
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A novel architecture to virtualise a hardware-bound trusted platform module / DE BENEDICTIS, Marco; Jacquin, Ludovic;
Pedone, Ignazio; Atzeni, Andrea; Lioy, Antonio. - In: FUTURE GENERATION COMPUTER SYSTEMS. - ISSN 0167-
739X. - STAMPA. - 150:January(2024), pp. 21-36. [10.1016/j.future.2023.08.012]

Original

A novel architecture to virtualise a hardware-bound trusted platform module

Publisher:

Published
DOI:10.1016/j.future.2023.08.012

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2981540 since: 2023-09-02T16:37:20Z

Elsevier

Future Generation Computer Systems 150 (2024) 21–36

m
t
a
t
e
o

p
a
(
t
t
d
m

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A novel architecture to virtualise a hardware-bound trusted platform
module
Marco De Benedictis a, Ludovic Jacquin b, Ignazio Pedone a,∗, Andrea Atzeni a,
Antonio Lioy a

a Politecnico di Torino, Dip. Automatica e Informatica, Corso Duca Degli Abruzzi, 24, Torino, 10129, Italy
b Hewlett Packard Labs, Hewlett Packard Enterprise, Bristol, BS34 8QZ, United Kingdom

a r t i c l e i n f o

Article history:
Received 9 July 2022
Received in revised form 6 August 2023
Accepted 9 August 2023
Available online 12 August 2023

Keywords:
Computer security
Trust management
Platform virtualization
Cloud computing security
Trusted computing
Trusted platform module

a b s t r a c t

Security and trust are particularly relevant in modern softwarised infrastructures, such as cloud
environments, as applications are deployed on platforms owned by third parties, are publicly accessible
on the Internet and can share the hardware with other tenants. Traditionally, operating systems
and applications have leveraged hardware tamper-proof chips, such as the Trusted Platform Modules
(TPMs) to implement security workflows, such as remote attestation, and to protect sensitive data
against software attacks. This approach does not easily translate to the cloud environment, wherein
the isolation provided by the hypervisor makes it impractical to leverage the hardware root of trust in
the virtual domains. Moreover, the scalability needs of the cloud often collide with the scarce hardware
resources and inherent limitations of TPMs. For this reason, existing implementations of virtual TPMs
(vTPMs) are based on TPM emulators. Although more flexible and scalable, this approach is less secure.
In fact, each vTPM is vulnerable to software attacks both at the virtualised and hypervisor levels. In
this work, we propose a novel design for vTPMs that provides a binding to an underlying physical TPM;
the new design, akin to a virtualisation extension for TPMs, extends the latest TPM 2.0 specification.
We minimise the number of required additions to the TPM data structures and commands so that
they do not require a new, non-backwards compatible version of the specification. Moreover, we
support migration of vTPMs among TPM-equipped hosts, as this is considered a key feature in a highly
virtualised environment. Finally, we propose a flexible approach to vTPM object creation that protects
vTPM secrets either in hardware or software, depending on the required level of assurance.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Modern cloud infrastructures require sophisticated security
echanisms, given the need for isolation and resource segrega-

ion of instances shared among different tenants. Within cloud
pplications, security-sensitive software can benefit from ready-
o-use security workflows to manage cryptographic data and
nsure the proper functioning of the environment, such as the
nes proposed by the Trusted Computing (TC) paradigm.
TC, as defined by the Trusted Computing Group (TCG) [1], pro-

oses mechanisms that can help secure an environment based on
hardware Root of Trust (RoT), i.e. the Trusted Platform Module

TPM). Two of those mechanisms are Remote Attestation (RA),
o remotely assess the trustworthiness of a platform at a given
ime against a white-list of known-good values, and sealing of
ata via hardware-protected keys. Although widely used in com-
odity hardware platforms (e.g. by Microsoft Windows BitLocker

∗ Corresponding author.
E-mail address: ignazio.pedone@polito.it (I. Pedone).
ttps://doi.org/10.1016/j.future.2023.08.012
167-739X/© 2023 The Authors. Published by Elsevier B.V. This is an open access ar
[2]), TPM-based protection does not scale well in highly virtu-
alised environments, such as clouds. This is due to the archi-
tectural limitations of the TPM, whose hardware resources and
internal structures do not accommodate for multi-tenant execu-
tion environments. Because of this, it is impossible to share a
single TPM among different Virtual Machines (VMs) or contain-
ers, although access to the physical device could be provided
via specific hypervisor-level mechanisms, such as pass-through
drivers.

Given these limitations, the research community proposed
architectures to virtualise the TPM by means of a software im-
plementation of the device, known as vTPM, and to expose this
software to virtual instances. These architectures allow the port-
ing of secure workflows that leverage a TPM in the virtualised
environment in a seamless way, as the vTPM is available to the
VM or container as a standard device.

However, as a software instance, protection of the vTPM re-
sources (e.g. cryptographic keys) against software threats must
be taken into account, e.g. to counter in-memory or side-channel
attacks that may expose the state of the device to an adversary.
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2023.08.012
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.08.012&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ignazio.pedone@polito.it
https://doi.org/10.1016/j.future.2023.08.012
http://creativecommons.org/licenses/by/4.0/

M. De Benedictis, L. Jacquin, I. Pedone et al. Future Generation Computer Systems 150 (2024) 21–36

I
p
u
b
t
g
w
r

h
m

d
F
p
d
p
m
u
a
v
p

1

1

e

o
f
s
a

t
k
m
f
s
v
t
c
w
p
T
t
b
a
a
a
i
t
M
m
f
b
s
2
a
r

c
E
m
t
t
r
t
a
s
i

n this regard, research has addressed the need to establish a
hysical binding between one or more vTPM instances and the
nderlying physical TPM (pTPM), if available. This is provided by
inding a vTPM identity credential, i.e. a vTPM identity certificate,
o a pTPM. However, this approach does not allow to protect
eneric vTPM secrets or cryptographic material in the pTPM,
hich lowers the security level of the vTPM to a software process
ather than a tamper-resistant device.

Other research proposals aim to protect the software vTPM via
ypervisor-level security controls, or trusted execution environ-
ent, to enforce access control and strong integrity assurance.
However, to the best of our knowledge, the existing proposals

o not address the entire vTPMs state binding with a pTPM.
urthermore, a secure and complete binding between vTPM and
TPM poses relevant flexibility issues, which our solution ad-
resses, allowing for the migration of a virtual instance from one
hysical host to another. Thus, our solution makes the manage-
ent of keys and sealed data practical in a vTPM, while using the
nderlying hardware-level protection. This solution also enables
ttestation of the vTPM-pTPM binding attestation, to enable a
TPM user to verify that its secrets are correctly protected by a
TPM.

.1. Contribution

In the following, we highlighted the contribution of this work:

1. investigation of the data structures and commands of the
TPM in its latest specification version, TPM 2.0, and se-
lection of the vTPM elements that the pTPM shall protect
to achieve hardware-level security. In this regard, we aim
at minimising the number of elements protected by the
pTPM to effectively provide an identity binding between
the virtualised and the physical platform.

2. proposal of an extension of the existing TPM 2.0 architec-
ture that embeds the required data structures and com-
mands to support the hardware-bound vTPM management.
In such a design, we aim to not modify existing TPM archi-
tectural elements (e.g. data structures, commands) so that
our novel architecture does not collide with the existing
specification. In fact, we extend the TPM 2.0 architecture
with a limited set of additional structures and commands
that do not overlap with the standards but are built from
the existing components to maximise the affinity with the
TCG specifications. Moreover, we do not exceed the exist-
ing constraints on hardware resources (e.g. buffer sizes)
as described in the specifications. Our main goal is to
minimise the number of requested changes to a pTPM
architecture so that our extension is backwards compatible
and can be deployed in exiting pTPM with a TPM firmware
upgrade.

3. support for the migration of vTPMs among TPM 2.0
equipped hosts, and increased scalability of vTPMs in a
highly virtualised environment (such as a private cloud)
via a flexible hardware–software interaction between each
vTPM and the underlying pTPM.

4. support for high-performance applications since our vTPM
design allows for keys and other TPM objects to exist in
software rather than in the pTPM. While this is possi-
ble, the vTPM user would have to request this specific
behaviour. This should be enabled with care since might
enables a vTPM to be fully softwarised (i.e. there is no
interaction with a pTPM). Our proposed design enables a
user to verify that a hardware-bound vTPM is correctly
enforced by a pTPM when the user knows a trust anchor
(e.g. a public part) of a pTPM-protected attestation key.
22
Fig. 1. vTPM target deployment.

.2. Use case: Cloud provisioning of hardware-bound vTPM

A domain that can benefit from our proposal is the cloud
nvironment, with particular attention to a Infrastructure-as-a-

Service (IaaS) service model. This enables the sharing of physical
resources (e.g. compute, network, storage) among several virtu-
alised instances, i.e. VMs or containers, wherein cloud users can
deploy their applications. The Cloud Service Provider (CSP) is the
wner of the IaaS infrastructure and it typically proposes a port-
olio of technical solutions wherein features and resources are
electable depending on the requirements of customer services
nd their subscription plan.
In this scenario, a CSP could offer specialised virtual instances

hat can leverage the TPM for the generation of cryptographic
eys and secure storage of secrets, such as Application Program-
ing Interface (API) keys. Moreover, the CSP itself could benefit

rom vTPM-equipped instances to implement security workflows,
uch as infrastructure attestation and detection of attacks on
irtual tenants. Our proposal covers these use cases by enabling
he instantiation of vTPMs in a hypervisor domain so that they
an be presented as standard devices to VMs and containers,
ith enforcement by the hardware. Compared to existing ap-
roaches, our proposal retains the hardware-level protection of
PM sensitive information against software manipulations. From
he user’s perspective, the data managed by the vTPM should not
e accessible by other cloud users or by the hypervisor itself. Our
pproach does not require the cloud user to trust the hypervisor,
s the vTPM protected information are not stored by the CSP
t the hypervisor level: the pTPM itself is used to protect such
nformation so that it cannot be accessed by any user, including
he hypervisor, without explicit authorisation by the vTPM owner.
oreover, a CSP could require the vTPM-equipped instance to
igrate to a different host. Given that migration is a critical

eature of highly virtualised environments, this feature should
e supported by the vTPM itself. In our proposed scenario, we
upport migration among computing hosts equipped with TPM
.0. Otherwise, existing security services would be disrupted,
s all the secrets protected by a specific vTPM would not be
ecoverable by other vTPMs or even by the host system.

Fig. 1 depicts the envisioned target deployment for a vTPM ar-
hitecture tailored for a heterogeneous virtualised environment.
ach vTPM is deployed in the host user space thanks to a vTPM
anager, whose role is to interact with either the container run-
ime or a hypervisor so that vTPMs can be spawned and exposed
o virtual instances. Moreover, the vTPM manager should be
esponsible for the state management of vTPMs (such as loading
heir secrets in the pTPM when the VM or container is starting)
nd even their migration. Because of this, the vTPM manager
hould have access to the pTPM interface to issue commands to
t.

M. De Benedictis, L. Jacquin, I. Pedone et al. Future Generation Computer Systems 150 (2024) 21–36

1

d
n
t
t
w
t
v
p
p
p
e
S
S
i
a

2

a
t
d
c
t
s
h
t
f

1
t
s

.3. Paper structure

The rest of the paper is organised as follows. Section 2 intro-
uces the concepts of TPM 2.0 architecture and features that are
ecessary for the understanding of our proposal An overview of
he related research in the field of hardware-based trust applied
o virtualised environments is presented in Section 3. In Section 4,
e discuss the design of our TPM extension and the key fea-
ures that enable the binding between a pTPM and one or more
TPM instances. We detail in depth the relationship between the
hysical and virtual platforms for key management and state
rotection in Section 5 and Section 6, respectively. Then, we
resent a low-level view of the extension commands and the
nvisioned functional mapping between a vTPM and a pTPM in
ection 7, followed by the threat model of the target use case in
ection 8. Then, we evaluate advantages and possible weaknesses
n Section 9. Finally, we draw our vision of possible future works
nd our conclusions in Section 10 and Section 11 respectively.

