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A non-intrusive nuclear data uncertainty propagation study

for the ARC fusion reactor design

Alex Aimetta, Nicolò Abrate, Sandra Dulla, and Antonio Froio

Abstract

It is widely recognized that the safe and robust design of a nuclear system requires an uncertainty

propagation (UP) analysis concerning the various nuclear data used as input parameters, especially

in view of the most recent design methodologies like the Best Estimate Plus Uncertainty approach.

The evaluation of the input uncertainties and their propagation to the design parameters of interest

is particularly important in the case of nuclear fusion machines such as the Affordable Robust

Compact (ARC) reactor, which is featured by the presence of uncommon isotopes in the nuclear

engineering field, like fluorine, beryllium and lithium. The uncertainties on the nuclear data of

these nuclides can have a significant impact on fundamental design parameters, such as the target

Tritium Breeding Ratio (TBR). Hence, in this work we investigate the application of different

methods for propagating the nuclear data uncertainty to the parameters of interest, computed

with the Serpent 2 Monte Carlo code. All the methods proposed in this work share the feature of

being non-intrusive, implying that they can be profitably employed independently on the physical

and/or computational model adopted.

The methods discussed in this work are the fast Total Monte Carlo, the GRS, the Unscented

Transform and the Polynomial Chaos Expansion. The first three methods lead to similar values

in terms of relative standard deviation on the TBR due to nuclear data, and can be considered

as fast alternatives to brute-force sampling methods. For these three methods, the present paper

suggests how to select the best approach according to the kind of analysis to be performed and to

the nuclides considered in the study. The effect of the use of different nuclear data libraries and of

different input covariance matrices is also examined. The main outcome of these analyses suggests

that the uncertainties in nuclear data of nickel, fluorine, beryllium and lithium are sufficiently

small (i.e. smaller than 1%) to prevent the TBR to assume values below the design constraints.

The overall uncertainty on the TBR of ARC due to the nuclides here considered was evaluated
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to be ∼ 0.9%. Concerning the Polynomial Chaos Expansion approach, the paper shows that its

application is computationally inefficient compared to the other techniques when the input data

dimensionality is very large, as for the case of nuclear data.

Keywords Uncertainty Propagation, Fast Total Monte Carlo, GRS, Unscented Transform,

Polynomial Chaos Expansion

3



I. INTRODUCTION

The Affordable Robust Compact (ARC) reactor conceptual design,1 proposed by the Mas-

sachusetts Institute of Technology (see fig. 1), is a small -Tritium (D-T) based tokamak with the

aim of producing electric power (200 MWe) and with a significant size reduction with respect to

other next-generation machines, such as DEMO (DEMOnstration Power Plant).2 In the ARC

design the size minimisation and, as a consequence, its cost and complexity reduction, will be

achieved by increasing the magnetic field intensity, thanks to high-temperature superconductors.

Fig. 1. ARC assembling scheme, reproduced from.1 Some characteristic dimensions of ARC:
plasma major radius 3.3 m, plasma minor radius 1.1 m.

In the current design of ARC, the vacuum vessel is submerged in a breeding blanket filled

with a molten salt, i.e. FLiBe (76.79% fluorine, 9.09% beryllium and 14.12% lithium). The FLiBe

salt works simultaneously as neutron multiplier, neutron moderator, radiation shield, heat transfer

fluid, tritium breeder, and tritium carrier, and it is continuously circulating. In order to achieve a

Tritium Breeding Ratio (TBR) larger than one, thus ensuring the reactor self-sustainability and a

closed fuel cycle, the lithium in the salt is isotopically enriched in 6Li up to 90%. In this reactor,

the neutron multiplier used to enhance the overall neutron economy is beryllium, present both in

the molten salt composition and in a layer inside the vacuum vessel.
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The preliminary neutronic modelling of ARC has been performed with the Monte Carlo

particle transport code Serpent 2 (v. 2.1.31)3 in a previous work,4 for the evaluation of the tritium

breeding ratio and the power deposition by neutrons and photons inside the breeding blanket,

proving the capability of Serpent to suitably simulate fusion reactors, leading to an estimated

TBR>1, using the ENDF-B/VIII.0 nuclear data library. The scripts employed to develop the

Serpent model of ARC are available in a Zenodo repository.5 In this work, the same ARC reactor

model, sketched in fig. 2, is used with a focus on the nuclear data uncertainty quantification and

propagation.

The most popular approach to evaluate the uncertainty, when the number of uncertain

input and output parameters is large, is the adoption of perturbation methods. More specifically,

concerning the nuclear data uncertainty, the so-called sandwich rule is commonly applied:6

var[r] = ~S
r

pcov[p]~S
rT

p , (1)

where var[r] is the variance of the response, ~S
r

p is the relative sensitivity of r with respect to a

variation in the input p, and cov[p] is the relative covariance matrix associated with p. The calcu-

lation of the relative sensitivity is usually performed using the Generalised Perturbation Theory

(GPT).7 Both this approach and the eXtended Generalised Perturbation Theory (XGPT), which

is a continuous-energy extensions of GPT tailored for Monte Carlo transport calculations, are

currently available in Serpent 2.8 Despite both approaches have been satisfactorily applied to

criticality calculations in fast fission reactors,9,10 their implementation does not currently support

fixed-source calculations in a non-fissile system, such as the case of the ARC blanket.

The most popular alternative approach to perturbation-based methods is the brute-force

sampling, which is known in the field of nuclear data uncertainty quantification and propagation

as Total Monte Carlo (TMC).11 This method is very powerful because it allows to get very rich

information about the output uncertainty, namely the full sample distributions of the output

responses, without any ad hoc implementation in the code, as it would be required for the GPT

and XGPT methods. However, these nice features come at the price of a very slow statistical

convergence, which scales as 1/
√
Nexec, where Nexec represents the number of model executions.

Most of the times, especially when only a rough value of the uncertainty is needed, as in

the case of design calculations, the detailed information provided by TMC is not worth its com-
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putational cost. This is certainly the case of ARC: considering that a robust design requires the

evaluation of the uncertainty induced by different isotopes, the TMC would not be a computation-

ally affordable approach.

A good compromise between the good computational performances of perturbation methods

and the non-intrusiveness of TMC can be found applying other sampling-based, non-intrusive

uncertainty propagation (UP) methods, which allow to reconstruct the lower-order moments of a

distribution in a computationally efficient manner. More specifically, this paper will present four

methods, namely the fast Total Monte Carlo,12 the GRS,13 the Unscented Transform14 and the

Polynomial Chaos Expansion.15 The first two approaches, which are quite similar, are tailored for

the uncertainty propagation through a stochastic model, like the Serpent 2 ARC model, whilst

the last two methods can be applied to deterministic models as well and allow to achieve good

computational performances by a smart sampling of the input parameter space. Examples of

alternative stochastic perturbation based techniques16,17,18 and of deterministic approaches19,20

successfully applied to fusion systems can be found in the literature.

The aim of the paper is to provide an overview of these methods, applying them to carry

out the nuclear data uncertainty propagation for some selected responses of interest, namely the

TBR and the power deposited by the nuclear reactions in the various components of the reactor.

In this respect, it is mandatory to perform the UP analysis in order to guarantee that TBR>1,

even considering the nuclear data uncertainties. In particular, since the power deposition and the

TBR are mostly influenced by the nuclides composing the liquid breeding blanket, i.e. 6Li, 9Be

and 19F, this study will deal mainly with these isotopes.

The paper is organised as follows: in section II the impact of the different nuclear data library

selection on the nominal response quantities is evaluated; in section III the main algorithms for the

uncertainty propagation are described, focusing on their peculiarities for this specific application;

in section IV the results of the application of the methods are presented and discussed; in section V

some concluding remarks, useful for future nuclear data uncertainty propagation studies, are drawn,

and some future perspectives are given, together with two tables that sum up the main results of

this work for what concerns the TBR and the total neutron power deposition in ARC.
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(a) (b)

Fig. 2. Poloidal section of the ARC model implemented in Serpent (a), and detail of the radial
build of the vacuum vessel (b). From the left to the right: plasma chamber (black), first wall (blue),
inner vacuum vessel (gray), cooling channel (green), neutron multiplier (red), outer vacuum vessel
(gray) and FLiBe blanket (green).

