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Abstract: Diglycidylether of vanillyl alcohol (DGEVA), in combination with mechanically recycled
carbon fibers (RCFs), was used to make, via Radical-Induced Cationic Frontal Photopolymerization
(RICFP), fully sustainable and bio-based conductive composites with good electrical conductivity
and consequent Joule effect proprieties. Three different fiber lengths, using three different sieve sizes
during the mechanical recycling process (0.2, 0.5, and 2.0 mm), were used in five different amounts
(ranging from 1 to 25 phr). The samples were first characterized by dynamic mechanical thermal
analysis (DMTA), followed byelectrical conductivity and Joule heating tests. More specifically, the
mechanical properties of the composites increased when increasing fiber content. Furthermore, the
composites obtained with the longest fibers showed the highest electrical conductivity, reaching a
maximum of 11 S/m, due to their higher aspect ratio. In this context, the temperature reached by
Joule effect was directly related to the electrical conductivity, and was able to reach an average and
maximum temperatures of 80 ◦C and 120 ◦C, respectively, just by applying 6 V.

Keywords: diglycidylether of vanillyl alcohol (DGEVA); radical-induced cationic frontal
photopolymerization (RICFP); recycled carbon fibers (RCFs); conductive; joule effect

1. Introduction

In the pursuit of more sustainable and environmentally friendly producing methods
for polymeric materials, it is imperative that not only the production process be energy-
efficient and low in emissions, but also that the raw materials used are sustainable. There
is a big effort in the research towards the development of bio-based polymeric matrices,
which are usually derived from biomass [1–10].

In fact, environmental concerns have been rising for several decades now, and the
urgency of climate change is more pressing than ever. Within this context, it is necessary
to limit the use of fossil-based resources. The exploitation of the biomass from plants can
represent an attractive source of polymeric bio-based precursors [3,11–13]. A huge amount
of work is already reported in the literature, where bio-based precursors are exploited to
produce both linear polymers, such as polyester, polyurethane and polycarbonates, as well
as crosslinked resins, such as vinyl ester, epoxy, and acrylate resins [4,14–17], which are
very important in the production of composites.

On the other hand, the alternative pathway for sustainability is the recycling and
valorization of industrial waste. When focusing on polymeric composites, the use of
recycled fibers as reinforcing agents could be interesting when couple with the use of a
bio-based matrix achieved from derivatization of agro-food waste products.
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The recovery and recycling of carbon fiber has witnessed a significant attention in
recent years, both because the fibers can be recycled at a very low costs [18], and due to the
large volume of manufacturing waste and upcoming end-of-life products that will enter the
waste stream [19–21]. The mechanically recycled carbon fibers retain most of the original
mechanical properties, but their length is generally reduced [22]. The recycling of carbon
fibers putting them back into the track of circular economy.

Currently, most thermoset composites are produced through thermal polymerization,
which involves the use of large ovens and autoclaves which, consequently, involves high
energy consumption. Given this premise, several strategies can be employed to mitigate
the environmental impact of the production process. UV curing is a promising technique
for thermosets production due to its high efficiency in energy consumption and low VOC
emissions [23,24]. However, it does have its limitations, particularly when light penetration
into the polymer matrix is restricted, especially when the matrix is reinforced with opaque
fillers, such as carbon fibers. To overcome those drawbacks, the UV-induced frontal
polymerization (FP) technique can be exploited.

The photo-induced FP process can be either radical or cationic. Since most polymeric
matrices exploited for composites are epoxy-based resins, the cationic UV-induced frontal
polymerization process has been deeply investigated [25–30]. The process involves the
photogeneration of a superacid, starting from an iodonium salt, which enables the surface,
ring-opening polymerization process. The heat release during cationic ring-opening poly-
merization will cleave the thermo-labile initiator generating reactive radicals, which are
oxidized in the presence of the iodonium salt, forming a reactive carbocation [26,27,31–33].
The entire process is a cycle, and curing reactions proceed towards the thickness of the sam-
ples, since the heat front will be sustained (see Scheme 1). Because of the thermal-frontal
radical formation, which is subsequently oxidized to carbocation, the process was named
Radical-Induced Cationic Frontal Polymerization (RICFP).
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In this study, the RICFP technique was used to cure a bio-based epoxy resin reinforced
with mechanically recycled carbon fibers (RCFs), with the aim of achieving electrically
conductive fully bio-based composites that show Joule effect capability.
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2. Materials and Methods