. Primer on TPM 2.0 capabilities

The TPM is a discrete cryptographic coprocessor that is already
vailable in commodity machines and can serve as an enabling
echnology for several security workflows. Its specifications are
eveloped by the TCG consortium, which comprises software
ompanies, such as Microsoft that leverage the TPM to protect
he BitLocker disk encryption key, platform manufacturers, that
tore boot measurements in the TPM for example, and several
ardware vendors that are responsible for the actual implemen-
ation of the chip. Since its beginning, the TPM has included basic
unctions such as key generation, secure storage and reporting.

The first widely available TPM release was 1.1b, although the
.2 version has been the most used for several years. To address
he early privacy issues that arose from using a TPM, the 1.2
pecification included a privacy Certification Authority (privacy CA)
to assess that a key was generated by a TPM without disclosing
the TPM instance it came from. Later, this will be enhanced with
the development of new cryptographic protocols, such as Direct
Anonymous Attestation (DAA) [3].

Platform configuration register (pcr). PCRs were defined in the
TPM memory to store the integrity of boot time measurements
(e.g. BIOS, bootloader). These registers could be securely reported
by an identity key generated by the TPM so that an external entity
could verify the integrity of the platform. The 1.2 release provided
a standard interface to be implemented by all the vendors, which
helped platform manufacturers to adopt the TPM device in their
machines.

Non-volatile random-access memory (nvram). A TPM should in-
clude some non-volatile storage space that can store any type of
data. A limited portion of the NVRAM is usually used to store the
TPM’s vendor certificate of the TPM endorsement key.

Cryptographic algorithms. Up to, and including, the 1.2 release,
the TPM specification only supported the RSA, AES and SHA-1
cryptographic algorithms.

The latest TPM 2.0 specification significantly differs from the
previous version, as TCG has redefined the internal structures,
commands and algorithms (particularly cryptographic agility to
allow for multiple ciphers). Nevertheless, the security capabilities
of the device - described in depth as follows - have been kept
intact and extended with new features.
23
2.1. TPM 2.0 key management

One tpm, three masters. The TPM 2.0 generates keys under differ-
ent key hierarchies, namely the Endorsement, Platform, Storage
(also known as Owner) and Null hierarchies [4]. Each of them
is characterised by a primary seed, i.e. a large random number
that is used by an internal Key Derivation Function (KDF) to
create primary keys. Hierarchies differ by their controlling entity,
authorisation mechanisms and when their seed is generated or
reset.

More specifically, the Endorsement Primary Seed (EPS) and
the Endorsement Key (EK) certificate are generated by the man-
ufacturer of the TPM; the EPS can be replaced, by a random
number generated by the TPM itself, after manufacturing but
this invalidates the EK and its certificate, therefore the platform
manufacturer usually disables this capability. The Platform Pri-
mary Seed (PPS) is under the control of the manufacturer of the
computing platform (via the platform’s firmware) that embeds
the TPM, while the Storage Primary Seed (SPS) is controlled by
the final owner of the platform, i.e. the end user. Because of its
nature, the SPS (respectively the PPS) can be cleared and regener-
ated after platform manufacturing by its end owner (respectively
the firmware); this subsequently invalidates all the keys created
under the Storage hierarchy (respectively Platform hierarchy).
Finally, the Null hierarchy is only used to generate ephemeral
keys, hence its primary seed is not persistent. The hierarchies,
except the Null hierarchy, can be independently disabled without
affecting the use of the TPM by the other entities. In TPM 1.2,
disabling the Storage hierarchy completely rendered unusable the
device to all the TPM’s users.

TPM 2.0 primary keys. Similarly to TPM 1.2, the latest specifi-
cations allow generating keys with different purposes, such as
encipherment or digital signature. Encryption keys are the only
allowed to be parent keys in a hierarchy, as they can encrypt – or
wrap – child keys or objects: such key is named a storage parent.
A primary storage parent is the root of a tree of storage parents
and TPM objects, under the hierarchy whose seed has been used
to create the primary storage parent. The primary keys differ from
the ordinary keys as their private part – encrypted or not – never
leaves the device. Ordinary keys can be used to encipher or sign
external data and can be duplicated to different hierarchies (or
even TPMs).

The most significant primary key, at least early in the life-cycle
of a TPM, is the Endorsement Key (EK): its distinctive charac-
teristic is that it is generated during the TPM’s manufacturing
and it is associated with an EK certificate signed by the TPM’s
vendor. The EK certificate is usually stored in the TPM’s NVRAM
for convenience. In TC, this is the way to establish initially the
genuineness of a TPM. Due to privacy concerns, the EK for TPM
1.2 is a decryption-only key. Differently from the previous release,
the TPM 2.0 allows the EK to be a signing key for TPMs of non-
user devices (e.g. server, network router [5]). Although possible,
it is not deployed and all TCG mechanisms use the decryption EK.

Another TPM 1.2 important key is the Storage Root Key (SRK):
the SRK is the root of the only key, and object, hierarchy of a TPM
1.2. The SRK is replaced in TPM 2.0 by the primary storage parents
that belong to any hierarchy and each hierarchy can possess
multiple primary storage parents.

Given the limited amount of memory (volatile and
non-volatile), a TPM must load keys and objects before using
them. This is done by providing the public and private parts of
an ordinary object to the TPM. By contrast, primary keys are
deterministically generated inside the TPM, when needed, using
the primary seed and a template [6] as arguments. This is a
data structure that identifies the attributes of the object to be
generated by the TPM. In fact, it must be provided at the creation

M. De Benedictis, L. Jacquin, I. Pedone et al. Future Generation Computer Systems 150 (2024) 21–36

t
i
i

v
f
i

d
(
T
d
t

g
f
E
o
s

2

P
m
t
o

o
n
t
h
B
t

o
a
c
w
a
a
p

M
s
n
i
t
l
p
o
t
i
t
o
t

i
u
b
a
u
I
t
w
o

R
a
c
a
r
g
r
v
b
n
a
d
m
A
a
b
a
b
w

2

S
h
I

ime of all types of objects; the particularity of primary objects
n that they cannot be loaded, only re-created. The template
ncludes the following information [7]:

• the object type, which may indicate a symmetric key, HMAC
key, asymmetric key, or a data value;

• the name’s algorithm, which identifies a hash algorithm
used for computing the Name of the object (i.e. its unique
identifier);

• the object attributes, a set of flags that determine the usage
of the object and the rules to load it in the TPM;

• an authorisation policy to access the object;
• a unique value that may be used by the TPM at object

creation process, as a user-provided argument.

In addition, the TPM allows customisation of the primary key by
providing sensitive data. This also allows to set an authorisation
alue, i.e. a password, for the created object. The object attribute
lags [7] can be either set or clear and form a bit-mask. They
nclude:

• fixedTPM: if set, the object cannot be duplicated;
• fixedParent: if clear, the key itself can be duplicated. If set

and fixedTPM is clear, the object could be migrated by virtue
of one of its parents being duplicable.

• restricted: if set, the object (which is necessarily a key)
can only perform cryptographic operations on structures of
known format; for example, a restricted signing key cannot
sign an arbitrary value, only data that has been hashed by
the TPM itself.

• sensitiveDataOrigin: if set, the TPM will generate the sensi-
tive data (e.g. the symmetric key). Otherwise, it is provided
by the caller.

• sign: if set, the key can be used for signing; for a symmetric
algorithm, this means performing an HMAC computation.
For symmetric keys, this flag also controls the ability to
encrypt.

• decrypt: if set, the key can be used to decrypt. Encryption is
done by the public key for asymmetric algorithms, and by
the same key for symmetric algorithms.

If the key creation succeeds, the TPM returns a 32bit han-
le for the object that can be used for subsequent interactions
e.g. creation of a child key). A TPM handle is an identifier that the
PM uses internally to use the selected object. The TPM supports
ifferent handle types [7] that refer to specific object categories,
he most relevant of which are:

• PCR registers;
• NVRAM indexes;
• permanent objects, such as hierarchies;
• transient objects, such as primary keys at creation;
• persistent objects, which have been loaded and made per-

sistent in the internal memory of the device.

With respect to TPM 1.2, the latest specification offers a
reater algorithm flexibility. The major differences are support
or Elliptic Curve Cryptography (ECC) algorithms (e.g. ECC P256,
CC BN256), the SHA-2 family, and it enables regionalisation
f the TPM, for example to use the SM9 Chinese cryptographic
tandards.

.2. Platform attestation

latform configuration registers. The TPM 2.0 includes one or
ore banks of PCRs (i.e. sets of internal registers) that are specific

o a cryptographic hash function (e.g. SHA-1, SHA-256). The value

f a PCR can be updated only via an extend operation. This r

24
peration concatenates the current value of the PCR with the
ew data and computes the hash over the result, before updating
he PCR value with it. The new data is often a cryptographic
ash, although the TPM specification does not enforce this format.
ecause of its nature, the value of a PCR depends on the order of
he operation that extended value in the PCR.

All PCRs are initialised at platform boot, to all zeros or all
nes. Commodity machines typically have 24 PCRs in each bank,
lthough the exact number depends on the manufacturer. PCRs
annot store persistent data, and most of them cannot be reset
ithout a reboot of the platform.1 Because of their nature, PCRs
re used to store measurements recorded during the life-cycle of
platform, so that they can be presented to an external entity as
roof of the integrity of the system.

easured boot. At platform startup, a Core Root of Trust for Mea-
urement (CRTM) is responsible to calculate the digest of the
ext software being loaded in memory, and extend its value
n a PCR. Then, the next software is executed and continues
he measurement chain up to the Operating System (OS) kernel
oading, storing the measurements in the available PCRs. This
rocess, known as measured boot, allows to store measurements
f the boot process (e.g. BIOS, boot-loader) in the PCRs so that
hey can be verified against known-good whitelists. The CRTM
s the only software component of the architecture that must be
rusted by default, as it cannot be measured or validated. Because
f this, it is known as a root of trust and it should be shielded by
he platform manufacturer against manipulations.

In addition to boot integrity measurements, the Linux kernel
ntegrates the Integrity Measurement Architecture (IMA) [8] mod-
le to record software events occurring at runtime. These include
inaries that are executed on top of the OS or files open for read,
nd they can be measured according to a policy that is config-
rable by the system administrator. All the digests measured by
MA are extended to the same PCR, so that the aggregated value of
he measurements can be compared against a known-good value,
hich is typically computed by extending the white-listed digests
f all measured software components with the same order.

emote attestation (ra). TPM-based remote attestation leverages
specific operation, named quote. The TPM hashes a number of
aller-selected PCRs that contain proof of the platform integrity,
nd signs the digest with an Attestation Key (AK), which is a
estricted signing key. The signature, together with the PCR di-
est report and an anti-replay nonce – provided by the caller –
epresent the RA Integrity Report (IR) [9]. The IR is provided to a
erifier by the TPM-equipped attester (the name of the platform
eing verified), so that the remote party can verify that it was
ot altered. Of course, this assumes that the AK came from an
uthentic TPM. To bridge that gap, different schemes have been
efined in the literature to certify AKs. These include the afore-
entioned privacy CA, wherein a EK can be used to prove that an
K originated from a TPM without disclosing the TPM identity,
nd Direct Anonymous Attestation (DAA), an alternative scheme
ased on group signatures. TPM 2.0 also allows an AK to be gener-
ted under the Endorsement or Platform hierarchies and certified
y the manufacturer. This approach is suitable for environments
herein privacy of the TPM identity is not a concern.

.3. Secure storage

ealed data object. Since its initial specification, the TPM device
as provided means to securely store certain amounts of data.
n TPM 2.0, a specific object type is defined for this purpose:

1 To support a measured launch, some PCRs can be reset during the platform’s
untime through special instructions.

M. De Benedictis, L. Jacquin, I. Pedone et al. Future Generation Computer Systems 150 (2024) 21–36

t
o

he Sealed Data Object (SDO). This is achieved by a combination
f keyed hash object type and the sign and decrypt flags both

cleared, which means an object neither for signature nor for
encipherment. Moreover, the restricted flag must be clear as well,
as the SDO is generated from a data blob that is not provided by
the TPM. In fact, the data blob is passed to the TPM as part of
the sensitive area along with the template and the handle of the
parent key.

