POLITECNICO DI TORINO
Repository ISTITUZIONALE

Integration of Deep Generative Anomaly Detection Algorithm in High-Speed Industrial Line

Original
Integration of Deep Generative Anomaly Detection Algorithm in High-Speed Industrial Line / Ferrari, Niccol0; Zanarini,
Nicola; Fraccaroli, Michele; Bizzarri, Alice; Lamma, Evelina. - (2024). [10.2139/ssrn.4858664]

Availability:
This version is available at: 11583/2991902 since: 2024-08-24T08:05:05Z

Publisher:

Published
DOI:10.2139/ssrn.4858664

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
Elsevier preprint/submitted version

(Article begins on next page)

22 November 2024

Integration of deep generative Anomaly Detection
algorithm in high-speed industrial line

Niccold Ferrari*t* Nicola Zanarinif Michele Fraccaroli*
Alice Bizzarri* Evelina Lamma*

14/03/2024

Abstract

One of the main challenges of modern industrial automation is the exploitation
of increasingly intelligent and efficient Quality Control solutions. The pharma-
ceutical industry requires high quality standards, for both economic reasons and
health concerns. Human operators still perform inline checks on packages, but
they face obvious obstacles, such as the risk of overlooking a defect, in addition
to low efficiency, which limits productivity. Automatic algorithms, conversely,
can execute inline high-speed controls due to their lower error rate, improved
systematicity, and increased throughput. Classical approaches to visual inspec-
tion rely on blob-analysis algorithms with limited adaptability to varied settings
or acceptable samples due to their huge number of parameters and inherent
rigidity. To overcome aforementioned issues, machine learning algorithms are
being increasingly integrated into industrial applications. The state-of-the-art
of anomaly detection is achieved with Deep Learning infrastructures that are
capable of generalizing complex and variable features distribution. Industry re-
search has focused on applying machine learning algorithms to computer vision,
but their applicability to real-case scenarios remains a challenge. Industrial pro-
duction has numerous good samples available, however, defects are only a small
fraction of the production, so obtaining a set as large as the good one is difficult;
As a result, it is important to manage extremely unbalanced datasets, which
often exclude supervised networks. This paper proposes the implementation of
a Generative Adversarial Network-based architecture on a high-speed industrial
line that produces pharmaceutical Blow Fill Seal vials. The architecture detects
anomalies during production and is trained on over 2500000 images.

*Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy
TBonfiglioli Engineering, Via Amerigo Vespucci 20, 44124 Ferrara, Ttaly
*niccolo.ferrari@unife.it, nferrari@bonfiglioliengineering.com

1 Keywords

Anomaly Detection; Industrial automation; Machine Vision; Generative Adver-
sarial Network; Automated Quality Control; Big data

2 Acknowledgments

The authors would like to thank Bonfiglioli Engineering for providing a real-
case dataset to test the software developed in this work. The first author is
supported by an industrial PhD funded by Bonfiglioli Engineering, Ferrara,
Italy. Alice Bizzarri is supported by a National PhD funded by Politecnico di
Torino, Torino, Italy and Universita di Ferrara, Ferrara, Italy.

3 Nomenclature

AE AutoEncoder

VAE Variational AutoEncoder

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short Time Memory

GAN Generative Adversarial Network

Generator Generative subnet of the GAN

Discriminator Adversarial subnet of the GAN

Discriminative net U-Net subsequent to the GAN used for segmentation
CRAE fully-Convolutional Residual AutoEncoder

DRAE Dense-bottleneck Residual AutoEncoder

AUROC Area Under the Receiver Operating Characteristic
ROI Region Of Interest

SSIM Structural Similarity Index Measure

BFS Blow Fill Seal

4 Introduction

Industrial applications increasingly require machine learning solutions to over-
come difficult tasks, such as inline visual anomaly detection at production time.
Implementations must take in account several physical limitations related to the
hardware and to the requested specifications, maximizing the trade-off between
accuracy performance and realization cost. Therefore, feasibility plays a crucial
role in implementation.

One of the primary applications is anomaly detection for machine vision,
and one of the main emerging areas is the pharmaceutical industry, which re-
quires extensive non-destructive controls on production capable of meeting high
accuracy and high throughput, thus pharma companies commenced to invest a
lot of effort into research and integration of the mentioned architectures within

production line automation. Usually requirements rely on finding a trade-off
between the following constraints:

1. Accuracy rate (either in terms of missing rejects rate and false rejects rate)
2. Hardware
3. Costs

Accuracy has a double impact: the primary and most relevant is the patients
health and their safety; the latter has a business impact. The other two items
are highly correlated but do not overlap; while hardware does contribute to the
overall cost, encompassing computing clusters, automation handling, and the
size of the machinery itself, it affects the footprint of the machine on the line
and increase its maintenance complexity, creating additional constraints.

Nowadays, the majority of pharmaceutical companies entrust their quality
controls to manual operators. Unsystematic errors caused by oversights or atten-
tion deficits can lead to efficiency deviations. Cosmetic inspection and particle
search are among the most critical operations performed by visual inspectors.
They learn how to recognize production flaws. This task is very difficult to
formalize by defining an analytical description of the problem, as the decision
taken by the human operator relies on a perceptual understanding of the visual-
izing context, which can make it very complex to structure an algorithm based
on classical blob-analysis operations.

Classical procedural algorithms are developed ad-hoc usually for a small
set of examples, both compliant and anomalous, exploiting pattern-matching
heuristics, topological and colors features extraction based on thresholds given
during the designing phase, by utilizing a large number of parameters. This
approach could give the illusion of being more adjustable by using the men-
tioned parameters as knobs. In truth, the implementation is highly connected
to the product itself and even to the representation provided in the form of
images, resulting in a rigid and unscalable infrastructure. Furthermore, to be
analytically treatable, a problem of such complexity needs to be simplified,
avoiding the formalization of perceptual aggregation of features in the given
images, which would result in losing the global sense that is easily extrapolated
from a human brain. Moreover, the oversimplification results in the noise be-
coming indistinguishable from real defects, such as the inability to distinguish
bubbles generated by the liquid contained in a vial from stuck alien particles or
other cosmetic defects on the product surface. Finally, it is nearly impossible to
encode the noise variance of the entire production using this type of algorithm.

Deep learning for machine vision represents the state of the art to accomplish
the task of spotting anomalies in real-time during production. Classification us-
ing supervised learning is a very mature solution and widely treated in literature.
However, such solutions usually perform best in contexts where the dataset is
balanced across classes [I].

In real cases, on production lines, conforming products are far superior in
number as compared to anomalous products, for this reason, the training dataset

would be extremely unbalanced in favor of nominal examples. This makes it
difficult to perform proper training of a supervised model. To overcome this issue
we can use semi-supervised models, which learn feature distribution from a single
label dataset, namely the conforming distribution. This approach relies on the
inability of the model to reconstruct or distill well extracted anomalous features
[2, B]. This methodology is divided into two main categories: reconstruction-
based methods, embedding similarity-based methods.

