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Clinically validated classification 
of chronic wounds method with 
memristor-based cellular neural 
network
Jacopo Secco1, Elisabetta Spinazzola1, Monica Pittarello2, Elia Ricci2 & Fabio Pareschi1

Chronic wounds are a syndrome that affects around 4% of the world population due to several 
pathologies. The COV-19 pandemic has enforced the need of developing new techniques and 
technologies that can help clinicians to monitor the affected patients easily and reliably. In this 
prospective observational study a new device, the Wound Viewer, that works through a memristor-
based Discrete-Time Cellular Neural Network (DT-CNN) has been developed and tested through a 
clinical trial of 150 patients. The WV has been developed to serve as the state-of-art tool, capable to 
return the actual clinical information that is most needed by the caregivers: through the WBP scale, 
it classifies four classes of wounds by the type of tissue: A-only granular tissue; B-<50% slough; 
C->50% slough; D-necrosis. This work aims to describe in depth the technology and the computational 
techniques that have been implemented, and to demonstrate reliability in automatically identifying, 
classifying through internationally accepted clinical scales and measuring such wounds, that peaked to 
over a 90% of accuracy.

Keywords  Memristor, Cellular neural networks, Cellular automaton, Chronic wounds, Telemedicine, 
Medical device

Skin ulcers are a chronic pathological condition affecting around 4% of the world population. In Europe alone 
more than 10 million patients are affected by this syndrome with a yearly cost for Healthcare Systems of over 4 
billion euros for their treatment1. The highest incidence (over 60%) is observed in patients over 65 years of age 
and is commonly associated with pre-existing chronic diseases such as diabetes, vascular problems, heart disease 
and obesity which cause problems to the circulatory system in various districts of the body2. This syndrome, if not 
treated properly, may result in necrosis of the whole limb due to infections and must be then treated surgically3–5. 
Studies have showed that protocols that enable easy and continuous monitoring through standardized data are a 
key factor in avoiding such complications6,7.

This problem related to correct wound monitoring has been studied by different research groups, which, by 
developing artificial intelligence (AI) algorithms have showed the reliability of such tools in the field of wound 
care8. Recent studies, such as the ones conducted by Cross et al.9 and Anisuzzaman et al.10 have demonstrated 
the capability of automatically identifying and determining the aetiology of the wounds through advanced 
computational means. Though the increment of the similar projects initiated in this field in recent years, few 
have been finalized in developing a usable tool for caregivers, that can calculate effective and standardized 
clinical data regarding the actual state of the wound, and even fewer have reached effective clinical usage.

Our approach, developing the Wound Viewer (WV), is based on the direct needs of the care givers in terms 
of providing them with a device capable of gathering and computing standardized clinical data that is commonly 
used in wound care such as the morphological measurement of the wound and its clinical classification through 
Wound Bed Preparation (WBP) Score, TIME and TEXAS scales11–13. To do so, WV implements a neuromorphic 
network which exploits memristor theory14. Memristors are non-linear circuit elements that can change their 
internal electric resistance in a non-volatile fashion through charge and flux (i.e. the integrals of the current 
flowing through the element and the integral of the voltage applied to the same). Thanks to their dynamics 
memristors are usually implemented as synapses in brain-like computational networks. In our specific case a 
memristive Discrete-Time Cellular Neural Network (DT-CNN) has been developed, taking inspiration from 
the work of Itoh and Chua15. Our DT-CNN can be assimilated to memristive Cellular Automaton (CA)16 
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which is known to be a powerful tool for image processing, accordingly modified in order to implement a 
Belief Propagation Inspired (BPI) algorithm for wound recognition and analysis from wound images taken 
by the device in real time17–19. Exploiting the afore mentioned memristive dynamics, and the mathematical 
implementation of the BPI through our DT-CNN it was possible to generate a methodology that could be easily 
trained to detect a wound from a generic image and classify that wound through validated clinical scales.

In this work we will describe in details the computational methodology, proving its reliability through the 
results of a clinical trial conducted with the WV. Moreover, we will provide information regarding its common 
usage, since its entrance in everyday clinical usage, in order to prove the efficacy of neuromorphic systems on 
the field for wound care specialists.

Materials and methods
The WV device has been developed due to the need to acquire wound images and classify them in an 
automated and precise way. It is a customised AI medical device, that runs a proprietary AI algorithm for 
wound measurement and assessment. The reliability of the device has been demonstrated through the results 
of the clinical trial with the protocol number OC 15194, identified by ethics committee approval of the Ethical 
Committee of the Azienda Opedaliera Universitaria San Luigi Gonzaga (Orbassano, Italy). During the study, 
a population of 150 patients has been considered statistically significant considering that generally for clinical 
trials of this type, the recruited patients are around 30, for a good statistical basis20,21. With this hypothesis, to 
statistically represent each aethiology, we considered 3 cohorts with 50 subjects each. The device, shown in Fig. 
1a, is made up of a custom-designed electronic board mounting a five-megapixel color CMOS camera sensor for 
high resolution pictures, 16 high precision infrared (IR) distance sensors and four white LEDs with the scope of 
eliminating shadows from the photographs taken by the device.22.

The LEDs are placed at a distance of 5 cm from the CMOS camera. Moreover, these light sources are set to 
a standard intensity, ensuring uniformly lit pictures which can be analysed against a standard color scheme. 
Operators control the device through a special front end via a capacitive touch screen display22. The following 
four steps describe the normal use protocol of WV when analysing a wound:

•	 Point the device towards the wound, keeping it parallel to the surface;
•	 The 16 IR distance sensors calibrate the focal ratio of the camera;
•	 Automatic identification of the wounds in the picture through ROIs surrounding the lesions;
•	 The wounds in the ROIs (Regions of Interest) are analysed by the algorithm;
•	 All relevant information computed is shown on the display (wound area, depth, tissue segmentation and 

WBP score classification). WBP is a scale that classifies wounds in four classes depending on the type of tissue 
that composes its bed: A-only granular tissue; B-<50% slough; C->50% slough; D-necrosis present. Refer to11 
for further clarification on WBP score wound classification.The WV detects the wound and counts the pixels 
of the resulting analysis. The number of pixels is then multiplied by the focus distance of the CMOS camera 
(i.e. the area in [cm2] covered by a single pixel with respect to the distance from which the picture has been 
taken, read through the IR sensors shown in Fig. 1a).