The TPM 2.0 supports context management, which allows
objects to be loaded into the device when needed. When a SDO is
swapped out of context, it is stored encrypted with a symmetric
key that can either be its parent key (if symmetric) or protected
by the parent asymmetric key. The major drawback of storing
sensitive information in a SDO is its size limitation. In fact, the
specifications state that a keyed hash data type cannot exceed the
limit of 128B.

Nvram index. Given the strict limitations of SDOs, the TPM 2.0
specifications allow to store data in NVRAM indexes. An NVRAM
index is an area of memory that can be used to store either TPM
known data structures or unstructured data defined by the end
user. The user must specify the size and attributes of the index
before using it, and control access to the index via heterogeneous
policies (e.g. shared secrets). Given the size of the NVRAM (in the
order of KiB), this is a suggested approach to store large persistent
data (such as digital certificates) in the TPM rather than SDOs. The
NVRAM supports different types of indexes [4]:

• ordinary, which stores unstructured data blobs of arbitrary
length;

• counter, which stores 64bit long counters that can only
incremented;

• bit field, which holds 64bit that are clear when initialised
and can only be set;

• extend, which is initialised with all zeros for a specific hash
algorithm and can only be extended (as a PCR).

3. Related work

The original vTPM design was developed by Berger et al. [10],
who focused on the 1.2 specification. The authors proposed that
a vTPM manager, running in a privileged VM, had access to
the underlying pTPM through the hypervisor. This managed the
instantiation of vTPM instances and exposed them to other VMs
through client drivers available in the virtual domains. The lim-
itation of this approach is that the vTPM state and keys are
fully managed in software in the privileged domain, hence they
cannot provide the same assurance and tamper resistance than
hardware devices. The authors also proposed an architecture for
deep attestation where a vTPM identity credential, i.e. a vTPM EK
certificate, was bound to that of a pTPM, i.e. an AK certificate.
Compared to the original design by Berger et al. this proposal
offers hardware-level protection of the private keys generated
by the vTPM instance, so that they cannot be manipulated by
an attacker that gains access to the hypervisor without proper
authorisation.

The authors of this work developed an architecture to perform
run-time integrity attestation of software run inside Docker [11]
containers [12]. Although viable, this approach suffers from a
performance overhead at the increase of virtual instances, as a
single pTPM (based on version 1.2) is used to store measurements
of both the host and all the containers running on top of it.

Shi et al. [13] defined a technique to protect vTPM secrets (in
software) using a symmetric encryption key wrapped by a pTPM
Storage hierarchy key. Their implementation uses QEMU/KVM
as a means to expose the vTPM to the virtual environment.
Compared to our approach, once the vTPM secrets are decrypted
25
at VM instantiation, there is no interaction with the pTPM and
all the vTPM objects reside in VM memory space, making them
vulnerable to software attacks.

Hosseinzadeh et al. [14] propose two different architectures
where one or more vTPM instances are exposed to containers and
linked with a pTPM. The first relies on the vTPM instances to be
integrated into the host kernel and to expose character devices
that are attached to containers, thanks to the container runtime.
Compared to [10], this design does not rely on the virtualisation
engine (in the first case, the hypervisor) to manage all hardware
accesses to the pTPM. A second proposal is similar to [10] in the
sense that each vTPM is placed inside a separate container. Only
this container has access to the hardware TPM and it exposes
vTPM interfaces to the other containers through UNIX sockets or
other communication channels. The second approach requires a
daemon to manage vTPM instantiation, rather than the kernel as
in the first scenario.

Wan et al. [15] discuss the limitations of traditional TPM
design when applied to a virtualised environment. The TPM is
originally designed to support a single host and cannot handle
simultaneous access by multiple entities. The authors discuss
alternative designs for vTPMs in literature, including the orig-
inal proposal [10] and an alternative approach based on para-
virtualisation of pTPM [16]. Compared to previous solutions, the
latter tries to overcome the security issues of fully virtualised
TPMs when exposed to VMs, although it does not overcome the
limitations in the current TPM design.

The open-source community has recently proposed a soft-
ware tool, named Keylime [17,18], that aims to bootstrap trust
in a cloud environment. In this scenario, the vTPM is a software
module that resides in the host machine and is exported to
traditional virtual machines based on QEMU/KVM. The protection
of the vTPM software is implemented via Linux Security Modules
to enforce Mandatory Access Control (MAC) policies to prevent
malicious users’ activities.

Trusted Execution Technologies (TEEs) such as Intel Software
Guard Extensions (SGX) [19], AMD Secure Encrypted Virtualisation
(SEV) [20] and ARM TrustZone [21] have been proposed as a
solution to secure software run in virtualised instances. Wang
et al. [22] have proposed protection of a virtualised instance of
TPM 2.0 (based on the open-source libtpms library) in a SGX
enclave, a shielded memory area wherein only trusted code is
allowed. These mechanisms are complementary to our proposed
design, which reinforces them by securing secrets in a discrete
component immune to attacks such as side-channel that are
effective against TEEs.

More recently, the authors of [23] proposed an extension of
the vTPM to support the SM cipher suites. The authors of [24] pre-
sented a Container Integrity Measurement (CIM) scheme which
extends the chain of trust to bare-metal containers and virtual
machine containers and fundamentally realises the integrity pro-
tection of containerised Virtual Network Functions (VNFs). This
scheme heavily relies on the vTPM. Wang et al. [25] identified
critical challenges for vTPM protection with SGX and proposed
SvTPM, which is an SGX-based virtual trusted platform module,
to provide vTPM run-time protection and strong isolation based
on SGX. They also designed the solution to be robust to attacks
such as NVRAM binding and vTPM snapshot rollback. A prototype
is available and based on QEMU and KVM. Finally, the authors
of [26] presented a solution to protect the integrity of VNFs using
the vTPM.

Table 1 summarises the limitations of the works in the current
literature and our advantages over them.

M. De Benedictis, L. Jacquin, I. Pedone et al. Future Generation Computer Systems 150 (2024) 21–36

e
p
o
b
i
h
i
o
p
t
r
(
t
t
a

4

c
s
t

4

g
d

R
v
b
t
p
a
i
b
s
v
a
v
p
i
o
m

t
m
o
c

Table 1
Summary of the advantages of our solution against current literature.
Work(s) Limitations Our advantages

[10,14,24,26] vTPM state and keys fully managed in software. Hardware-level protection of the private
keys generated by the vTPM.

[12] Performance overhead as the virtual instances
increase due to the single pTPM.

Hybrid software-hardware key management
to avoid the pTPM as a bottleneck.

[13] vTPM objects resider in VM memory spaces leaving
room for software attacks.

Consistent interaction with the pTPM and
TPM objects can be stored in hardware.

[15] It does not overcome the security limitations of
fully virtualised TPM in the current TPM design.

Our work is based on the latest TCG
specifications.

[17,18] The protection of the vTPM software is done using
MAC.

Hardware-level protection.

[19–22,25] Orthogonal works and technologies that can extend
and reinforce our approach.

–

4. vTPM-to-pTPM cryptographic binding

The primary goal of our work is to bind a vTPM to a pTPM,
nsuring that cryptographic keys generated in each hierarchy are
rotected by a hardware platform, rather than software. Most
f the TPM objects are ordinary objects, which are protected
y a Storage Parent Key hierarchy that is ultimately anchored
n a primary key. The primary keys represent the roots of each
ierarchy, and they are generated from primary seeds as specified
n Section 2. Hence, our proposal aims to protect the generation
f vTPMs seeds with the underlying pTPM, and then extends the
rotection to primary keys and ordinary objects. It is to be noted
hat seeds should be protected against vTPM failures, as they are
equired to generate primary keys under each vTPM hierarchy
and hence, to load keys and unseal secrets that were stored by
he vTPM before failure). Because of this, a management entity,
he vTPM manager, should run at the host level to keep records
bout vTPM instances and their associated data (such as seeds).

.1. Limitations of conservative approaches

Several approaches for the pTPM-to-vTPM binding have been
onsidered in our research. They aim at adapting the existing
pecifications to the virtualised environment and are described
hereafter.

.1.1. vTPM seed generation through pTPM at manufacturing time
The most conservative approach would require the pTPM to

enerate primary seeds at vTPM instantiation time, using the
evice hardware Random Number Generator (RNG).
This proposal would have the benefit to leverage a hardware

NG, that is more secure than a software RNG used by a standard
TPM implementation. Once the seeds are generated, they should
e stored by the vTPM software in the proper data structures for
heir run-time. In addition, these seeds could be sealed by the
TPM as SDOs, using an encryption key under a persistent hier-
rchy (e.g. the Storage hierarchy) so that they can be recovered
n case of vTPM failure. Moreover, they could be made persistent
y storing them in the NVRAM. In this approach, a vTPM manager
hould keep information about the SDOs handles and the related
TPM instances, so that the seeds can be re-injected in them after
restart. An advantage of this approach is that the pTPM and the
TPMs are independent from each other (other than for the SDO
rotection), making the vTPMs more scalable in large virtualised
nfrastructures. Moreover, the vTPMs are easily migratable to
ther instances as their seeds (the roots of the hierarchies) are
anaged in software.
The major drawback of this approach is that the vTPM loads

he primary seeds unencrypted in its memory so that it can
anage the key hierarchies. Even if the seeds were encrypted
n disk, an in-memory attack could still get access to clear-texts,
ompromising the vTPM instance.
26
4.1.2. Multiplexing of pTPM hierarchy root keys to vTPM instances
An alternative approach would be to leverage the customisa-

tion options at object creation given by the TPM 2.0 specifications.
More specifically, a vTPM manager could leverage the unique
value in the public template of the primary keys to generate
unique root keys in each hierarchy of the pTPM. These unique
values could be generated through the pTPM RNG and then
associated to each vTPM instance by the manager.

This approach would improve the previous proposal, as the
vTPM key hierarchies are managed exclusively by the pTPM. Both
the seeds and the primary keys are never exposed in software,
achieving hardware-level security. pTPM context management
would allow to manage the increasing number of vTPM keys,
although this design requires careful management of the unique
values so that key hierarchies are separate.

This approach suffers from the limitation of generating both
pTPM and vTPMs primary keys from the same hardware-based
primary seeds. An undesirable side effect is that the life-cycles
of the pTPM hierarchies are now tied to all the vTPMs using the
platform.

4.2. Our proposal: pTPM 2.0 virtualisation extension

We address the limitations of the existing approaches and
aim to overcome them by proposing a virtualisation extension
to the TPM 2.0 specifications. Our goal is to extend the TPM
2.0 design as effectively as possible to enable management of
vTPM identities and their life-cycles in a pTPM-equipped host,
including migration of the virtual instances. Moreover, we aim
to retain the hardware-level security of a pTPM even in the
virtualised environment, at least for the core identity elements
(such as seeds and primary keys) that should never leave the
device unprotected. One should note that we can use the pTPM
duplication mechanism to assist the migration of the vTPM.

In our approach, the pTPM interface is extended to enable
hardware protection of vTPM primary seeds, wrapping of vTPM
primary keys and creation of child objects, as described in the
following Section 5. Moreover, the pTPM is used to wrap crypto-
graphic keys utilised for encryption and decryption of the persis-
tent state of vTPM instances during their life-cycle, as depicted
in Section 6. The comprehensive list of added commands to the
pTPM interface and the required mapping between the vTPM and
pTPM interfaces are presented in Section 7.

While this proposal requires a new semantic to be shared and
understood by both the pTPM and vTPM, one of the ancillary goals
is to minimise the impact on the vTPM’s user or a Trusted Software
Stack. This is achieved by designing the new semantic required by
this proposal to use existing but unused attribute bits.

M. De Benedictis, L. Jacquin, I. Pedone et al. Future Generation Computer Systems 150 (2024) 21–36

o
e
s
a
e

5

T
a
e
t
t
a
s
b
w
i
f
r

t
o
A
g
s

i
p
S
i
m
u

c
t
(
P
T
R
b
a

t

g
t
I
p
p
o
f
h
a

b
T
v
h

5

e
c
a
c
b
s
t
g
t
u
m
t
V
l
p

v

Table 2
vTPM primary seed object attributes.
Sign Decrypt Restricted Object use

0 0 0 Sealed Data Object
0 0 1 Virtual Primary Seed
0 1 0 Decrypt only, not parent key
0 1 1 Parent key
1 0 0 Quote, sign, certify, HMAC
1 0 1 Quote, sign, certify (TPM structures)
1 1 0 Sign, decrypt, not parent key
1 1 1 Not supported

5. vTPM key management

This section describes the design changes that are envisioned
n the pTPM 2.0 interface to support hardware-bound key gen-
ration and usage. These are to be implemented by the vTPM
oftware so that calls to object management commands (e.g. cre-
tion of a virtual primary key) are mapped to new commands
xposed by the pTPM interface.

