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ABSTRACT
Recognizing emotions in non-verbal audio tracks requires a deep
understanding of their underlying features. Traditional classifiers
relying on excitation, prosodic, and vocal traction features are not
always capable of effectively generalizing across speakers’ genders.
In the ComParE 2022 vocalisation sub-challenge we explore the
use of a Transformer architecture trained on contrastive audio
examples. We leverage augmented data to learn robust non-verbal
emotion classifiers. We also investigate the impact of different audio
transformations, including neural voice conversion, on the classifier
capability to generalize across speakers’ genders. The empirical
findings indicate that neural voice conversion is beneficial in the
pretraining phase, yielding an improved model generality, whereas
is harmful at the finetuning stage as hinders model specialization
for the task of non-verbal emotion recognition.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Super-
vised learning by classification; Learning latent representa-
tions.
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Non-verbal emotion recognition, Audio classification, Contrastive
learning, Data augmentation
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1 INTRODUCTION
Emotion Recognition is a sentiment analysis subtask, which has
recently received much attention by the Natural Language Under-
standing community [1]. For example, extracting and classifying
emotions has shown to be very important in the study Human
Computer Interactions [19] and in the development of in-vehicle
monitoring systems [34] and psychological diagnosis tools [14].

The Vocalisations sub-challenge of theComputational Paralingui-
stic ChallengE (ComParE) [35] entails recognizing emotions (i.e.,
achievement, anger, fear, pain, pleasure, surprise) from non-verbal
vocal expressions. It addressed two main challenges:
(1) Tackling the emotion recognition task in absence of verbal
speech content, which prioritizes the analysis of paralinguistic
information.
(2) Overcoming the limitation of traditional paralinguistic models
in coping with speakers with different characteristics. Specifically,
ComParE focuses on generalizing the emotion classification task
across speakers’ genders. The purpose is to learn an audio classifica-
tion model, leveraging only female voices, that is able to generalize
on male vocalisations as well.

We address the ComParE task using the established transformer
architecture [42], which entails pretraining a general-purposemodel
on a large dataset and then finetuning it for the non-verbal emotion
recognition task.

To make emotion classifiers more portable to different speak-
ers’ genders we leverage data augmentation strategies and con-
trastive learning techniques to generate effective audio representa-
tion. Specifically, both pretraining and finetuning steps also con-
sider altered versions of the original audio recordings. The applied
transformations include both classical acoustic signal alterations
(e.g., pitch shifting [29]) and more advanced neural voice conver-
sion [23, 45].

The preliminary results confirm the benefits of using neural voice
conversion in the pretraining phase, because data augmentation still
preserves both the generality of the model across speakers’ genders.
Conversely, neural transformations turn out to be harmful in the
finetuning phase because model specialization is likely penalized
by the presence of artifacts introduced by neural models that lead
to the alteration of class-specific characteristic of the vocalisations.
Recognizing emotion from audio signals is a challenging task and
requires the development of techniques to address the variability
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of the emotion-related acoustic properties that characterizes the
same emotions across speakers.

2 PRIORWORKS ON AUDIO EMOTION
RECOGNITION

Audio Emotion Recognition (AER) commonly entails the follow-
ing steps: (1) feature extraction from the raw audio, (2) training
and application of an emotion classifier on the extracted features.
The most commonly used features include, among others, zero-
crossing rate, spectral entropy, and chroma vectors [13, 36]. The
adopted classifiers span from traditional models, such as Support
Vector Machines [36], and Gaussian Mixture Model [39], to Deep
Learning models [43]. Recently, a particular attention has been
paid to the adoption of Transformers architectures [42]. The de-
veloped solutions (e.g., Wav2Vec 2.0 [5], WavLM [7], HuBert [17])
have achieved substantial performance improvements, on speech-
related tasks, against traditional techniques on benchmark data
(e.g., SUPERB [44], IEMOCAP [6], and RAVDESS [28]). Nonverbal
Vocalization [16, 18] is a specific AER subtask (hereafter denoted
by AER-NV), which has already been addressed in the context of
multimodal learning [10].

