. For linear models, the Recursive
Least Square (RLS), Gradient Descent (GD), and Conjugate

Gradient (CG) can be used to update parameters. For no-
linear models, model parameters can be updated using Particle
Swarm Optimization (PSO), Maximum Likelihood estimation

(ML), Artificial Neural Networks (ANN), and other methods.
Taking the RLS algorithm as an example, consider the lin-

ear model. We can assume that there exists a relationship

between the variable parameters and their observed values,
which can be represented as

Zt¼ Qthþ Vtt ¼ 1; 2; � � � ; l ð7Þ
where Zt represents an observation output vector consisting of

ZðtÞ, t represents the observation at the tth step, Qt represents
an observation vector consisting of t state values,

h ¼ ½x1; x2; . . . ; xm�T represents the parameter that requires

updating, l is the number of observation, and Vt refers to the
uncertainty term or perturbation.

The estimation algorithm of RLS parameters is

Ktþ1 ¼ Ptþ1qTðtþ 1Þ � kþ qðtþ 1ÞPiq
Tðtþ 1Þ½ ��1

Ptþ1 ¼ 1
k Pt � Ktþ1qðtþ 1ÞPt½ �

ĥtþ1 ¼ ĥt þ Ktþ1 Zðtþ 1Þ � qðtþ 1Þĥt
h i

8>><
>>: ð8Þ

where Ktþ1 is the correction gain; qðtÞ is the tth observation,

and is an element of Qt; ĥt is the estimated value of the param-

eter at the tth step of h; ZðtÞ is the measured value at the tth

step, and is an element of Zt; Ptþ1 is the prediction of the

ðtþ 1Þth step based on the measurement at the previous step,
and P0 needs to be preset with a suitable initial value; k is for-

getting factor. The parameters can be updated through itera-
tive updates using this method.

In the linear model, parameter ĥt can be updated iteratively

using Eq. (8) to gradually approach the true value of the
parameter. This iterative updating process allows for refining
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the parameter result and reducing the discrepancy between the
estimated and actual values.

As non-linear models, taking the PSO algorithm as an

example, we define the objective function as

vðhÞ ¼ pðhÞ � signðpðhÞÞ ð9Þ
where pð�Þ represents the deviation function between the entity
observation and the DT result observation, and signð�Þ is a

symbolic function. In the context mentioned, the deviation

function can be defined as pðhÞ ¼ Z� Ô. The task of PSO is
to find the minimum value vðhÞ, and determine the zero solu-

tion for h. The resulting solution represents the optimal
parameter that satisfies the entity observation conditions.
Therefore, the objective function is denoted as

vðhÞ ¼ ðZ� ÔÞ � signðZ� ÔÞ. The PSO algorithm can be used
to obtain the minimum value of vðhÞ and the resulting
solution.

The parameters that need to be updated in the non-linear

models are h ¼ ½x1; x2; . . . ; xm�T. The iterative update of the

optimal solution is shown in Eq. (10).

vkþ1i ¼ xvki þ c1r
k
i1ðjk

i � xk
i Þ þ c2r

k
i2ðjk

g � xk
i Þ

xkþ1
i ¼ xk

i þ vkþ1i

(
ð10Þ

where vki represents the speed of the ith particle at the kth iter-

ation, with the initialization speed being 0; x denotes the iner-
tia weight, which controls the impact of the particle’s previous

velocity on the current velocity; c1 represents the individual
learning factors, typically assigned a value of 2; and it determi-
nes how much a particle relies on its own best solution; c2 is the

social learning factor, also typically set to 2. and it decides how
much a particle considers the global best solution found by all
particles; r1 and r2 are random numbers with the values rang-

ing from 0 to 1; jk
i refers to the optimal target solution

obtained by the ith particle as of the kth iteration; jk
g represents

the optimal target solution found by all particles up to the kth

iteration; xk
i denotes the solution corresponding to all particles

at the kth iteration.
By assigning appropriate values to these variables and

applying them within the PSO algorithm, it becomes possible
to optimize the search for the optimal solutions in a multi-
dimensional space. It is important to note that PSO may pro-

duce multiple sets of solutions that meet the objective function.
Therefore, it is necessary to filter the obtained solutions based
on the specific situation and select the parameter set that best

fits the actual situation as the updated value. Hence, selecting
an appropriate updating method for DT requires considering
the complexity of the model, the nature of the data, and the
desired optimization objectives. By taking these factors into

account, we can achieve the best results in updating DT
parameters and updating accuracy and performance.