II. NOMINAL SIMULATIONS WITH DIFFERENT NUCLEAR DATA LIBRARIES

One of the most recent methodologies for the safety assessment and for the design verification

of nuclear systems is the so-called Best Estimate Plus Uncertainty (BEPU) approach,21,22 which

qualifies the output computed by best estimate computational codes providing an estimate of

their uncertainty. Compared to other branches of nuclear engineering, e.g., thermal-hydraulics and

thermal-mechanics, neutronics is characterised by two peculiarities. The first one is that, within

a certain statistical tolerance, the Monte Carlo approach potentially allows to obtain an exact

solution to the neutron transport equation, since no approximation is introduced in the reactor

geometry and both the energy and the flying directions of neutrons are sampled continuously.

Hence, being a discretisation-free method, the Monte Carlo approach could be considered the

reference best estimate tool available for neutronic analyses. The second peculiarity of neutronics

is that, independently on the approach used to solve the neutron transport equation, the model

requires as input a set of complex experimental data regarding, essentially, the interaction between

neutrons and matter. Thus, it should be clear that an additional source of uncertainty, beyond

the statistical one induced by the Monte Carlo method, is due to the input nuclear data. In this

respect, the BEPU approach applied to the neutronic design of a nuclear fission or fusion reactor
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means that the best estimate values produced with Monte Carlo calculations should be provided

with their uncertainties.

Since there are different nuclear data evaluations available in the literature, assessing the

impact of the nuclear data library selection on the best estimate output values is of paramount

importance for both the reactor design and its safety demonstration. This section aims at showing

the impact of the nuclear data library choice on the main macroscopic parameters of interest for

the ARC design, namely the TBR and the power deposition in various regions of the reactor.

Because of the huge range of the incident neutron energy and of the great variety of reaction

channels featuring the various isotopes composing the reactor media, the nuclear data are stored in

a specific file format, known as Evaluated Nuclear Data Files (ENDF). The ENDF format cannot

be read as it is by Serpent, which requires the nuclear data to be processed as ACE (A Compact

ENDF) files. The conversion of the ENDF files into the ACE format is usually performed using

suitable nuclear data processing tools; among the various codes available to perform this task,

NJOY is certainly the most popular and reliable one.23 To ensure the full consistency in the

ENDF-to-ACE conversion process for the different libraries selected for the calculations, namely

ENDF-B/VIII.0, JEFF-3.3 (Joint Evaluated Fission and Fusion), the beta version of JEFF-4 and

FENDL-3.2b (Fusion Evaluated Nuclear Data Library), an in-house, open-source Python class have

been conceived to manage automatically and efficiently the file processing with NJOY, guaranteeing

that the same processing settings are adopted for the various libraries and, thus, that the differences

obtained in the best estimate calculations are only due to the nuclear data evaluations.

In a previous work,4 some Serpent simulations for the evaluation of the TBR and the power

deposition were performed using the ENDF-B/VIII.0 library. For this reason, in the present

work, this library is considered as the reference one. For the other libraries, a series of Serpent

simulations with the same setup are performed, modifying only the nuclear data library selection.

Each neutronic simulation is run using 108 neutron histories, subdivided into 100 batches, in order

to guarantee that the relative differences of the responses of interest between different libraries is

larger than their statistical uncertainty.

The bars in fig. 3 are useful to visualise the differences between the nuclear data libraries. At

first, it is possible to observe their impact on the value of the TBR. The lowest value is obtained

with FENDL-3.2b, while the largest one is obtained using ENDF-B/VIII.0. At a first glance, the
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variation could appear small, but it is important to underline that even an extremely small change

in the value of the TBR obtained with the neutronic simulation (the so-called global TBR) can

lead to a target TBR (i.e. the TBR which takes into account all the tritium losses in the fuel cycle,

inaccuracies in the geometry model and nuclear data uncertainties24) smaller than one.

Fig. 3. Comparison of different nuclear data libraries in the evaluation of the TBR, the average
volumetric power deposition in the first wall (Q̇FW ), the average volumetric power deposition
in the inner vacuum vessel (Q̇V V 1), the average volumetric power deposition in cooling channel
(Q̇CC), the average volumetric power deposition in the outer vacuum vessel (Q̇V V 2) and the average
volumetric power deposition in the breeding blanket (Q̇BB). The error bars are not visible because
the statistical uncertainty is too small.

Another significant discrepancy concerns the volumetric power deposition in the tungsten-

made first wall, where the value obtained with the JEFF libraries is significantly smaller than the

others. This is due to the fact that the JEFF libraries miss some KERMA values in the high

energy range, which plays a significant role in this case since the first wall is directly in contact

with the neutron plasma source at 14.1 MeV, see fig. 4. On the other hand, the power deposition in

the first wall obtained with the ENDF-B/VIII.0 and the FENDL-3.2 libraries are similar because

the KERMA values of tungsten at high energy in the two libraries are the same.

In the case of both vacuum vessels, there is a non-negligible increase of the power deposition

computed with the other libraries with respect to the reference one, i.e. ENDF-B/VIII.0. One

of the causes is probably the fact that the KERMA values of 58Ni, which is the most abundant

isotope in the vacuum vessel, are smaller in the ENDF-B/VIII.0 library, particularly in the lower

energy range (E < 0.01 MeV), see fig. 5.

Finally, in order to have a more intuitive representation of this comparison, fig. 6 displays the

ratio between the radial power deposition using FENDL-3.2b, JEFF-3.3 and JEFF-4 with respect

to the ENDF-B/VIII.0 case, for the various layers that separate the plasma and the breeding
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Fig. 4. KERMA coefficients (MT=301) of 184W for the different nuclear data libraries considered
in this work.

blanket at the mid-plane of ARC. Again, the largest differences can be appreciated in the inner

and the outer vacuum vessels.

III. UNCERTAINTY PROPAGATION METHODS

In this section, the uncertainty propagation (UP) methods employed in the present work

are briefly described. As mentioned, the choice of non-intrusive methods requires no need for

modifications of the original model, but only the generation of a set of perturbed nuclear data to

be employed in a set of neutronic Monte Carlo simulations.

The tool used for the generation of the perturbed data for this analysis is the SANDY Python

package,25 which has been selected since it is open-source, user-friendly and well integrated with

the nuclear data processing code NJOY. SANDY requires only the first two moments of the data

distributions, namely their expected values and their covariances, thus it is assumed that the
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Fig. 5. KERMA coefficients (MT=301) of 58Ni for the different nuclear data libraries considered
in this work.

perturbed data are normally distributed. At the time the calculations were performed, SANDY

allowed only to sample the data perturbation according to a Gaussian distributions, meaning that

negative cross sections could arise from the sampling process. To solve this inconsistency in the

dataSANDY enforces the perturbation coefficients falling outside the range [0, 2] to 0 or 2 if they

are lower than 0 or larger than 2, respectively. It is worthwhile mentioning that the most recent

versions of SANDY have the capability of performing samplings based on log-normal distributions

to avoid negative values.

Initially, all the nuclear data and the corresponding covariances used for the analysis are

taken from the ENDF-B/VIII.0 library. This choice was made to be consistent with the Serpent

simulations presented in,4 performed using this library. However, considering that the covariance

data depend on the data library evaluation, also the impact induced by the choice of other libraries

is taken into account, performing calculation using FENDL-3.2b and JEFF-3.3. The JEFF-4
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(a) (b)

Fig. 6. (a) Ratio of the radial power deposition in the inboard side of the equatorial region obtained
using FENDL-3.2b, JEFF-3.3 and JEFF-4 with respect to ENDF-B/VIII.0 and (b) position of the
detectors employed for the evaluation.

library has not been considered because it misses information about the covariance matrices of the

most important reaction channels of the 9Be, i.e. elastic scattering and neutronic multiplication,

and it does not contain any covariance matrices of the 19F. In this work, the data covariances

for the resonance parameters (MF=33) and for the reaction cross sections (MF=34) have been

considered, thus generating physically consistent perturbed ACE files.