4.1 Reconstruction-based

This method is based on the intuition that a network trained solely on conform-
ing images cannot reconstruct anomalous regions. Taking the above consider-
ations as a starting point, it has been thoroughly investigated since it makes
possible to learn a robust reconstruction subspace using only images without
anomalies. Examples of these kind of models are: autoencoders (AE) [(],
variational autoencoders (VAE) [0, [7], generative adversarial networks (GAN)
[8], and architectures based on the latter, such as GANomaly [9] (and its vari-
ant [10]) or DREM [I1]. Thanks to the inability to rebuild anomalous regions,
which were not contained within nominal images during training, the network
fails to reproduce the out-of-distribution area. For this reason, it is possible to
detect discrepancies between the two images by thresholding; for example, the
absolute value of the difference between them or using other kind of similarity
algorithms, such as Structural Similarity (SSIM) [12]. Abovementioned nets are
usually quite heavy to be trained and inferred, given that at best, the network
consists of two parts: the encoder and the decoder. On the other hand they
manage to compress extracted features in a small and well manageable latent
space.

4.2 Embedding similarity-based

This approach uses deep neural network, pre-trained on huge and sparse datasets,
to extracts meaningful vectors of embeddings which aggregate input images fea-
tures. The concept behind this method is that deep neural networks can synthe-
size features from images that are far from those used during training, thanks
to the dataset’s sparsity and the structure of the net, such as Residual Net-
works [I3]. Determining regularity in the distribution can be achieved through
various models, including PaDiM [I4], PatchCore [15] [I6], or normalizing-flow
approaches, such as FastFlow [I7] and more recent architectures such as PNI
[18] and MSFlow [19], which hypothesize that a Multivariate Gaussian Distri-
bution can approximate an industrial process [20]. In contrast, this approach
tends to be less interpretable, as described by T. Defard et al. [14], because the
anomaly score is the distance from the embeddings extracted from the input
image and reference embeddings contained in the latent space. Furthermore,
in industrial applications where computing clusters, specifically on-board ma-
chines, have limited resources, it is often difficult to handle the latent space as
it grows with the training dataset.

4.3 Adopted solution

Taking the above considerations as a starting point, we managed to build an in-
telligent system for an inline real-time cosmetic surface analysis machine, which
performs quality control on BFS plastic strip of vials, filled by liquid chemical.
One of the main challenge was not only to get a good performance in terms of
accuracy, but also to make the application feasible within project constraints.

The hardware infrastructure is very different between training server and
inference computer. For the former:

o Intel® Xeon® Silver 4216 CPU @ 2.10 GHz as CPU
e 64GB of DDR4 Synchronous @ 3200 MHz as system memory
e Nvidia® A100 with 40GB of VRAM as GPU.

For the latter:
o Intel® Xeon® E-2278GE CPU @ 3.30 GHz as CPU
e 32GB of DDR4 Synchronous @ 3200 MHz as system memory
e Nvidia® A4500 with 20GB of VRAM as GPU.

The architecture of the application is based on a previous work [2I], which
has been readapted in order to fulfill the requirements and the limits imposed
by the hardware and the requested test ratio; thus the model is defined by only
one GAN that underlay a residual autoencoder (RAE), with a dense bottleneck
(DRAE). In addition, the Perlin noise was randomly overlapped onto the input
image, just like in DRAEM, not to create a synthetic defect, but to improve the
network’s denoising capability, while on the other to counteract the trend that
has the network to lose the ability to generalize and instead copy the image.

The dataset is composed of 2815200 images obtained from 782 different
strips of 5 vials, acquired 10 times each with 16 frames, plus 2 ranked images,
per acquisition. Each image has been divided into 20 patches: 5 regions, one
per vial, are subdivided into 4 sub-regions each.

In the context of this work, summarizing:

1. generative network is composed by a residual autoencoder (RAE) [22] 23]
24] with a fully-connected bottleneck, designed to work within a GAN
architecture [9]

2. the images in the dataset have been pre-processed and pre-patched to
divide the product’s single vial into four logical regions

3. during training image augmentation have been performed on positive
batch examples, and moreover, a Perlin noise have also been superim-
posed randomly during training phase, in order to improve augmentation
and to enhance the capability of the network to remove out-of-distribution
noise on images

4. the system’s effectiveness has been assessed using a test dataset that is
evenly divided between positive and negative cases. The evaluation pro-
cess began with the raw patches. However, a second aggregation was
conducted to assess the accuracy on the good vials and anomalous vials
dataset in order to provide a realistic quantification of the machine per-
formance

5. the inference is integrated within machine system, that performs inference
on-line, using C++ TensorFlow APIs

5 Related Work

The implemented approach is mainly based on GRD-Net [2I], as above men-
tioned, which is inspired by the already widely treated DRAEM [I1]. This model
is based on the reconstruction-based method which is widespread within the
surface anomaly detection field, as they rebuild an input image exploiting the
inability to reproduce the out-of-distribution regions contained in the input im-
age [25], [26]. Usually autoencoders (AE) [Bl 27, 28], variational autoencoders
(VAE) [6l 29] and GAN-based networks [9] [T0 30, [3T], are used for image re-
construction. The representation of the image lies in the latent space, which
compress the features extracted though the encoder [4]. Structural Similarity
index (SSIM) [27] or the pixel-wise reconstruction error [32] can be used both
as loss function during training and as anomaly score during inference phase.
Also transformers can perform reconstruction and segmentation as in [33] [34],
or a combination of convolutional and transformer net [35]. The interpretabil-
ity of the network results using this approach is a positive aspect, and another
positive aspect is that the latent space is limited and fixed in size, despite the
computationally heavy network architecture during both training and inference.
A good improvement seems to be the proposed contrastive learning technique
1361,

Another important mention goes to the family of anomaly detection meth-
ods defined as embedding similarity-based approach. These techniques extract
useful vectors describing an entire image for anomaly detection [37,[38] or an im-
age patch for anomaly localization [39] using deep neural networks. Comparing
this approach to the reconstructive one, it is significantly less computationally
demanding during the inference phase, which is one of its advantages, since
the neural architecture consists of a simple encoder , from which embeddings
are extracted. On the other hands embedding similarity method suffers from
a lack of interpretability, as it is not possible to pinpoint the precise feature of
an anomalous image that led to its anomaly score. The score is calculated as
a kind of distance between the embeddings inferred from the input sample and
the representation of the complaint products’ embeddings distribution. One of
the pioneers of this method is SPADE [40], which conveys the normal refer-
ence as the central point of a hypersphere that contains the whole collection
of normal embeddings. Numerous designs that were later developed based on

this methodology include PaDiM [I4], PatchCore [15], and those that use the
normalizing flow (NFLOW [4I]) approach on extracted embeddings, such as
PNI [I8] or FastFlow [I7]. As previously indicated, these architectures provide
a strong throughput even though they require a very high memory consump-
tion, since they use a memory bank as the storage of mined embeddings from
the normal dataset. This approach becomes unmanageable in real hardware
architectures for large, complicated, and highly variable images that necessitate
huge datasets for the network to accurately learn salient features. In addition,
another strengths of the reconstruction-based approach is the capability to spot
logical defects better than the embedding-similarity one, as mentioned by K.
Batzner et al. [42], which can be cited as a further example of an industrially
effective strategy founded on the student-teacher paradigm.