4.3. Consistent measurement

It is crucial to verify and compare the output characteristics of
the DT with those of the actual equipment to ensure its effec-

tiveness and accuracy. This validation process is necessary to
confirm that the updated DT appropriately reflects the state
of the entity. By assessing the similarity between the updated
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DT and the entity, we can ensure the reliability of the degrada-
tion assessment.

The Mahalanobis Distance (MD) is a commonly employed

algorithm in machine learning for measuring the dissimilarity
between two samples. It calculates the difference by consider-
ing the covariance between variables. However, a disadvantage

of MD is its tendency to amplify the influence of variables with
small changes. This feature can be considered as an advantage
in monitoring the disparity between the updated DT and the

entity.
We define state vectors and a set of vectors as follows:

hw ¼ x1w; x2w; . . . ; xmw½ �T
X ¼ h1; h2; . . . ; hv; hDT½ �

(
ð11Þ

where hw represents the state matrix composed of x measure-
ments of the entity; hDT is the running state vector value of DT;

X consists of DT and v entity state vectors under the same
working condition. In calculating the MD, the number of
the sample size is required to be greater than the number of

dimensions of the sample, that is vþ 1 > m. The mean of these
v entity state vectors is defined as

la ¼
1

v
h1 þ h2 þ . . .þ hvð Þ ð12Þ

Let matrix D be the inverse of the transposed covariance of

X, as shown as follows:

D ¼ CovðXTÞ�1 ð13Þ
Therefore, the MD between la and hDT is

MD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðla � hDTÞTDðla � hDTÞ

q
ð14Þ

We need to set a threshold e based on actual experience.
When MD <e, it is considered that the updated DT has a high
state consistency with the entity; if MD>e, it is considered

that the DT still needs to be updated. It is important to note
that validation of the model is required after update of the
parameters and structure.

5. Case study: PMSM

The PMSM is a highly integrated and multi-filed electrome-
chanical device that serves a crucial role in energy transforma-

tion through electric energy. The accurate modeling and
coupling of its multiple disciplines are essential for establishing
the DT based model. This paper focuses on developing a com-

prehensive DT for a surface-mounted PMSM that takes into
account various disciplines, including electricity, control,
dynamics, power loss, and thermal aspects. The DT is estab-

lished by combining both model-driven and data-driven fusion
techniques.

5.1. Multi-filed modeling of PMSM

5.1.1. Electrical & dynamics models of PMSM

The classical PMSM’s d-q voltage mathematical model

(model-driven) with uncertainty are

ud ¼ Rid þ Ld
did
dt
� xeLqiq þ dd

uq ¼ Riq þ Lq
diq
dt
þ xe Ldid þ wf

� �þ dq

(
ð15Þ
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where ud, uq are the d-q components of the stator voltage; id
and iq are the d-q axis components of the stator current; R is

the resistance of the stator; Ld and Lq are the d-q components

of the inductance components; xe is the electrical angular
velocity; wf is the permanent magnet flux; dd and dq are the

uncertainty of the voltage equation, which are used to ensure

the accuracy of PMSM DT and are the basis for parameter
identification.

The equation for the electromagnetic torque is shown as

follows:

Te ¼ 3

2
Pniqwf ð16Þ

where Pn is the number of pole pairs of the PMSM. The

dynamics equation of the PMSM is

Te ¼ Tm þ Bxr þ J
dxr

dt
ð17Þ

where Tm is the load torque; B is the friction coefficient; xr is

the mechanical angular velocity; J is the total moment of iner-
tia of the rotor and the external load.

5.1.2. Control model of PMSM

The PMSM entity used in this paper is controlled by the dual
closed-loop Field-Oriented Control (FOC) method with id ¼ 0
A. The external rotation speed and torque measured from

actual PMSM are used as the input to the control system to
drive the PMSM DT. The PMSM DT electrical status can
be controlled by means of a physical rotation speed signal

and torque condition (see Fig. 5).
Now there are a variety of control methods for PMSM,

such as Model Predictive Control (MPC), ML-assisted meth-
ods, etc. In this paper, only PI control in the actual PMSM

object is used as a part in the DT. The study of PMSM control
methods is not included in this paper.