III.A. Fast Total Monte Carlo

The fast Total Monte Carlo (fTMC) method12 is a faster alternative to the reference Total

Monte Carlo method.11 The fTMC performs roughly the same number of Monte Carlo simulations

of TMC, but each one with a reduced number of neutron histories, using a different seed for the

random number generator and a different perturbed nuclear data library. The adoption of a

reduced number of neutron histories allows to fairly reduce the computational time, at the price of

a poorer statistical information, since only the second order moment can be estimated by exploiting
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the definition of the total variance,

σ2
ND = σ2

obv − σ2
stat, (2)

where σ2
ND is the epistemic uncertainty due to the nuclear data, σ2

stat is the average of the statistical

variances of the simulations, i.e. the aleatoric variance, while σ2
obv is the total variance of the vector

of observables.

Looking at eq. (2) it is clear that when the statistical variance is too large, the variance

induced by the nuclear data may turn out to be negative. This inconsistency with the variance

definition is due to the fact that the statistical noise actually covers the one induced by the nuclear

data. To avoid this situation, the total number of particle histories should be selected to yield a

sufficiently low statistical noise.

At the end of the fast Total Monte Carlo simulations, the resulting responses are cast as a

vector of observables (e.g, a vector of TBR values) and a vector of statistical errors, that can be

used in eq. (2) to estimate the epistemic uncertainty due to the nuclear data. With respect to

the TMC application, the computational time is reduced by a factor of nNexec, where n is the

ratio between the neutron histories between TMC and fTMC and Nexec is the number of model

executions.

III.B. GRS Method

Another fast alternative to the TMC is the GRS method,13 which requires two different set of

simulations, each simulation featured by a different perturbed nuclear data library and a number

of neutron histories n times smaller than the TMC. The simulations belonging to each of the two

sets share the same seed for the initialisation of the random number generator. The adoption of

the same seed for each set guarantees that the only variation in the output response of each set is

due to the nuclear data epistemic uncertainty. In such a way, the ensemble of the model responses

belonging to each set, namely ~v1 and ~v2, turns out to be statistically independent but identically

distributed. Thus, the following expression holds,

σ2
ND = var(E(v1| ~D)) = cov(~v1, ~v2), (3)
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that is, the covariance of the two vectors of observables is equal to the variance of the conditional

expectation of v1 given the input data ~D, which is the source of the epistemic uncertainty.

Similarly to the fTMC approach, the GRS method is characterised by a fair reduction of the

usual computational time of TMC, which amounts in this case to a factor of n
2Nexec. The larger

computational time of GRS compared to fTMC is compensated by the fact that the first approach

always provides a positive value for the response variance. Thus, the GRS method is less sensitive

than fTMC to the impact of the statistical noise and, consequently, to the number of neutron

histories used to carry out the Monte Carlo calculations. In this respect, the user should only

guarantee that the inactive histories are sufficient to yield a physically significant fission source,26

in the case of criticality calculations, or external source (as in our case) convergence: if the number

of histories was too low, the emitted particles may not follow the source definition.

III.C. Unscented Transform

The Unscented Transform (UT)14 is based on the intuition that, to estimate the first and

second order moments of the response distribution, it is better to approximate the input distri-

bution rather than approximate the model used to generate the output distribution, especially

when the model is non-linear. The input approximation is realised generating a set of sigma points

that represent the probability distribution of the input data, independently on its nature. Usually,

2k+1 sigma points are sufficient to get a good representation of the input, where k represents

the dimensions of the input perturbed data. In this case, k is equal to nMTH, where nMT is

the number of different MT reaction channels in the ENDF file of the nuclide under examination,

whereas H represents the number of energy groups employed to extract the covariance matrix.

The usual way to overcome this issue consists in the adoption of a suitable reduction technique,

which will be described in the following.

Given the covariance matrix Ĉ of the input, the components of the sigma points vector ~χ

are computed according to the following definitions:27

χ[0] = µ (4)

χ[i] = µ+
(√

(k + λ)Ĉ
)
i

for i = 1, ..., k

χ[i] = µ−
(√

(k + λ)Ĉ
)
i−n for i = k + 1, ..., 2k,
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where µ is the mean vector of the input (in our case, the mean nominal cross sections from the

nuclear data library), λ is an arbitrary spreading parameter that has to be carefully chosen in the

case of Monte Carlo simulations (see section IV.B for more details), and Ĉ is the corresponding

covariance matrix. Once the sigma points have been obtained, each one of them is assigned a

weight, calculated as follows:

ω[0] =
λ

k + λ
(5)

ω[i] =
1

2(k + λ)
for i = 1, ..., 2k.

The sigma points are generated so that their mean and covariance is calculated as:

µ =

2k∑

i=0

ω[i]χ[i], (6)

Ĉ =

2k∑

i=0

ω[i]
(
χ[i] − µ

)(
χ[i] − µ

)T
. (7)

Finally, the sigma points are passed as an input to the non-linear function M′ (i.e the

Serpent simulations in this case) and the weighted mean and weighted covariance of the transformed

distribution are calculated as:

µ′ =

2k∑

i=0

ω[i]M′
(
χ[i]
)
, (8)

Ĉ ′ =

2k∑

i=0

ω[i]
(
M′
(
χ[i]
)
− µ′

)(
M′
(
χ[i]
)
− µ′

)T
, (9)

where the index i represents the i-th sigma point and weight. The value of Ĉ ′ represents the

uncertainty on the output results of the model, obtained propagating the nuclear data uncertainties

through the neutronic model itself.

The definition of the sigma points and of the weights depend on an arbitrary parameter λ,

which represents the spreading of the sigma points. Since the input is assumed to follow a multi-

variate Gaussian distribution, the best choice according to the literature seems to be k + λ = 3.14

However, in case k is large, as in this case, this choice could lead to a set of negative weights ω[i].

This is not an issue for deterministic models, but it could jeopardise the UT approach in case a

stochastic model is employed, as it is discussed more in detail later.
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As mentioned above, the main drawback of this method is the computation of the square

root of the perturbed data input covariance matrix, necessary to calculate the sigma points. In

the case of a symmetric and positive semi-definite covariance matrix, this problem can be handled

with the Singular Value Decomposition (SVD),27

Ĉ = V ΣV T , (10)

where the matrix Σ is a diagonal matrix composed by the singular values of Ĉ. When Ĉ is positive

semi-definite, its square root can be computed as:

√
Ĉ = V Σ1/2. (11)

However, it is likely that, because of some round-off errors occurring in the extraction process of the

multi-group covariance from the nuclear data libraries, the matrix extracted may be non-positive

semi-definite. Thus, before applying the UT, the statsmodels Python package28 is used to evaluate

the closest semi-positive definite matrix to the original one, following the procedure given in.29

At this point, it is possible to maintain a satisfactory accuracy in the computation of Ĉ

by reducing the number of active singular values obtained with the SVD, thanks to the strong

correlation among the nuclear data reactions. As a consequence, the final number of active singular

values t is smaller than the number of non-zero singular values r. The k -dimensional covariance

matrix that is obtained in this way is thus an approximation of the actual one, and the truncation

coefficient t is evaluated computing the so called energy of the singular values:

Et =

t∑

l=1

σ2
i

r∑

l=1

σ2
i

, (12)

where σ2
l is the l-th singular value. This truncation allows to decrease the number of sample points

from 2k+1 to 2t+1 and the computational time of the uncertainty propagation. In fig. 7, a sketch

of the SVD-UT algorithm followed in the paper is provided.
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Fig. 7. Schematic of the Unscented Transform method.

III.D. Polynomial Chaos Expansion

The Polynomial Chaos Expansion (PCE) is a very popular technique for uncertainty prop-

agation and sensitivity analysis that was first suggested in30 and then extended and rigorously

formalised in.31

The basic idea of the PCE approach, which belongs to the class of spectral methods,32 is to

express a stochastic model M in terms of an expansion of orthogonal polynomials Ψ,

M(~s, t, ~p) = ~y =

∞∑

k=0

~ak(~s, t)Ψk(~p) ≈
K∑

k=0

~ak(~s, t)Ψk(~p), (13)

where ~s is the vector of the state variables (e.g., spatial coordinates and energy), t is the time, ~p

is the vector of stochastic parameters (in this case, the energy dependent cross sections) and ~ak is

the k -th expansion coefficient, which is obtained by means of a projection, weighted on the random

variable distribution w(~p), of the model on the k -th basis function, namely

~ak(~s, t) =

∫ +∞

−∞
d~pM(~s, t, ~p)Ψk(~p)w(~p). (14)

The choice of the orthogonal polynomial basis is determined by the distribution of the random

variables.