6 Methods

To explain our approach it is essential to briefly introduce the GRD-Net [21]
architecture.

6.1 GRD-Net

Taking inspiration from DRAEM [I1] architecture, GRD-Net [2I] consists of two
primary networks. The first is a GAN that uses a fully-Convolutional Residual
AutoEncoder (CRAE). The second network is a U-net with skip connections,
which combines the original image X and the reconstructed image X from the
autoencoder output. During the training phase, a perturbation function P, su-
perimposes Perlin noise onto the input image X with a probability of ¢, resulting
in a perturbed image X,, and a map M. In this map, the perturbed pixels in X
are represented by white pixels with a value of 1.0, and the unperturbed pixels
are represented by black pixels with a value of 0.0. Throughout this process,
the original image X remains unchanged and a new X,, is produced:

X, M = Py(X). (1)

In this design, the perturbation acts as an augmentation for the first network
and compels the autoencoder to carry out a denoise task in addition to com-
pressing significant features that are inferred from X. Additionally, it generates
the map used by the second network to predict the anomalous region inside the
image.

The superimposed noise forces the network to recreate the missing part of
the image, further enhancing the aggregation of what are the essential features.
Similar techniques have already been investigated by other researchers, one of
the most notable being the work of Kaiming He et al., ‘Masked Autoencoders
Are Scalable Vision Learners’ [43].

In the initial project, an attention map—a Region Of Interest (ROI)—was
added during the training phase, for focusing the task inside the predetermined

(a) Original vial re- (b) Original vial re- (¢) The gener- (d) The map of the
gion image (X) gion image with Per- ated Perlin noise noise M
lin noise X,, standalone NV

Figure 1: The vial region in picture (a) is the original one from train set X,
picture in (b) is the original with Perlin noise superimposed X,. Last two
images are (c) the noise N standalone and (d) the map M of the superimposed
noise’s region.

area, which varied from example to example, rather than throughout the whole
image.

6.1.1 Residual Autoencoders

An autoencoder (AE) is a neural network architecture that has been trained
to replicate the input image with the exception of any final artificial noise that
is added. This structure is composed by two entities: an encoder (E), which
maps the input features in a latent space z, and a decoder (D), that rebuild the
input from z. The network must gather the most important features from the
input and distinguish them from those that fall into the noise domain in order
to complete the aforementioned task, which can be carried out by restricting z
to be lower than X. Since they resolve issues with degradation during training,
such as the vanishing gradient problem, residual networks have been extensively
investigated in the literature [44]. They have been heavily utilized in supervised
networks for classification tasks, but in recent times, they have also been used
in unsupervised frameworks [211 22| 23] 24].

6.1.2 Generative Adversarial Networks

GANSs have been studied with the initial purpose of generating realistic synthetic
data [8]. Two networks, the discriminator and the generator (autoencoder-
like networks), compete with one another during training. The discriminator
evaluates if the data is phony or real, while the generator attempts to generate
it. Similar to GANomaly [9], the discriminator in this instance distinguishes
between the rebuild and original images.

6.1.3 GRD-Net architecture

The first component of the GRD-Net architecture is the Generator (G), which
is made up of an Encoder (Gg) that encodes the input features from X and
generates a latent space z; a Decoder (Gp) that decodes the latent space and
attempts to replicate the input, producing an image X; and a second Encoder
(G) that accepts X as input and creates a latent space Z. The AutoEncoder
(AE) is made up of Gg and Gp. The Discriminator (C), the second network
in the GAN model, is a convolutional encoder with a dense layer on top that
performs a binary classification with the goal of classifying the input as a real
or a fake image.

The generator loss is composed by three components: the adversarial, the
contextual and the encoder losses.

The adversarial loss L4, is used to smooth the instability of the Discrimina-
tor. Let F¢ be the function that produces the output of the last convolutional
layer of C, so the loss is defined as:

Eenc = £2(]:C(X)afC’(X))v (2)

where Lo is the 12-norm loss.
The contextual loss, namely the reconstruction loss, adds contextual infor-
mation to the final loss. It is the combination of two subloss:

Econ:wa"Cl(XaX)'i_wb'ESSIM(XaX); (3)

where £; is the l1-norm loss and Lsgiy = 1 — SSIM(X X')

The encoder loss, as explained by Akcay et al. [9], minimize the distance of
the latent space z derived from X and the latent space # inferred from X. It is
so defined:

Eenc = El(Z, 73) (4)

The resulting loss function will hence be the following;:
Lgen = w1 - Eenc + wo - Econ + ws - Eenca (5)

where wg, wy, w1, we and ws are three hyper-parameters used to tune the effect
of individual losses.

6.2 Application specific optimizations

With everything mentioned in section as starting point, we can start looking
into out actual application: we used a number of augmentation techniques,
such adding perturbation alongside Perlin noise, also some other augmentation
methods: a random rotation in the interval of [-%, ¥]rad; a random vertical
flip. Horizontal flip and rotation larger that 5 can be considered as an anomaly.

Among the advantages of these augmentation techniques, the network’s gen-
eralization capability is increased; at the same time, the downside is also the

introduction of a lot of entropy into the training, which can make this phase

difficult, to the point where the training becomes unstable or diverges. For this
reason we introduced a Noise Loss, defined as:

£nse:w4'£1(‘§_X|aN)v (6)

where X = P,(X), is the input after the perturbation and N is the Perlin noise
generated on a black image. We empirically found that this enhance the recon-
struction ability beneath the noise. Moreover 11-norm loss in the contextual loss
was replaced with Huber loss, that enhances the former by removing the point
of non-differentiability on the origin. So it becomes:

Leon = Wq - EHube7’(X7 X) + wy - LSSIM(X7 X), (7)

Using as a starting point DRAEM [I1] and GANomaly [9] results, and sub-
sequently using a branch-and-bound approach we found that the best setup for
the described application was:

we = 2.0
w, = 1.0
wy = 1.0
wo = 50.0 ®)
wsg = 1.0
wy = 3.0,

despite the Lgsm loss being the one that contributes the most to reconstruction
of the input image, it has a function that tends to become unstable in complex
images, with high entropy, so rising w, this phenomenon was smoothed at the
cost of more convergence time.