5.1.3. Power loss model of PMSM

Copper, iron and magnetic losses are the main causes of
PMSM heating. The calculation model of copper loss is

PCu ¼ 3

2
i2qR ð18Þ

where iq is the result of the constant amplitude transformation,

so its RMS value needs to be divided by
ffiffiffi
2
p

.

Commonly used the calculation methods for analyzing iron
and magnetic losses in PMSM include empirical formulas and
Finite Element Method (FEM). However, empirical formulasco

rre
Fig. 5 Control method of DT in
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Un
often involve complex non-linear links and numerous parame-
ters that are inconvenient to measure directly, such as eddy
current density and conductivity.31 Moreover, discrepancies

in parameter values can lead to deviations between calculated
and actual results. To overcome these challenges and achieve
higher accuracy, the model-driven method is selected for ana-

lyzing the loss in PMSM.
This paper uses the experiment and FEM analysis tool

Maxwell to conduct 121 sets (5–15 N�m; 1000–2800 r/min)

simulation near the rated working conditions (10 N�m, 2500
r/min) of the PMSM (see Fig. 6).

The three graphs presented above depict the iron loss, mag-
netic loss, and copper loss of the PMSM with various rotation

speeds and torque conditions. Observing the graphs, it is evi-
dent that the iron and magnetic losses of the PMSM demon-
strate a robust correlation with the rotation speed, while the

copper loss exhibits a strong correlation with the torque
applied. Moving on to the three graphs below, they showcase
the input power, output power, and the error between them

(input power - output power).
Based on the relationship observed between iron and mag-

netic losses, which is related to the rotation speed and torque, a

quadratic linear formula is fitted to establish a data-driven
model for the iron and magnetic losses of the PMSM. The
resulting data-driven model can be represented as follows:

PIro ¼ L1 iq;xr

� �
PMag ¼ L2 iq;xr

� �
(

ð19Þ

where PIro and PMag represent the iron loss and magnetic loss,

respectively; xr represents the rotation speed; L1 and L2 repre-

sent the function of iron loss and magnetic loss.
Additionally, the normal distribution of the power error is

verified using a Q-Q plot. The analysis reveals that the error
between the input and output power follows a normal distribu-

tion with a mean of 0. This confirms the acceptability of the
power loss model derived from the FEM calculations of iron,
magnetic and copper losses (see Fig. 7).

5.1.4. Thermal model of PMSM

Similar to electrical resistance, heat transfer in PMSM is
impeded by various structures, which can be referred to as

thermal resistance. The value of thermal resistance is typically
determined by the material and dimensions of the correspond-
ing structure. To accurately model the thermal behavior of the

PMSM, an online thermal model has been developed based on
the Mellor thermal network, considering the radial and axial
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directions. This model incorporates the actual material proper-
ties and dimensions of the PMSM components, including ther-

mal resistance, nodes, heat sources, and air ends (see Fig. 8).
The nodes in the thermal network are assigned numbers

based on the location of the different thermal resistances, facil-
itating the analysis and calculation process. Each node repre-

sents a specific point in the PMSM where heat can flow.
Between every two nodes, there exists a distinct thermal resis-
tance (designated as Y��). The point at the end of the thermal

network that contacts the air is labeled as node 0, representing
the actual air temperature. While every structure in the thermal
network possesses a heat capacity, it only has impacts on the

rate of temperature change, but not on the calculation and
analysis itself. Hence, for ease of calculation and analysis,
the links representing the heat capacity in the thermal network
are omitted.
or prognostics and health management: Application in permanent magnet syn-
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The primary sources of heat within the PMSM are the iron,

copper, and magnetic losses. When considering steady heat
generation, these losses can be likened to current sources in

an electrical circuit. Based on the specific locations of these
heat sources, we assign nodes 5, 6, 7, 9, 13, and 16 to represent
their respective heat source locations within the thermal
network.

To enable real-time temperature calculations for each node
in the PMSM, we draw a comparison between the PMSM’s
thermal network and a power grid, and employ the admittance

matrix algorithm, commonly used in power system analysis, to
achieve real-time monitoring of the temperature for each node
within the thermal network. This approach allows for accurate

and timely temperature estimation in the PMSM during oper-
ation (see Fig. 9).

e

Fig. 9 Admittance matrix of enti
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According to the PMSM structure, we establish a frame-
work consisting of 17 nodes to represent the temperature at
various locations within the PMSM. In Fig. 9, nodes 5, 6, 7,

9, 13, and 16 within the heat source vector on the left side
denote the input points for heating power related to iron, mag-
netic, and copper losses. The remaining nodes are set to zero,

indicating no heat source at those locations. The unit of the
heat source vector is measured in Watts.