If the vector of random input parameters was constituted by independent random variables,
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the multivariate polynomial basis would be defined as

Ψk(~p) =

d∏

i=1

ψi(pi), (15)

where d is the number of independent random variables.

The calculation of the projection coefficients, whose number depends both on the desired

polynomial order K and on the number of independent random variable d, can be carried out

following different strategies. Concerning non-intrusive procedures, which allow to treat the model

M as a black-box, it is possible to identify two general procedures,33 namely:

• the pseudo-spectral approach, which consists in approximating eq. (14) through a quadrature

rule,

~ak(~s, t) =

∫ +∞

−∞
d~pM(~s, t, ~p)Ψk(~p)w(~p) ≈

I∑

i=1

M(~s, t, ~pi)Ψk(~pi)w(~pi); (16)

• the least-square regression approach, which consists in approximating the PCE coefficients

~ak through a least-square fit.

One of the advantages of the first approach is that, in many situations, a limited number of points

is sufficient to provide a good estimate of eq. (14). For example, in a few dimensional problem, the

Gauss quadrature would allow to integrate exactly all the polynomials with a degree 2n− 1 or less

with n model evaluations. On the contrary, the accuracy of the regression approach would depend

on the choice of the model samples, thus it would be more difficult to assess its adequateness.

As expressed in eq. (15), when the input vector ~p ∈ Rd is constituted by independent random

variables, the multivariate polynomials would be expressed as a product of univariate polynomials,

meaning that the number of their coefficients and, thus, the number of integral evaluations, would

grow exponentially with the number of dimensions, due to the so-called curse of dimensionality .34

In this respect, the least-square regression could be more convenient than the pseudo-spectral

method.

Moreover, since the nuclear data are correlated, they need to be decorrelated using the

Kharunen-Loeve transformation (eq. (17)), before employing the PCE:

~x = ~µ+

r∑

i=1

√
λiξi~pi (17)
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where ~µ is the mean nominal cross sections vector from the nuclear data library,
√
λi and ~pi are,

respectively, the i-th eigenvalue and the i-th eigenvector of the nuclear data covariance matrix

and ξ represent a set of independent standard normal random variables. Thus, also in this case,

it is possible to apply the SVD on the covariance matrix in order to obtain its eigenvalues and

eigenvectors and to reduce the number of non-zero eigenvalues r, with the purpose of reducing the

dimension of the problem from r to t, as in the UT method. At the end of this procedure, there

will be a set of q cross section vectors, which correspond to q Serpent simulations necessary to

evaluate the coefficients ai.

The number q corresponds to the number of points that are used to sample the joint standard

normal distribution with reduced dimension t. There are several ways in order to sample the joint

distribution. As already mentioned, we have selected two non-intrusive methods available in the

Chaospy35 Python package: the pseudo-spectral and the least-square regression (also known as

point collocation) methods.

In the pseudo-spectral approach, quadrature nodes and weights are generated from a quadra-

ture integration scheme (e.g., Gaussian quadrature). Then, these nodes are used to generate a set

of q vectors ~x in order to perform q Serpent evaluations. At this point, it is necessary to select

a proper order for the expansion of polynomials so that it will be possible to estimate the PCE

coefficients through quadrature integration. Finally, information about the distribution of the re-

sponse can be obtained using eq. (16) as a proxy for the real model. Thus, in the pseudo-spectral

method, the number of Serpent simulation is determined by the quadrature integration scheme

and cannot be arbitrarily selected.

The alternative is to use the regression method, where the samples are generated either using

the quadrature nodes or, more frequently, through random or quasi-random sampling. Similarly

to the pseudo-spectral technique, Serpent evaluations are performed using these samples. Then,

after having selected an order for the expansion of polynomials, the linear regression problem with

respect to the polynomial coefficients is solved in order to construct the model approximation,

used to obtain information about the response distribution. In this case, if one uses the random

sampling, it is possible to select an arbitrary number of sampling points (i.e. of Serpent simula-

tions). However, obviously, this number can not be too smaller than the number of quadrature

points in the pseudo-spectral method, in order to accurately compute the PCE coefficients.
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IV. RESULTS

In this section, the most significant results obtained with the different methods are presented.

In section IV.A, the fTMC and GRS results are presented together, due to the similarities between

these techniques. The results of the UT are then shown in a dedicated section (IV.B), since they

require a more in-depth analysis. Some preliminary results with the PCE can be found section IV.C.

Finally, some considerations are drawn about the impact on the uncertainty propagation results

of the choice of different nuclear data libraries, in section IV.D, and of different group structure,

in section IV.E. The perturbed nuclear data files employed for the UP analysis can be found in.36

IV.A. Fast Total Monte Carlo and GRS

The first calculations are carried out with the fast Total Monte Carlo approach, because of its

better computational performances with respect to the GRS method. For both 9Be and 19F, 500

simulations were carried out, each one with a different perturbed ACE file, generated with SANDY.

Each simulation was run using 50 neutron batches, with 104 neutron histories per batch, which

has been considered a sufficiently high number in order to obtain a statistical uncertainty smaller

than the epistemic one. 500 perturbed nuclear data can be considered as a sufficient number too,

since the results seem to have reached a good convergence after 500 Serpent simulations (fig. 8 and

table I).

TABLE I
Relative standard deviation of the TBR after 500 Serpent simulations performed with the fTMC
for the nuclides of interest.

6Li 9Be 19F 58Ni

RSD [%] 0.0048 0.0143 0.0248 0.0316

In the case of 6Li, the number of neutron histories adopted was not sufficient to obtain a

positive nuclear data uncertainty from eq. (2). This was a first indication of the fact that the impact

of 6Li on the response uncertainty is not significant. Nevertheless, to confirm this conjecture, the

number of neutron histories per batch was increased to 3× 104 only for this nuclide in order to

reduce the statistical error and to obtain a positive nuclear data uncertainty.

The results with the fTMC for the TBR are shown in table II. The contribution of 6Li

on the epistemic uncertainty is negligible compared to the statistical one, being one order of
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(a) (b)

Fig. 8. (a) Convergence plot of the TBR values resulting from 500 simulations of the fTMC method
with 9Be and (b) relative standard deviation. The black lines represent the 1σ error bars.

magnitude smaller than those of the other two nuclides. On the other hand, the relative standard

deviations (RSD) for 9Be and 19F due to the nuclear data are larger than the statistical ones

and are independent of the number of neutron histories simulated, confirming that they are the

epistemic contributions.

TABLE II
Nuclear data uncertainty for the TBR evaluated with the fast Total Monte Carlo method using
the ENDF-B/VIII.0 library.

6Li 9Be 19F

TBR [-] 1.085±0.002 1.086±0.003 1.086±0.006

Statistical RSD [%] 0.1063 0.1829 0.1825
Nuclear data RSD [%] 0.0135 0.2631 0.5245

The same type of analysis has been performed with the GRS method, doubling the compu-

tational time (see section III.B above) with respect to the other method, still using 104 neutron

histories per batch.

Comparing the results of the GRS method in table III with the ones of the fast Total Monte

Carlo, it is possible to observe a very good agreement for what concerns 9Be and 19F, suggesting,

in this case, that the adoption of the fTMC is preferable due to its lower computational time.

On the other hand, regarding 6Li, the GRS has lead to a negative covariance, differently from

what explained in section III.B. This is probably due to the fact that the contribution of the

perturbations on the 6Li nuclear data are so small that the GRS is not able to give physical
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results. Thus, in the case of 6Li, a negative covariance can be read as the fact that the effect of

the nuclear uncertainties of 6Li is negligible, as already stated in the case of the fTMC.

TABLE III
Nuclear data uncertainty for the TBR evaluated with the GRS method using the ENDF-B/VIII.0
library.

6Li 9Be 19F

TBR [-] 1.087±0.001 1.083±0.003 1.086±0.006

Statistical RSD [%] 0.1749 0.1829 0.1825
Nuclear data RSD [%] NaN 0.2649 0.5232

Another important quantity for the design of ARC is the volumetric power deposited by the

neutrons in the main components of the ARC reactor. The results for beryllium and fluorine are

shown in tables IV and V, respectively. Again, the results obtained with the two methods are

comparable, even if the discrepancy is larger with respect to the TBR results. Moreover, in this

case the nuclear data uncertainty depends on the amount of the specific nuclide present in the

different components. In fact, the largest uncertainty with fluorine is in the cooling channel (CC)

and the breeding blanket (BB), as they are mainly composed of 19F, while for the beryllium the

largest contribution is in the neutron multiplier (NM) layer, made of solid 9Be.