6.2.1 Network

The network used as generator for training is an encoder-decoder-encoder shaped
net, where the encoder has a ResNet architecture (Figure , and the decoder
(Figure |3) a reverse residual shape. As mentioned in section residual
network are widely used [44], 22|, 23] 24], since they prevent several degradation
problems during training, as the gradient vanishing. In the context of this work,
residual structure was updated to the most recent ones, using as starting point
the one designed in the previous work [21].

6.2.2 Classification and segmentation

There are no segmentation requirements for this particular application; the
anomalous patch and the relative heatmap are adequate to meet the project’s
objectives. Thus, only a generative network was used during training and infer-
ence phases. Furthermore, the division into patches makes it possible to identify
the macroscopic region of the anomaly. So the anomaly score ¢ is:

¢ =1—SSIM(X, X), (9)

10

Conv2D Conv2D Conv2D
kernel = (3,3) kernel = (3,3) kernel = (3,3)
strides = (1,1) strides = (1,1) strides = (1,1)
RelLU RelU RelLU
i l Conv2D i MaxPooling2D
Conv2D Conv2D kemel = (3.3) Conv2D kemel = (33)
Kernel = (3,3) Kernel = (3,3) strides =(1,1) Kernel = (3,3) strides = (2.2)
strides = (1,1) strides = (1,1) strides = (2,2)
RelLU RelU RelLU
! ! !
Conv2D Conv2D Conv2D
kernel = (3,3) kernel = (3,3) kernel = (3,3)
strides = (1,1) strides = (1,1) strides = (1,1)

(a) Residual encoder

Figure 2: Three residual blocks in the encoder network. Only the last one halve
the (H, W) size of the layer

11

Conv2DTranspose Conv2DTranspose Conv2DTranspose
kernel = (3,3) kernel = (3,3) kernel = (3,3)
strides = (1,1) strides = (1,1) strides = (1,1)
RelLU RelU RelLU
i l Conv2DTranspose i UpSampling2D
Conv2DTranspose Conv2DTranspose kenel = (3.3) Conv2DTranspose kemel = (3.3)
Kernel = (3,3) Kernel = (3,3) strides =(1,1) Kernel = (3,3) strides = (2.2)
strides = (1,1) strides = (1,1) strides = (2,2)
RelLU RelU RelLU
! ! l
Conv2DTranspose Conv2DTranspose Conv2DTranspose
kernel = (3,3) kernel = (3,3) kernel = (3,3)
strides = (1,1) strides = (1,1) strides = (1,1)

(a) Residual decoder

Figure 3: Three residual blocks in the decoder network. Only the last one
double the (H, W) size of the layer

12

and the heatmap is calculated as the absolute difference between input and

output:
1

H=|x-X||, (10)
0
1
where | is the min-max normalization between 0 and 1:

0
|X — X| — min(|X — X|)

H=a+b- < =
max(]X — X|) — min(|X — X|)

L a=0Ab=1. (11)

The optimal threshold ¢; that maximizes the accuracy on good examples
and on anomalous real ones is determined on a subset of real production goods
(both positive and negative). Consequently, if a patch is classed as a rejection
during inference, it indicates that the entire product is a rejection. In this
instance, [10|is used to create a heatmap for the subregion corresponding to the
anomalous patch.

7 Experiments

Different experiments were conducted in order to optimize the result of the
network and obtain a good performance, maintaining a low inference time, which
can fit the required slot of 500 ms between two different acquisitions. However,
in order to accurately describe the experiments the background and hardware
of the machine that handles the products must be introduced.

Product The product, shown in the Picture m is a 5 vials BFS strip, filled
by 10 ml of liquid excipient. It frequently causes bubbles to form in the liquid
portion, particularly around the meniscus. Furthermore, because the neck is
thin, some liquid may become caught inside it, and drops are typically found
in the area above the liquid. As shown in the Picture [5] the product is divided
into 5 vials, and each vial is further divided into 4 logic regions.. The red one
(the upper), is the flag region, the blue one is the top body region, the green
area is the liquid body region, finally the yellow area is the bottom region.

Train dataset acquisition The machine acquisition environment, where the
acquisitions were carried out, was replicated at a laboratory scale; both setups
used a telecentric lens, which mostly overcomes the distortion problem, found
on side vials and on the bottom. Following a semicircular movement that was
focused on the upper side of the vial strip, each product was acquired in this
way 10 times. It required 16 frames for each acquisition in the end. At each set
of frames are added two images obtained applying a rank filter to the entire set
and selecting the lower and higher gray value from generated images by the filter

IBecause of an NDA, the flag (the upper part) was blurred to conceal the company logo.

13

(a) The product

Figure 4: The product: a BFS strip composed by 5 vialdL.

14

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4858664

(a) The vial regions

Figure 5: The vial regionsm: the logic regions in which the vial is divided.

15

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4858664

procedure. From MVtec definition of the ﬁlterﬂ Conceptually, the rank filter
sorts all gray values within the mask in ascending order and then selects the gray
value with rank Rank. The rank 1 corresponds to the smallest gray value and
the rank AE| corresponds to the largest gray value within the mask. Therefore,
nothing that moved during handling is seen in the lighter image; conversely, all
of the drops and bubbles that moved during handling are shown in the darker
image. This technique is used to increase the variability of the positive images
features. After patching every image we obtained a dataset of 2815200 images,
which was then split into 90% training and 10% validation images. Each patch
is a grayscale image of size 256 x 256 x 1.

Test dataset acquisition A real-case set of defective strips was acquired in
order to benchmark the algorithm’s performance. Each acquisition is made of
three frames, which are the first, the eighth, and the last in the series, respec-
tively, to lessen the computational load on the system while it is operating.
Consequently, the numerosity (V) of the batch is:

N=f-v-r=3-5-4=060, (12)

where f is the frame number, v is the vial number and finally, 7 is the region
number.

Machine handling The machine is a rotating inline quality control machine
that inspects the products at the end of the production line. Usually these
machines are placed right after the filling device and before the packaging ones.

The product is gripped from the input conveyor belt and brought into the
carousel and handled identically to how it was handled during the laboratory
acquisitions. The handling and movement inside the carousel is the same as
the one in the laboratory mockup, but that there is additional movement of the
liquid inside due to how the product is handled before the carousel, but it has
been observed on previous machines, that this further movement does not affect
the performance of the algorithm, since it is much less and far away in time
than the one produced on the inspection station. After handling the product,
acquisitions take place, and the images begin to be processedﬁ

Experiments Experiments were conducted over only 10 epochs due to the
high numerosity of the training set, using the structure described in section [f]
and more specifically in subsections [6.2] [6.2.1 and [6.2.2] The residual network
takes inspiration from the ResNet V2 architecture [44]. In this section will be
shown:

1. The hardware and software environment

%https://www.mvtec.com/doc/halcon/2305/en/rank_image.html

3In this case A = 16

4More specific details about machine hardware cannot be provided due to the NDA and
company policies

16

https://www.mvtec.com/doc/halcon/2305/en/rank_image.html

7.1

The architecture of the used network
The training phase

The results in terms of accuracy over the positive and the negative exam-
ples in the test dataset.