The matrix shown in the middle of Fig. 9 represents the

admittance matrix associated with the PMSM. Each element
in the matrix corresponds to the admittance of the respective
thermal resistance in the thermal network, which is essentially
the reciprocal of the thermal resistance. This matrix is a large

17 � 17 sparse diagonal matrix, where all elements except for
the identified ones are set to 0. The element highlighted in yel-
low within the matrix represents the admittance at the corre-

sponding heat source. On the right side, the node
temperature vector represents the temperatures of the 17 nodes
relative to the air end point, which is designated as 0. The unit

of temperature for all nodes is Kelvin. The unit of the elements
in the admittance matrix is Watts per Kelvin.

Additionally, the Temperature Coefficient of Resistance

(TCR) is defined as

TCR ¼ R2 � R1

R1 T2 � T1ð Þ ð20Þ

where R1 and R2 is the thermal resistance at T1 and T2, respec-

tively; TCR is around 0.004 at 25 �C (common metal). The
material and size inside the PMSM will not change. When
the PMSM works stably, there will not be such a large temper-

ature change during stable operation. In other words, the influ-
ence of thermal resistance on Y�� can be ignored.

According to the first-principle structure of dynamic DT,

the input is U ¼ xr;Tm½ �; D is disturbance dd; dq
� �

; cjðtÞ is the
working condition (temperature, etc.); internal time-varying

parameters of the model are xm ¼ fwf;R;Ld;Lqg ; the static

parameters are xn ¼ fPn;B; J;Y��g and the inner parameters

in Eq. (19); DT output are Ô ¼ id; iq; ud; uq
� �

. Therefore, the

multi-field coupling model of PMSM DT can be described as

ted
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f

re thermal network of PMSM.
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T ¼ Y��½ � �
PCuð½sðwf;R;Ld;Lq;Pn;B; J;xr;TmÞ� þ ðdd; dqÞÞ
PIroð½sðwf;R;Ld;Lq;Pn;B; J;xr;TmÞ� þ ðdd; dqÞÞ
PMagð½sðwf;R;Ld;Lq;Pn;B; J;xr;TmÞ� þ ðdd; dqÞÞ

2
64

3
75

ð21Þ
where sð�Þ represents the model of the PMSM, which includes

electrical, control, and dynamic aspects (see Eq. (15)); PCu, PIro

and PMag represent the power loss at the given input and cor-

responding operating conditions; Y��½ � represents the admit-
tance inverse matrix of the PMSM, which is then used to
determine the temperature T of each node in the PMSM. In

Eq. (21), the dimensions of the matrices on the right side of
the equation need to be adjusted according to the actual struc-
ture and specific conditions of the system. The heat source vec-
tors provided are intended for illustrative purposes only. They

serve as examples to demonstrate the concept of heat sources
in the system. In practice, the actual heat source vectors would
be specific to the particular system be analyzed or

implemented.
In this paper, we establish a PMSM DT based on a combi-

nation of model-driven and data-driven methods. In terms of

the electrical, control, power and temperature of the PMSM,
we use the model-driven way; as the power loss of the PMSM’s
mathematical model is nonlinear and complex, the results

under multiple working conditions are used to build data-
driven power loss model. Through the combination of the
models of the two forms, DT can be further enriched to more
comprehensively reflect the multidisciplinary coupling opera-

tion status of PMSM under different working conditions,
and provide a more reliable basis for subsequent analysis
and decision making.

5.2. Dynamic update mechanism of PMSM DT

5.2.1. Abnormal detection

The electronic components within actual equipment deterio-
rate or eventually fail as the operating time increases. To deter-

mine potential abnormalities, this paper select the input power
as a trigger index according to the Independence Principle.
Because the input power is neither the model’s output nor an
internal critical parameter in the PMSM system, the trigger

is defined as the ratio of the power error between the initial
moment and the present moment, as shown in Eq. (22).

trig ¼ P0
entity � PDT

Pt
entity � PDT

ð22Þ

where P0
entity, P

0
entity and PDT are the input power of the entity at

the initial time, time t and DT, separately; trig is abnormal
trigger. The input power of an entity PMSM is usually large
than the input power calculated by DT due to additional

power losses (e.g., air friction loss).
The increase in power resulting from demagnetization is

significantly higher compared to that caused by resistance

changes. When the set threshold is not met, the abnormal trig-
ger will be initiated, indicating the need to update the DT.