Materials: The bio-based epoxy monomer, Diglycidylether of vanillyl alcohol (DGEVA),
was supplied by Specific Polymers. The thermal initiator, 1,1,2,2-tetraphenyl-1,2-ethanediol
(TPED), was procured from Sigma Aldrich. The cationic photoinitiator, (p-octyloxyphenyl)
phenyliodonium hexafluoroantimonate (PIFA), was acquired from ABCR. All of the chemi-
cal structures are reported in Figure 1. The recycled carbon fibers (RCFs) were obtained
from expired offcuts generated during the manufacturing process of continuous fiber-
reinforced polymers (CFRP) from carbon fiber-epoxy prepregs. All materials and chemicals
were utilized as received.
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Preparation of RCFs: The expired prepreg off-cuts were introduced into a cutting mill
(Fritsch Pulverisette 19, Fritsch, Idar-Oberstein, Germany) to reduce the carbon fiber (Hexcel
IM5-12K, Milwaukee, WI, USA) length. This step is repeated five times at 3000 r.p.m. to
achieve a homogeneous recycled product. The prepregs were cleaned in acetone for
5 min before the milling process, aiming to reduce the remaining partially cured epoxy
resin content. Additionally, three different sieves, with pore sizes of 0.2, 0.5, and 2.0 mm,
respectively, were placed inside the mill to obtain RCFs with different characteristics.

Preparation of bio-based composite: Thermoset composites were fabricated using recycled
carbon fibers (RCFs). Pure DGEVA was combined with 1 phr (parts per hundred resin) of
TPED, and a [TPED]/[PIFA] = 1.0 mol/mol was maintained [25]. Subsequently, varying
quantities of RCFs, ranging from 1 to 25 phr, were incorporated. To facilitate the dissolution
of the photoinitiator and the dispersion of the fibers, the formulation was sonicated for
10 min at 60 ◦C. Samples of 10 × 10 × 1 mm were prepared in silicon molds. The mold’s
surface was exposed to UV light to promote the UV-induced frontal polymerization process.
A Hamamatsu LC8 lamp was used, which has a light intensity of 100 mW/cm−2.The UV
lamp’s emission spectrum ranged from 275 to 500 nm, with a peak at 365 nm.

Refer to Table 1 for the prepared and tested formulations. Each formulation represents
a combination of DGEVA and a specific length (0.2 mm, 0.5 mm, or 2 mm) and amount
(1, 2.5, 7, 15, or 25 phr) of RCFs. All the formulations were prepared using 1 phr of TPED
and a 1:1 molar ratio of PIFA.

Table 1. Prepared formulations.

RCF Amount 0.2 mm
(RCF Lenght)

0.5 mm
(RCF Lenght)

2 mm
(RCF Lenght)

1 phr DGEVA-0.2 mm-1 phr DGEVA-0.5 mm-1 phr DGEVA-2 mm-1 phr
2.5 phr DGEVA-0.2 mm-2.5 phr DGEVA-0.5 mm-2.5 phr DGEVA-2 mm-2.5 phr
7 phr DGEVA-0.2 mm-7 phr DGEVA-0.5 mm-7 phr DGEVA-2 mm-7 phr
15 phr DGEVA-0.2 mm-15 phr DGEVA-0.5 mm-15 phr DGEVA-2 mm-15 phr
25 phr DGEVA-0.2 mm-25 phr DGEVA-0.5 mm-25 phr DGEVA-2 mm-25 phr