.1. vTPM primary seeds

To achieve our goal, we first propose the inclusion of a new
PM object: the Virtual Primary Seed (VPS). This is constructed as
variation of a standard SDO, in the sense that it leverages the
xisting keyed hash object type with a particular combination of
he object attributes bit-mask. The adoption of an existing object
ype has a smaller impact on specifications, rather than defining
completely new type (which would affect both the internal

tructures of the TPM and its commands). Each VPS is wrapped
y a parent pTPM key, hereby named Seed Wrapping Key (SWK),
hose hierarchy is used to identify the VPS hierarchy. Concerning

ts object attributes, there are two possible approaches that derive
rom SDO attribute selection, which requires all sign, decrypt, and
estricted to be clear:

• set the restricted bit that is forbidden in the current specifi-
cations in case of a SDO, as shown in Table 2;

• set the sensitiveDataOrigin flag that is clear in the standard
SDO (as the data are generated outside of the TPM).

Although both approaches are viable, we choose the first op-
ion as it semantically forbids the pTPM to use the VPS for
perations on unknown data structures or external data blobs.
lso, as explained in the next paragraph, the VPS value may be
enerated by the pTPM itself; sensitiveDataOrigin does not make
ense in that case.
The seed generation can leverage the internal pTPM RNG, as

n previously proposed approaches. An inherent limitation of our
roposal is that the seed must fit the size limitation of a standard
DO, to avoid breaking the existing constraints defined in spec-
fications [7]. This constraint is currently of 128B, as previously
entioned, which is superior to the actual size of primary seeds
sed by current TPM 2.0 simulators, i.e. 64B.
The SWK is used to wrap the primary seed so that its context

an be stored in the vTPM without disclosing the seed in clear
ext. At vTPM instantiation, the virtual Endorsement Primary Seed
vEPS), virtual Platform Primary Seed (vPPS) and virtual Storage
rimary Seed (vSPS) must be generated via the underlying pTPM.
he NULL hierarchy seed can be either generated via the pTPM
NG or fully implemented in software. Fig. 2 shows the relation
etween the pTPM per-hierarchy SWKs and multiple VPS objects
ssociated to different vTPMs.
After generation, the vTPM software is responsible for loading

he VPS in the underlying pTPM, when required for primary key
27
Fig. 2. vTPM primary seed object definition within the pTPM hierarchies.

eneration, so that the seed value is decrypted in the pTPM pro-
ected memory and a transient handle is returned to the vTPM.
f needed, the seed object can even be made persistent to the
TPM NVRAM by using standard commands. Moreover, the vTPM
rimary seed cannot be unsealed as standard SDOs, as the unseal
peration is designed to fail if either sign, decrypt or restricted
lags are set [6]. At vTPM runtime, the instance only knows the
andle of each VPS, while the pTPM is responsible for protecting
nd accessing the seed values.
The VPS can be either made fixed to the pTPM or duplicable

y properly setting the fixedTPM and fixedParent object attributes.
his flexibility enables a vTPM owner to decide whether certain
TPM-equipped VMs or containers should be pinned to a specific
ost or be duplicatable.

.2. vTPM primary keys

In our design, virtual primary keys share similar security prop-
rties with their physical counterparts. In fact, the key can be
onfigured such that the private area never leaves the pTPM,
s the virtual primary key is automatically loaded in the pTPM
ontext when generated. A handle of the primary key is returned
y the pTPM as it is managed by the physical device and is
tored in the vTPM context to be used afterwards. Similarly to
he pTPM primary keys that use a hierarchy handle, the vTPM key
eneration function receives a vTPM hierarchy handle, in addition
o the public template, but the vTPM needs to translate this into
sing the VPS and the pTPM. Because of this, the vTPM seed
ust be previously generated at vTPM instantiation, stored by

he software instance or loaded in the pTPM. Depending on the
PS origin, the hierarchy of the primary key is derived. The high-
evel sequence of steps occurring in the pTPM to generate a vTPM
rimary key is defined as follows:

1. verify that object attributes in the input public area are
valid (e.g. the restricted bit is set);

2. verify that the input handle belongs to a loaded vTPM seed
object, and get its sensitive area (i.e. the random seed);

3. validate the sensitive area values;
4. create the primary object by running the pTPM KDF with

the vTPM seed as an input parameter;
5. return the transient handle of the primary object.

Although sensitive areas of primary keys never leave the de-
ice, they can be still migrated in case a vTPM is moved to another

M. De Benedictis, L. Jacquin, I. Pedone et al. Future Generation Computer Systems 150 (2024) 21–36

p
e
a
p
a

5

f
o
o
e
p
l
a

i
s
i
o
t
b
v

b
t
o
v
r
h
i
l
l
s
b
d

v
p
t
a
f
c
i

o
a
a

T
v
l
d
c
f
a
t
t

n
T

TPM-equipped instance as they can be deterministically regen-
rated by a KDF if the same public key template and sensitive
rea are provided, along with the VPS. Because of this, a vTPM
rimary key is duplicable if the fixedTPM and fixedParent object
ttributes of the corresponding primary seed are clear.

.3. vTPM hardware-bound and software child objects

When designing a vTPM architecture for a cloud environment,
lexibility should be considered in order to offer different trade-
ffs between performance and security depending on the level
f assurance required by a certain workload. Because of this, we
nvision that the vTPM should support the creation of either
TPM-protected child objects (whose sensitive area does not
eave the pTPM unencrypted) and fully virtual objects and enable
vTPM user to attest to the object protection.
The first option does not require any changes to the pTPM

nterface, as it is invoked for the generation of a child object
tarting from a pTPM object handle. The vTPM interface internally
nvokes the pTPM object creation command and retrieves the
bject public and private areas, the latter being encrypted with
he pTPM protected parent key. Then, when the object is loaded
y the vTPM user, the request is forwarded to the pTPM and the
TPM returns the object handle to the user.
A vTPM software object is an object whose sensitive area can

e accessed by the vTPM instance. No or minimal interaction with
he pTPM should be in place to achieve this purpose, which makes
ur architecture suitable for applications that would leverage the
TPM for its cryptographic operations rather than hardware secu-
ity. In general, software key management is expected to achieve
igher performance than pTPM-bound operations, which are lim-
ted by the TPM access broker, resource manager, and inherently
imited computing resources. However, fully virtualised keys are
ess protected than hardware-bound objects, hence additional
ecurity mechanisms that protect applications’ memory should
e in place (e.g. SGX enclaves to secure the vTPM memory, as
eveloped in [22]).
The pTPM does not need to comprehend the semantics of

TPM software objects, as they do not require interaction with the
hysical platform. In turn, the vTPM interface should be aware of
he generation of either hardware-bound or software objects. This
wareness can be obtained by introducing a new object attribute
lag, hereby named pTPMCreated, to be leveraged by vTPM object
reation functions to discriminate whether the pTPM should be
nvoked or not.

The TPM 2.0 specification [7] notes that several bits of the
bject attribute bit-mask are reserved for future additions, hence
ny of them is suitable for our purpose. The pTPMCreated object
ttribute flag has the following meaning:

• SET (1): the object sensitive area is protected by the under-
lying pTPM only;

• CLEAR (0): the object sensitive area (i.e. private part) may
exist in plaintext in the vTPM.

his attribute would also apply to the VPS object, allowing the
TPM to be instantiated fully in software. Although this approach
owers the security level of the instance, it enables a more flexible
eployment of our vTPM architecture in a CSP infrastructure. In
ase of hardware-bound VPS objects, they can be certified directly
rom the pTPM. One should also note that the pTPMCreated object
ttribute is only meaningful for a vTPM; pTPMs can either ignore
he pTPMCreated object attribute, or mandate that it is set when
hey support the proposed vTPM extension.

We assume that all the children of a vTPM software object may
ot be bound to a pTPM, hence some may have pTPMCreated clear.
his constraint is made necessary to simplify the process required
28
Fig. 3. vTPM software object hierarchy.

to generate a vTPM software object. To create any object, the
vTPM requires the parent key to be loaded beforehand. This is not
trivial in case a vTPM object – with pTPMCreated set – is wrapped
by a parent key that was not generated by the pTPM. Because of
this, a pTPM would only accept the parent key pTPMCreated bit
to be set whenever it is invoked by the vTPM for object or key
generation.

The generation of a software object from a hardware-bound
parent key, as depicted in Fig. 3, is challenging from the research
standpoint. In fact, the first software object in each hierarchy
has a parent with pTPMCreated set, hence its parent must be
loaded in the pTPM first. Because of this, the intermediary stage
between hardware-protected keys and fully virtualised objects
still requires an interaction with the pTPM by design. In this
regard, we envision two possible approaches to generate the first
software object in the vTPM hierarchy, described as follows.

5.3.1. Software object as unsealed pTPM SDO
The TPM 2.0 command specification [6] requires the SDO to

be generated under a parent key so that its value – encrypted
with a symmetric – can be exported unencrypted. So, a viable
approach to software objects with pTPM protected parent would
be to store their sensitive area as pTPM SDO payloads, regardless
of the object type requested on the vTPM interface. This would
require the vTPM software to convert the object creation to a
keyed hash object type and to generate the object sensitive area in
software so that it can be presented to the pTPM as standard SDO.
The resulting private and public areas would be returned by the
vTPM by presenting the original object template rather than the
pTPM-generated SDO. At loading time, the vTPM would execute
the following steps:

1. convert the object public area template to a SDO;
2. load the public and private areas in the pTPM, retrieving

the SDO handle;
3. unseal the sensitive area of the object by its handle in the

pTPM;
4. store the sensitive area of the object along with the original

object template in the vTPM memory.

The major drawbacks of this approach are the extensive amounts
of mapping between actual object type and SDO both at creation
and loading time and the size limitation of the SDO sensitive area
(fixed to 128B in the TPM 2.0 specification). Because of this, the
vTPM may need to store the elements required to re-generate a
key (e.g. RSA prime factors) rather than the TPM private object
structure, whose size may exceed the SDO size limitation (e.g. the
RSA-2048 private object size on disk is 224B).

M. De Benedictis, L. Jacquin, I. Pedone et al. Future Generation Computer Systems 150 (2024) 21–36

5

t
a
a
u

t

d

p
k
i
a
o
n
o
o
t

6

t
i
m
t
p
T
w

.3.2. Software object as pTPM duplicable object
An alternative approach is to leverage the TPM 2.0 key duplica-

ion capabilities [4]. In fact, the TPM allows to move an object to
nother parent if its attributes do not prohibit duplication and its
uthorisation policy explicitly allows it. Creation of a duplicate
ses two encryption phases. The first is used to apply an inner

wrapping starting from a symmetric key shared between the
original and the duplication platforms. The second, named outer
wrapping, is used to encrypt the object using the algorithms of
the new parent key. The result of the duplication is the private
area of the object to be loaded by the new parent [7].

However, this process would require to generate a vTPM soft-
ware parent key alongside the pTPM-protected hierarchies so that
the software object can be moved to it. Moreover, if a new parent
key was provided, the software object could not be loaded again
under the former parent key. Because of this, this approach could
leverage a particular form of key duplication that is made possible
by the TPM. This requires the following properties to be met
when the duplication command is issued:

• the object attributes fixedParent and encryptedDuplication
are clear;

• the duplication parent handle is set to the Null hierarchy
handle;

• the symmetric encryption key size is 0, and its algorithm is
set to a null value.

These parameters allow to duplicate the object in clear-text by
bypassing both outer and inner wrappings, achieving the same
result as the unseal operation. At loading time, the vTPM would
execute the following steps:

1. load the public and private areas in the pTPM, retrieving
the object handle;

2. duplicate the object to a null parent without any encryp-
tion, retrieving its sensitive area;

3. store the sensitive area of the object along with its tem-
plate in the vTPM memory.