The results in terms of time and throughput

Experiments on the generative network

Hardware

The hardware, as already mentioned in subsection [{.3]is very different between
the training server and the inference machine. The training process is carried
out on a server that has been set up in this way:

e Hardware

Intel® Xeon® Silver 4216 CPU @ 2.10 GHz as CPU

— 64GB of DDR4 Synchronous @ 3200 MHz as system memory
Nvidia® A100 with 40GB of VRAM as GPU.

2 TB M.2 NVMe SSD

e Software

— Ubuntu 22.04.3 LTS Server minimal-based o/s with 5.15.0-94-x86_64
kernel

Nvidia® driver Version: 535.104.12
— CUDA® version: 12.2
TensorFlow 2.13.1 compiled from source

The inference machine is an industrial cluster installed on board and it is set
up in this way:

e Hardware

Intel® Xeon® E-2278GE CPU @ 3.30 GHz as CPU

32GB of DDR4 Synchronous @ 3200 MHz as system memory

— Nvidia® A4500 with 20GB of VRAM as GPU.

— 32 GB CFast flash for the operative system (read-only mounted)
1 TB M.2 NVMe SSD for the data

e Software

Ubuntu 22.04.3 LTS Server minimal-based o/s with 5.15.0-94-x86_64
kernel

— Nvidia® driver Version: 535.104.12
CUDA® version: 12.2
TensorFlow 2.13.1 compiled from source

17

Conv2D Conv2D Conv2D
kernel = (3,3) kernel = (3,3) kernel = (3,3)
strides = (1,1) strides = (1,1) strides = (1,1)
RelLU ReLU RelLU
i Conv2D i i MaxPooling2D
Conv2D kemel =33 Conv2D Conv2D kernel = (3,3)
kemel = (3.3) strides = (1,1) el = 33) kemel = (3.3) strides = (2,2)
strides = (1,1) strides = (1,1) strides = (2,2)
ReLU ReLU ReLU
Conv2D Conlsz Conv2D
kernel = (3,3) kernel = (3,3) kernel = (3,3)
strides = (1,1) strides = (1,1) strides = (1,1)

(a) ResEnc Black A (b) ResEnc Block B (c) ResEnc Block C

Figure 6: Three residual blocks in the encoder (resEnc) network. 1 stage is
composed by 3 convolutional blocks in the order: A, B, C

7.2 Network architecture

Encoder As mentioned in subsection [6.2.1] the network is residual based on
ResNet version 2 architecture. Each stage is composed of 3 residual blocks:

1. the first (block A in the schema@ concatenates the results of three consec-
utive convolutions with 3 x 3 kernel with the result of a single convolution
with 1 x 1 kernel. In this case there are no reduction in the input H; x W;
embedding size.

2. the second (block B in the schema [6)) concatenates the results of three
consecutive convolutions with 3 x 3 kernel with the input received from
the block A. In this case there are no reduction in the input H; x W;
embedding size.

3. the third (block C in the schema @ concatenates the results of three con-
secutive convolutions with 3 x 3 kernel with the output of a downsampling

18

Flatten
16x16x1024 — 262144

Dense
output features = 64

Dense

output features = 262144

Reshape
262144 — 16x16x1024

(a) Dense bottle-
neck

Figure 7: The bottleneck stage.

block, the middle convolution halves the sizes H; and W; of the input
embedding. In this case H; and W; are both halved.

In total the network is composed by 4 stages, in order to obtain a final size of
16 x 16 and 1024 filters.

Bottleneck The bottleneck is fully-connected with a size of 64 features, as in

figure

Decoder The decoder is the inverse architecture of the encoder, described
above. Same as with the encoder, each stage is composed by 3 residual blocks:

1. the first (block A in the schema[6) concatenates the results of three con-
secutive convolutions transposed with 3 x 3 kernel with the result of a
single convolution with 1 x 1 kernel. In this case there are no increasing
in the input H; x W; embedding size.

. the second (block B in the schema @ concatenates the results of three
consecutive convolutions transposed with 3 x 3 kernel with the input re-

ceived from the block A. In this case there are no increasing in the input
H; x W; embedding size.

. the third (block C in the schema [6) concatenates the results of three
consecutive convolutions transposed with 3 x 3 kernel with the output of
a upsampling block, the middle convolution double the sizes H; and W;
of the input embedding. In this case H; and W; are both doubled.

In total the decoder network is composed by 4 stages, in order to obtain a final
size of 256 x 256 and 1 channel, with a Sigmoid function as activation.

19

Conv2DTranspose Conv2DTranspose Conv2DTranspose
kernel = (3,3) kernel = (3,3) kernel = (3,3)
strides = (1,1) strides = (1,1) strides = (1,1)
ReLU ReLU ReLU
i Conv2DTranspose l i UpSampling2D
Conv2DTranspose kernel = (3.3) Conv2DTranspose Conv2DTranspose kernel = (3.3)
Kernel = (3.3) strides = (1,1) vorme!) Kemel = (3.3) strides = (2,2)
strides = (1,1) strides = (1,1) strides = (2,2)
RelU RelU ReLU
| I }
Conv2DTranspose Conv2DTranspose Conv2DTranspose
kernel = (3,3) kernel = (3,3) kernel = (3,3)
strides = (1,1) strides = (1,1) strides = (1,1)

(a) ResDec Black A (b) ResDec Block B (c¢) ResDec Block C

Figure 8: Three residual blocks in the decoder (ResDec) network. 1 stage is
composed by 3 convolutional transposed blocks in the order: A, B, C

20

Input Image
X)

Perturbation:
Perlin noise + transformation
(M, Xp) = P(X)

Input tuple: original image,
noise mask and image with
noise
(X M, X)

GENERATOR DISCRIMINATOR
X =G(X,) E=D(X)€[0,1]
Huber(X, X) + (1 - SSIM(X, X)) — 0 E=D(X) €[0,1]

(a) Train flowchart

Figure 9: The training flowchart.