TABLE IV
Nuclear data uncertainty of 9Be for the volumetric power deposition using the ENDF-B/VIII.0 library1.

Fast Total Monte Carlo

FW VV1 CC NM VV2 BB
Volumetric power deposition [MW/m3] 0.911(5) 4.46(1) 10.79(4) 5.55(9) 2.336(6) 0.714(2)
Nuclear data RSD [%] 0.1461 0.1022 0.3292 1.6031 0.1490 0.1604

GRS

FW VV1 CC NM VV2 BB
Volumetric power deposition [MW/m3] 0.906(5) 4.45(1) 10.75(4) 5.51(9) 2.333(6) 0.714(1)
Nuclear data RSD [%] 0.1137 0.1042 0.3248 1.629 0.1884 0.1402

1 The number in parenthesis is the total uncertainty and has to be intended as ± on the last digit of
the result.

An additional analysis has been performed to evaluate the impact of the nuclear uncertainties

of 58Ni, which is the main constituent of Inconel-718, i.e. the material composing the structure

of the vacuum vessel. Despite the vacuum vessel represents only around 3% of the total volume

of ARC, it is possible to see in table VI that the influence of the nuclear data uncertainties of
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TABLE V
Nuclear data uncertainty of 19F for the volumetric power deposition using the ENDF-B/VIII.0 library1,2.

Fast Total Monte Carlo

FW VV1 CC NM VV2 BB
Volumetric power deposition [MW/m3] 0.910(6) 4.45(3) 10.8(2) 5.55(4) 2.34(2) 0.714(6)
Nuclear data RSD [%] 0.4345 0.5200 1.5416 0.6267 0.8198 0.8872

GRS

FW VV1 CC NM VV2 BB
Volumetric power deposition [MW/m3] 0.905(7) 4.44(3) 10.7(2) 5.54(4) 2.33(2) 0.713(7)
Nuclear data RSD [%] 0.5216 0.5481 1.5683 0.6051 0.8244 0.9024

1 The number in parenthesis is the total uncertainty and has to be intended as ± on the last digit of
the result.

2 FW: first wall; VV1: inner vacuum vessel; CC: cooling channel; NM: neutron multiplier; VV2: outer
vacuum vessel; BB: breeding blanket.

this nuclide on responses like the TBR is not only non-negligible, but also more relevant than

the other nuclides considered in this work. This aspect highlights the importance of a thorough

nuclear data uncertainty propagation study, which should involve all the nuclides present in the

reactor components. Since the aim of the paper is to assess the non-intrusive techniques presented

in section III on the nuclides constituting the salt, the complete uncertainty propagation study is

left as a future development of this activity.

TABLE VI
Nuclear data uncertainty of 58Ni for the TBR and the volumetric power deposition using the ENDF-
B/VIII.0 library1.

Fast Total Monte Carlo

TBR 1.086±0.008
Nuclear data RSD [%] 0.6784

FW VV1 CC NM VV2 BB
Volumetric power deposition [MW/m3] 0.911(5) 4.4(2) 10.79(6) 5.55(3) 2.33(9) 0.714(6)
Nuclear data RSD [%] 0.2926 4.624 0.4947 0.4537 3.679 0.9055

1 The number in parenthesis is the total uncertainty and has to be intended as ± on the last digit of
the result.

Finally, in order to establish if the GRS is actually less sensitive to the impact of the statistical

noise, we have applied the fTMC and the GRS on 6Li in the case of a simplified version of ARC,

in order to speed up the analysis. This simplified model corresponds to a toroidal geometry

with exactly the same layers of ARC, a major radius of 3.3 m and a maximum minor radius of
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2 m. Both the methods have been applied with 5× 103 neutron histories per batch, 50 batches

per simulation and 1000 simulations. Considering as an example the profile of relative standard

deviation associated with the power deposition in the inner vacuum vessel of the simplified model,

fig. 9, it is clear that with the GRS the convergence is reached after about 500 simulations, while the

fTMC is far from the convergence and it is even possible that it will never reach the convergence.

This result justifies the adoption and the usefulness of the GRS, particularly when the effect of

the nuclear data uncertainties is small.

(a) (b)

Fig. 9. Profile of the relative standard deviation of the power deposition in the inner vacuum vessel
due to the nuclear data uncertainties of 6Li of the simplified ARC model with (a) fTMC and (b)
GRS.

IV.B. Unscented Transform

Concerning the Unscented Transform method, a larger neutron population was considered,

in order to further reduce the statistical noise in the output responses. In fact, the fTMC and

the GRS were specifically tailored for stochastic models, thus they manage to provide meaningful

results even with non-negligible statistical errors. On the contrary, the UT was conceived for

deterministic models, thus it should require, theoretically, no statistical noise at all. To reduce the

impact of this unavoidable issue featuring the Serpent responses, the total neutron population has

been increased to 6× 106, i.e. 1.2× 105 neutron histories per batch, leading to a statistical error

smaller than 1%.

At first, the UT has been applied to beryllium. Figure 10 shows the covariance matrices of

the two most important cross sections of the beryllium, i.e. the elastic scattering (MT=2) and the
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radiative capture (MT=102), obtained with SANDY.
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Fig. 10. Covariance matrices for elastic scattering (a, MT=2) and radiative capture (b, MT=102)
for 9Be taken from ENDF-B/VIII.0 library.

The cornerstone of the UT is the generation of a sufficient number of sigma points computed

according to eq. (4) in order to approximate the covariance matrices. Using the SVD and truncating

at an energy of 99.997%, the resulting covariance matrices obtained using the sigma points are

displayed in fig. 11, showing that the pattern of the covariance has been preserved, despite only

40 singular values over 3133 are used.

Moreover, it was also numerically verified that this truncation energy guarantees that the

relative difference with respect to the original covariance matrix is smaller than 1%. For these

reasons, it is possible to claim that the reduced covariance matrix reconstructed from the sigma

points is in good agreement with the original one. The main consequence of this truncation,

considering that the reconstructed matrices are similar to the initial ones, is a dramatic reduction

of the computational cost (i.e., 81 simulations instead of 6267), which makes the UT approach

competitive with the fTMC and GRS methods. It is also possible to observe (fig. 12) that the

truncation energy selected is particularly appropriate in the case of 9Be, since it corresponds to a

very fast decay in the magnitude of the singular values.

The sigma points and the results for the beryllium (shown in table VII) have been obtained

with λ = 0.5. This choice avoids the presence of negative weights and generates weights featured

by the same value. An effect of this feature is that the mean obtained through the UT is exactly

the arithmetic mean of the responses of interest. This choice also limits the appearance of negative
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Fig. 11. Covariance matrices for 9Be reconstructed from the sigma points, considering a truncation
energy of 99.997%.

Fig. 12. Magnitude of the 3133 singular values of 9Be nuclear data covariance matrix. The black
line corresponds to the truncation energy of 99.997%.

variances, as for the case where t+λ = 3. Further analyses are currently under way to investigate

whether this is a general issue associated with negative λ values for Monte Carlo codes, or if it

is due to the fact that, with λ < 0, the results with Serpent are less spread and, thus, partially

blurred by the statistical error (fig. 13). In fact, the standard deviation of the vector of TBRs using

t+λ = 3 is comparable with the difference between two values of TBR obtained with two different
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Serpent simulation and using the nominal nuclear data. A possible solution in this sense can be

to further increase the number of neutron histories with negative λ. From this point of view, it

seems that the fTMC and GRS are advantageous since they are able to deal with larger statistical

errors but, on the other hand, they generally require a larger number of Serpent simulations.

(a) (b)

Fig. 13. Scatter plot of the TBR values resulting from the 81 simulations of the UT method with
t+ λ = 3 (a) and with λ = 0.5. The black lines represent the error bars (1σ).

Another set of simulations was performed with λ = 0: in this case, the weight associated

with the case run with the expected value of the nuclear data is identically 0, i.e. it is taken into

account in the UT calculation. The results are comparable with those obtained with λ = 0.5 and

with the fTMC and GRS.