The advantage of this approach is to leverage standard TPM
structures and commands for object creation, without the need of
mapping the vTPM requested object to a pTPM different type. A
possible disadvantage is the management of the object authorisa-
tion policy for duplication, as this command requires the vTPM to
enable a policy session. Moreover, the vTPM should present a dif-
ferent authorisation policy than the pTPM object, which creates
a policy mapping task in the vTPM. Although both approaches
are viable, the solution based on object duplication does not
suffer from object size limitations as the SDO-based alternative.
Moreover, it does not require multiple mappings between vTPM
and pTPM object types hence it may perform better in a real
world scenario.

6. vTPM state protection

This section describes the vTPM state composition and the
protection mechanisms that can be enabled via the underlying
pTPM thanks to the vTPM manager. These target the protection
of the virtual instance state against manipulations when it is
stopped or restored during its life-cycle.

6.1. vTPM persistent state

The vTPM instance is composed of a set of handles referencing
the vTPM’s objects. These have different natures depending on

their relationship with their underlying pTPM: k

29
Fig. 4. vTPM persistent state structure.

• hardware-bound reserved handles, such as persistent hier-
archy structures, which specify the VPS objects (with their
authorisation and policies);

• pTPM-created object handles, such as primary keys and
hardware-bound child objects;

• vTPM software object handles:
• other internal vTPM handles required for its functions.

In our design, the vTPM state includes a handle map that maps
each entry, i.e. a 32bit number, to a certain data structure (spec-
ified as a union, so that the value can be of different types). Each
entry refers to a vTPM virtual handle, called a vHandle, while
the value is mapped to a pTPM object (through its pTPM handle,
called a pHandle). More specifically, persistent hierarchy handles
should be mapped to VPS handles in the pTPM; objects generated
by the pTPM should be mapped to the actual hardware handles
so that they can be referenced when interacting with the physical
device; vTPM software objects should be mapped to a null value
o specify that they are persisted in vTPM state only.

The vTPM permanent state consists of the following data, as
epicted in Fig. 4:

• public and private areas of the VPS objects, as returned by
the pTPM (for a primary object, there is no private area);

• the handles of the SWK keys needed to load VPS objects;
• the NVRAM content, which includes user-defined indexes

and objects persisted in the vTPM;
• the aforementioned handle map, including the handles of

vTPM primary seeds, as loaded in the pTPM, along with
other pTPM-protected objects and software objects.

Given its size, this amount of data cannot be protected by the
TPM as a SDO, hence the vTPM creates a primary encryption
ey under its Platform hierarchy for state encryption when the
nstance is stopped. Given its template (which should be defined
t instantiation time), the key can be re-generated at each restore
f the vTPM instance, so it does not have to be stored perma-
ently by the pTPM. In this regard, the template should request
bject authentication and authorisation policies so that entities
ther than the vTPM instance (or a vTPM manager) cannot load
he key.

.2. vTPM initialisation

The vTPM manager is the component that starts vTPM instan-
iation in the host platform, before presenting it to any virtualised
nstance (e.g. by exposing a character device interface to a virtual
achine). Before any instantiation, the manager should ensure

hat three parent keys are loaded in the pTPM, one for each
ermanent hierarchy (i.e. Platform, Endorsement and Storage).
hese must be defined as storage keys, so they can only be used to
rap the VPS objects (whose type is known to the pTPM). These

eys can either be primary or child objects in the pTPM:

M. De Benedictis, L. Jacquin, I. Pedone et al. Future Generation Computer Systems 150 (2024) 21–36
• if primary key, it is not necessary to store them at the
physical platform shutdown as they can be re-generated
each time by providing the same template;

• if child key, the vTPM manager should store their public and
private parts, along with the references to their parents, so
that they can be reloaded.

From a performance perspective, loading an existing child key
is faster than re-generating a key (e.g. in the case of RSA, the
operation lasts in the order of tens of seconds).

The following operations should be performed by the vTPM
manager when a new vTPM is instantiated:

1. the vTPM manager initiates vTPM instance by loading the
software module and configuring the vTPM’s handles of the
vEPS, vPPS, and vSPS SWK keys;

2. later, the vTPM instance receives the init command from
the entity using the vTPM, as defined in the specification
[6];

3. the vTPM instance requests, to the pTPM, creation of the
vEPS, vPPS, and vSPS objects by passing the handles of
the corresponding SWK keys, and stores their public and
private parts in its state;

4. the vTPM software loads the vEPS, vPPS, and vSPS objects
in the pTPM and stores their handles in its state;

5. if the vTPM initialisation succeeds, the vTPM generates
a primary symmetric encryption key under its Platform
hierarchy by invoking the pTPM interface with the vPPS
handle, and stores the resulting handle internally. This key
is called the vTPM State Protection Key(VSPK).

The VSPK generated in the last step of the vTPM initialisation
is used for the storage and restoration operations of the vTPM,
described as follows. The public template of the VSPK should be
known to the vTPM instance so that it can create the key at first
instantiation and even re-generate it at each restore operation.
Because of this, the vTPM manager must define the template
and pass it to the vTPM instance. Moreover, the template should
enable the vTPM instance to only decipher its own state when
restored. To do so, the unique field of the public template can be
used to generate a separate VSPK for each vTPM instance under
the same pTPM Platform hierarchy. In order to protect the state
against attackers, an authorisation policy can be specified so that
the use of the VSPK is gated by a policy on the platform state
(e.g. the values of certain PCRs).

6.3. Storage and restoration of vTPM instance

The core logic to store the vTPM instance is included in the
shutdown command, as defined in the specification [6], whereas
the state is restored as part of the init command whenever an
encrypted state blob has been provided by the vTPM manager
during instantiation.

At vTPM shutdown, the state data to be encrypted does not
include the primary seed public and private areas, as they are
already wrapped by the pTPM parent keys. The other state ele-
ments, i.e. the NVRAM content and the handle map, are encrypted
with a symmetric algorithm by the pTPM (e.g. AES 128) and the
resulting data blob is presented to the vTPM manager. In fact, the
pTPM can be utilised to encipher arbitrary data via symmetric
encryption when the instance is stopped and to decipher it when
restored.

At vTPM initialisation, when an encrypted state blob is pro-
vided by the vTPM manager alongside the handles of vEPS, vPPS,
and vSPS parent keys, the state is decrypted by the pTPM. This
replaces step (3) detailed in 6.2: the VSPK is re-generated by
the vTPM instance, under the vTPM Platform hierarchy, using the
30
known template; the key is then used by the pTPM to decipher
the encrypted state blob. Since the VSPK is a vTPM primary object,
it is recreated from the vPPS and cannot be stored anywhere
(the pTPM never returns the private parts). Once the state blob is
decrypted, the vTPM restores the persisted objects. Moreover, for
each of the hardware-protected vTPM objects, the corresponding
NVRAM Persistent Object index must be updated so that it reflects
the index in the pTPM NVRAM. This update is needed as vTPM
persistent objects are not actually persisted in the pTPM once the
virtual instance is stopped, hence they have to be re-loaded at the
vTPM state restore.

Considering the proposed design for vTPM keys and state
management, new TPM commands, for the pTPM, need to be
introduced to enable that architecture and are described in Sec-
tion 7.

7. pTPM virtualisation commands and mapping to vTPM

This section is divided in two part. Firstly, the new com-
mands that a pTPM needs to support are presented. Secondly,
the mapping between the vTPM commands to the underlying
pTPM commands are detailed. Finally, the impact of the new
commands to the Trusted Software Stack (TSS) is analysed.

7.1. pTPM virtualisation commands

Table 3 describes the virtualisation commands to be supported
by the pTPM 2.0 specifications. These are internally leveraged by
the vTPM software whenever particular functions are executed
on the vTPM interface.

In particular, the TPM2_VIRT_CreateSeed and
TPM2_VIRT_LoadSeed are designed as specialised versions of
standard TPM2_Create and TPM2_Load commands, that are
used respectively to generate an object (not a primary key) and to
load it in the pTPM. Differently from the standard TPM2_Create,
TPM2_VIRT_CreateSeed internally checks that the object at-
tributes in the input public template are valid. More specifically,
sign, decrypt should be CLEAR, and restricted should be
SET as presented in 5.1. Then, the RNG function would be run to
generate a random number (whose number of Bytes is provided
as a parameter by the vTPM instance). The TPM2_VIRT_LoadSeed
performs the same internal operations as TPM2_Load so that the
transient object handle is returned after its private and public part
have been loaded in the pTPM, and additionally checks that the
provided object has the proper attributes of a vTPM seed.

The TPM2_VIRT_CreatePrimary command shares similari-
ties with the TPM2_CreatePrimary command, which returns a
primary key handle starting from an hierarchy permanent han-
dle (which in turn defines the hierarchy of the key itself) and
the public template. Differently from the standard command,
TPM2_VIRT_CreatePrimary checks that the input handle be-
longs to a loaded vTPM seed – and not a persistent hierarchy
internal handle – by inspecting its object attribute. Moreover, it
uses the sensitive area of the vTPM seed as input of the internal
DRBG_InstantiateSeeded KDF so that the primary object is
generated by the pTPM hardware.

To protect the vTPM state when the vTPM is stopped,
TPM2_VIRT_StoreState and TPM2_VIRT_RestoreState in-
ternally perform the symmetric encryption and decryption op-

erations of the standard TPM2_EncryptDecrypt2 function, the

M. De Benedictis, L. Jacquin, I. Pedone et al. Future Generation Computer Systems 150 (2024) 21–36

p
(
v

7

w
i
d
f
v
i
t
f
T

T

T
l
c

Table 3
pTPM 2.0 virtualisation commands.
Usage Command Input Output

Primary seed creation TPM2_VIRT_CreateSeed SWK handle, VPS template, VPS size (B) VPS private/public areas
Primary seed loading TPM2_VIRT_LoadSeed VPS private/public areas VPS handle
Primary key creation TPM2_VIRT_CreatePrimary VPS handle, public key template Primary key handle
State encryption TPM2_VIRT_StoreState Clear-text state blob, VSPK handle Encrypted state blob
State decryption TPM2_VIRT_RestoreState Encrypted state blob, VSPK handle Clear-text state blob
Table 4
vTPM command mapping to pTPM extension.
vTPM function vTPM command(s) pTPM command(s)

Initialisation _TPM_Init [TPM2_VIRT_CreateSeed,
TPM2_VIRT_LoadSeed,
TPM2_VIRT_CreatePrimary]

Shutdown TPM2_Shutdown TPM2_VIRT_StoreState

Restart _TPM_Init + Encrypted state blob [TPM2_VIRT_CreateSeed,
TPM2_VIRT_LoadSeed,
TPM2_VIRT_CreatePrimary,
TPM2_VIRT_RestoreState]

Primary key creation TPM2_CreatePrimary TPM2_VIRT_CreatePrimary

pTPM-protected object creation TPM2_Create (pTPMCreated=SET) TPM2_Create

pTPM-protected object loading TPM2_Load TPM2_Load

Software object creation (with
pTPM-protected parent)

TPM2_Create (pTPMCreated=CLEAR) TPM2_Create

Software object loading (with
pTPM-protected parent)

TPM2_Load [TPM2_Load,
{TPM2_Duplicate,
TPM2_Unseal}]
preferred command in TPM 2.0 specifications to perform sym-
metric encipherment or decipherment. They require that the key
provided as input is of type TPM_ALG_SYMCIPHER. As mentioned
reviously, the state protection key is generated from the pTPM
using the TPM2_VIRT_CreatePrimary function) as part of the
TPM instantiation.

.2. vTPM to pTPM virtualisation commands binding

The new pTPM command set is leveraged by the vTPM soft-
are whenever particular functions are executed on the vTPM

nterface. The mapping between vTPM commands and the un-
erlying physical platform is reported in Table 4, which includes
unctions that require an interaction with the pTPM. All other
TPM functions are not expected to differ from the existing spec-
fied commands [6]. In particular, vTPM initialisation is mapped
o both TPM2_VIRT_CreateSeed and TPM2_VIRT_LoadSeed
unctions, and creation of the state encryption primary key via
PM2_VIRT_CreatePrimary. During vTPM shutdown, the

TPM2_VIRT_StoreState command is issued to encrypt the
vTPM state and present it to the vTPM manager. At vTPM restart,
the _TPM_Init command internally restores the state via
PM2_VIRT_RestoreState after having re-generated the state

encryption key.
The creation and loading of pTPM-protected objects is per-

formed by forwarding the standard TPM2_Create and
PM2_Load functions to the underlying pTPM. The creation and
oading of software objects, in case of a pTPM-protected parent,
an follow either the TPM2_Unseal or TPM2_Duplicate strate-
gies, as discussed before. Table 4 lacks the description of functions
to manage objects with software parents (i.e. parent keys with
pTPMCreated clear), as they are not mapped to the pTPM. At
this point of the hierarchy, the vTPM objects only reside in the
software memory and the vTPM must behave accordingly with

the TPM specification.