The parameters computed by the device (i.e. the morphological features and its classification) play a key role 
the determination of wound diagnosis and the expected healing time. The device and its software have been 
integrated with a secure cloud system which allows the operator to share the pictures with the rest of the medical 

Fig. 1.  (a) Front and rear view of the WV device with its components. (b) Wound detection algorithm: the 
workflow shows the steps that the device follows to classify the wound. Starting taking the photo of the lesion, 
the first part of the algorithm elaboration identifies the Region of Interest (ROI) that contours the wound in 
the image. The second part consists of the segmentation and subsequent classification of the wound inside the 
ROI. The first part of algorithm consists in a CNN of a two-dimensional layer with 24 convolutional layers. The 
second part is described as a DT-CNN based on the memristive cells of the CA and the BPI algorithm.
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team so to provide an eventual remote clinical consultation22. Finally, the device implements a compliant 
Electronic Medical Record (EMR) allowing the wound to be monitored as it evolves allowing the physicians 
to immediately verify how effective the therapy is through a quantitative series of indicators23. The device also 
implements 16 IR sensors measure distances concurrently as the CMOS camera takes the digital photographs. 
These distance measurements are fundamental in calculating indicators of the wound as the depth and area of 
the patient’s wound. The distances taken by the IR sensors are converted into a coefficient through a calibration 
mapping uploaded onto the device during manufacture22.

Regarding its neuromorphic methodology for wound analysis, the algorithms are composed by two sub-
networks coupled in a waterfall configuration. Both networks have been implemented by means of a software 
simulated algorithm; indeed, they are based on two different architectures. The first, as shown in Fig. 1b has 
the scope of detecting and extracting the ROIs from the image through a multi-layered convolutional neural 
network24. This is composed by a two-dimensional layer of locally connected cells with same dimension of 
the images that are processed followed by two blocks of convolutional layers, responsible for image feature 
extraction for automatic wound detection. The first block is composed of 24 convolutional layers each of 512 
cells, followed by a ReLU activation function. The second block is instead composed of 24 convolutional layers 
each of 128 neurons, also followed by ReLU. In the middle of the two blocks is posed one more fully connected 
layer for data transfer amongst them. Part of the architecture is composed by one last fully connected layer of 
cells that functions as a readout/softmax layer for classification.

In addition, the used CNN is described by the following features: 

	1.	� A stride of 2 was used, which reduced the spatial dimensions of the feature maps, providing a balance be-
tween computational efficiency and feature extraction.

	2.	� Kernel: it utilizes a 9x9 kernel size, which allows the network to capture more complex patterns by covering 
a larger area of the wounds.

	3.	� Padding involved adding the “same” padding, which ensured that the output feature map had the same spa-
tial dimensions as the input, preserving edge information.

	4.	� Regarding the choice of the hyperparameters, the most commonly used optimization algorithms is the ran-
dom search. After several trials, where different parameters (number of filters, filter size, pooling size, drop-
out rate, learning rate, batch size, epochs) have been combined to test different models, the final model has 
been chosen through the best obtained results performance.The neural network was trained on a dataset 
containing around 1.500 images, coming from open source datasets25 and from previously collected images. 
For training purposes, the wounds depicted in the images were manually segmented and classified according 
to the WBP scale, resulting in an even distribution across the four possible classes of wounds. The final train-
ing dataset Therefore, included various image types relevant to the classification task. It is necessary to point 
out that it was made sure that the dataset included images of patients with the broadest possible range of skin 
tones and characteristics in order to eliminate possible biases and misclassifications. The set was subsequent-
ly divided into training (70%), validation (15%), and test (15%) sets. To increase the diversity of the training 
data and improve the model’s generalization, several data augmentation techniques have been used: random 
rotation (up to 20 degrees), horizontal flipping, random cropping, and normalization. These techniques help 
the network become more robust to variations in the input data and increase the overall number of images. 
During training, the validation set was used to monitor the model’s performance after each epoch. Early 
stopping was employed to prevent overfitting, where training stops if the validation loss does not improve 
for 10 consecutive epochs. Accuracy and loss were the primary metrics used for validation, ensuring that 
the model was not just memorizing the training data but generalizing well to unseen data. Hyperparame-
ter tuning was conducted using grid search. Parameters such as learning rate, batch size, and dropout rate 
were tuned to optimize performance. For instance, learning rates were tested between 0.001 and 0.0001, and 
dropout rates were varied between 0.3 and 0.5 to find the best configuration. The best-performing model was 
achieved with a learning rate of 0.0001, a batch size of 64, and a dropout rate of 0.4.

The second sub-network consists of a DT-CNN computing architecture applied on the ROIs previous extracted, 
to segment the wound and provide relevant measurements and analyses. The processing units making up DT-
CNNs are called neurons or cells. Once the entire surface of the wound has been recognised, the highlighted 
elements are analysed by color scheme. All possible pixel color sets forming the wound were classified into four 
macro groups: red, white, black and yellow identifying the different possible tissues composing the wound bed 
and its feature. During the network’s training phase, the cellular nonlinear network in the WV algorithm, which 
processes a two-dimensional color image, is provided with statistical information about the tissue forming the 
wound bed through color analysis. The wound images in the trial group were labelled using WBP score and 
the algorithm then matched the color schemes read within the area of the image depicting the wound. The 
algorithm uses this test phase to analyse these color schemes and automatically classify them. In the following, a 
detailed insight of this second subnetwork (and of its training algorithm) is provided. After a brief introduction 
of the memristor theory underlying the working principle of the proposed work, and of the memristor-based 
CA representing the basic block of this CNN, we introduce the BPI algorithm, that served as inspiration for our 
training algorithm. Finally, the CA-based architecture with the BPI training algorithm will be described.