7.3 Training phase

Training follows a GAN pattern, and is therefore composed by two steps: the
training of the generator and the training of the discriminator. The starting
learning rate is 1.5 x 10~* with a cosine decay policy with restart every 2533680
steps at % of last maximum learning rate and the optimizer used is for both
GAN’s networks the Adam algorithm. The batch size is 32 images and the
probability to apply a perturbation to an input patch is ¢ = 0.75. The training
flowchart is illustrated in picture [0}

7.4 Results

Experiments were performed on test dataset, namely the knapp test kit provided
by the client. The set contains 141 defects and 120 positive products, since the
dataset is fairly balanced, accuracy is the chosen metric, but also true negative,
true positive ratios, mean and max inference time are calculated. The results
are presented on 3 stages:

1. Overall accuracy on the whole test dataset and inference time per patch

2. Accuracy after image aggregation per product and inference time per prod-
uct

3. Accuracy, after image aggregation per product and run, based on accep-
tance policy of the client

Also some images are presented in Appendix [A]

Acceptance policy To be validated, the machine, has to perform better or
the same than the human operators on the knapp test kit provided by the

21

Overall results

RO R1 R2 R3 Vial
Threshold 0.015589 0.038017 0.046568 0.029593 -
Accuracy 0.9919 0.9926 0.9957 0.9991 0.9870
True positive ratio 0.9966 0.9985 0.9986 0.9994 0.9942
True negative ratio 0.9093 0.9044 0.9779 0.9973 0.9581
Mean inference time (ms) | 0.1689 0.1689 0.1689 0.1689 -

Table 1: Overall results using the equation |§| as anomaly score.

client. As mentioned, each product of the knapp kit is acquired 10 times, each
acquisition is defined as a run. If a product is included in the regular set and gets
a positive classification at least seven times out of ten, it is said to be correctly
classified. Similarly, if an abnormal product receives a negative classification
seven times out of ten, it is deemed properly classified. If not, a product will be
considered misclassified.

Overall results Overall results are presented in table[I] A threshold is calcu-
lated for each region, since there is a significant correlation between every image

that belongs to the same region, and hence a similar distribution between pixels.
In this context the mean inference time is also calculated as j;, = fl_t:ﬁr = %,

where ji;, is the mean time per frame f, u;, is the mean time per batch, v is
the vials numerosity per strip and r is the number of region for each vial.

Per product aggregation The classification of a whole strip of vials is de-
signed to minimize the GM impact of the error, thus if at least one region
is labeled as rejection, the whole product is considered the same. From these
considerations, the false positive ratio decreases to the detriment of the false
rejection ratio which increase a lot; hence a new thresholds tuning is needed in
order to satisfy the project requirements. To this end the final score function
per vial becomes:

Gv:max({l.O—SSIM(Xi,Xi)}), i>0 A< fover (13)
where i is the patch index.

Per run aggregation In order to be validated, the algorithm must overcome
the manual inspectors’ performance, conducted by the client on the same knapp
test kit. Every product has to be acquired 10 times and in order to be considered
well classified its label must be confirmed at least 7 times out of 10 (70%).
Results are shown in table Bl

5Good Manufacturing Practice (GMP) describes the minimum standard that a medicines
manufacturer must meet in their production processes.

22

Per strip results

Score
Threshold RO 0.016156
Threshold R1 0.038584
Threshold R2 0.046635
Threshold R3 0.029660
Accuracy 0.9593
True positive ratio 0.9694
True negative ratio 0.9467
Mean inference time | 0.4873

Table 2: Per strip results using the equation |13|as anomaly score.

Per strip results

Score
Threshold RO 0.013222
Threshold R1 0.034650
Threshold R2 0.046201
Threshold R3 0.029226
Accuracy 0.9641
True positive ratio | 0.9676
True negative ratio | 0.9599

Table 3: Per run results using the equation 13| as anomaly score.

23

8 Conclusions and Future work

We developed an architecture that performs efficiently in an extremely demand-
ing industrial environment, where performance has both business and GMP im-
pact, which in turn affects people’s safety and health. The proposed method
manages a large dataset while adhering to hardware and time limits and striking
a fair balance between costs and outstanding performance. In order to identify
the primary features of the product and identify out-of-distribution anomalies,
it completes the denoising process during training. With the use of this strat-
egy, the network can be forced to perform better than a traditional autoencoder
when it comes to compressing and eliminating extraneous features from the re-
sult. In fact, because autoencoder-based networks, like GANomaly, have learnt
too smoothly to replicate the source image, they frequently have the issue of
being able to repeat the anomaly region even in the reconstructed image. There-
fore, selecting the noise to be superimposed on the input image becomes crucial
since the more similar it is to the distribution of potential anomalies, the higher
the yield will be in terms of detecting anomalies. Modern generative models
were used as a first instance in the architecture’s development, losses and base
network design was optimized in order to overcome difficult challenges like the
large size of the acquired images and the high variance between positive exam-
ples brought on by the movement of the liquid inside the vials. A heatmap for
defective items is displayed on the HMI to give the operator a visual explanation
of the outcome. The "hot” parts of the heatmap indicate the most anomalous
locations in terms of pixels. This architecture was designed jointly by Univer-
sity of Ferrara and Bonfiglioli Engineering, while tests were conducted on the
Bonfiglioli Engineering’s servers.

While this research provides insightful information and specifics about how
to integrate and implement an out-of-distribution anomaly detection via deep
learning algorithm, several areas warrant further exploration. Nowadays, opera-
tors frequently need additional explanations in addition to an anomaly score and
the associated categorization in order to assess the efficiency of the production
line and the machine itself.

Several solution have been provided in the context of the embedding similarity-
based approach, as in PaDiM [I4], PatchCore [15] or EfficientAD [42], where the
distance between the positives embedding collected during training, re-scaled to
the original image size, constitute a visual representation of the anomalous re-
gions, training a threshold on test dataset can be obtained a pixel-wise classifier.
This is often accomplished by calculating a distance between the inferred em-
beddings of the input, and the knowledge base, which may be arranged in many
ways, such as positive clusters or a stochastic process. Similarly, reconstruction-
based networks provide a heatmap defined as the absolute value of the difference
between the original and the rebuilt images, whereas the differences correspond
to the hottest parts in the map.

The biggest drawback in both situations is the non-parametric classifier’s
inability to delve deeper into the result’s perceptual interpretation. Further ar-
chitectures, such as GRD-Net [21], DRAM [11], the described deep perceptual

24

autoencoder by N. Shvetsova et al. [45], or the proposed one by P. Bergmann
et al. [46], have been researched and developed in order to accomplish the aim
of identifying defects, within images, interpreting the inferred features. The
mentioned architecture prove to have excellent performance, but with the draw-
back of extreme computational and architectural complexity, which makes them
challenging to use in practical situations, particularly when accessed online.

Considering the aforementioned, a promising avenue for future research is
to investigate how to obtain information from the latent representation of the
input example, as a sample of the stochastic process, that might be processed
to produce a visual representation of the anomalous regions within the provided
image. An excellent starting point can be taken from the work carried out by
P. Esser et al. [35], where a discrete representation of the image through a
vector quantized variational autoencoder (VQVAE), is used to generate high
resolution synthetic images, introducing to this end the use of transformers for
imagine encoding, which does not have a strong local correlation within images,
in contrast to CNN. However, as the products in this work are the result of an
industrial process, their shape and position vary very little. For this reason, a
topological connection between the input image and the derived features may
help identify anomalies that deviate from the distribution.

