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Programming by demonstration has received much attention as it offers a general

framework which allows robots to efficiently acquire novel motor skills from a human

teacher. While traditional imitation learning that only focuses on either Cartesian or joint

space might become inappropriate in situations where both spaces are equally important

(e.g., writing or striking task), hybrid imitation learning of skills in both Cartesian and

joint spaces simultaneously has been studied recently. However, an important issue

which often arises in dynamical or unstructured environments is overlooked, namely

how can a robot avoid obstacles? In this paper, we aim to address the problem of

avoiding obstacles in the context of hybrid imitation learning. Specifically, we propose

to tackle three subproblems: (1) designing a proper potential field so as to bypass

obstacles, (2) guaranteeing joint limits are respected when adjusting trajectories in the

process of avoiding obstacles, and (3) determining proper control commands for robots

such that potential human-robot interaction is safe. By solving the aforementioned

subproblems, the robot is capable of generalizing observed skills to new situations

featuring obstacles in a feasible and safe manner. The effectiveness of the proposed

method is validated through a toy example as well as a real transportation experiment

on the iCub humanoid robot.

Keywords: programming by demonstration, reinforcement learning, obstacle avoidance, humanoid robots,

minimal intervention control

1. INTRODUCTION

Over the past few years, there has been growing demand for bringing robots from industrial
manufacturing lines to human-centered scenarios thanks to ever evolving sensors, actuators,
and processors. Increasing computational power also gives rise to novel control and learning
algorithms. Nevertheless, contrary to the high maturity of industrial robots and relatively simple
service robots, how to deploy general purpose robots, such as humanoid robots into cluttered
environments still remains a formidable challenge. Conceivably, before humanoids can successfully
operate in daily-life settings, a series of challenges need to be confronted. One of themajor concerns
for robots to operate outside laboratory environments is obstacle avoidance. Indeed, obstacle
avoidance represents a necessary capability for robots to become more autonomous, flexible and
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safer in order to cope with complex working environments.
In addition, as humanoid robots could sometimes be expected
to work alongside human beings, classical high-gain feedback
control shall be deprecated in case human-robot interaction
becomes dangerous. Hence, compliance is a highly desired skill
in this case, as the incorporation of variable impedance skills
into the robot controller allows for a safe physical human-robot
interaction (Abu-Dakka et al., 2018).

In view of high-dimensional state and action spaces of
humanoid robots, a user-friendly method to endow them with
various skills is Programming by Demonstration (PbD), also
known as imitation learning (Billard et al., 2008). The complete
procedure of PbD typically consists of a demonstration phase,
where robots are shown the desired behavior, and a reproduction
phase, where robots are required to reproduce the learned
skills, typically with the help of movement primitives (Ijspeert
et al., 2013; Huang et al., 2019). Under the framework of PbD,
humanoid robots are able to efficiently acquire novel motor
skills from demonstrations of a human teacher. Following this
paradigm, many successful results have been achieved, such as
peg-in-hole task (Abu-Dakka et al., 2014), cleaning task (Duan
et al., 2019), table tennis (Huang et al., 2016), etc.

Traditional imitation learning that only focuses on either
Cartesian or joint spacemight become inappropriate in situations
where both spaces are equally important, such as in writing
or striking tasks. Consequently, hybrid imitation learning of
skills in both Cartesian and joint spaces simultaneously has
recently emerged. In order to further generalize the applicability
of hybrid imitation learning, this paper considers the integration
of obstacle avoidance in the context of hybrid imitation learning
such that robots can reproduce the learned skills in a broader
range of situations. Specifically, we consider the following
three aspects: (1) designing a proper potential field so as to
bypass obstacles. As a common technique for obstacle avoidance
within PbD, the potential field formulation as well as its
hyperparameters play an important role in realizing obstacle
avoidance. In order to compare the performance of different
potential fields, a novel imitation metric is proposed. Moreover,
a kernel-based reinforcement learning algorithm is employed
to determine the hyperparameters of the chosen potential field;
(2) guaranteeing that joint limits are respected when adjusting
trajectories in the process of avoiding obstacles. During obstacle
avoidance, joint trajectories are usually modified according to
the effects of the potential field. Therefore, the evolution of joint
trajectories shall be constrained by bounding them within the
allowable range; (3) determining proper control commands for
robots such that potential human-robot interaction is safe. To do
so, We propose to control the robot with a minimal intervention
controller rooted in linear quadratic tracking.

The rest of the paper is organized as follows: section 2 reviews
the previous work related to our problem. Section 3 presents
the proposed framework for learning to avoid obstacles with
minimal intervention control. Subsequently, section 4 reports
the results of the toy example as well as the experiments on the
iCub humanoid robot to show the effectiveness of the proposed
method. Finally, conclusions and future routes of research are
given in section 5.