The source code for the wound analysis methodology described in the following sections, as implemented in 
the WV device, is consultable from Zenodo26. Please refer to the Code Availability Statement at the end of the 
manuscript for further details on its accessibility.
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Generic memristor synapses model
As mentioned in the previous sections, the networks developed for the analysis of the wounds, have been 
designed upon the implementation of memristor elements. Exploiting their synapse-like dynamics, their 
potential non-volatility and their ease of programming renders bio-inspired systems capable of performing 
complex computations. Such elements are well known in literature and the advantages deriving from their 
use have been widely studied, obtaining highly controllable mathematical models27–29. The avant-garde of 
this device highlighted by recent works, especially in the functional electronic field, pushes towards the 
future goal of a possible concrete realization of fully memristor-based integrated hardware models enabling 
neuromorphic computing techniques30,31. Although memristor arrays can perform parallel in-memory 
operations with significantly enhanced speed and energy efficiency, memristors have non-ideal intrinsic effects 
that can affect the operation of the device. Three main issues are highly noted: low yield and non-uniformity in 
memristor crossbar arrays, difficulty in matching the performance of software implementations due to device 
imperfections, and the time-consuming nature of convolutional operations, which leads to a speed mismatch 
between the memristor convolver and the memristor array used for vector-matrix multiplication. To overcome 
such imperfections, several strategies have been developed over the years to improving overall memristor-based 
system performance. Among them, Yao et al. required the integration of multiple memristor crossbar arrays with 
the aim of splitting the weights into different arrays for parallel computing31. Marrone et al. have used Dynamic 
Route Maps (DRMs) on memristive devices in order to characterize the single elements for implementation 
purposes32. In particular, in case PCMs would be integrated, the non-ideal memristors effects could affect the 
method due to other variables, such as elements’ temperature or leakage currents inside the cross bar33. The 
presence of these elements that can have an effect on the internal state of each memristor. Therefore, a possible 
optimization strategy could be the implementation of additional circuits, as continuous element reset cycles, to 
consider the bias introduced by the non-linearity devices to obtain optimal results. These approaches have been 
implemented for CNNs, adapting the memristor arrays in the architectures: therefore, the same methods could 
be applied for the presented DT-CNN visioning future fully integrated architectures. It is therefore consequent 
that the choice of basing the presented system on memristive dynamics would serve as a solid starting point for 
future developments obtaining major efficiencies both computationally and energetically.

To provide a broader perspective, other works that utilizes memristors in analog neuromorphic neural 
network can be cited. For instance, Nikiruy et al. developed a neuromorphic circuit scheme with CMOS 
integrated HfO2-based memristive devices. The circuit has to handle association tasks, as blooming and pruning 
of the brain with memristive synapses. The authors, in this example, recreated the human learning scheme 
that learns from mistakes by eliminating from the initial surplus of synaptic connections those that lead to an 
undesirable outcome34.

For the purpose of this work, it is necessary to part from the description of the Ideal Memristor Model (Fig. 
2a), according to Corinto et al., is based on current and flux momentum (also named charge – q and flux – φ
, respectively)14,35,36.The memristance can be defined as R(q) ≡ dφ(q)/dq, so R is function of q. φ(q) is the 
charge driven flux in the device and is considered the constitutive equation of the memristor. In addition, Ascoli 
et al. produced a mathematical model of a broader class of memristors, which has been already successfully 
implemented in other memristor-based neuromorphic algorithms19,37:

	
dx
dt

=f(x(t), c(t), t), � (1)

	 r(t) =M(x(t), c(t), t)c(t), � (2)

Fig. 2.  (a) Memristor model schematic representation. I and V represent te current flowing through the device 
and the voltage applied. As described in the text these change over time due to the changes of its resistance 
(memristance), based on the momenta of both parameters (i.e. q(t) and φ(t)). (b) Simple representation of the 
connections of a cell in a CA. In the depicted case the state of the cell yi,j  is dependant from its actual state, the 
states of a neighbourhood Nn = 9 and external inputs (indexed as ui+g,j+l) according to Eq. (3).
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where x ∈ Rn denotes an internal state variable vector, c(t) ∈ R and r(t) ∈ R represent the current (voltage) 
input and current (voltage) output under charge (flux) control, respectively, f(·, ·, ·) : Rn × R× R → Rn is the 
state evolution function and M(·, ·, ·) : Rn × R × R → Rn stands for the memristance (memductance) under 
charge (flux) control. In general, g(·, ·, ·) is not just a function of q(φ) under charge (flux) control, because 
systems of this kind are characterized by a multivalued flux-charge relation19. This memristor model has been 
used to describe the neuron synapses of the DT-CNN algorithm units.

Memristive cellular automata
A DT-CNN, according to the work of Itoh and Chua, can be also considered as a memristor-based Cellular 
Automata (CA)15. From the work of Stephen Wolfram, a CA is a mathematical methodology that is based on a 
grid of simple computational elements called cells, connected in different fashions on a spatial grid (as depicted 
in Fig. 2b)16,38. Each cell on the grid evolves at each time epoch depending on the actual states of the given cell 
and the surrounding cells and on an eventual external input. The cells of a CA can evolve into multiple discrete 
states or following a binary logic18. From Wolfram’s definition, a CA system is defined by the following elements:

•	 there must be a spatial representation of the involved entities;
•	 uniformity, or in other words all the entities must have the same characteristics and must be identical and 

interchangeable;
•	 locality, each entity changes its state from a generation to the other taking into account the states of the enti-

ties within a given surrounding radius.Still, CAs can be described in the following fourfold: < d, Q, Nn, f > 
where