TABLE VII
Nuclear data uncertainty of 9Be with UT for the TBR and the volumetric power deposition using the
ENDF-B/VIII.0 library1.

Unscented Transform

FW VV1 CC NM VV2 BB
Volumetric power deposition [MW/m3] 0.910(1) 4.455(6) 10.79(4) 5.55(9) 2.336(4) 0.714(1)
Nuclear data RSD [%] 0.1574 0.1268 0.3297 1.5916 0.1762 0.1742

TBR 1.086±0.003
Nuclear data RSD [%] 0.2689

1 The number in parenthesis is the total uncertainty and has to be intended as ± on the last digit of the
result.

Since one of the outcomes of the fTMC and the GRS analyses is that the influence of the

nuclear data uncertainties of 19F is non-negligible, the UT has been performed also on this nuclide,

with the same settings used for 9Be. In this case, truncating at an energy of the singular values of
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99.997% lead to 100 singular values, which means 201 Serpent simulations. The results obtained

with λ = 0.5 are shown in table VIII: in this case there are non-negligible differences with respect

to the fTMC and GRS methods, probably because truncating at 99.997% is not sufficient for

the fluorine. In fact, considering the behaviour of the singular values of 19F (fig. 14), it is not

possible to observe a sharp decay in the magnitude of the singular values like in the case of

beryllium, so it should be necessary to further increase the truncation energy for this nuclide,

making the application of the UT more disadvantageous, from the computational point of view,

than the adoption of fTMC or GRS. An alternative explanation to this general underestimation

with respect to fTMC and GRS results is that some of the sigma points for 19F fall outside the

range [0,2], so they are fixed to 0 or 2 by SANDY. This truncation of the sigma points imposed

by SANDY limits the magnitude of the largest sigma points and, as a consequence, the variance

of the responses of interest.

TABLE VIII
Nuclear data uncertainty of 19F with UT for the TBR and the volumetric power depositionusing the
ENDF-B/VIII.0 library1.

Unscented Transform

FW VV1 CC NM VV2 BB
Volumetric power deposition [MW/m3] 0.911(4) 4.46(2) 10.8(1) 5.55(3) 2.34(2) 0.714(5)
Nuclear data RSD [%] 0.4917 0.5107 1.3746 0.5633 0.7572 0.7636

TBR 1.086±0.005
Nuclear data RSD [%] 0.4536

1 The number in parenthesis is the total uncertainty and has to be intended as ± on the last digit of
the result.

IV.C. Polynomial Chaos Expansion

Finally, some results were obtained applying the PCE on 9Be, using the pseudo-spectral

method with a quadrature order I =1 and a polynomial expansion order K =1. The choice of using

the lowest approximation orders is due to the fact that these parameters lead to the lowest number

of Serpent evaluations. With these calculation settings, and considering the reduced covariance

matrix, the required number of Serpent simulations was 81. Also in this case, 1.2× 105 neutron

histories per batch and 50 batches were used in order to have a statistical error smaller than 1%

for the responses of interest. The results in table IX show a significant difference with respect

to the results obtained in the previous sections. The lack of accuracy between the methods can
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Fig. 14. Magnitude of the 2651 singular values of 19F nuclear data covariance matrix. The black
dotted line corresponds to the truncation energy of 99.997%.

be justified by the fact that, to accurately compute the PCE coefficients, I should be equal to

K +1. However, this is not computationally affordable, because the minimum degree I =2 would

correspond, in the case of 9Be, to more than 3300 Serpent simulations. With such a large number

of independent runs, the application of TMC would definitively be much faster than the PCE

method. In light of these considerations, it is possible to conclude that the PCE method is not

suited for the uncertainty propagation involving the nuclear data due to their large number of

degrees of freedom.

TABLE IX
Nuclear data uncertainty of 9Be with PCE for the TBR and the volumetric power deposition using the
ENDF-B/VIII.0 library1.

Polynomial Chaos Expansion

FW VV1 CC NM VV2 BB
Volumetric power deposition [MW/m3] 0.911(5) 4.45(1) 10.78(3) 5.54(7) 2.336(8) 0.714(2)
Nuclear data RSD [%] 0.6333 0.290 0.309 1.194 0.323 0.222

TBR 1.085±0.003
Nuclear data RSD [%] 0.2870

1 The number in parenthesis is the total uncertainty and has to be intended as ± on the last digit of
the result.
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IV.D. Impact of the nuclear data library selection

In section II the influence of the choice of the nuclear data library on the responses of interest

in the best estimate case has been underlined. Thus, it is important to assess their impact on the

results of the uncertainty propagation analysis as well. All the UP methods employed in this work

are sampling-based methods which require the evaluation of the nuclear data covariance matrices,

making the sample generation process dependent on the library selection.

Some features of the covariances for the isotopes of interest allowed to reduce the number of

simulation campaigns. First of all, the covariance matrices of 19F and 9Be from the FENDL-3.2b

library are identical to the ones from the ENDF-B/VIII.0 library. Then, the JEFF-3.3 library

does not contain information about the covariance matrices of elastic scattering (MT=2) and of

neutronic multiplication (MT=16) for 9Be, which are two of the most important reaction channels

for ARC. Thus, also this case was avoided. Therefore, considering the impact of 19F, the following

analysis focuses on the case in which the nuclear data of this nuclide are perturbed. To highlight

the effect of the single covariance on the overall uncertainty of a specific isotope, each calculation

is carried out using the reference library for the transport calculation, i.e. ENDF-B/VIII.0, but

sampling the perturbed files according to the covariance taken from JEFF-3.3.

In fig. 15 a comparison between the main diagonal values of the covariance matrices for the

total cross elastic scattering (MT=2) and radiative capture (MT=102) of 19F with the ENDF-

B/VIII.0 and the JEFF-3.3 libraries are presented. According to these graphs, it can be expected

that the nuclear data relative standard deviation obtained with the perturbed ACE files generated

using JEFF-3.3 would be higher than those perturbed with ENDF-B/VIII.0 (see table II and ta-

ble V). Indeed, the results obtained through the fTMC show larger values of the nuclear data

uncertainties for the TBR, but not for the power deposition (see table X). This is probably due

to the fact that in fig. 15 only the values on the main diagonal of the covariance matrix (i.e. the

variances) have been taken into account. However, if one considers the whole covariance matrix,

it is possible to notice that, in general, JEFF-3.3 misses some covariance values, in particular at

higher energies, which are of interest in this work. Figure 16 shows an example of the matrices for

the radiative capture (MT=102).

In principle, another possible cause could be related to different values in the covariances

of the KERMA coefficients, which directly impact the evaluation of power deposition. However,
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since no covariance matrices are available for any nuclear data library, the discrepancy could not

be attributed to this aspect.
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Fig. 15. Comparison between the diagonal values of the covariance matrices for the elastic scatter-
ing (MT=2) and radiative capture (MT=102) of 19F with the ENDF-B/VIII.0 and the JEFF-3.3
libraries.
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Fig. 16. Comparison between the covariance matrices for the radiative capture (MT=102) of 19F
with the ENDF-B/VIII.0 (a) and the JEFF-3.3 (b) libraries. Many values are missing in the
JEFF-3.3 covariance matrix for energies larger than 0.01 MeV

Since the library used for the unperturbed nuclides is always the same for the various calcu-

lations, i.e. ENDF-B/VIII.0, the mean values of the responses of interest are similar (see table X),

as it could be reasonably expected.

To take into account the effect of changing the library for the transport calculations, a second

set of simulations consisted in the adoption of the JEFF-3.3 and of the FENDL-3.2b libraries for
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TABLE X
Nuclear data uncertainty of 19F for the TBR and the volumetric power deposition evaluated with the fast
Total Monte Carlo method using different libraries1.