Evaluation of frontal polymerization: For the Radical-Induced Cationic Frontal Polymer-
ization (RICFP) front assessment, a silicon mold was used for polymerization of dimensions:
10 mm × 10 mm × 60 mm. The reaction was initiated using a Hamamatsu LC8 lamp, which
has a light intensity of 100 mW/cm−2. The characteristics of the front were examined using
a FLIR E5 thermal camera, which has a thermal sensitivity of 0.1 ◦C. The thermal camera
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was set to record the temperature of specific spots, at different time intervals (see Scheme 2).
The experiments were performed three times for each manufacturing condition.
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Dynamic Mechanical Thermal Analysis (DMTA): The thermomechanical characteristics
of the thermosets were examined using a DMTA instrument from Triton Technology. The
analysis was conducted over a 25 to 250 ◦C temperature range, at a heating rate of 3 ◦C/min.
The instrument exerted a uniaxial oscillatory tensile stress at a frequency of 1 Hz, with
a displacement set at 0.02. The analysis allows for the assessment of the viscoelastic
properties of the material, yielding information on the storage and loss moduli (the elastic
component—E′, and the viscous component—E′′, respectively). The measurement was
performed to estimate the glass transition (Tg), determined as the peak of the damping
factor curve, tan δ (as E′′/E′). The samples were UV-cured in a silicon mold with average
dimensions of 1 × 5 × 25 mm. Measurements were conducted in triplicate.

Photo Dynamic Scanning Calorimetry (photo-DSC): The photo-curing process was in-
vestigated using a Mettler TOLEDO DSC-1, outfitted with a Gas Controller GC100. The
DSC was equipped with a mercury lamp, Hamamatsu LIGHTINGCURE LC8 (Hamamatsu
Photonics), which utilized an optic fiber to directly irradiate the sample and the reference
crucibles. The UV-light emission was centered at 365 nm, with an intensity of approxi-
mately 100 mW/cm2. Roughly 5–10 mg of the photocurable formulation was placed in an
open aluminum pan (40 µL), while an empty pan served as the reference. The tests were
conducted at 60 ◦C under a controlled atmosphere of N2 flow of 40 mL/min. The samples
were irradiated twice for 10 min each, to adequately evaluate the UV-curing. The second
run was performed to confirm complete curing and establish the baseline. The second
curve was subtracted from the first to yield the curve associated exclusively with curing.
The integration of this curve provided the heat release during the curing process. All data
were analyzed using Mettler Toledo STARe software V9.2.

Electrical conductivity: The electrical conductivity tests were carried out according
to ASTM D257 standard by using a Keithley 2410 source-meter. The dimensions of the
specimens were 10 × 10 × 1 mm3. Silver conductive paint was used in two 10 × 1 mm2

opposite faces of the specimen to minimize the contact resistance. Here, the electrical
resistance was calculated from the slope of the voltage-intensity (V-I) plot, sweeping the
voltage from 0 to 3 V. Then, the electrical conductivity (σ) was calculated from Equation (1),
where L is the distance between the electrodes and A the cross-sectional area.

σ = L/(A·R) (1)

Joule heating: The Joule heating characterization was carried out by using a FLIR T530
thermal camera while applying voltage ranging from 1 to 25 V using the same source-meter
equipment as in the electrical characterization tests. Here, the maximum temperature,
Tmax, and the average temperature, Tav, were recorded once the temperature was stable
on the time for each applied voltage.
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3. Results

Conductive, fully bio-based composites were synthesized through UV-activated
Radical-Induced Cationic Polymerization (RICFP) utilizing a bio-based epoxy matrix deriva-
tized from biomass, functionalized with epoxy groups, and strengthened with recycled
carbon fibers. The initial step of the RICFP mechanism involves UV irradiation, which
triggers the highly exothermic opening of epoxy rings. Subsequently, the heat released
initiates frontal polymerization by inducing the dissociation of the radical thermal initiator.
The resulting carbon-centered radicals undergo oxidation to form carbocations in the pres-
ence of the iodonium salt. These carbocations then propagate the cationic ring-opening
polymerization process throughout the sample thickness until the front heat becomes
unsustainable [34].

3.1. Photo Dynamic Scanning Calorimetry

Photo-DSC was performed in order to assess kinetics and the optimal amount of photo-
and thermal-initiators. Figure 2a shows the heat release of the pristine DGEVA formulation
with 1 phr of TPED and [TPED]/[PIFA] = 1.0 mol/mol. It can be observed that, as soon as
the UV light is switched on, for a duration of 3 s, a small initiation peak appears, following
the polymerization by frontal propagation. To maintain the thermal front, and to obtain
optimal samples, the aforementioned initiators content was used.