•	
•	 d is the dimension of the CA;
•	 Q is the space of the states which the cells can assume;
•	 Nn is the neighbourhood index which describes the region of influence of adjacent cell’s state change;
•	 f  is the generation transition function which describes the state change of each cell at each time instant and 

must be a function of a cell neighbourhood described by parameter Nn.18

As mentioned, the equivalence of a memristor-based CA and a DT-CNN has been done by Itoh and Chua15 2a 
through the following definition:

	
yi,j(nT ) = M

( ∑
g,l∈{−1,0,1}

ag,lyi+g,j+l((n − 1)T ) +
∑

g,l∈{−1,0,1}

bg,lui+g,j+l((n − 1)T ) + ∆q

)
,� (3)

where y is the output or the state of the cell and u are the external inputs of the system. T is the time period 
in which there is a new input and, therefore, a new generation change in the system, while ∆q represents the 
charge accumulation in the memristor during the previous generations. ag,l and bg,l are elements of two distinct 
matrices A and B which both have size G × L = Nn . A is the template that contains the weights given to the 
adjacent cell states (feed-forward) and B contains the weights given to the external input (feed-back). A and B 
define the rules to the memristor CA. Function M(·) describes the memristace change function (referring to 
Eqs. 1 and 2)18.

BPI training
The BPI training algorithm, proposed by Baldassi et al.17, is a bio-inspired learning model. Formally, under a 
network point of view, the BPI is applied to as a single layer of neurons with binary synapses able memorize 
input-output associations in a supervised way. The algorithm can be compared with the standard perceptron 
algorithm39: training input patterns are given to the network one at a time, labelled with the proper output. In 
case of an error, the signal is back-propagated so that it can modify the synaptic weight values in a direction 
that makes it less likely to repeat the error in the future. Unlike the perceptron, the changes only affect an 
internal (hidden) variable in each synapse, which determines the synaptic weights (binary value)19. Formally, 
let us consider a network with size N (i.e. where there are N synapses) whose weight is wk  and k = 1 . . . N . 
Assume also that the wk  are binary valued, so that wk = 0, 1. Given the N input values ζk ∈ [0, 1], the output 
of the network is computed as

	
σχ = Θ

(
N∑
k

wkζχ
k − θ

)
,� (4)

where Θ(·) is the Heaviside function and θ is a given threshold for the current out-flowing from the system.

Let us train the network with a set of p patterns of N binary inputs ζχ ∈ {0, 1}, where χ ∈ {1, . . . , p}, two 
kinds of outputs must be considered: the desired output σχ

d ∈ {0, 1}, provided by the user and describes the 
association rule which the system needs to classify; and the real output σχ ∈ {0, 1}, calculated for each input 
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pattern. Aim of the training is the have the largest match possible between desired and real output. To do so, 
let us introduce a hidden variable hk  associated to each synapsis, with hk ∈ [−1, 1]. For the sake of a simpler 
implementation, the hk  may assume a limited number H of discrete values only. The relation between the hk  
and the wk  is

	
wk = 1

2 (sign (hk) + 1) .� (5)

In order to train the network beforehand (i.e. update the resulting synaptic weights), at each given discrete time 
(or epoch) τ , a pattern ζχ is chosen randomly from the training set associated with a given σχ

d , in order to 
compute the stability parameter ∆χ as:

	
∆ = (2σχ

d − 1) (
∑

k

wχ
k ζχ

k − θ).� (6)

Depending on the value of ∆χ, the synapses in the network update according to the following rules:

•	 (Rule 1) if ∆χ > 1, then ∀k : hχ+1
k = hχ

k  (i.e. do nothing);
•	 (Rule 2) if ∆χ < 0, then ∀k : hχ+1

k = hχ
k + 1

K
ζχ

k (2σχ − 1);

	– (Rule 3) if 0 ≤ ∆χ ≤ 1 :(a) if σχ = 0, with probability ps, if wχ
k = 0, then hχ+1

k = hχ
k − 1

N
ζχ

k ;
	– (b) otherwise, do nothing.Under a general point of view the hidden variables should assume a number of 

states H =
√

N  in order to achieve the best computational efficiency. The probability in rule can be set as 
ps ∈ [0, 1], depending on the rule that the network must acquire. Computational experiments, showed that 
the tuning of these parameters is critical to achieve good performances19. In our proposed implementation, 
as it will be described in the following section, the hidden variables hk  are stored as the memconductance of 
memristor devices which represent the cells of the complete system for wound analysis.

Memristor-based CA’s architecture with BPI algorithm for wound analysis
To find an equivalence between the Itoh and Chua’s general memristive CA model and its implementation of 
the BPI, several arrangements were made on the parameters of previously described models for the specific 
application. As afore mentioned a first generic convolutional neural network was implemented in the device 
in order to extract ROIs of wounds in the taken photos (see Fig. 1b)24. This first network has been trained with 
wound images, so that the second network (the DT-CNN hereafter described) is able to perform its analysis 
just in the extracted ROI portion of the image. This mechanism allows to optimize the wound classification and 
obtain a general decrease of the computational costs and time. Regarding the architecture of the BPI-CA, as 
shown in Fig. 3a, our model was designed as three-layer cellular network, each layer taking into account one of 
the three digital channels of the image (i.e. R, G and B) and composed of a number of cells equal to the number of 
pixel in the ROI area. The cells take as input the brightness value of the corresponding pixel (i.e. with coordinates 
i, j) of the corresponding layer in an 8-bit digital form, so that Ri,j ∧ Gi,j ∧ Bi,j ∈ {1, 2, ..., 256}, so that the 
input values of the three cells associated to the same pixel will correspond to the coordinates of a cell in tensor 
O of size 256 × 256 × 256.