ENDF-B/VIII.0+JEFF-3.3 (for covariances)

FW VV1 CC NM VV2 BB
Volumetric power deposition [MW/m3] 0.911(6) 4.45(2) 10.8(1) 5.54(4) 2.33(2) 0.714(5)
Nuclear data RSD [%] 0.3432 0.3735 1.2226 0.5879 0.7771 0.6824

TBR 1.085±0.008
Nuclear data RSD [%] 0.7270

JEFF-3.3

FW VV1 CC NM VV2 BB
Volumetric power deposition [MW/m3] 0.20(2) 4.72(2) 10.8(1) 5.86(4) 2.48(2) 0.715(5)
Nuclear data RSD [%] 1.989 0.3611 1.186 0.6327 0.7771 0.6790

TBR 1.085±0.008
Nuclear data RSD [%] 0.7266

ENDF-B/VIII.0

FW VV1 CC NM VV2 BB
Volumetric power deposition [MW/m3] 0.910(6) 4.45(3) 10.8(2) 5.55(4) 2.34(2) 0.714(6)
Nuclear data RSD [%] 0.4345 0.5200 1.5416 0.6267 0.8198 0.8872

TBR 1.086±0.006
Nuclear data RSD [%] 0.5245

1 The number in parenthesis is the total uncertainty and has to be intended as ± on the last digit of the
result.

both the unperturbed and the perturbed nuclides. For the reason discussed previously, it was

not possible to study the case of 9Be with JEFF-3.3. During this analysis, it was noticed that

FENDL-3.2b contains far less covariance matrices and far less significant reaction channels for 19F

than ENDF-B/VIII.0 and JEFF-3.3. Thus, the case of FENDL-3.2b was investigated both for the

unperturbed nuclides and for the perturbation of 9Be, while the case of JEFF-3.3 was analysed

both for the unperturbed nuclides and for the perturbation of 19F.

As expected, the nuclear data uncertainties obtained in the case of JEFF-3.3 for 19F (table X)

are similar to the ones obtained using ENDF-B/VIII.0 for the unperturbed nuclides and JEFF-3.3

to perturb 19F (table X), since the covariance matrices are the same.

As one could expect, the best estimate values are different since the JEFF-3.3 library was used

instead of the reference ENDF-B/VIII.0. Also in the case of FENDL-3.2b for 9Be, the nuclear data

uncertainties (table XI) are similar to the ones shown in table II and table IV, since the covariance

matrices of FENDL-3.2b are the same of ENDF-B/VIII.0 for what concerns 9Be.
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TABLE XI
Nuclear data uncertainty of 9Be for the TBR and the volumetric power deposition evaluated with the fast
Total Monte Carlo method using different libraries1.

FENDL-3.2

FW VV1 CC NM VV2 BB
Volumetric power deposition [MW/m3] 0.906(4) 4.68(1) 10.72(4) 5.63(8) 2.452(6) 0.715(1)
Nuclear data RSD [%] 0.0608 0.1065 0.3509 1.5642 0.1726 0.1530

TBR 1.072±0.003
Nuclear data RSD [%] 0.2743

ENDF-B/VIII.0

FW VV1 CC NM VV2 BB
Volumetric power deposition [MW/m3] 0.911(5) 4.46(1) 10.79(4) 5.55(9) 2.336(6) 0.714(2)
Nuclear data RSD [%] 0.1461 0.1022 0.3292 1.6031 0.1490 0.1604

TBR 1.086±0.003
Nuclear data RSD [%] 0.2631

1 The number in parenthesis is the total uncertainty and has to be intended as ± on the last digit of the
result.

IV.E. Impact of the different energy group structures

So far, all the results presented in this work have been obtained scoring the covariances

using the CSWEG-239 group structure.37 This is the default structure used in SANDY and it

consists of a fine grid in the fast range and of an extremely coarse subdivision for E < 10−6MeV,

which is consistent with the fast neutron spectrum of ARC. However, using a grid with such a

large number of energy groups, combined with a large number of reaction channels, leads to pretty

larger covariance matrices. The dimension of the covariance matrix can be reduced employing

the SVD, as explained in section III.C, and thanks to this operation it was possible to adopt the

CSWEG-239 group structure also in the UT method.

However, operating on a smaller covariance matrix could generate an even smaller number

of singular values and, thus, of Serpent simulations after the reduction through the SVD. For this

reason, the UT approach was applied to the case of 9Be using the ECCO-33 group structure,38

with the aim of checking if it could lead to results similar to the CSWEG-239 but with less Serpent

simulations.

With a truncation energy of 99.997%, only 25 singular values are retained, for a total of 51

Serpent simulations required to evaluate the nuclear data relative standard deviation. This choice

induces a reduction of approximately a factor of 1.6 in the simulation time with respect to the
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CSWEG-239 (considering, again, 6× 106 neutron histories and λ=0.5). Concerning the results

(table XII), the mean values and the nuclear data RSDs are similar to the ones obtained with 240

groups. This means that, at least for 9Be, the best choice turns out to be selecting the energy

group structure ECCO-33, since it allows to reduce the computational cost with the same level of

accuracy of the finer case.

In fig. 17, it can be observed that also in this case the truncation energy of 99.997% corre-

sponds to a sudden drop in the magnitude of the singular values. Since using the ECCO-33 the

number of Serpent simulations is reduced, the SVD energy was increased so that the truncation

error occurs in correspondence of the start of a plateau in fig. 17 (i.e. 50 singular values), in order

to observe if, with an energy of 99.997%, some information about the covariance matrix is lost.

The results obtained (table XIII) show that the difference between the two truncation energy is

negligible, confirming that 99.997% is a good value for 9Be
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Fig. 17. Magnitude of the 468 singular values of 9Be nuclear data covariance matrix using the
ECCO-33. The black line corresponds to the truncation energy of 99.997%.

Thanks to the fact that with 9Be it was possible to show that the ECCO-33 gives results

similar to the CSWEG-239, we also tried to employ that energy group structure even for 19F. This

case is even more interesting if one considers that, using the ECCO-33 and a truncation energy of

99.997%, the cut is in proximity of a drop in the singular values plot (see fig. 18), differently from

what occurred with the CSWEG-239 (see fig. 14). Now, the number of singular values is 51 and
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TABLE XII
Nuclear data uncertainty of 9Be with UT, 33 energy groups and 25 singular values for the TBR and the
volumetric power deposition using the ENDF-B/VIII.0 library1.

Unscented Transform

FW VV1 CC NM VV2 BB
Volumetric power deposition [MW/m3] 0.910(2) 4.455(6) 10.79(4) 5.55(9) 2.336(4) 0.714(1)
Nuclear data RSD [%] 0.1975 0.1307 0.3393 1.604 0.1731 0.1793

TBR 1.086±0.003
Nuclear data RSD [%] 0.2796

1 The number in parenthesis is the total uncertainty and has to be intended as ± on the last digit of the
result.

TABLE XIII
Nuclear data uncertainty of 9Be with UT, 33 energy groups and 50 singular values for the TBR and the
volumetric power deposition using the ENDF-B/VIII.0 library1.

Unscented Transform

FW VV1 CC NM VV2 BB
Volumetric power deposition [MW/m3] 0.910(2) 4.455(6) 10.79(3) 5.55(9) 2.336(4) 0.714(1)
Nuclear data RSD [%] 0.1684 0.1290 0.3220 1.5885 0.1781 0.1721

TBR 1.086±0.003
Nuclear data RSD [%] 0.2769

1 The number in parenthesis is the total uncertainty and has to be intended as ± on the last digit of the
result.

the number of Serpent simulation 103.

Actually, the results in table XIV show that there is a non negligible difference with respect

to the results obtained with the fTMC and 240 energy groups (table V), which are considered the

reference ones. This is probably due to the fact that the ECCO-33 is not sufficient in the case of

19F, differently from 9Be.

TABLE XIV
Nuclear data uncertainty of 19F with UT and 33 energy groups for the TBR and the volumetric power
deposition. using the ENDF-B/VIII.0 library1.

Unscented Transform

FW VV1 CC NM VV2 BB
Volumetric power deposition [MW/m3] 0.910(4) 4.46(2) 10.8(1) 5.55(3) 2.34(1) 0.714(5)
Nuclear data RSD [%] 0.4279 0.4617 1.3223 0.5766 0.7874 0.8007

TBR 1.086±0.004
Nuclear data RSD [%] 0.3802

1 The number in parenthesis is the total uncertainty and has to be intended as ± on the last digit of
the result.
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Fig. 18. Magnitude of the 374 singular values of 19F nuclear data covariance matrix using the
ECCO-33. The black line corresponds to the truncation energy of 99.997%.