3 AUDIO SPEECH CLASSIFICATION VIA
SELF-SUPERVISED LEARNING

The advent of Deep Learning techniques has radically changed the
ways of processing and classifying audio speech data. Since labeling
data is a labour-intensive task, a huge body of work has been de-
voted to learning speech data representations using self-supervised
learning [25]. Within this scope, a pre-trained representation model,
also called “upstream” model, is learnt first. Then, the model is fine-
tuned to tailor the representation to a specific downstream task
(e.g., Speech Emotion Recognition). To learn upstream models, the
following tasks have been addressed:

(1) generative (e.g., VQ-VAE [41], APC [11, 12], PASE [27] and
PASE+ [30]),

(2) predictive (e.g., DiscreteBERT [2], HuBERT [17], WavLM [7]
and Data2Vec [3]),

(3) constrative learning (e.g., Contrastive Predictive Coding
[26], Unspeech [24], Wav2Vec [32], VQ-Wav2Vec [4] and
Wav2Vec2.0 [5]).

This work addresses the use of contrastive learning to pre-train a
model suited to AER-NV using self-supervised learning.

3.1 Contrastive Learning
Contrastive learning has achieved state-of-the-art performance in
several application contexts, among which computer vision [8, 15]
and reinforcement learning [37]. Recently, it has been used to self-
learn acoustic data representations [20, 31]. The key idea is to
self-learn the key data characteristics by letting the neural model
learn how to map similar examples and to discriminate dissimilar
ones. Given a data point in the original dataset, namely the anchor,
it is paired with an altered version of itself to generate a positive
pair. Data alterations are typically obtained via data augmentation.
When the input data is labeled, positive pairs may consist of points
belonging to the same class [21]. Alternatively, they can be audio

fragments belonging to the same audio track [31]. However, in
many real-world application scenarios, such as the ComParE task,
the presence of bias in the annotated data may limit the model
portability towards different contexts. Specifically, in ComParE the
annotated audio tracks are all related to female vocalizations. Hence,
learning predictive patterns from positive pairs does not preserve
the generality across speakers’ genders.

An alternative contrastive learning approach tailored to audio
speech data consists in leveraging data augmentation techniques,
such as pitch shifting, to improve the robustness of the pretrained
model [20]. The latter approach can be deemed as helpful for mit-
igating the gender bias in the source data, for instance, by con-
sidering the established role of pitch and timbre in voice gender
categorization [29].

To address ComParE we adopt a mixed contrastive approach re-
lying on both self-supervised and supervised learning. Specifically,
to generate positive pairs we rely on augmented data whereas neg-
ative pairs are determined according to a combination of samples
belonging to the different emotion classes.

4 THE PROPOSED METHOD
The method proposed for the Computational Paralinguistic Chal-
langE (ComParE) [35] consists of

• a data augmentation step, which produces altered audio sam-
ples that can be used to build the contrastive data pairs (see
Section 4.1).

• a model pretraining step, in which the Transformers archi-
tecture learns how to solve an upstream, more general task
via contrastive learning (see Section 4.2).

• amodel finetuning step, in which the pretrained model is spe-
cialized for the AER-NV downstream task (see Section 4.3).

The pretraining and finetuning steps are complementary to (i)
learning gender-unbiased audio representations and (ii) solving the
classification task, respectively. The project source code is available
for research purposes1.

4.1 Data Augmentation
We explore the use of both traditional and neural approaches.

4.1.1 Traditional approach: pitch shifting. As discussed in [38],
there exists an evident sexual dimorphism between the vocal appa-
ratus of male and female adults. This causes the main dissimilarities
we hear while listening to female and male voices, in particular
for what concerns the mean fundamental frequency of phonation
(F0) and the formant frequencies [9]. The fundamental frequency
(related to the perceived pitch) is generally inversely proportional
to the size of the source [29]. This means that adult males present
voices with a lower pitch with respect to adult females.

We leverage pitch shifting techniques to augment data by lower-
ing the pitch of female audio speeches to simulate male voices.

4.1.2 Neural approach: automatic voice conversion. We adopt neu-
ral network models to automatically convert female voices to male
one in order to generate the augmented data samples while miti-
gating the gender bias in the input data.
1https://github.com/VaianiLorenzo/compare2022_vocalisation (Latest access: June
2022)
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We rely on a self-supervised Voice Conversion (VC) model [23]
that is able to transform the identity of a given source audio to
those of a different target audio. By leveraging the training split
of the data collection released for the Voice Conversion Challenge
(VCC 2018) [22] and the open-source implementation of the S2VC
framework2, we use as source voices the female speakers of the
VCC dataset and each of the male speakers as target.

The model is trained on the speech recordings of the VCC 2018
dataset [40] and the resulting voice conversion model is used to
augment the training samples of the vocalisation dataset. For each
record in the vocalisation dataset that corresponds to a female
speaker, its augmented version is generated by using as target voice
one random speaker sampled from the VCC dataset.