Each cell (excluding of course that at the boundaries of the ROI) operates according to the same template, 
corresponding to the cellular automata considered above, that it is moved across all the ROI to analyse each 
pixel. A cell is locally connected to its corresponding input and also to the input of the eigth surrounding cells 
of the same layer, as well as to the two corresponding cells of the other two color layers, so that it has Nn = 11 
connections. Each connection is identified by a binary synapsis wg,l,x, where g, l ∈ {−1, 0, 1} identify the 
surrounding cell, and x ∈ R; G; B identifying the color layer, simulating the generic binary memristor19 
and has the scope of keeping record of the synaptic weights. To compute synaptic coefficients the network 
underwent a training session with the same dataset used to train the first sub-network (please refer to section 
Materials and Methods of this work for further detail) composed by over 1500 images of wounds, taken from 
open source databases25 and manually segmented and classified. After training it was possible to identify a sub-
space Ω ⊂ O in which are encoded the color combinations and their mathematical relations, that distinguish 
depicted chronic wounds from the rest of the background18. Moreover, it was possible to identify other sub-
spaces Ω1, Ω2, . . . , Ωn ⊂ Ω which distinguish features of different types of tissue composing the wound bed 
(i.e. necrotic, granular, fibrinotic, etc.), by labeling accordingly the information taken from the wound images in 
the training set. The wound identification from the picture is then performed by fixing the synaptic weights in O 
and moving the three-layered template across the ROI of a generic wound image, as shown in Fig. 3b generating 
a binary mask s whose elements are calculated as:The network provides a binary output for each pixel (i.e., the 
three cells associated to the three layers of a single pixel provide a single output) given by

	

si,j = Θ


 ∑

g,l∈{−1,0,1}

Ri+g,j+lwg,l,R + Gi+g,j+lwg,l,G + Bi+g,j+lwg,l,B − θ


 ;� (7)
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θ is a constant threshold parameter that was accordingly tuned in order to filter eventual noise resulting from 
the image19. Concluding the elements of s(i, j = 1 correspond to the pixels that depict of the wound in the 
original image and are Therefore, highlighted. These are then classified regarding with respect to the identified 
sub-spaces of Ω → {Ω1, Ω2, ..., Ωn} and their proportions are counted in order to classify the wound according 
to the WBP score11.

In order to train the network (i.e. properly identify the synaptic wights wR,G,B  it is necessary to part from the 
equations and the rules describing the BPI. First, probability ps in Rule 3 was set to zero in order to have total 
control of the generation changes of the states of the system’s cells. Second, hR,G,B ∈ [−1, 0, 1], and represent 
internal state variable of the memristors composing O. It is necessary to note that the relation that links hR,G,B  
and the synaptic weights wR,G,B  is described in Eq. (5) which also binarizes its final value according to the 
implementation described by Secco et al19. Therefore, it is possible to combine Rule 1 and Rule 2 with the 
definition of stability parameter ∆, obtaining the evolution dynamics of a given cell hi in one of the cells of O:

	
hχ+1

i = hχ
i + 2ζχ

i

(sign(∆χ) − 1)
2sign(

∑
k

wkζk − θ)
,� (8)

where χ denotes the computational epoch. To adapt Eq. (8) to the designed network, we recall that the 
neighbourhood of each cell is composed by the triplets of pixel that correspond to the same position in the 
three layers of the template plus the first neighbouring cells in the same layer, as shown in Fig. 3a. The template 
is then moved across the ROI of a given image of the training set. To cope with this, we replace the hidden state 
hi, i = 1, . . . , Nn with hg,l,x, with g, l ∈ {−1, 0, 1} and x ∈ {R, G, B}. Also the input zetaχ

i , i = 1, . . . , Nn 
at the epoch χ is replaced by the RBG values ζ{i + g, j + l, x} of the image considered at epoch χ, where (i, j) 
represent the pixel coordinates and ranges for all the identified ROI, and g, l ∈ {−1, 0, 1} is the offset and 
x ∈ {R, G, B} the layer. Therefore, Eq. (8) can be rewritten as:

	

hχ+1
i,j,x = M


Ahχ

i,j,x +
∑

g,l∈{−1,0,1}∧y∈{R,G,B}

2ζχ
i+g,j+l,y

(
sign(∆χ) − 1

2sign(
∑N

k
wkζk − θ)

)
 ,� (9)

Fig. 3.  (a) During the training of the BPI-CA, the three-layered template of nine cells per layer is moved across 
the ROIs channels of the wound images of the training set. At each epoch the template is moved by one pixel 
and takes in input the values of the of the R, G and B channels which serve as coordinates for the memristive 
cells in tensor O. (b) Similarly after training (i.e. when the value of the cells in tensor O have been fixed) the 
template is moved across the ROI in which the wound is framed in the picture. Each layer of the template takes 
into account one of the digital channels of the photo and the single pixel values serve as coordinates of the 
given cell of the tensor. At this stage it is possible to recognize a sub-space Ω ∈ O in which are encoded the 
extracted color feature of the analysed wounds.
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with x ∈ {R, G, B}, (i, j) ranges to span all pixels in the ROI, and χ is incremented to consider all images in 
the training dataset, starting from the initial condition hχ

g,l,y  for all g,  l, y. All the generation changes in the 
system must be input-based, so in the case of our CA-BPI, referring to Eq. (3), was found to be defined A = 1 
. It is possible to notice that the evolutionary algorithms described by the Eqs. (3) and the 9 present the same 
properties of a CA as described by Wolfram38, thus are considered to be equivalent.

Results
Clinical trial
To prove the actual clinical reliability of the system a clinical trial on 150 patients, validated and approved 
on 20 September 2017 by the Ethical Committee of the Azienda Opedaliera Universitaria San Luigi Gonzaga 
(Orbassano, Italy), with protocol number OC15194 (see Fig. 4 for major details of the trial and its workflow) 
was performed.

The team was well-supported by the PI’s extensive experience, and the hospital chosen for centre of study is 
widely recognized as one of the leading departments in the care of complex chronic wounds.