Another set of simulations has been performed applying the fTMC to 19F using the ECCO-

33, in order to check if the results obtained with this technique are similar to the ones from the UT

and 33 energy groups (table XIV), since the energy group structure is the same. It is important

to underline that, in the case of the fTMC, the use of the ECCO-33 does not lead to a reduction

of the computational time, since 500 Serpent simulations are still required in order to achieve the

statistical convergence. As displayed in table XV, there is a good agreement for what concerns

the nuclear data RSDs for the power deposition in the different components of ARC. However, the

result for the TBR is larger and more similar to the one evaluated with the fTMC and 240 energy

groups (table II). Further investigations will try to explain the reasons of this discrepancy.

Finally, we have made also an attempt applying the PCE to 9Be using the ECCO-33, in order

to see if the reduction of the energy structure was sufficient to significantly reduce the number of

simulations required and make the application of the PCE feasible too. Actually, the reduction

was important, passing from 3321 simulations with CSWEG-239 to 1326 with ECCO-33. However,

this reduction is still not sufficient to justify the use of the PCE for this type of problem in place

of the TMC.
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TABLE XV
Nuclear data uncertainty of 19F with fTMC and 33 energy groups for the TBR and the volumetric
power deposition using the ENDF-B/VIII.0 library1.

Unscented Transform

FW VV1 CC NM VV2 BB
Volumetric power deposition [MW/m3] 0.911(6) 4.46(2) 10.8(1) 5.55(4) 2.34(2) 0.715(6)
Nuclear data RSD [%] 0.4223 0.4412 1.3349 0.6077 0.7764 0.7924

TBR 1.086±0.006
Nuclear data RSD [%] 0.5306

1 The number in parenthesis is the total uncertainty and has to be intended as ± on the last digit of
the result.

V. CONCLUSIONS

The results of the uncertainty propagation analysis in the ARC reactor obtained with three

methods employed in this work (fast Total Monte Carlo, GRS and Unscented Transform) are

comparable in terms of nuclear data relative standard deviation. From the point of view of the

computational time, the UT is comparable to fTMC and GRS when the number of singular values

necessary to reproduce the covariance matrix is smaller than the number of simulation required for

the fTMC and the GRS (generally larger than 500), as in the case of beryllium. For other nuclides,

like fluorine and fissile elements, featured by many resonances, it is expected that the UT is not

the most suitable choice.

Table XVI shows the total computational time for 9Be and 19F using the ENDF-B/VIII.0

library. The fTMC seems the fastest method, but its computational cost does not depend on

the energy structure employed. On the other hand, the computational time of the UT decreases

if the number of energy groups is smaller, however it remains larger than the fTMC, specially

for heavier nuclides. This is mainly due to the fact that the number of neutron histories in the

UT has been increased with respect to the fTMC in order to reduce the statistical error. If one

finds the optimum number of neutron histories, it is possible that the UT will lead to a smaller

computational time than the fTMC. Concerning GRS, its computational time is larger because in

this work it has been applied through a number of Serpent simulations double than the number

adopted for fTMC. However, as explained in section IV.A, in principle GRS leads to a converged

result in a smaller number of Serpent simulations (i.e. in a smaller computational time) than

fTMC, especially when the nuclear data uncertainties are small. In the future, the application of
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deterministic perturbation-based sensitivity/uncertainty techniques would possibly help in further

increasing the computational efficiency of the uncertainty propagation in ARC.

TABLE XVI
Total number of CPU-hours for the three methods employed in this work with both the CSWEG-
239 and the ECCO-33 energy grid structures.

CSWEG-239

9Be 19F
Fast Total Monte Carlo [h] 533 533
GRS [h] 1066 1066
Unscented Transform [h] 1210 3002

ECCO-33

9Be 19F
Fast Total Monte Carlo [h] - 533
GRS [h] - -
Unscented Transform [h] 762 1538

The resultsof the UP show that the contribution of each specific nuclide is not sufficient to

reduce the TBR of ARC below one. However, it is possible that the combination of the nuclear

data uncertainties of all the nuclides present in ARC could lead to a TBR smaller than one.

The PCE approach appears not feasible for the nuclear data uncertainty propagation where

the dimensionality of the problem is huge, even after a reduction of the dimension of the problem.

However, it will be interesting to apply the PCE to similar problems, like a multi-group model where

the dimension of the problem is expected to be smaller, since the PCE will allow us to evaluate

not only the mean and the variance of the responses of interest, but also their distribution.

For what concerns the nuclear data library selection, the responses of interest for this work sig-

nificantly changed according to the library used, namely ENDF-B/VIII.0, JEFF-3.3 and FENDL-

3.2b. In particular, FENDL-3.2b resulted in a smaller TBR than the other libraries; thus, in order

to have a conservative design, it should be better to use FENDL-3.2b for the neutronic evalua-

tions. Some covariance matrices of 19F are missing in the FENDL-3.2b library so, in the case of

an uncertainty propagation study, the suggestion is to use ENDF-B/VIII.0 for the perturbation of

the nuclear data and FENDL-3.2b for the nominal data.

The impact of different energy grids on the UP has been considered too. The use of coarser

energy grids like the ECCO-33 can be a significant improvement in the case of methods like the UT,

since it allows to reduce the required number of Monte Carlo simulations. However, in the case of
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heavier nuclides, coarser grids give different results, probably because of the poorer representation

of cross sections. Thus, the selection of the UP method and of the energy grid strongly depends

on the nuclide that is taken into account.

Finally, in this work, we focused on integral quantities like the TBR and the average neutron

power deposition, which are in general affected by smaller statistical errors. On the other hand,

if one is interested in the UP of localized responses for this class of fixed-source problems, where

the parameters of interest may have larger statistical uncertainties, the use of variance reduction

methods can lead to a further computational cost saving, if combined to the methods described in

this work.

Table XVII and table XVIII summarise the nuclear data RSD of the nuclides studied in this

work and the sum of their contribution to the TBR and to the total neutron power deposited in

ARC, respectively.

TABLE XVII
Nuclear data RSD of 6Li, 9Be and 19F computed with the three methods employed in this work
and the CSWEG-239 for the TBR and their total contribution to the TBR uncertainty.

ENDF-B/VIII.0

6Li 9Be 19F Total TBR
fTMC 0.0135% 0.2631% 0.5245% 0.5869% 1.086±0.006
GRS - 0.2649% 0.5232% 0.5865% 1.085±0.006
UT - 0.2689% 0.4730% 0.5441% 1.086±0.006

ENDF-B/VIII.0+JEFF-3.3 (for covariances)

6Li 9Be 19F Total TBR
fTMC - - 0.7270% 0.7270% 1.085±0.008

JEFF-3.3

6Li 9Be 19F Total TBR
fTMC - - 0.7266% 0.7266% 1.085±0.008

FENDL-3.2

6Li 9Be 19F Total TBR
fTMC - 0.2631% - 0.2631% 1.072±0.003
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TABLE XVIII
Nuclear data RSD of 6Li, 9Be and 19F computed with the three methods employed in this work
and the CSWEG-239 for the total neutron power deposition and their total contribution to the
total neutron power deposition uncertainty.

ENDF-B/VIII.0

6Li 9Be 19F Total Power
fTMC 0.0535% 0.1483% 0.4092% 0.4385% 345.33±0.02 MW
GRS 0.0315% 0.1515% 0.4112% 0.4393% 345.13±0.02 MW
UT - 0.1507% 0.3612% 0.3914% 345.28±0.01 MW

ENDF-B/VIII.0+JEFF-3.3 (for covariances)

6Li 9Be 19F Total Power
fTMC - - 0.3324% 0.3324% 345.20±0.01 MW

JEFF-3.3

6Li 9Be 19F Total Power
fTMC - - 0.3357% 0.3357% 349.06±0.01 MW

FENDL-3.2

6Li 9Be 19F Total Power
fTMC - 0.1479% - 0.1479% 347.598±0.005 MW

(http://www.hpc.polito.it).

The authors would also like to thank Dr. Dimitri Rochman and Dr. Arjan Koning for their

kindness and for their precious guidance in the use of the fast Total Monte Carlo method.

REFERENCES

[1] B. Sorbom, J. Ball, T. Palmer, F. Mangiarotti, J. Sierchio, P. Bonoli, C. Kasten,

D. Sutherland, H. Barnard, C. Haakonsen, J. Goh, C. Sung, and D. Whyte, “ARC:

A compact, high-field, fusion nuclear science facility and demonstration power plant with

demountable magnets,” Fusion Engineering and Design, 100, 378 (2015).
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