2. RELATED WORK

In general, obstacle avoidance is a classical topic. Due to its
great significance, it has been extensively studied in a broad
range of fields not only limited to robotics but also computer
graphics, computer aided design, urban planning, etc. Among the
considerable works dedicated to the topic, obstacle avoidance can
be roughly classified into two categories: motion planning and
reactive methods.

Sampling-based motion planning algorithms normally rely on
planners, such as Probabilistic Roadmap (PRM) (Kavraki et al.,
1996) and Rapidly-exploring Random Tree (RRT) algorithms
(LaValle, 1998), along with their numerous extensions. In order
to facilitate collision detection of the samples, polyhedrons
are usually used as proxies for robots and obstacles. Collision
avoidance strategies elicited from sampling-based motion
planning usually could generate globally optimal trajectories,
but become computationally expensive and time consuming in
the case of high-dimensional multi-body problems or narrow-
passage problems (Ruan et al., 2018). Optimization-based
techniques can also be employed for obstacle avoidance. The
collision-free trajectory can be obtained by optimizing the
cost function formulated by a combination of obstacle cost
and other indexes, such as smoothness. Various strategies for
optimization could be applied to motion planning as well. For
example, Zucker et al. (2013) presented a trajectory optimization
procedure based on covariant descent. However, considering
that gradient-based methods could get stuck in local optima,
Kalakrishnan et al. (2011) proposed to instead use a derivative-
free stochastic optimization approach to motion planning. The
optimized trajectory is obtained by rolling out a series of noisy
trajectories and the candidate solution is updated with the
received cost with no gradient information required in the
process. Also, in order to speed up the optimization process,
Schulman et al. (2014) proposed to find collision-free trajectories
using sequential convex optimization where collision is penalized
with a hinge loss.

By contrast, reactive methods can make sure that robots can

behave in response to the sensed obstacles in real time. Yet, the
limitations lie in the design of priority assignment between the

ongoing tasks as well as the obstacle avoidance task. Therefore,
the solution is usually satisfying local conditions and thus
suboptimal. In addition, there are also stability issues regarding
reactive methods, as identified by Koren and Borenstein (1991).

In the framework of PbD, obstacle avoidance is usually
realized with the help of potential fields, i.e., collision-free
movement is generated by a repellent force obtained from a
gradient of a potential field centered around the obstacle (Khatib,
1986). Kim and Khosla (1992) proposed a new formulation of
the artificial potential field for obstacle avoidance using harmonic
functions. A clear advantage of harmonic functions is that it can
completely eliminate local minima in a cluttered environment.
In the spirit of harmonic potential functions, within the context
of dynamical-system-based robot control, Khansari-Zadeh and
Billard (2012) proposed a real-time obstacle avoidance approach
that can steer robot motions generated by the dynamical system.
Since such modification happens locally, the dynamical system
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FIGURE 1 | Illustration of the proposed approach to obstacle avoidance within hybrid imitation learning. First, multiple demonstrations are presented to the robot and

the statistical information are encoded by GMR. Subsequently, with the help of Gaussian product between Cartesian trajectory and joint trajectory, the inconsistency

from both spaces are unified. A bio-inspired potential field is employed for obstacle avoidance, since it can better reserve the fidelity against the original trajectory. The

hyperparameters of the potential field are determined by reinforcement learning with the learned trajectory driven by a minimal intervention controller.

(DS) can still be kept globally stable, i.e., all trajectories can reach
the target point. In addition, the method can handle multiple
obstacles without changing the equilibrium of the original
dynamics. Huber et al. (2019) further extended such method to
the case of moving convex and star-shaped concave obstacles.
The impenetrability of the obstacles’ hull and asymptotic stability
at a final goal location was proven by contraction theory.

Compared with previous work on obstacle avoidance within
PbD, the contribution of our proposed method focuses on
tackling the aforementioned three subproblems. To address
problem (1), a novel imitation metric is provided such that the
performance of different potential fields can be quantified. Based
on such imitation metric, we can evaluate similarity between the
trajectories modified due to obstacle avoidance as well as the
original demonstrated trajectories. The hyperparameters of the
chosen potential field are determined by a reinforcement learning
algorithm. To solve problem (2), we parameterize the joint space
into exogenous states using the hyperbolic tangent function. We
show that the proposed method can guarantee that the evolution
of joint trajectories is always bounded within the specified range.
As for problem (3), we employ a minimal intervention control
strategy based on linear quadratic tracking. The illustration of the
proposed method is shown in Figure 1. In addition, a flowchart
to summarize the whole procedure is shown in Figure 2.