31
Fig. 5. vTPM-to-pTPM command mappings for initialisation and key generation.

7.2.1. vTPM initialisation with hardware binding
Fig. 5 describes the steps required at each vTPM instantiation

whenever an hardware binding is required, and no saved state
exists for the vTPM. In summary, the pTPM needs to create the
SWK before creating the vTPM seeds. Once the vTPM seeds are
loaded in the pTPM, hardware-bound vTPM primary objects can
be created. The actors involved in this interaction are the vTPM
manager, the pTPM 2.0 and the vTPM, performing the following
operations:

1. the vTPM manager queries the pTPM interface to create
and load the SWK keys, one for each persistent hierarchy,
by issuing TPM2_Create and TPM2_Load commands;

2. the vTPM manager issues an initialisation request, which

instantiates a vTPM instance and passes the SWK handles

M. De Benedictis, L. Jacquin, I. Pedone et al. Future Generation Computer Systems 150 (2024) 21–36

T
m
v

7
a

u
f
i
p
c

O
b
m
a
v
t

7

s
i
e
t
a

Fig. 6. vTPM-to-pTPM command mappings for software objects.

to it along with all the configuration required for its startup
(e.g. the VSPK public template);

3. the vTPM instance receives the _TPM_Init signal from the
platform, which in turn triggers the TPM2_VIRT_
CreateSeed command for each persistent hierarchy so
that the VPS objects are created;

4. the vTPM instance queries the pTPM TPM2_VIRT_
LoadSeedcommand for each VPS object, storing its pVP-
SHandle handle in its handle map (corresponding to a
TPMI_RH_HIERARCHY hierarchy reserved handle);

5. the vTPM instance queries the pTPM interface to generate
the VSPK via the TPM2_VIRT_CreatePrimary command
and stores the pVSPKHandle handle in the handle map,
corresponding to an internal VSPK_STRUCTURE object (that
is not part of the standard TPM 2.0 handles); at the end of
this step, the vTPM TPM2_Startup command returns with
success so that the vTPM user can finally use the device;

6. the vTPM user can generate its own primary and child
objects by issuing either TPM2_CreatePrimary or
TPM2_Create functions; in case an hardware binding is re-
quired for the object, the corresponding function is issued
to the pTPM interface (either TPM2_VIRT_CreatePrimary
for primary objects or TPM2_Create for hardware-bound
child objects); each hardware-bound object introduces two
different handles in the handle map, i.e. the vTPM vObjec-
tHandle and pTPM pObjectHandle specific handles.

he initial step in the workflow may be performed by the vTPM
anager at startup or first vTPM provisioning, so that all the
TPM instances are protected by the same SWK keys.

.2.2. Creating a software object with a hardware-bound parent in
vTPM
Fig. 6 presents the interaction between the vTPM and the

nderlying pTPM whenever a software object is created starting
rom a pTPM-protected parent. The new vTPM software object
s created, whose sensitive part (e.g., the plaintext asymmetric
rivate key) is available directly in the vTPM, with the following
ommands:

1. the vTPM user issues a TPM2_Create command by spec-
ifying the pTPMCreated bit clear and passing the vOb-
jectHandle parent handle, that in turn is mapped to a
TPM2_Create command to the pTPM that leverages the
object handle in the pTPM, i.e. pObjectHandle; the object
is created by the pTPM, which can successfully load the pri-
vate part of its parent object and returns both the private
and public areas of the newborn; this may either be a SDO
32
Fig. 7. vTPM-to-pTPM command mappings for state store and restore.

from the pTPM perspective, regardless of its actual type, or
a duplicable object that retains its original type depending
on the strategy selected from Section 5.3;

2. the vTPM user issues a TPM2_Load command on the vTPM
interface, which is forwarded to the pTPM so that the
newborn software object is loaded in the pTPM interface;

3. the vTPM interface issues one of the following commands
to the pTPM interface, as discussed in Section 5.3:

(a) TPM2_Unseal in case the software object is mapped
to a standard SDO by the pTPM interface;

(b) TPM2_Duplicate in case the software object is du-
plicable without encryption and a null parent.

In both approaches, the sensitive area of the object is
returned to the vTPM interface so that it can be stored in
its memory.

nce the software object has been successfully loaded, it can
e evicted from the pTPM memory. The subsequent vTPM com-
ands involving this object do not leverage the pTPM commands,
s the object vSWObjectHandle handle is mapped to a NULL
alue in the handle map. This means that the vTPM itself holds
he sensitive area of the software object.

.2.3. Hardware-bound vTPM state management
The interaction between the vTPM manager, the vTPM in-

tance and the pTPM for storing and restoring the virtual instance
s depicted in Fig. 7. During the vTPM shutdown, its state is
ncrypted by its VSPK, and stored by the vTPM manager. When
he vTPM is started again, it creates its VSPK in order to decrypt
nd restore its state as follows:

1. the vTPM receives a TPM_Shutdown command (either by
the virtualised environment wherein it is running
or an hypervisor-level entity) and issues a TPM2_VIRT_
StoreStatecommand towards the pTPM; this encrypts
the vTPM state binary representation with the VSPK;

2. the vTPM presents the encrypted state to the vTPM man-
ager for storage along with information for its subsequent
restore (e.g. the VPS private and public parts);

3. at some point, the vTPM manager restores the vTPM in-
stance by instantiating a new instance and passing to it the
encrypted state blob along with its contextual information,
such as the VSPK public template;

4. the vTPM instance receives a _TPM_Init command, with
a saved vTPM stat, that internally triggers a TPM2_VIRT_
LoadSeedcommand for each VPS object (so that primary
seeds are not re-created from scratch);

M. De Benedictis, L. Jacquin, I. Pedone et al. Future Generation Computer Systems 150 (2024) 21–36
5. the vTPM instance issues a TPM2_VIRT_CreatePrimary
command to the pTPM by passing the VSPK template so
that the exact same key is re-generated and its pVSPKHan-
dle is restored in the handle map;

6. the vTPM instance issues a TPM2_VIRT_RestoreState
command to the pTPM by passing the encrypted state and
the VSPK handle, so that the cipher-text is decrypted.

Finally, the vTPM instance returns from the TPM2_Startup com-
mand, so that it can receive commands on its client interface.

7.3. Exposing the virtualisation extension in the trusted software
stack

From a regular vTPM or pTPM usage perspective, the only
new feature that needs to be understood by a TPM user is the
pTPMCreated attribute of objects and keys. To that effect, it is
expected that a TSS exposes this new attribute, which is part of
the creation template of an object or key. The new pTPMCreated
attribute is part of the TPMT_PUBLIC structure. This means that
the low-level API of a TSS such as the System API (SAPI) [27]
does not need to change, although the marshalling code needs
to recognise the new attribute. The TSS can detect if the pTPM-
Created attribute is supported by a TPM by checking the version
of the TPM specification supported, which is done by retrieving
the TPM capabilities.

While all the new commands introduced by this proposal are
meant to be used by a vTPM supporting the pTPM binding, a TSS
can support the new commands for (i) ease of implementation of
the vTPM and (ii) completeness.

8. Threat model

The solution proposed in this work strongly (i.e. at the hard-
ware level) binds the vTPM state and management functions to
the pTPM. Thus, it addresses the integrity and confidentiality
threats to the virtual environment allowing for an hardware-
grade assurance level.

Given the scenario described in Section 1.2, our reference
threats target the virtual or hypervisor level, thus the malicious
agents we consider have privileges of cloud service user, i.e. the
user of the provided cloud service, or a malicious agent inadver-
tently running in the cloud service.

In principle, the vTPM implementations proposed in literature
expose the virtual instances with the same trust and security
functionalities as our proposal. However, due to the software na-
ture of the implementation, in-memory and side-channel attacks
are a significant menace that can affect these solutions, both at
the virtual instance and at the hypervisor level.

Nowadays, many effective countermeasures (e.g. Stack cook-
ies, exception handler validation, Data Execution Prevention, Ad-
dress Space Layout Randomisation to name few of the most
common) have been designed and implemented. Many method-
ologies, like secure coding, static and dynamic application analy-
sis at the development stage make the exploitation of memory
corruption bugs much harder. However, many tools and tech-
niques to apply in-memory threats do exist (e.g. use-after-free
and double-free based attacks to heap memory) still making direct
memory manipulation a considerable attack set. Furthermore,
some attacks – usually using side-channels – take advantage of
weaknesses in the processor or memory modules themselves.

To protect from those attacks, the main approaches fall in
three categories: (1) to apply access control protection to hy-
pervisor, e.g. by means of AppArmor or SELinux policies, (2) to
embed the software in a Trusted Execution Environments (TEE),
33
so that they are protected against software attacks by hard-
ware processor-specific safeguards or (3) to consistently bind the
software vTPM to pTPM.

The later approach, which we propose in this solution, is more
straightforward, since it allows a seamless extension of the Root
of Trust to the whole software stack, from the boot to the virtual
instance, not requiring a mixed and complex (and error-prone)
approach to protect the whole stack of applications.

Furthermore, it appears more robust. Access control protec-
tion solutions are still vulnerable to many side-channel attacks
(e.g. Specter, Meltdown [28], Rowhammer [29]), while even other
hardware based approaches, like resources protected inside a
TEE, suffers of effective attacks (e.g. downgrade attack [30]) to
circumvent the security controls proposed. On the other hand, in
our solution, we protect vTPM state and sensible data exploiting
the hardware-level security functionality of the pTPM, protect-
ing the vTPM state with the pTPM. Moreover, one of the main
drawbacks of the TEE-based protection of a vTPM is the lack of
flexibility, e.g. the problematic migration of the virtual instance
to another node of the CSP infrastructure. Our solution offers a set
of extensions to allow such flexibility while retaining the strong
hardware binding.

The plethora of threats to confidentiality is not directly af-
fected by our proposed extension. Meaning that the privacy pro-
tection given by the pTPM encryption and by the restriction
imposed by the TPM specification to access pTPM protected keys
still holds. Furthermore, the strong integrity assurance implied by
our schema reduces the possibility to install malicious software
in (virtual) environments, and thus reduces the chance to acti-
vate confidentiality threating agents (like a network sniffer or a
keylogger in a virtual instance).

Service availability is of uttermost importance in a real pro-
duction environment. It requires appropriate access control of
vTPM to pTPM. In our scenario, many virtual instances can access
the same pTPM (through the shared interface provided to the
many vTPMs). This may result in simple-but-effective attacks
like resource exhaustion (resulting in a DoS). This aspect can
be addressed by complementary security controls. In particular,
the CSP should provide either a selection of the vTPM access
to the pTPM or mechanisms to prioritise and/or remove access
from different vTPMs. Finally, our solution allows for a strong
binding of vTPM to pTPM, but does not focus on availability of
vTPM data blobs. Such protection of data storage, in scenarios
where relevant, need to be addressed by different mechanisms
(e.g. replication).

9. Discussion on our solution

In this section, we aim to highlight the possible drawbacks and
critical aspects of the proposed solution. We start with analysing
our solution applied to the use case from Section 1, where a
CSP should provide their virtual appliances with hardware-bound
vTPM virtual devices.

A cloud-based scenario counts several tens of VMs on a single
physical machine and all of those could request a binding with
the pTPM, when they are provisioned with a vTPM. The binding
process involves the generation and wrapping of vTPM primary
objects in each hierarchy of the pTPM. Depending on the type of
object created, this can occupy the pTPM for a significant time:
RSA key creation is measured in tens of seconds. This is acceptable
for the virtual seeds parent keys, as they are created only once
by the vTPM manager for all the vTPMs bound to the platform’s
pTPM.