A Result Images

Below are shown examples taken from real cases analyzed during algorithm
validation phase.

25

(a) Original vial re- (b) The rebuild image

gion image (X) X

) The difference im- (d) The heatmap H
age superimposed

Figure 10: Stuck particle in the upper part of the product

(a) Original vial re- (b) The rebuild image

gion image (X) X
) The difference im- The heatmap H
age superlmposed

Figure 11: Stuck particle and anomalous liquid behavior that results in foam
formation because of contamination

26

(a) Original vial re- (b) The rebuild image

gion image (X) X

) The difference im- (d) The heatmap H
age superimposed

Figure 12: Stuck particle and anomalous liquid behavior that results in foam
formation because of contamination

(a) Original vial re- (b) The rebuilt image
gion image (X) X

(c) The difference im- (d) The heatmap H
age superimposed

Figure 13: Lower body deformation

27

(a) Original vial re- (b) The rebuilt image
gion image (X) X

(c¢) The difference im- (d) The heatmap H
age superimposed

Figure 14: Light lower body deformation

(a) Original vial re- (b) The rebuild image
gion image (X) X

(c) The difference im- (d) The heatmap H
age superimposed

Figure 15: Lower body deformation

28

- —
(a) Original vial re- (b) The rebuild image

gion image (X) X

) The difference im- (d) The heatmap H
age superimposed

Figure 16: Black spot on upper part of the vial’s body.

uu

(a) Original vial re-) The rebuild image
gion image (X) X

) The difference im- The heatmap H
age superlmposed

Figure 17: Burn in the lower part of the vial.

29

(a) Original vial re- (b) The rebuild image
gion image (X) X

(c) The difference im- (d) The heatmap H
age superimposed

Figure 18: Light scratch near the product neck.

(a) Original vial re- (b) The rebuild image

gion image (X) X

(c¢) The difference im- (d) The heatmap H
age superimposed

Figure 19: External imperfection caused by laser cutting of the product.

(a) Original vial re-) The rebuild image

gion image (X) X

) The difference im- (d) The heatmap H
age superimposed

Figure 20: Deep scratch on the upper part of the vial’s body.

(a) Original vial re- (b) The rebuild image

gion image (X) X
) The difference im- The heatmap H
age superlmposed

Figure 21: Burn on the vial’s body. It is reproduced as a bubble, since the
network does not know how to represent the defect features.

31

(a) Original vial re- (b) The rebuild image

gion image (X) X

) The difference im- (d) The heatmap H
age superimposed

Figure 22: Black spot on the vial’s body

(a) Original vial re- (b) The rebuild image

gion image (X) X
) The difference im- The heatmap H
age superlmposed

Figure 23: Black spot of the vial’s body

32

(a) Original vial re-) The rebuild image

gion image (X) X

) The difference im- (d) The heatmap H
age superimposed

Figure 24: Bump on the lower part of the vial’s neck, near to a big bubble stuck
in the internal layer of the BFS surface.

(a) Original vial re- (b) The rebuild image

gion image (X) X

(c) The difference im- (d) The heatmap H
age superimposed

Figure 25: Light bump on the vial’s neck

33

(a) Original vial re- (b) The rebuild image
gion image (X)

(c¢) The difference im- (d) The heatmap H
age superimposed

Figure 26: Heavy deformation near the neck region, overlapped to a bubble that
the network is still able to reproduce.

(a) Original vial re- (b) The rebuild image
gion image (X)

(c) The difference im- (d) The heatmap H
age superimposed

Figure 27: Scratch on the vial’s neck.

34

(a) Original vial re-) The rebuild image

gion image (X) X

) The difference im- (d) The heatmap H
age superimposed

Figure 28: Light bump on the lower part of the vial’s cap region.

(a) Original vial re- (b) The rebuild image

gion image (X) X
) The difference im- The heatmap H
age superlmposed

Figure 29: Scratch on the vial’s neck.

35

References

[1]

[9]

[10]

[11]

Paul Mooijman, Cagatay Catal, Bedir Tekinerdogan, Arjen Lommen, and
Marco Blokland. The effects of data balancing approaches: A case study.
Applied Soft Computing, 132:109853, 2023.

Hongzuo Xu, Guansong Pang, Yijie Wang, and Yongjun Wang. Deep iso-
lation forest for anomaly detection. IEEFE Transactions on Knowledge and
Data Engineering, pages 1-14, 2023.

Samet Akcay, Dick Ameln, Ashwin Vaidya, Barath Lakshmanan, Nilesh
Ahuja, and Utku Genc. Anomalib: A deep learning library for anomaly
detection, 2022.

Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. CoRR,
abs/2003.05991, 2020.

Umberto Michelucci. An introduction to autoencoders. CoRR,
abs/2201.03898, 2022.

Diederik P. Kingma and Max Welling. An introduction to variational au-
toencoders. CoRR, abs/1906.02691, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes,
2013.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial networks. Communications of the ACM, 63(11):139-144, 2020.

Samet Akcay, Amir Atapour-Abarghouei, and Toby P Breckon. Ganomaly:
Semi-supervised anomaly detection via adversarial training. In Asian con-
ference on computer vision, pages 622-637. Springer, 2018.

Samet Akcay, Amir Atapour-Abarghouei, and Toby P Breckon. Skip-
ganomaly: Skip connected and adversarially trained encoder-decoder
anomaly detection. In 2019 International Joint Conference on Neural Net-
works (IJCNN), pages 1-8. IEEE, 2019.

Vitjan Zavrtanik, Matej Kristan, and Danijel Skoc¢aj. Draem-a discrimi-
natively trained reconstruction embedding for surface anomaly detection.
In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 8330-8339, 2021.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image
quality assessment: from error visibility to structural similarity. IEEFE
transactions on image processing, 13(4):600-612, 2004.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. CoRR, abs/1512.03385, 2015.

36

[14]

[15]

[16]

[17]

[18]

[19]

[22]

[24]

[25]

Thomas Defard, Aleksandr Setkov, Angelique Loesch, and Romaric Au-
digier. Padim: a patch distribution modeling framework for anomaly detec-
tion and localization. In International Conference on Pattern Recognition,
pages 475-489. Springer, 2021.

Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Scholkopf,
Thomas Brox, and Peter Gehler. Towards total recall in industrial anomaly
detection. In Proceedings of the IEEE/CVE Conference on Computer Vi-
sion and Pattern Recognition, pages 14318-14328, 2022.

David Muhr, Michael Affenzeller, and Josef Kiing. A probabilistic trans-
formation of distance-based outliers, 2023.