Three cohorts based on their aetiology were considered: 1) lower limb ulcers (50 lesions), 2) diabetic foot 
ulcers (50 lesions), 3) pressure ulcers (50 lesions). The sample size has been calculated by evaluating a statistically 
significant number of samples for each aetiology (at least 50). The choice of the cohorts and its organization 
was made to reflect, in the best possible way, the broadness of occurrence of cases in a specialized wound care 
centre1,40. Regarding the population demographics, the participants had to match the inclusion criteria: 

	1.	� The wound must be considered chronic.
	2.	� Absence of subtypes.
	3.	� Willing of signing of the informed consent.
	4.	� The area of the lesion must be between 2cm2 and 100cm2.It is also important to consider the skin tone var-

iable of the patients that could introduce a bias on the wounds classification. In addition, as mentioned pre-
viously, the data set used for the network’s training included images of wounds in a broad range of skin tones 
returning high validation rates. Moreover, the skin tone rarely matches with the deeper classified wounds’ tis-
sues colors, Therefore, the patient’s skin characteristics were not inserted as an inclusion or exclusion criteria. 
The study was designed as a prospective and observational. The trial is non-randomized and mono-centric 
with the blinding assessment of the type of wound for the physicians23.

Wound classification method performance
The results obtained have been reached with the totality of the patients recruited in the clinical trial. The analysis 
was based on the ability to identify the tissues composing the wound bed in the proper percentage and to relate 
these with the WBP score using the techniques described in the previous paragraphs of this work with the WV. 
Through WBP, wounds can be subdivided in four classes (A, B, C, and D) according to the description provided 

Fig. 4.  Workflow of the clinical trial performed at the San Luca and Politecnico di Torino. As shown, the trial 
involved two teams: a clinical team and a data management team which worked in double blind. The clinical 
team had the responsibility of enrolling the patient, perform an analysis with the WV device and other manual 
measurement devices for wound care. In addition, the clinical team had to perform a visual assessment of the 
wound, classifying it through the WBP score. All the data obtained with the devices (excluding the WV) were 
reported on paper Clinical Research Folders (CRFs), while the data obtained with the WV was automatically 
sent to the data management team through a secure cloud data transmission system. The Data Management 
team, at the end of the trial, collected all the CRFs and compared the obtained results calculating the outcomes.
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in the previous sections of this work11. This evaluation allows the ability to correlate the color segmentation 
of the wound bed against the correct WBP score and to compare its result with the one given by the clinical 
assessment team who examined the wound visually as described in Fig. 4. The aim of the protocol was designed 
not only to verify the classification accuracy of the device, but also to prove that the AI medical device allows 
trained physicians to gather precise, reliable clinical information in a telemedical configuration, as if they were 
performing the same examination directly on the patient23.

The devices’ WBP scores were compared with those obtained by physicians during clinical visual assessment.
From the point of view of the WBP classification performance of the BPI-CA algorithm, the accuracy results 

are shown in Fig. 5a. As shown, a weighted average that takes into account the numerosity of the singular cases, 
of 96% of cases the two assessments (i.e. the visual performed by the clinical team and the one performed by 
the WV) coincided was calculated. . More specifically, the confusion matrix reveals on the diagonal the number 
of cases in which the classifications matched. On the other hand, the other points outside the diagonal count 
the cases where there was a mismatch in the wound classification. The mismatches were registered in three 
cases related to C and D class. The inter-rater agreement has also been evaluated through the Cohen’s Kappa 
methodology, between the WV and visual assessment, obtaining an optimal value of 0.9728, that confirmed high 
statistical agreement of the obtained results.

As an example, four cases that were assessed during the trial, are reported, one for each WBP class. In Fig. 
5b is shown a series of wounds where each proper class has been identified both with visual and AI’s medical 
device and it is reported also the tissues component percentage in terms of color detected by the AI’s algorithm. 

Fig. 5.  (a) Wound classification and accuracy performances described through a confusion matrix. (b) 
Four examples of wounds assessed during the trial in terms of WBP score, for the assessment performed by 
physicians and AI medical device. In the end, the results of the color analysis performed by the AI medical 
device algorithm. (c) Three examples of wounds analysed during the trial. All three wounds were classified 
both by the physician and by the AI medical devicer as D (presenting eschar or necrotic tissue).
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As shown, it can be noted that wounds with A class reported 100% identified granulating tissue. B wound is 
characterized by a granulated tissue percentage in range 50–100%, in fact granulating tissue is reported as 82%. 
C wounds have less than 50% of granulated tissue, so in the case reported in the figure the granulating tissue 
percentage is 45%. Finally, the D wounds are necrotic (even slightly) and the reported case was found to be 
composed of 38% eschar.

The precision of this detection is clinically fundamental fundamental, mostly detecting cases which present 
necrosis. As shown in Fig. 5c, the assessment for D wounds is comparable between visual and the WV. In figure 
it has also been reported the identified necrotic percentage of the shown wounds’ beds. By the end of the trial 
around 50 wounds were classified as ‘D’ (according to the WBP scale), meaning that these wounds presented 
necrotic tissue, even at a low percentage. ‘D’ classified wounds require more attention by health professionals 
because of their highly advanced state of deterioration. The results of the analysis showed that the AI medical 
device was able to recognise these particular wounds with high precision, proving at first that the objective for 
which the device was designed was reached.

Morphological measurement precision
The morphological measurements precision has been evaluated by comparing the data obtained from the WV 
with the corresponding measurements collected by three other wound analysis and measurement methods23:

•	 VISITRAK (Smith+Nephew, US) is a wound measurement active board formerly distributed by Smith and 
Nephew. The device comes with a tracing pen and a set of scaled transparent acetate sheets.

•	 MOWA (Health Path, Italy) is an app for Apple IOS mobile platforms.
•	 Aranz Silhouette (Aranz Medical, New Zealand) system is composed of the Star, an image acquisition tool 

comprising three laser arrays, a digital camera and two LEDs for image light control.