Due to their inherent model complexity and flexibility, neural
augmentation approaches are likely to be more robust than tradi-
tional ones (e.g., pitch shifting). However, they may suffer from
the the presence of noisy signals (e.g., the presence of non-speech
vocalizations in the input data for AER-NV) or multiple speakers
within the same audio track.

4.2 Model pretraining
In our experiments we use the original versions of WavLM [7] and
Wav2Vec2.0 [5]. Specifically, we started from the pretrained check-
points3 that are learned using self-supervised training objectives.

Prior to specializing them on the proposed task, we adopt an
additional pretraining strategy based on contrastive learning. The
outcome is latent vector space in which audio tracks expressing
the same emotion are represented in a similar way, regardless of
the speaker’s gender (see Figure 1). To this aim, we train the model
using both positive and negative pairs.

Given the anchor audio element, for positive samples we adopt a
self-supervised approach to contrastive learning based on data aug-
mentation. The key idea is to leverage data augmentation to make
the model more generalizable across different speakers’ genders.
Specifically, a positive sample corresponds to the same recording
augmented using one of the techniques described in the previous
section. By altering the original sample related to female vocal-
izations we build a synthetic version of the corresponding male
vocalization, which is included in the representation of positive pair.
Negative samples are generated by adopting a supervised approach
tailored to emotion recognition. They are picked from the original
dataset expressing a different emotion from the anchor. In such a
way, the model will automatically learn how to embed samples in a
positive pair close in the vector space.

Embedded vectors, either positive or negative, are compared
to each other using the cosine similarity. In other words, the con-
trastive model learns how to minimize the distance between the
original audio vocalizations and their corresponding artificial male
versions, while keeping female vocalizations that represent different
emotions well separated from each other.

We create two distinct pretrained versions of each model, which
differ in how positive examples are generated: the former only
leverage the traditional data augmentation technique, while the

2https://github.com/howard1337/S2VC Latest access: June 2022
3Wav2Vec 2.0: https://huggingface.co/facebook/wav2vec2-base, WavLM: https://
huggingface.co/microsoft/wavlm-base

Figure 1: Pretraining strategy based on contrastive learning.
Positive samples are an augmented version of the anchor.
Negative samples correspond to speakers expressing differ-
ent emotions.

latter exploits also the neural approach. This choice is due to the
inability of the voice conversion step to keep the emotion expressed
in the audio well defined, therefore we try to remove it from one of
the pretraining versions.

4.3 Model finetuning
The following versions of the finetuning step are considered:
(1) No data augmentation at the finetuning stage.
(2) Alter half of the training data samples using pitch shifting and
keep the remaining ones unchanged.
(3) Alter half of the training data samples with both pitch shifting
and voice conversion technique (in the same proportion).
(4) Alter all the training samples using pitch shifting only.

Similar to the previous step, data augmentation is aimed at
improving the generality of the trained models across different
speaker’s genders.

5 EXPERIMENTAL RESULTS
5.1 Experimental Design

Hardware settings. The experiments are performed on a machine
equipped with AMD® Ryzen 9® 3950X CPU, Nvidia® RTX 3090
GPU, and 128 GB of RAM running Ubuntu 21.10.

Transformers setup. We test four configurations in the pretrain-
ing step. We use the Cosine Embedding Loss applied to the em-
beddings extracted from the last hidden layer of the model. These
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Table 1: Training time for the pretraining and finetuning
steps. The training time is given in seconds per epoch.

Model Pretraining Finetuning

Wav2Vec 2.0 12.5s 10s
WavLM 15s 12.5s

procedures last for 200 epochs, using a batch size of 16 with and an
initial learning rate of 10−6 halved every 40 epochs.

In the finetuning step we use a weighted Cross Entropy Loss,
for 200 epochs, using a batch size of 16, an initial learning rate of
3 · 10−5, a warm up ratio of 0.1 and a linear decay.

The pretraining and finetuning times for the considered models,
under the reported hardware settings, are reported in Table 1.

Validation. During each pretraining step the model is evaluated
on the development set in order to identify the best checkpoint.
Next, each checkpoint is finetuned by applying all the previously
described combinations of data augmentation. The tested com-
binations are summarized in Table 24. It reports, for each tested
configuration, the Unweighted Average Recall (UAR) [33], which is
computed as the mean recall value over all emotion classes.