After the initial setup, a virtual instance equipped with a vTPM
could potentially create an unlimited number of pTPMCreated
flagged objects. This behaviour in the interaction between a pTPM

M. De Benedictis, L. Jacquin, I. Pedone et al. Future Generation Computer Systems 150 (2024) 21–36

a
(
h
i
i
t
m
p
l
a
t

t
t
I
I
C

nd multiple vTPMs may introduce a risk for Denial of Service
DoS) on the host platform in case of vTPM malicious users
aving uncontrolled access to the physical device. This problem
s particularly critical if vTPMs are exposed freely to containers
n a serverless environment, as they can easily spin up and flood
he pTPM interface. Because of this, there is a need for priority
anagement and lockout in case of uncontrolled access to the
TPM by a specific vTPM instance. This could be achieved by
everaging the TPM Access Broker and Resource Manager (TABRM),
s defined by TCG [31], which acts as an intermediate between
he Trusted Software Stack (TSS) and the TPM device. Having smart
TABRM could also limit other potential vulnerabilities due to the
lack of access control. All vTPM contexts are isolated by default
by the pTPM, which enforces the TPM enhanced authorisation
mechanisms that leverage policy assertions [4]. In TPM 2.0, an
assertion consists of a logical condition that is evaluated by the
device to grant authorisation to a given object. Policies are com-
posed of concatenating assertions via logical operators so that
more advanced access control can be enforced. In particular, an
assertion may require a set of PCRs to have specific values so
that access to an object is authorised for use in a specific com-
mand. Even though this mechanism allows in principle to define
granular policies for each vTPM and pTPM object, the assertions
themselves must be specified carefully. Assertions can refer to the
TPM state (e.g., a PCR value) as well as external secrets or inputs
(e.g., a password given by an entity). In the first case, we need to
find out a way to link the vTPM state to the pTPM.

In particular, when we create a hardware-protected object
we could define policies according to the vTPM state (e.g. vTPM
PCRs). Afterwards, the vTPM interface should map the command
on the pTPM and define other policies for authorisation purposes
at pTPM level. This means the final user of the vTPM is not aware
of or involved in defining the policies at that level. Moreover,
there is no link between vTPM state and pTPM. This results in a
weakening of vTPM enhanced authorisation mechanism since the
state is referring only to the software TPM. On the other hand,
the vTPM user could use an external secret. This leads to the
need of propagating the secret through the vTPM so that it can
be used for enforcing the policy at pTPM level. The substantial
advantage of this approach is that the vTPM user is the only one
capable of accessing his pTPM-stored objects, avoiding attacks
at the vTPM level. An initial workaround to this issue could be
to restrict the use of policy assertions only to the ones that
include external secrets. This leads to no further issues on both
vTPM state and vTPM parameters retaining sides. In general, this
new design enables new business models for the CSPs: access to
pTPMs can now be part of their Service Level Agreements (SLAs).
With our solutions, cloud customers can also verify that their
vTPM is bound to a pTPM. Finally, if pTPMs are used to bind
vTPMs and not identify an individual device, CSPs can equip their
platforms with multiple pTPMs.

Other potential limitations could be encountered in the tran-
sient handle management by the vTPM manager. First of all, we
aim to protect those handles from in-memory tampering attacks.
In order to address this criticality we could use some in-memory
protection technique as described in Section 5. In that case, we
propose a trusted execution environment (e.g. SGX enclaves) to
secure vTPM memory in a fully virtualised keys scenario. Now we
focus on the protection of vTPM manager memory since it is in
charge of the binding process and transient handle management.
The availability as well as the consistency of data in that scenario
is also another pivotal point. Since the handles managed by vTPM
manager are the only way to replicate the status of the binding
after a restart, it acts as a single point of failure. We should
consider, in this regard, redundancy mechanisms to preserve

those data, especially in a cloud scenario. Although our solution m

34
does not provide a way to protect against such kind of attacks,
the vTPM manager can validate that a given handle references
the correct virtual seeds parent key. Assuming the vTPM manager
holds the certificate for an attestation key residing in the pTPM,
the virtual seed parent key can be certified by the attestation key.
Then the vTPM manager can validate that the handle references
a pTPM object with the same public area as the certified key.

10. Future work

Future work includes the development of an initial Proof of
Concept (PoC), which will leverage the TPM 2.0 simulator main-
tained by Microsoft2 both for the extension of the pTPM interface
and for the new vTPM internal mechanisms.

In addition to the implementation of a PoC, future research
will target the vTPM-to-pTPM binding of integrity measurements,
i.e. of vPCRs with the physical platform. This work will aim
to implement the Deep Attestation use case, wherein remote
attestation gives proof of the integrity of both the virtualised and
physical platforms. Compared to existing approaches, we aim to
root the vPCR values in the pTPM. The envisioned approach is to
leverage pTPM NVRAM Extend indexes to record measurements
of the virtualised instances. A deep quote operation may be
implemented, leveraging the pTPM to sign the vPCR values with
a hardware-rooted attestation key.

With this new design of vTPM architecture now formalised,
Hewlett Packard Enterprise, which is a promoter of TCG, is in-
terested in presenting the work to the TCG, particularly their
Virtualized Platform [32] and TPM working groups. Feedback
from more TPM experts will thus be gathered and our design may
be included, even partially, in an upcoming standard proposal.

11. Conclusion

In this paper, we discuss a novel architecture to enable
hardware-level security in vTPM instances running on top of a
pTPM 2.0 equipped platform. The TPM virtualisation extension
that we propose requires certain modifications at pTPM level so
that the vTPM primary seed is managed as an internal object type
by the device, and proper functions are added to generate vTPM
primary keys and encrypt/decrypt their persistent state.

Compared to existing approaches, our solution offers different
security levels depending on the required level of assurance,
ranging from a fully hardware-rooted vTPM device to software
management of vTPM keys and objects. Moreover, the vTPM pri-
mary objects (such as seeds) can be made duplicable, if intended,
so that they can be migrated to a new pTPM host. Existing vTPM
architectures are highly vulnerable to in-memory attacks, as the
primary objects could be intercepted in the VM/host memory in
clear text. In our approach, only vTPM child objects can be un-
sealed from the pTPM protected memory, offering hardware-level
security for the most sensitive vTPM secrets.

CRediT authorship contribution statement

Marco De Benedictis: Conceptualization, Methodology, Inves-
igation, Writing – original draft. Ludovic Jacquin: Conceptualiza-
ion, Methodology, Writing – review & editing. Ignazio Pedone:
nvestigation, Validation, Writing – original draft. Andrea Atzeni:
nvestigation, Validation, Writing – original draft. Antonio Lioy:
onceptualization, Methodology.

2 Microsoft TPM 2.0 Reference Implementation - https://github.com/
icrosoft/ms-tpm-20-ref

https://github.com/microsoft/ms-tpm-20-ref
https://github.com/microsoft/ms-tpm-20-ref

M. De Benedictis, L. Jacquin, I. Pedone et al. Future Generation Computer Systems 150 (2024) 21–36

D

c
t

D

A

t
g
T
c
L
(

R

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

No data was used for the research described in the article.

cknowledgements

The work described in this paper has received funding by
he European Union Horizon 2020 research and innovation pro-
ramme, supported under Grant Agreement no. 883335 (PALAN-
IR project). This research activity has been conducted as a joint
ollaboration between Politecnico di Torino and Hewlett Packard
abs at the Security Lab of Hewlett Packard Enterprise in Bristol
UK).

eferences

[1] Trusted computing group website, 2021, URL: https://www.
trustedcomputinggroup.org. (Accessed on 27 May 2021).

[2] Microsoft BitLocker overview, 2021, URL: https://docs.microsoft.com/
windows/security/information-protection/bitlocker/bitlocker-overview.
(Accessed on 27 May 2021).

[3] E. Brickell, J. Camenisch, L. Chen, Direct anonymous attestation, in: 11th
ACM Conference on Computer and Communications Security, CCS’04,
ACM, Washington (DC, USA), 2004, pp. 132–145, http://dx.doi.org/10.1145/
1030083.1030103.

[4] Trusted platform module library part 1: Architecture family ‘‘2.0’’,
2021, URL: https://trustedcomputinggroup.org/wp-content/uploads/TPM-
Rev-2.0-Part-1-Architecture-01.38.pdf. (Accessed on 27 May 2021).

[5] TCG EK credential profile for TPM family 2.0; level 0, 2021, URL:
https://trustedcomputinggroup.org/wp-content/uploads/TCG_IWG_
Credential_Profile_EK_V2.1_R13.pdf. (Accessed on 27 May 2021).

[6] Trusted platform module library part 3: Commands family ‘‘2.0’’,
2021, URL: https://trustedcomputinggroup.org/wp-content/uploads/TPM-
Rev-2.0-Part-3-Commands-01.38.pdf. (Accessed on 27 May 2021).

[7] Trusted platform module library part 2: Structures family ‘‘2.0’’,
2021, URL: https://trustedcomputinggroup.org/wp-content/uploads/TPM-
Rev-2.0-Part-2-Structures-01.38.pdf. (Accessed on 27 May 2021).

[8] R. Sailer, X. Zhang, T. Jaeger, L. van Doorn, Design and imple-
mentation of a TCG-based integrity measurement architecture, in:
13th USENIX Security Symposium, USENIX Association, San Diego
(CA, USA), 2004, URL: https://www.usenix.org/legacy/publications/library/
proceedings/sec04/tech/full_papers/sailer/sailer.pdf.

[9] Integrity Report Schema, Specification Version 2.0, Revision 5, Trusted
Computing Group, 2021, URL: https://trustedcomputinggroup.org/wp-
content/uploads/IWG_Integrity_Report_Schema_v2.0.r5.pdf. (Accessed on
27 May 2021).

[10] S. Berger, R. Cáceres, K.A. Goldman, R. Perez, R. Sailer, L. van Doorn,
vTPM: Virtualizing the trusted platform module, in: 15th USENIX Se-
curity Symposium, USENIX Association, Vancouver (B.C., Canada), 2006,
pp. 305–320, URL: https://www.usenix.org/legacy/events/sec06/tech/full_
papers/berger/berger.pdf.

[11] Docker project website, 2021, URL: https://www.docker.com/. (Accessed
on 27 May 2021).

[12] M. De Benedictis, A. Lioy, Integrity verification of Docker containers for
a lightweight cloud environment, Future Gener. Comput. Syst. 97 (2019)
236–246, http://dx.doi.org/10.1016/j.future.2019.02.026.

[13] Y. Shi, B. Zhao, Z. Yu, H. Zhang, A security-improved scheme for virtual
TPM based on KVM, Wuhan Univ. J. Nat. Sci. 20 (6) (2015) 505–511,
http://dx.doi.org/10.1007/s11859-015-1126-5.

[14] S. Hosseinzadeh, S. Laurén, V. Leppänen, Security in container-based virtu-
alization through vTPM, in: 2016 IEEE/ACM 9th International Conference
on Utility and Cloud Computing, UCC, Shangai (China), 2016, pp. 214–219,
http://dx.doi.org/10.1145/2996890.3009903.

[15] X. Wan, Z. Xiao, Y. Ren, Building trust into cloud computing using
virtualization of TPM, in: 4th International Conference on Multimedia
Information Networking and Security, Nanjing (China), 2012, pp. 59–63,
http://dx.doi.org/10.1109/MINES.2012.82.
35
[16] P. England, J. Loeser, Para-virtualized TPM sharing, in: P. Lipp, A.R. Sadeghi,
K.M. Koch (Eds.), Trusted Computing - Challenges and Applications,
Springer Berlin Heidelberg, 2008, pp. 119–132, http://dx.doi.org/10.1007/
978-3-540-68979-9_9.

[17] N. Schear, P.T. Cable II, T.M. Moyer, B. Richard, R. Rudd, Bootstrapping and
maintaining trust in the cloud, in: 32nd Annual Conference on Computer
Security Applications, ACSAC’16, ACM, Universal City (CA, USA), 2016, pp.
65–77, http://dx.doi.org/10.1145/2991079.2991104.