Jiawei Yu, Ye Zheng, Xiang Wang, Wei Li, Yushuang Wu, Rui Zhao, and
Liwei Wu. Fastflow: Unsupervised anomaly detection and localization via
2d normalizing flows, 2021.

Jaehyeok Bae, Jae-Han Lee, and Seyun Kim. Pni : Industrial anomaly
detection using position and neighborhood information, 2023.

Yixuan Zhou, Xing Xu, Jingkuan Song, Fumin Shen, and Heng Tao Shen.
Msflow: Multi-scale flow-based framework for unsupervised anomaly de-
tection, 2023.

Berend Denkena, Marc-Andre Dittrich, Hendrik Noske, and Matthias Witt.
Statistical approaches for semi-supervised anomaly detection in machining.
Production Engineering, 14, 03 2020.

Niccolo Ferrari, Michele Fraccaroli, and Evelina Lamma. Grd-net:
Generative-reconstructive-discriminative anomaly detection with region of
interest attention module. International Journal of Intelligent Systems,
2023:1-18, 09 2023.

Chathurika S. Wickramasinghe, Daniel L. Marino, and Milos Manic. Resnet
autoencoders for unsupervised feature learning from high-dimensional data:
Deep models resistant to performance degradation. IEEFE Access, 9:40511—
40520, 2021.

Simone Zini, Simone Bianco, and Raimondo Schettini. Deep residual au-
toencoder for blind universal jpeg restoration. IEEE Access, 8:63283-63294,
2020.

Viet-Tuan Le and Yong-Guk Kim. Attention-based residual autoencoder
for video anomaly detection. Applied Intelligence, 53(3):3240-3254, Feb
2023.

Federico Di Mattia, Paolo Galeone, Michele De Simoni, and Emanuele
Ghelfi. A survey on gans for anomaly detection, 2021.

37

[26]

[27]

[28]

[29]

[30]

[32]

Xuan Xia, Xizhou Pan, Nan Li, Xing He, Lin Ma, Xiaoguang Zhang, and
Ning Ding. Gan-based anomaly detection: A review. Neurocomputing,
493:497-535, 2022.

Paul Bergmann, Sindy Loéwe, Michael Fauser, David Sattlegger, and
Carsten Steger. Improving unsupervised defect segmentation by applying
structural similarity to autoencoders. arXiv preprint arXiv:1807.02011,
2018.

Dong Gong, Linggiao Liu, Vuong Le, Budhaditya Saha, Moussa Reda Man-
sour, Svetha Venkatesh, and Anton van den Hengel. Memorizing normality
to detect anomaly: Memory-augmented deep autoencoder for unsupervised
anomaly detection. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 1705-1714, 2019.

Shashanka Venkataramanan, Kuan-Chuan Peng, Rajat Vikram Singh, and
Abhijit Mahalanobis. Attention guided anomaly localization in images. In
European Conference on Computer Vision, pages 485-503. Springer, 2020.

Stanislav Pidhorskyi, Ranya Almohsen, and Gianfranco Doretto. Genera-
tive probabilistic novelty detection with adversarial autoencoders. Advances
in neural information processing systems, 31, 2018.

Mohammad Sabokrou, Mohammad Khalooei, Mahmood Fathy, and Ehsan
Adeli. Adversarially learned one-class classifier for novelty detection. In
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 3379-3388, 2018.

Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger.
Mvtec ad—a comprehensive real-world dataset for unsupervised anomaly
detection. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9592-9600, 2019.

Xin Xie, Yuhui Huang, Weiye Ning, Dengquan Wu, Zixi Li, and Hao Yang.
Rdad: A reconstructive and discriminative anomaly detection model based
on transformer. International Journal of Intelligent Systems, 37(11):8928—
8946, 2022.

Pankaj Mishra, Riccardo Verk, Daniele Fornasier, Claudio Piciarelli, and
Gian Luca Foresti. Vt-adl: A vision transformer network for image anomaly
detection and localization. In 2021 IEEFE 30th International Symposium on
Industrial Electronics (ISIE). IEEE, June 2021.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers
for high-resolution image synthesis, 2021.

Yonglong Tian, Olivier J. Henaff, and Aaron van den Oord. Divide and
contrast: Self-supervised learning from uncurated data, 2021.

38

[37]

Oliver Rippel, Patrick Mertens, and Dorit Merhof. Modeling the distribu-
tion of normal data in pre-trained deep features for anomaly detection. In
2020 25th International Conference on Pattern Recognition (ICPR), pages
6726-6733. IEEE, 2021.

Liron Bergman, Niv Cohen, and Yedid Hoshen. Deep nearest neighbor
anomaly detection. arXiv preprint arXiv:2002.10445, 2020.

Paolo Napoletano, Flavio Piccoli, and Raimondo Schettini. Anomaly de-
tection in nanofibrous materials by cnn-based self-similarity. Sensors,
18(1):209, 2018.

Niv Cohen and Yedid Hoshen. Sub-image anomaly detection with deep
pyramid correspondences. arXiv preprint arXiv:2005.02357, 2020.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation
using real nvp. arXiv preprint arXiv:1605.08803, 2016.

Kilian Batzner, Lars Heckler, and Rebecca Konig. Efficientad: Accurate
visual anomaly detection at millisecond-level latencies, 2023.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and
Ross B. Girshick. Masked autoencoders are scalable vision learners. CoRR,
abs/2111.06377, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition, 2015.

Nina Shvetsova, Bart Bakker, Irina Fedulova, Heinrich Schulz, and
Dmitry V. Dylov. Anomaly detection in medical imaging with deep per-
ceptual autoencoders. IEEE Access, 9:118571-118583, 2021.

Paul Bergmann, Kilian Batzner, Michael Fauser, David Sattlegger, and
Carsten Steger. Beyond dents and scratches: Logical constraints in un-
supervised anomaly detection and localization. International Journal of
Computer Vision, 130(4):947-969, Apr 2022.

39

Contents

1 Keywords|

2 Acknowledgments|

3__Nomenclaturel

4__Introductionl

4.2 Embedding similarity-based| 0L
4.3 Adopted solution| oL

6_Related Workl

6 Methods
6.1 GRD-Netl

6.2 Application specific optimizations|.
621 Networkl
6.2.2 Classification and segmentation|

17 Experiments|

|IA Result Images|

40

13
17
18
21
21

24

25

	Keywords
	Acknowledgments
	Nomenclature
	Introduction
	Reconstruction-based
	Embedding similarity-based
	Adopted solution

	Related Work
	Methods
	GRD-Net
	Residual Autoencoders
	Generative Adversarial Networks
	GRD-Net architecture

	Application specific optimizations
	Network
	Classification and segmentation

	Experiments
	Hardware
	Network architecture
	Training phase
	Results

	Conclusions and Future work
	Result Images