5.2.2. Dynamic update of DT

Online measurement is hard when used to update the flux link-
age value, and the magnetic field sensor is expensive. More-

Unc
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over, the compact structure of PMSM is not convenient to
measurement.

Therefore, we perform online parameter estimation for the

d-q voltage model of PMSM by the RLS algorithm with for-
getting factor. This paper adopts the RLS, and realizes the
function of online dynamic integration update parameters. In

surface-mount PMSM, Ld ¼ Lq ¼ L. When the PMSM works

stably, the d-q voltage models of the PMSM are be written as

ud ¼ �xeiqLþ dd

uq ¼ iq �xe½ � R

wf

" #
þ dq

8><
>: ð23Þ

According to the updated RLS Eq. (8), in the d-axis for-
mula, �xeiq corresponds to the Qt term, ud corresponds to

the Zt, term, and L is the h to be identified; in the q-axis for-
mula, iq and xe correspond to the Qt term, uq corresponds to

the Zt term, and R, wf are the h to be identified. Vt is the ran-

dom indeterminate item (dd, dq).
Taking ud (in Eq. (23)) as an example, the estimation algo-

rithm of RLS parameters is

Ktþ1 ¼ Ptþ1 �xeiq
� �Tðtþ 1Þ � kþ �xeiq

� �
Pi �xeiq
� �Th i�1

Ptþ1 ¼ 1
k Pt � Ktþ1 �xeiq

� �
Pt

� �
L̂tþ1 ¼ L̂t þ Ktþ1 Udðtþ 1Þ � �xeiq

� �
L̂t � dq

� �

8>>><
>>>:

ð24Þ
By setting the corresponding initial value of K,P and k, an

estimate of L in the current state can be obtained after

iteration.

5.2.3. Consistent measurement

We define PMSM state vectors and a set of vectors as follows:

sw ¼ uqw; udw; iqw
� �T

X ¼ s1; s2; s3; sDT½ �

(
ð25Þ

where sw represents the measured state matrix of w measure-
ments of uq, ud and iq of the PMSM entity; sDT is the running

state vector value of DT; X consists of DT and three entity
state vectors under the same working condition. The mean

of these three entity state vectors is defined as

la ¼
1

3
s1 þ s2 þ s3ð Þ ð26Þ

Therefore, the MD between PMSM and DT is

MD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðla � sDTÞTDðla � sDTÞ

q
ð27Þ

ted
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5.2.4. Overall algorithm for PMSM DT dynamic update

There is not a standard for the selection of MD and trig values,

which need to be determined according to the specific object
and the different tolerance for DT deviation. In this paper,
the upper limit value of MD is set to 2.5, and the lower limit

value of trig is set to 0.97. The whole DT update algorithm
is as shown as Algorithm 1.
or prognostics and health management: Application in permanent magnet syn-
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Algorithm 1. Online dynamic DT update algorithm of PMSM
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Input Uphase; Iphase, Output wf;R;L, Initialization of

PDT;P
0
entity and trig ¼ P0

entity�
PDT

Pt
entity
�PDT

1. Abnormal detection

while trig < 0:97 do calculate power factor

V add voltage2½i�;C add

current2½i�;P add voltage½i� � current½i�;xe ¼ Pnxr

Calculate power factor using root mean square method

Vrms ¼
ffiffiffiffiffiffiffiffiffiffi
V=N

p
;Crms ¼

ffiffiffiffiffiffiffiffiffiffi
C=N

p
;P ¼ P=N;

iq ¼
ffiffiffi
2
p

Iphase; fact ¼ P=Vrms=Crms

uq ¼ UphasecosðfactÞ; ud ¼ Uphase

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2ðfactÞp

2. Parameter estimation

for each uq; ud; iq;xe

ud ¼ �xeiqL

uq ¼ Riq þ xewf

return wf;R;L

3. Consistent Measurement

s1 ¼ ½uq1; ud1; iq1�T; s2 ¼ ½uq2; ud2; iq2�T
s3 ¼ ½uq3; ud3; iq3�T; sDT ¼ ½uqDT; udDT; iqDT�T
X ¼ ½s1; s2; s3; sDT�
D ¼ CovðXTÞ�1;la ¼ ðs1 þ s2 þ s3Þ=3
MD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðla � sDTÞTDðla � sDTÞ

q
if MD < 2.5 then

P0
Real ¼ Pt

Real

break

c
The working mechanism of multi-field coupling PMSM DT
with dynamic update capability is shown in Fig. 10.