5.2 Selected runs
Table 2 reports the UAR of the selected runs and of the baseline
method released by the ComParE organizers separately for the
development and test sets. The configurations evaluated on the test
set are a selection of the top-5 most promising settings. Since the
development set consists of female vocalizations only whereas the
test set contains male vocalizations the performance scores reported
in column Development of Table 2 are not decisive to shortlist the
configurations applied to the test set. The guidelines used to select
the best representatives are given below.

• We choose the model that is known to be most suited to
non-verbal content analysis (i.e., WavLM [7]).

• To evaluate the impact of the data augmentation phase, we
compare the following settings: (1) pitch shifting only (2)
pitch shifting combined with neural voice conversion. We
separately analyze the above settings on pretraining and
finetuning.

• We conduct an ablation study on the percentage of aug-
mented training samples during the finetuning step.

5.3 Results
The main research findings are summarized below.

Comparison with the baseline method on the Development set.
The non-augmented model outperforms the baseline method (UAR
45.94 vs. 39.8), whereas all the augmented versions perform as
well as or slightly worse than the baseline. The main reason is
that data augmentation is instrumental for generalizing the model
across different genders. As expected, such a generalization process
is beneficial for classifying male vocalizations in the test but is
harmful on the female vocalizations in the development set.

4For the sake of brevity, in the tests we omitted the least interesting combinations.

Comparison with the baseline method on the Test set. On the test
set the UAR scores are all lower than those achieved by the baseline.
However, data augmentation has shown to improve the original
model performance for all the tested configurations (e.g., UAR 33
with P.S. Pretraining+Finetuning vs. 28.5 with no augmentation).

Comparison between Wav2Vec and WavLM. Wav2Vec 2.0 and
WavLM show comparable performance on the development set.
However, WavLM is, by construction, more suitable for speaker-
related tasks [7]. For this reason, WavLM is the preferred model for
the selected runs on the test set.

Effect of data augmentation. The model version without any
form of data augmentation achieves the worst performance on the
Test set because it has shown to be not robust enough to classify
male vocalisation as well. Conversely, the configurations including
data augmentation techniques during the pretraining phase are the
best performing ones. Augmenting data in the finetuning phase
turns out to be not beneficial because the resulting model lacks of
a sufficient level of specialization.

Comparison between augmentation techniques. Neural Voice Con-
version (V.C.) is less effective than Pitch Shifting (P.S.) on the de-
velopment Set because the quality of the converted speech is not
always satisfactory. Conversely, on the test set the integration of
both V.C. and P.S. is beneficial as improves the generality of the
model across speakers’ genders.

Effect of data augmentation ratio. To further assess the effect
of Pitch Shifting, we conduct an experiment by setting the ratio
of data augmentation during finetuning to 100% (i.e., the model is
trained using only pitch-shifted samples). The results show that
it slightly decrease the performance on the test set. This could be
expected, since the network only learns with augmented samples,
thus it may be difficult for the network to identify the correct class
in real data.

6 CONCLUSIONS AND FUTUREWORK
We presented a solution based on Transformers and data augmenta-
tion for the Vocalisation sub-challenge of the ComParE 2022 Grand
Challenge [35]. We leveraged a contrastive learning approach to
achieve the necessary model generality across speakers’ genders
while mitigating the negative effects on emotion recognition perfor-
mance. Even though slightly lower than the baseline, the achieved
results confirm the expectations about the effect of the data aug-
mentation techniques on the Test performances (i.e., on the male
vocalizations) and leave room for several future works. Specifically,
we will explore the effect of other augmentation techniques aimed
at bringing audio recordings of opposite-sex speakers closer. We
also plan to remove codebooks-based quantization from the tested
models: it is suitable for spoken content analysis but not necessarily
beneficial for non-verbal emotion recognition.
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Table 2: Results obtained on Development and Test sets. PS
and VC indicate Pitch Shifting and Voice Conversion respec-
tively. The per-dataset best performer is highlighted in bold
✓* denote the data augmentation steps that are applied to
100% of the training examples.

VOC-C Evaluation
Pretraining Finetuning Development Test

PS VC PS VC Wav2Vec2
UAR

WavLM
UAR

WavLM
UAR

No pretraining 45.94 45.04 28.5
✓ 38.86 40.05 -
✓ ✓ 39.32 40.83 33.1
✓ ✓ ✓ 38.33 34.28 -
✓ ✓ 37.25 36.84 -
✓ ✓ ✓ 38.13 35.83 33.5
✓ ✓ ✓* 30.97 31.42 33.0
✓ ✓ ✓ ✓ 35.47 36.35 31.9

Baseline 39.8 37.4
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