Figure 2. Photo-DSC measurements: heat release of pristine DGEVA formulation (a); variation of
heat release (b).

As soon as the RCFs were added, the light penetration and absorption, combined
with the heat dissipation, hindered the frontal polymerization, as reported in a previous
work [35].

3.2. Thermal Font Propagation

The frontal propagation of the bio-based epoxy formulations was assessed by a thermal
camera, and the temperature was monitored at seven different points of the silicon mold.
Pristine formulation was used to set the optimal amount and ratio between the photo-
initiator and the thermal one. In total, 1 phr of TPED and [TPED]/[PIFA] = 1.0 mol/mol
was used on the basis of the photo-DSC investigation and to prove the frontal propagation.
In Figure 3, the thermal camera images are reported and the measured thermal front.
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Figure 3. Thermal camera frame of frontal propagation (a); thermal camera measurements of pristine
DGEVA formulation of temperature as function of time (b).

The maintenance of the polymerization front was confirmed by the measurement of
the front velocity at different points. Considering the front position as a function of time, as
reported in Figure 4, it is evident that the front propagated at a constant rate.
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Figure 4. Front position as a function of time of the DGEVA pristine formulation.

Although the pristine formulation presented a front propagation mechanism, as soon
as the RCFs were added to the formulation, the high thermal conductivity of the fibers
dissipated the heat released, bringing the polymerization front to a halt. In order to sustain
the front propagation, and to prevent the excess dissipation of the highly conductive filler,
heating was assured to produce the 10 × 10 × 1 mm3 samples for the electrical conductivity
tests, as also shown in previous works [35,36].

3.3. Dynamic Mechanical Thermal Analysis

The thermo-mechanical proprieties of the fully bio-based formulations were analyzed
by means of DMTA on pristine samples and composites for different fiber lengths and
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concentrations. As an example, in Figure 5, the tanδ curves are reported for the frontal cured
pristine DGEVA resin and for the DGEVA-based formulations containing, respectively,
15 phr and 25 phr of RCFs obtained using the 0.2 mm sieve.

Figure 5. DMTA measurements of pristine formulation (green) and RCF-containing formulation.

The maximum of the tanδ peak is used to estimate the glass transition temperature Tg
of the crosslinked samples. As can be observed in Figure 4, the Tg shifts towards a higher
temperature as the RCFs are added to the pristine resin, going from 83 ◦C of the pristine
formulation to a maximum of 97 ◦C with 15 phr of RCF. A further increase in the amount
of RCFs showed a detrimental effect on Tg value, assessing to 75 ◦C with 25 phr of RCF. A
similar trend was observed with different lengths of the fibers.

3.4. Electrical Conductivity

The DGEVA-based frontal-cured composites were characterized in terms of their
electrical conductivity as a function of RCF content and length. The results of the electrical
conductivity tests are shown in Figure 6. Here, the electrical percolation threshold is found
to be between 2.5 phr and 7.0 phr, regardless of the sieve used in the milling process.
Furthermore, the composites containing RCFs obtained with the 2.0 mm sieve showed a
higher electrical conductivity than the ones obtained with the smaller sieves, 0.5 and 0.2 mm,
which showed a similar behavior. This can be explained due to the electrically conductive
network created by the RCFs. In this context, the electrical conductivity is dominated by
the intrinsic resistance of the carbon fibers upon the electrical percolation threshold, rather
than the contact and tunneling mechanisms [37]. Therefore, the conductive network created
with the longest fibers presents a higher continuity and, thus, a lower electrical resistance.

3.5. Joule Heating Effect

As expected, the Joule heating behavior of the developed composites is directly related
to the electrical conductivity (see Figure 7). More specifically, Figure 7a–c shows the Tmax
and Tav reached by Joule heating as a function of the applied voltage for the specimens
containing a 7 phr RCF, 15 phr RCF, and 25 phr RCF, respectively. In this regard, a higher
electrical conductivity results in a higher current intensity for the same applied voltage.
Thus, considering the Joule law (see Equation (2)), the heat released by Joule effect, Q, is
directly proportional to the voltage, the intensity, and the time (t).