5.3. Verification of PMSM DT and its demagnetization trend
prediction experiment

5.3.1. Establishment of a system of PMSM DT

In this paper, the DT system of PMSM is established and val-
idation through the workflow of the Model in the Loop (MIL),orr

e

Fig. 10 Dynamically updated mul
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Software in the Loop (SIL), and Hardware in the Loop (HIL).
DT is encapsulated as a dynamic-link library (DLL) that can
be run online. The main parameters of the PMSM this paper

used are shown in Tables 1, 2, and 3.
The main equipment of the experiment bench is PMSM,

torque sensor, rotation load, speed sensor and the PMSM

DT PHM system (see Fig. 11, from left to right). The other
devices are the rotation load controller, PMSM controller, cur-
rent sensor, voltage sensor, capture card, and temperature sen-

sors located at the PMSM shell.

5.3.2. Comparison of the electrical state of PMSM entity and
DT

The voltage and current characteristics are important criteria
to measure the similarity between the PMSM entity and its
DT. In this paper, the electrical parameters of the PMSM with

a torque of 4 N �m, 6 N �m and 8 N �m and a speed in the
range from 1000 r/min to 1600 r/min are compared with its
DT electrical parameters (see Fig. 12).

It can be seen from Fig. 12 that under the three torque con-

ditions, the results of the input line voltage of the PMSM
entity and the DT are very close, and the line current of the
PMSM entity and the DT have the almost the same error

under the same working conditions. Although there is a certain
error, we can still consider the DT to be reliable.

5.3.3. Comparison of the thermal state of PMSM entity and DT

In order to further verify the correctness of the thermal model,
the same working conditions (air temperature 25 �C) was sim-
ulated by ANSYS Motor-CAD software (see Fig. 13). Finally,

we compared the thermal model, the FEM simulation and the
sensor measurement results (see Fig. 14).

Due to the limitation of the space structure of PMSM, the

temperature sensor is arranged at the shaft and the shell. From
Fig. 14, we noticed that the calculation results of the thermal
model are generally consistent with the results of the FEM
analysis, which shows the accuracy of the thermal model. By

comparing the electrical and temperature parameters of the
entity and its DT, the correctness of the multi-field coupling
DT of PMSM is proved.

5.3.4. Comparison of PMSM DT update algorithm accuracy

Parameter estimation is an important part of DT update. The
lack of model uncertainty (dd, dq) will introduce large errors

ted
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ti-field coupling DT of PMSM.
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Table 1 Size parameters of PMSM.

Parameter Value

Number of pole pairs 4

Number of stator slots 36

Polar arc coefficient 0.85

Moment of inertia (kg�m2) 1.94 � 10�3

Stator outer diameter (m) 1.22 � 10�1

Stator inner diameter (m) 7.8 � 10�2

Rotor outer diameter (m) 7 � 10�2

Shaft diameter (m) 2.2 � 10�2

Magnet thickness (m) 3 � 10�3

Table 2 Electrical parameters of PMSM.

Parameter Value

Stator resistance (X) 3.65 � 10�1

Inductance (H) 1.225 � 10�3

Rotor flux (Wb) 1.53 � 10�1

Rated power (W) 2.6 � 103

Rated current (A) 10

Rated rotational speed (r/min) 2500

Rated torque (N�m) 10

Table 3 Components & Material.