The results, in terms of mean error percentage of the measurements performed with WV compared to the ones 
performed with the other devices, are reported in Table 1. To perform a more relevant analysis regarding the 
morphological measurement precision, the wounds analysed with the four devices, were divided in different 
size classes. For each size class. It is interesting to note how WV, Silhouette and VISITRAK have smaller mean 
relative errors, whereas MOWA seems to be less reliable, with mean relative errors reaching over 10%. The 
highest errors were obtained measuring wounds of 16.8–22.4 cm2. In these particular cases, the results were 
accepted since the differences in terms of relative error are clinically irrelevant. These errors were computed by 
considering the three other wound analysis and measurement methods as imperfect controls.

In order to find further statistical evidence of the measurement capabilities of the system, the data from 
the AI medical device and control devices were compared by creating distribution curves for area and depth 
measurements respectively. Such distributions resulted to be comparable to Wiebull curves. Therefore, the scale 
and shape factors of these curves were used to generate fitting distribution curves, and their goodness-of-fit 
was evaluated through Kolmogorov-Smirnov test (Ks-test). The estimated parameters and corresponding values 
are presented in Table 2. The Kruskal-Wallis test, with a p-value acceptance threshold of ≥ 0.1, was employed 
to determine if the distributions were statistically comparable. This non-parametric test was used in place of 
the one-way ANOVA for non-normal populations. The test yielded a p-value of 0.9, which affirms that the 
distributions represent the same population. From these results it is possible to state that the BPI-Ca was able 
to perform reliable and precise measurements, with high clinical relevance for a normalized clinical use of this 
technology.

Wound Viewer Silhouette MOWA VISITRAK

Shape Factor 0.9475 0.9444 0.9032 0.9316

Scale Factor 10.2809 9.9032 10.1946 10.4722

P-value (Ks-test) 0.4361 0.6179 0.6405 0.4200

Table 2.  Shape and scale parameters of the overlapping Weibull distributions of the distributions of the 
collected data. In the last row are reported the p-values of the Ks-test that was performed to confirm the 
correct fitting of the curves to the population.

 

Wound Area Range 0 − 5.6 5.6 − 11.2 11.2 − 16.8 16.8-22.4 22.4 − 28 28 − 33.6 > 33.6
Silhouette 0.1±0.2 0.04±0 0.05±0.4 0.1±0.7 0.03±1.1 0.06 0

MOWA 0.2±0.1 0.18±0.7 0.1±1.7 0.3±0 0.1±0 0 0.1

VISITRAK 0.1±0.3 0.06±0 0.2±0 0.03±0.4 0.05±0 0.03 0.03±0.05

Table 1.  Mean percentage measurement relative error with the respective standard deviation between the WV 
and the other devices used to evaluate the WV measurement precision capabilities precision, regarding wound 
areas in [cm2].
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Clinical and economical advantages
Following the afore described trial, the WV has been integrated in different hospital facilities. A further evaluation 
comparing the data regarding the cost of cures between the year before the use of WV and the following in one 
particular hospital was performed to show the positive impact of such technologies in the wound care field with 
respect to the general health administration. Table 3 reports the data obtained through this analysis in terms of 
cost of cure. These costs are also divided into the three major expenditures that are: the medication costs (i.e. 
the cost of the prescribed dressings), the visit costs (i.e. the cost of the single specialist traveling through the 
territory to perform medication) and the cost for the therapeutic plan (i.e. the administrative costs for medical 
prescription). Surprisingly, thanks to the use of WV and its capability transmit the information among the 
operators directly into the patient’s Electronic Medical Record (EMR), the wound care specialists were able 
to administer the right therapy to the single patients according to their general clinical state. Moreover, it 
was possible to render efficient the general operations regarding the patient management, concentrating the 
operators on the patients that required greater treatment and attention, lowering the number of visits to the ones 
that were going through a correct healing process. From these logical actions taken by the hospital through the 
use of WV, the total cost reduction for the hospital (on a population of around 850 patients per year) has been 
reduced by 9%, while the cost of cure per single patient reduced by 14%.

As mentioned previously the presented analysis was performed over a one year period. The scenario 
represents an example of normal wound care territorial management facility, subject to a very high turnover 
of patients due to healing or dramatic worsening of their health conditions41. Therefore, it is possible to state 
that though the analysis involves a short time period, it can be considered sufficient for highlighting the short 
term improvements not only for the patients, but also for the wound care personnel and their management. 
Notwithstanding, further observations for longer periods of time that include the comparison of more facilities 
afferent to different health care systems would certainly result in additional social and economic outcomes 
that are difficult to assume a priori. For this reason, additional analysis is being conducted following novel 
implementation of the WV in different environments of cure.

Discussion
The novel WV device that implements the BPI memristor-based CA classification model has been used to 
detect and analyse a cutaneous ulcer from the digital picture of a patient’s lesion. Technologies for automatic 
diagnosis using a neuromorphic approach are still largely unexplored and not well-documented in the literature 
for wound classification purposes, except for few notable cases that were able to reach actual clinical use. For 
instance, in 2017, the MolecuLight Imaging Device was introduced as a portable, non-invasive, real-time camera 
for bacterial proliferation in wounds using UV light illumination and a dual-bandpass optical filter to capture 
bacterial fluorescence42. Other systems have also emerged that exploit AI technology for wound identification 
and measurement, but on the other hand lack of diagnostic classification features and are not as widely 
distributed in order to perform a complete comparative assessment43–45. On the other hand, the WV represents 
an innovative and unique certified medical device that has been clinically tested, able to perform both automatic 
wound measurement and clinical classification through validated and widely used clinical scales such as WBP.

For its validation Therefore, the choice fell on the range devices most commonly used by wound care personnel, 
which represent the actual clinical operative standard in terms of wound morphological measurement. Notably, 
none of these gold standard devices employs a neuromorphic algorithm for ulcer type diagnosis. Consequently, 
its diagnostic validation was performed through a double blind comparison with wound care experts’ visual 
assessment.

The results have demonstrated good accuracy and performance in terms of classification regarding the WBP 
score of the wounds.