Q = I · V · t (2)

In this context, the composites containing the longest fibers, obtained with the 2.0 mm
sieve, showed the highest temperatures for the same applied voltage, being able to reach
maximum temperatures of around 120 ◦C by applying just 6 to 10 V. On the other hand,
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the composites containing the RFC obtained with the smaller sieves showed poorer Joule
heating capabilities due to the lower electrical conductivity. Here, the voltage needed to
reach a maximum temperature of around 120 ◦C ranges from 15 to 30 V.
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Figure 7d shows the thermographs of the developed composites for qualitative com-
parison purposes. All of the thermographs were taken using 6 V, since it was the maximum
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common voltage for all tested conditions. In this sense, the higher temperatures reached
by the composites containing the 2.0 mm sieve RCF are evinced. Moreover, considering
the temperature distribution of the composite containing the 2.0 mm sieve RCF, the ones
containing 15 phr RCF showed a higher homogeneity. This can be explained, since the
ones with a lower RCF content, 7 phr RCF, are close to the electrical percolation threshold,
presenting some preferred conductive pathways. In contrast, the ones with a higher RCF
content, 25 phr RCF, are close to the manufacturability limit, due to the high viscosity of
the mixture, hindering the dispersion process and, thus, leading to RCF aggregation.

4. Conclusions

Bio-based sustainable conductive epoxy composites were achieved by exploiting the
RICFP process. The bio-based DGEVA precursor was used as a matrix, and mechanically
recycled carbon fibers were dispersed in order to achieve electrically conductive composites.
Both materials and process can be considered sustainable, since a bio-based epoxy precursor
was derived from agro-food waste and epoxy functionalized. The conductive carbon fibers
were mechanically recycled from expired off-cuts generated during the manufacturing
process of continuous fiber-reinforced polymers (CFRP) from carbon fiber-epoxy prepregs.
The UV-induced frontal polymerization process was proposed as a sustainable method for
composite production, due to its low energy consumption.

Photo-DSC was used to define the optimal amount of photo- and thermal-initiators to
promote the UV-induced frontal polymerization process. The formulation with 1 phr of
TPED and [TPED]/[PIFA] = 1.0 mol/mol ratio was used in the following investigations.
The frontal propagation of the bio-based epoxy formulations was assessed by a thermal
camera, and the temperature was monitored at seven different points. The maintenance of
the polymerization front was confirmed for the pristine resin, while heating of the sample
during irradiation was required for the composite formulations, due to their higher thermal
conductivity, leading to a faster heat dissipation. Nevertheless. the frontal process was
assured for all the investigated formulations containing RCFs.

The frontal-cured composites were characterized by DMTA, showing an enhancement
of the Tg value up to a content of 15 phr fibers, and a following decrease by further
increasing the fiber content.

The electrical conductivity tests showed a percolation threshold for the cured compos-
ites between 2.5 phr and 7.0 phr, regardless of the sieve used in the milling process. The
composites containing RCFs obtained with the 2.0 mm sieve showed a higher electrical
conductivity than the ones obtained with the smaller sieves, 0.5 and 0.2 mm, due to their
higher aspect ratio. As a consequence, a different Joule heating behavior was measured. In
fact, the Joule heating behavior of the developed composites is directly related to their elec-
trical conductivity. In this context, the composites containing the longest fibers, obtained
with the 2.0 mm sieve, showed the highest temperatures for the same applied voltage,
being able to reach maximum temperatures of around 120 ◦C by applying just 6 to 10 V.
On the other hand, the composites containing the RFC obtained with the smaller sieves
showed poorer Joule heating capabilities, due to the lower electrical conductivity. Here, the
voltage needed to reach a maximum temperature of around 120 ◦C ranges from 15 to 30 V.

In conclusion, in this paper we have prepared sustainable conductive bio-based epoxy
composites following circular economy production, exploiting derivatized bio-based epoxy
precursors and mechanically recycled carbon fibers. The conductive composites showed
interesting Joule heating capabilities, which can be further used in different applications,
such as antifog or anti-icing and de-icing systems, thermotherapy devices, or for triggering
a shape memory cycle, among others.
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