Component Material

Stator and rotor Silicon steel (DW315_50)

Permanent magnets NdFeB_35

Wire winding Copper

Shaft Carbon steel
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CJA 2896 No. of Pages 18

3 January 2024

c

when using parameters identification method, which will affect
the precision of DT. Therefore, the uncertainty of the model

needs to be considered when identifying parameters.
By comparing the real value of wf, R, L and the results

obtained by using the RLS method that introduces model
uncertainty, it is proved that this method can make high-

precision estimation of entity (see Fig. 15).orr
e

1063

Fig. 11 Experiment bench
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5.3.5. Comparison of current change trend due to

demagnetization

According to actual engineering experience, the long-term
operating current of PMSM shall not exceed 1.1–1.5 times of
its rated current value. Monitoring the trend of current

changes due to demagnetization is necessary to analyze the
RUL of PMSM. Based on the above criteria, this paper pre-
dicts the demagnetization trend of the entity without taking

into account mechanical failures. We can monitor the rotor
flux condition of the entity at all times using PMSM DT.
Under the same working condition (1200 r/min, 6 N �m), we
run the PMSM for a total of 800 h, and simultaneously record

the line current of the PMSM (see Fig. 16).
Other recorded data from the experiment are presented in

Table 4.

Since only the line voltage UL and line current IL can be
measured from the actual PMSM, according to the constant
amplitude relationship, here give the relationship between

UL, IL and Uq,Iq as:

UL ¼
ffiffi
6
p
2
Uq

IL ¼
ffiffi
2
p
2
Iq

(

It is evident that as the running time increases, the input

current and power of both the entity and DT exhibit an
increase. The voltage change in the entity does not show a dis-
tinct trend, whereas the voltage in the DT decreases. Due to

the omission of various frictions present in the actual PMSM
and the partial voltage of other components in the DT, there
may be errors in the results for situations Pentity and PDT.

The parameters in Table 4 provide evidence that DT closely
approximates the state of the entity.

By incorporating the abnormal factors observed in the
experimental data, we can utilize Eq. (22) to analyze the
demagnetization situation of the PMSM. Using the first cor-

rection as an example, the threshold calculated based on Eq.
(28) using the abnormal indexes Pentity and PDT is

Pt1
entity � PDT

Pt0
entity � PDT

¼ 790:014� 855:790

787:979� 855:790
¼ 0:9699 < 0:97 ð28Þ

At this juncture, Eq. (28) signifies that the DT has sur-

passed the allowable deviation from the entity, necessitating
an update of the DT. The all three correction values and time
of PMSM DT flux are recorded, as shown in Table 5.

Autoregressive Integrated Moving Average (ARIMA) is a
popular method used for time series forecasting. Its underlying
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or prognostics and health management: Application in permanent magnet syn-

https://doi.org/10.1016/j.cja.2023.12.031


1064

1065

1066

1067

1068

1069

1070

1071

1072

1073
1074

10761076

Fig. 12 Comparison of electrical parameters of PMSM entity and DT.

Fig. 14 Comparison of temperature results of simulation, DT

thermal model and sensors (1200 r/min, 6 N�m).

Fig. 13 Thermal simulation results of PMSM.

Fig. 15 Results of PMSM parameters identification.

Fig. 16 RMS data of original current.
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principle involves regression analysis using historical data and
error data. The ARIMA requires the data to be stationary,

thus necessitating the application of differencing techniques
to the original current data. As the working time progresses
and vibration damage accumulates, the magnetism of the rotor

will undergo irreversible changes. The prediction result of the
ARIMA model based on the current signal is shown in Fig. 17.

U
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This model predicts the current from 690 to 810 h accord-
ing to the ARIMA model. The predicted data are fitted in
the form of a quadratic function as follows:

ipredðtÞ ¼ 6:215� 10�7t2 � 8:5� 10�4tþ 4:6177 ð29Þ
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Table 4 Correction parameters and time of PMSM entity and DT.

Item Runtime (h) UL(V) IL(A) Pentity(W) Ûq(V) Îq(A) PDT(W)

t0 0 105.800 4.300 787.979 87.290 6.536 855.790

t1 259 105.803 4.311 790.014 87.120 6.550 855.954

t2 524 105.800 4.323 792.194 86.940 6.570 856.794

t3 764 105.873 4.335 794.943 86.770 6.588 857.460

Table 5 Correction value and time of PMSM DT flux.

Item Value (Wb) Runtime (h)

Initial value 0.153 0

First correction 0.1526 259

Second correction 0.1522 524

Third correction 0.1518 764
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Curve fitting is also a method for approximating discrete
data with analytical expressions. However, when fitting the

original data, there may be several difficulties. For example,
the signal collected by the sensor will be polluted by noise,
and curve fitting is a challenge for data with complex changes.