In particular, the visual assessment obtained by the physicians matches almost perfectly with the WV. Most 
importantly the classification capabilities of the device resulted to be highly specific in cases where wounds 
present necrosis. To prove such capabilities, the wounds shown in Fig. 5a present a very low amount of necrotic 
tissue which was correctly detected by the device. Moreover, the described system and the trial it underwent, 
faced a challenge related to performance across different skin tones and under varying lighting conditions. It 
must be noted that the trial was conducted in an operative wound care ward with variable light conditions 
and the patient enrolment randomly included patients with different skin tones (also including 6 subjects with 
African traits and 4 subjects with Asian traits, Males: 36%, Females: 64%). These variables, given the obtained 
results, did not affect the overall performance of the system. This positive outcome can be conducted to the 

Group
Cost per single patient 
(average) Total cost for wound care

Year Before WV After WV Before WV After WV

Medication cost €215 €173 €182.964 €155.000

Therapeutic plan cost €141 €119 €120.120 €106.808

Visit cost €1.268 €1.108 €1.078.833 €990.854

Total €1.624 €1.401 €1.382.917 €1.252.662

Cost savings €-223 (-14%) €-129.256 (-9%)

Table 3.  Cost of cure reduction (total and per single patient) in telemedical procedures regarding patients with 
chronic wounds.
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implemented illumination system of the device through its 4 mounted LEDs and a correct choice of the samples 
that populated the training dataset.

The BPI-CA was found in general to be able to correctly detect the contours of a wound: this algorithm 
showed very high precision with a fully automated process of extraction and detection of the wounds and their 
characteristics, without any interventions from the examiners. All the BPI-CA results obtained used in the 
clinical trial, showed a strong consistency compared with the ones from other devices, with the difference that 
the BPI-CA algorithm doesn’t need any manually operation by the physicians, except the picture of the lesion, 
as added value.

The final analysis addresses the actual scope of precisely assessing wounds. To arrange the proper medications 
and treatment guidelines, it is vital to assess the correct wound class. With the recent advancement of artificial 
intelligence, such as the WV, wound specialists can classify wounds in better accordance with all the physiological 
parameters and aspects of the patient and do not only through isolated wounds image. These possibilities and 
advancements reflect the positive trend taken by certain hospital facilities in terms of general a single patients’ 
expenditures, as shown in this work. The costs in terms of time, medical visits and treatment may increase 
sensibly in absence of a of appropriate clinical assessment tools in the field of wound care. The clinically validated 
WV has proved able to render a positive impact for physicians in patient management and treatment.

Limitations
As detailed in the Clinical Trial section, patients were divided into three main groups based on their wound 
aetiology. The group with lower limb wounds included patients with various aetiologies: approximately 40% had 
venous ulcers, around 20% had arterial ulcers, and the remaining 40% had ulcers of other origins. This group 
does not encompass the full spectrum of possible aetiologies. Ongoing research and studies are focused on 
conducting trials specifically targeting different wound aetiologies to evaluate the clinical benefits, with patients 
receiving regular follow-ups. Additionally, patients with wounds exhibiting undermining were excluded from 
the trial due to technical limitations of the device. Efforts are underway to enhance the system’s capability to 
detect these conditions23.

As afore mentioned, the described trial included a relatively small amount of subjects with different skin 
characteristics with respect to the overall average patient population affluent to the trial’s centre. Though the 
analysis of the wounds of this population did not compromise the system’s performance, their limited number 
is still to be considered statistically irrelevant, and further studies are ongoing in order to assert the lack of 
impact of such variability. Although the presented dataset was heterogeneous in skin tone variability, future 
investigation on the potential source of bias introduced by skin tone variability will be properly evaluated. It is 
necessary to note that in a clinical environment lesions and the skin area them are not clean and present debris 
from previous dressings, ointments and bandages, that can also be present inside the wound. This variability is 
independent from the patient and constituted a higher challenge during the network’s training rather than skin 
tone, which in general has features that are very different from wound bed tissue. By correctly segmenting and 
classifying the images of the training set the device was able to overcome such problem as the presented trial 
results suggest.

Conclusion
Finally, the BPI-CA algorithm shows promise as an approach in wound care, with initial results demonstrating 
good efficacy within the limitations of this study. Although the findings are quite limited and need for broader 
and long-term studies, the goal of improving clinical care, and reducing costs in all medical fields, meets the AI 
technologies’ development, finding the optimum point in addressing an urgent clinical need within dermatology 
and a necessary standard protocol for quality of care6,46,47. As mentioned, the classification and measurement 
capabilities of the WV and the possibility to transmit relevant data makes the device an efficient telemedical 
tool for the remote monitoring of hard-to-heal wounds. The recent pandemic event has forced the great part 
of the national health systems to improve this kind of standardised protocols for remote patient care, without 
compromising the quality of clinical standards. In conclusion, the effort required by operators can be decreased 
by the use of this device, focusing the work of physicians on advanced treatment and more efficient patients 
remote care, leaving room for artificial intelligence systems to manage data and give reliable support in the 
diagnostic assessment.

Data availibility
The data that supports the findings of this study is available from Politecnico di Torino. The restrictions applied 
to the availability of the data are due to the fact that there is an existing patent of property of the Politecnico di 
Torino on this particular technology. For this reason, the data was used under license for the current study, and 
so is not publicly available. Data is however available from the authors upon reasonable request and with permis-
sion of the Politecnico di Torino. For further information please contact Jacopo Secco (jacopo.secco@polito.it).

Code availability
The code regarding the wound analysis methodology, as implemented in the WV device with its functional-
ities, is accessible at the following DOI: https://doi.org/10.5281/zenodo.1405426026. The applied restrictions 
are due to the existing patent, property of Politecnico di Torino, from which the technology derives. However 
the source code will be rendered available upon reasonable request by contacting Jacopo Secco (jacopo.secco@
polito.it) directly or through the cited platform.
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