[18] A. Mosayyebzadeh, G. Ravago, A. Mohan, A. Raza, S. Tikale, N. Sc-
hear, T. Hudson, J. Hennessey, N. Ansari, K. Hogan, C. Munson, L.
Rudolph, G. Cooperman, P. Desnoyers, O. Krieger, A secure cloud
with minimal provider trust, in: 10th USENIX Workshop on Hot
Topics in Cloud Computing, HotCloud’18, USENIX Association, Boston
(MA, USA), 2018, URL: https://www.usenix.org/system/files/conference/
hotcloud18/hotcloud18-paper-mosayyebzadeh.pdf.

[19] Intel software guard extensions project website, 2021, URL: https://
software.intel.com/en-us/sgx. (Accessed on 27 May 2021).

[20] AMD secure encrypted virtualization project website, 2021, URL: https:
//developer.amd.com/sev/. (Accessed on 27 May 2021).

[21] ARM TrustZone technology website, 2021, URL: https://developer.arm.com/
ip-products/security-ip/trustzone. (Accessed on 27 May 2021).

[22] J. Wang, F. Xiao, J. Huang, D. Zha, C. Fan, W. Hu, H. Zhang, A
security-enhanced vTPM 2.0 for cloud computing, in: ICICS: International
Conference on Information and Communications Security, Springer Inter-
national Publishing, Beijing, (China), 2017, pp. 557–569, http://dx.doi.org/
10.1007/978-3-319-89500-0_48.

[23] M. Zhou, S. Ruan, J. Liu, X. Chen, M. Yang, Q. Wang, vTPM-SM: An applica-
tion scheme of SM2/SM3/SM4 algorithms based on trusted computing in
cloud environment, in: 15th International Conference on Cloud Computing,
CLOUD, IEEE, Barcelona (Spain), 2022, pp. 351–356, http://dx.doi.org/10.
1109/CLOUD55607.2022.00058.

[24] D. Qian, S. Guo, L. Sun, Q. Hao, Y. Song, M. Wang, An integrity measurement
scheme for containerized virtual network function, in: Journal of Physics:
Conference Series, Vol. 2137, No. 1, IOP Publishing, 2021, 012029, http:
//dx.doi.org/10.1088/1742-6596/2137/1/012029.

[25] J. Wang, J. Wang, C. Fan, F. Yan, Y. Cheng, Y. Zhang, W. Zhang, M. Yang,
H. Hu, SvTPM: SGX-based virtual trusted platform modules for cloud
computing, IEEE Trans. Cloud Comput. (2023) http://dx.doi.org/10.1109/
TCC.2023.3243891.

[26] D. Qian, S. Guo, L. Sun, H. Liu, Q. Hao, J. Zhang, Trusted virtual network
function based on vTPM, in: 7th International Conference on Information
Science and Control Engineering, ICISCE, IEEE, Changsha (China), 2020, pp.
1484–1488, http://dx.doi.org/10.1109/ICISCE50968.2020.00295.

[27] TCG TSS 2.0 system level API (SAPI) specification, 2023, URL:
https://trustedcomputinggroup.org/resource/tcg-tss-2-0-system-level-
api-sapi-specification. (Accessed on 28 July 2023).

[28] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S.
Mangard, P. Kocher, D. Genkin, Y. Yarom, M. Hamburg, Meltdown: Reading
kernel memory from user space, in: 27th USENIX Security Symposium
(USENIX Security 18), USENIX Association, Baltimore (MD, USA), 2018,
pp. 973–990, URL: https://www.usenix.org/conference/usenixsecurity18/
presentation/lipp.

[29] K.S. Yim, The rowhammer attack injection methodology, in: IEEE Sympo-
sium on Reliable Distributed Systems, SRDS, Budapest (Hungary), 2016, pp.
1–10, http://dx.doi.org/10.1109/SRDS.2016.012.

[30] Y. Chen, Y. Zhang, Z. Wang, T. Wei, Downgrade attack on TrustZone, 2017,
arXiv:1707.05082.

[31] TCG TSS 2.0 TAB and resource manager specification, 2021, URL:
https://trustedcomputinggroup.org/wp-content/uploads/TSS_2p0_TAB_
ResourceManager_v1p0_r18_04082019_pub.pdf. (Accessed on 27 May
2021).

[32] Virtualized Trusted Platform Architecture, Specification Version
1.0, Revision 0.26, Trusted Computing Group, 2021, URL: https://
trustedcomputinggroup.org/wp-content/uploads/TCG_VPWG_Architecture_
V1-0_R0-26_FINAL.pdf. (Accessed on 27 May 2021).

Marco De Benedictis holds a Ph.D. in computer and
network security, as a member of the TORSEC research
group at the Politecnico di Torino (Italy). His initial re-
search activities were in the fields of electronic identity
and digital signatures. His current interests are in secu-
rity and trust of network and cloud infrastructures. De
Benedictis received his M.Sc. in computer engineering
from Politecnico di Torino.

https://www.trustedcomputinggroup.org
https://www.trustedcomputinggroup.org
https://www.trustedcomputinggroup.org
https://docs.microsoft.com/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/windows/security/information-protection/bitlocker/bitlocker-overview
http://dx.doi.org/10.1145/1030083.1030103
http://dx.doi.org/10.1145/1030083.1030103
http://dx.doi.org/10.1145/1030083.1030103
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_IWG_Credential_Profile_EK_V2.1_R13.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_IWG_Credential_Profile_EK_V2.1_R13.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_IWG_Credential_Profile_EK_V2.1_R13.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-Commands-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-Commands-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-Commands-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-01.38.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/sailer/sailer.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/sailer/sailer.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/sailer/sailer.pdf
https://trustedcomputinggroup.org/wp-content/uploads/IWG_Integrity_Report_Schema_v2.0.r5.pdf
https://trustedcomputinggroup.org/wp-content/uploads/IWG_Integrity_Report_Schema_v2.0.r5.pdf
https://trustedcomputinggroup.org/wp-content/uploads/IWG_Integrity_Report_Schema_v2.0.r5.pdf
https://www.usenix.org/legacy/events/sec06/tech/full_papers/berger/berger.pdf
https://www.usenix.org/legacy/events/sec06/tech/full_papers/berger/berger.pdf
https://www.usenix.org/legacy/events/sec06/tech/full_papers/berger/berger.pdf
https://www.docker.com/
http://dx.doi.org/10.1016/j.future.2019.02.026
http://dx.doi.org/10.1007/s11859-015-1126-5
http://dx.doi.org/10.1145/2996890.3009903
http://dx.doi.org/10.1109/MINES.2012.82
http://dx.doi.org/10.1007/978-3-540-68979-9_9
http://dx.doi.org/10.1007/978-3-540-68979-9_9
http://dx.doi.org/10.1007/978-3-540-68979-9_9
http://dx.doi.org/10.1145/2991079.2991104
https://www.usenix.org/system/files/conference/hotcloud18/hotcloud18-paper-mosayyebzadeh.pdf
https://www.usenix.org/system/files/conference/hotcloud18/hotcloud18-paper-mosayyebzadeh.pdf
https://www.usenix.org/system/files/conference/hotcloud18/hotcloud18-paper-mosayyebzadeh.pdf
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
http://dx.doi.org/10.1007/978-3-319-89500-0_48
http://dx.doi.org/10.1007/978-3-319-89500-0_48
http://dx.doi.org/10.1007/978-3-319-89500-0_48
http://dx.doi.org/10.1109/CLOUD55607.2022.00058
http://dx.doi.org/10.1109/CLOUD55607.2022.00058
http://dx.doi.org/10.1109/CLOUD55607.2022.00058
http://dx.doi.org/10.1088/1742-6596/2137/1/012029
http://dx.doi.org/10.1088/1742-6596/2137/1/012029
http://dx.doi.org/10.1088/1742-6596/2137/1/012029
http://dx.doi.org/10.1109/TCC.2023.3243891
http://dx.doi.org/10.1109/TCC.2023.3243891
http://dx.doi.org/10.1109/TCC.2023.3243891
http://dx.doi.org/10.1109/ICISCE50968.2020.00295
https://trustedcomputinggroup.org/resource/tcg-tss-2-0-system-level-api-sapi-specification
https://trustedcomputinggroup.org/resource/tcg-tss-2-0-system-level-api-sapi-specification
https://trustedcomputinggroup.org/resource/tcg-tss-2-0-system-level-api-sapi-specification
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
http://dx.doi.org/10.1109/SRDS.2016.012
http://arxiv.org/abs/1707.05082
https://trustedcomputinggroup.org/wp-content/uploads/TSS_2p0_TAB_ResourceManager_v1p0_r18_04082019_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_2p0_TAB_ResourceManager_v1p0_r18_04082019_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_2p0_TAB_ResourceManager_v1p0_r18_04082019_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_VPWG_Architecture_V1-0_R0-26_FINAL.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_VPWG_Architecture_V1-0_R0-26_FINAL.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_VPWG_Architecture_V1-0_R0-26_FINAL.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_VPWG_Architecture_V1-0_R0-26_FINAL.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_VPWG_Architecture_V1-0_R0-26_FINAL.pdf

M. De Benedictis, L. Jacquin, I. Pedone et al. Future Generation Computer Systems 150 (2024) 21–36

C
C
C

Ludovic Jacquin is a principal investigator in the
Research and Architecture team of the HPE Secu-
rity Engineering group. His work mainly focuses on
Trusted Computing technologies, methods, and pro-
tocols to enhance the security posture of platforms
and infrastructures. He currently represents HPE in the
Trusted Platform Module working group and actively
contributes to the Infrastructure Work Group (Platform
Certificate, TPM2.0 keys for Device Identity and Attes-
tation) of the Trusted Computing Group. Ludovic holds
a Master of Science degree in Applied Mathematics and

omputer Science from ENSIMAG (Grenoble, France) and received his Ph.D. in
omputer Science from Grenoble University (France) in 2013. He is also a (ISC)2
ertified Information Systems Security Professional (CISSP) since 2019.

Ignazio Pedone received a M.Sc. degree and a Ph.D. in
computer engineering from Politecnico di Torino. He is
a former member of TORSEC Security Group at Politec-
nico di Torino and his research interests include the
security of network infrastructures, quantum comput-
ing and networks, quantum and classical cryptography,
and trusted/confidential computing.
36
Andrea Atzeni received the M.Sc. and Ph.D. degrees in
computer engineering from the Politecnico di Torino.
He is currently an Adjunct Professor at Politecnico di
Torino. In last 20 years, he contributed to a number
of large scale European research projects under the
FP5, FP6, FP7, CIP, and Horizon 2020 programmes,
addressing, among the others, the definition of secu-
rity requirements in multi-platform systems, mobile
security, modelisation of user expectation on security
and privacy, security specification, risk analysis and
threat modelling for complex cross-domain architec-

tures, development of cross-domain usable security, digital and cloud forensics,
development and integration of cross-border eIdentity, novel authentication
mechanisms, malware analysis, and modelling.

Antonio Lioy received the M.Sc. degree in electronic
engineering and the Ph.D. degree in computer engi-
neering from the Politecnico di Torino. He currently
leads the Cybersecurity Research Group TORSEC, Po-
litecnico di Torino. He is also a full professor of
cybersecurity. His research interests include electronic
identity, PKI, trusted computing, and policy-based
management of large IT systems.

	A novel architecture to virtualise a hardware-bound trusted platform module
	Introduction
	Contribution
	Use case: Cloud provisioning of hardware-bound vTPM
	Paper structure

	Primer on TPM 2.0 capabilities
	TPM 2.0 key management
	Platform attestation
	Secure storage

	Related work
	vTPM-to-pTPM cryptographic binding
	Limitations of conservative approaches
	vTPM seed generation through pTPM at manufacturing time
	Multiplexing of pTPM hierarchy root keys to vTPM instances

	Our proposal: pTPM 2.0 virtualisation extension

	vTPM key management
	vTPM primary seeds
	vTPM primary keys
	vTPM hardware-bound and software child objects
	Software object as unsealed pTPM SDO
	Software object as pTPM duplicable object

	vTPM state protection
	vTPM persistent state
	vTPM initialisation
	Storage and restoration of vTPM instance

	pTPM virtualisation commands and mapping to vTPM
	pTPM virtualisation commands
	vTPM to pTPM virtualisation commands binding
	vTPM initialisation with hardware binding
	Creating a software object with a hardware-bound parent in a vTPM
	Hardware-bound vTPM state management

	Exposing the virtualisation extension in the Trusted Software Stack

	Threat model
	Discussion on our solution
	Future work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