But the data obtained from the DT model is more accurate.
According to the data of PMSM DT in Table 5, the demagne-
tization fitting curve of the PMSM DT is obtained as seen in

Fig. 18.
In the experiments, due to the stability and reliability of

PMSM, the consistency of DT and entity characteristics can
be ensured only through parameter updates. Here, we repre-

sent the health state by using flux values as

H ¼ 1� Dwt
f

wthreshold
f

¼ 1� w0
f � wt

f

wthreshold
f

ð30Þ

where Dwt
f is the flux variation value at time t, wthreshold

f is the

threshold value of the flux, w0
f is the initial flux value, and wt

f

is the flux value at time t. rec
Fig. 17 Prediction result
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According to the design requirement, PMSM will malfunc-
tion if the demagnetization value exceeds 5%. In the case

study, the initial flux value is w0
f ¼ 0:153 Wb, so the threshold

value of the flux is wthreshold
f ¼ 0:153� 0:05 Wb. The flux value

at current time is 0.1518 Wb. Therefore, the health status indi-

cator can be obtained as follows:

H ¼ 1� 0:153� 0:1518

0:153� 0:05
� 0:843 ð31Þ

At this point, through the update algorithm, the magnetic
flux value in DT has been updated from the original 0.153 to

0.1518 Wb according to the PMSM current health state by
using the RLS method. Therefore, based on assessment of
the health factors, we consider the PMSM to be in a minor
fault state. If the PMSM continues to operate, the flux will fur-

ther degrade, and we can define it as in moderate fault or even
more severe fault state based on the actual condition of the
PMSM.

Here, we focus on the updating of demagnetization wDTðtÞ
from the normal state (H ¼ 1) to the minor fault state
(H ¼ 0:843). If PMSM continues to operate, the correspond-

ing DT needs update from time to time according to the health
factors from the minor fault to moderate fault states (H < H1).
Fig. 18 shows the updated DT form the normal to minor fault

states.
After curve fitting, the demagnetization function of PMSM

DT is shown as follows:

wDTðtÞ ¼ �5:716� 10�10t2 � 1:3048� 10�6tþ 0:153 ð32Þ
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with ARIMA model.
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Fig. 18 PMSM DT demagnetization and its fitting curve.

Fig. 19 Comparison of predicted results of current with three

methods.
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ec

We also fit the current original data. The fitting curve of the

data collected from the entity is

iEntityðtÞ ¼ 1:659� 10�8t2 þ 2:935� 10�5tþ 4:301 ð33Þ
The control model in PMSM uses a constant amplitude

transformation for three-phase alternating current. The entity

acquisition data and the data used for ARIMA prediction are
the RMS values of the current signal. Therefore, the iq in DT isffiffiffi
2
p

times that of the RMS value of the current acquired by the

sensor. According to the relationship between the current and
the rotor flux in Eq. (16), the trend curve of iq can be obtained

in the three different methods shown as follows:

iARIMA
q ðtÞ ¼ ffiffiffi

2
p

ipred ðtÞ
iDT
q ðtÞ ¼ Te

1:5PnwDTðtÞ

iEntityq ðtÞ ¼ ffiffiffi
2
p

iEntityðtÞ

8>><
>>: ð34Þ

Finally, comparison of the prediction results of iq with the

three different methods in the interval of 750–850 h is per-
formed (see Fig. 19).

As shown in Fig. 19, iDT
q is closer to the actual curve. More

importantly, the high-precision prediction curve obtained by
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DT is obtained from only 4 sets of data. The data resource
consumption is reduced by 200 times. More importantly,
according to the error area calculation in Fig. 19, the error

of DT-based demagnetization trend prediction during this time
period is reduced by about 37% compared with the traditional
time series prediction error.

To sum up, the PHM based on DT is superior to traditional
fitting forecasting and time series forecasting in both accuracy
and efficiency. Compared with the traditional maintenance

method, consumption of computing resources is reduced.

6. Conclusions

(1) This paper proposes a dual loop DT based PHM frame-

work to account for the differences between the normal
state DT and degradation DT of the product.

(2) A structure of first-principle dynamic DT is proposed

under the normal condition.
(3) The ‘‘Independence Principle” is proposed to select

appropriate trigger between DT and physical entity dur-

ing lifecycle degradation.
(4) The dynamic multi-field coupling DT of PMSM is estab-

lished. Experimental results show that the DT-based
PHM approach reduces the error in degradation predic-

tion results by approximately 37% compared to tradi-
tional time series-based forecasting methods.
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