3. PROPOSED APPROACH

In this section we propose an obstacle avoidance approach within
PbD that aims to preserve the demonstrated trajectories. Our

obstacle avoidance strategy is devised based on the principle
of artificial potential field. With the goal of preserving the
demonstrated trajectories, we propose to use a bio-inspired
potential field called Fajen potential field proposed by Fajen
and Warren (2003). The Fajen potential field is built upon the
empirical evidence of how humans steer their motion for obstacle
avoidance. The hyperparameters of the chosen potential field are
determined by a reinforcement learning algorithm. Although the
Fajen field has been used in previous works (Hoffmann et al.,
2009; Rai et al., 2014), its merit over others was not elaborated
explicitly. To this end, we contribute quantitative evidence to
benchmark different types of potential fields and show that the
Fajen potential field indeed outperforms others. Furthermore, we
propose to rely on a novel imitation metric rather than RMSE
to evaluate the imitation fidelity. The suggested imitation metric
is based on the technique of curve similarity analysis (Dryden,
2014). Moreover, given that trajectories will be modified by the
potential field unpredictably during obstacle avoidance, there
are possibilities that joint trajectory evolution could exceed the
allowable range. To address this issue, we employ Constrained
Dynamic Movement Primitives (CDMPs), recently developed by
Duan et al. (2018) so as to ensure joint trajectories are always
bounded within the specified range.

3.1. Trajectory Retrieval From Multiple
Demonstrations
In order to endow robots with variable impedance skills, a
minimal intervention controller is usually used for tracking
the reference trajectories. Multiple demonstrations to the robot
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FIGURE 2 | Flowchart for illustration of the proposed algorithmic framework.

are required to capture the statistical information underlying
the reference trajectories. Assume that both Cartesian trajectory

τ x
t = [x⊤t ẋ

⊤
t ]
⊤ and joint trajectory τ

j
t = [q⊤t q̇

⊤
t ]
⊤ as well as their

corresponding time index t are recorded. ForM demonstrations,
each one having length T, we denote the collected dataset as

{{tn,m, τ
x
t,m, τ

j
t,m}

T
t = 1}

M
m= 1. In order to extract the probabilistic

properties from the multiple teachings, several techniques can be
employed, such as Gaussian Mixture Models (GMM) or Hidden
MarkovModels (HMM) (Calinon and Lee, 2016). As an example,
here we employ GMM with H components to encode the raw
training data as GMM is one of the most mature probabilistic
approaches for modeling multiple demonstrations. Without loss
of generality, we use τ to denote either τ x or τ j. GMM first
estimates the joint probability distribution with priors πh, h =
1, . . . ,H satisfying

∑H
h= 1 πh = 1:

p(t, τ ) =

H∑

h= 1

πhN(µh,6h), (1)

where

µh =

[
µt,h

µτ ,h

]
, (2)

6h =

[
6tt,h 6tτ ,h

6τ t,h 6ττ ,h

]
. (3)

Furthermore, Gaussian Mixture Regression (GMR) is employed
to retrieve the probabilistic trajectory (Calinon and Lee, 2016).
The corresponding output with respect to a query point t is
formulated by a conditional probability distribution:

τ̂ (t) ∼

H∑

h= 1

wh(t)N
(
µ̂h(t), 6̂h(t)

)
, (4)

where wh(t) are the activation functions defined as

wh(t) =
πhN(t | µt,h,6tt,h)∑H
i= 1 πiN(t | µt,i,6tt,i)

, (5)

with

µ̂h(t) = µτ ,h +6τ t,h6
−1
tt,h

(t − µt,h), (6)

6̂h(t) = 6ττ ,h −6τ t,h6
−1
tt,h

6tτ ,h. (7)

Note that (4) is usually approximated by a unimodal output
distribution for robot control. By resorting to the law of
total mean and variance, the approximated normal distribution

N(µ̂u
t , 6̂

u

t ) can be derived as

µ̂
u
t =

H∑

h= 1

wh(t)µ̂h(t),

6̂
u

t =

H∑

h= 1

wh(t)
(
6̂h(t)+ µ̂h(t)µ̂h(t)

⊤
)
− µ̂

u
t µ̂

u⊤
t .

(8)

After applying GMR, we obtain τ̂
x ∼ N(µ̂τx, 6̂

τx
) for Cartesian

trajectories where µ̂
τx = [µ̂x⊤ ˆ̇µx⊤]⊤, and τ̂

j ∼ N(µ̂τ j, 6̂
τ j
)

for joint trajectories where µ̂
τ j = [µ̂j⊤ ˆ̇µj⊤]⊤. One issue arising

here is that there is inconsistency emerging between Cartesian
and joint constraints due to multiple demonstrations. Such
phenomena are usually referred to as competing constraints in
the literature (Calinon and Billard, 2008). In order to unify the
constraints from both spaces, we employ the Gaussian product
for the fusion of Cartesian and joint trajectories as in Calinon and
Billard (2008). To obtain the corresponding joint trajectory q that
satisfies the corresponding Cartesian constraints x, a Jacobian-
based inverse kinematics technique is employed:

qxt = qxt−1 + J†(xt − xt−1)+ JN(qt − qt−1),

q̇xt = J†ẋt + JN q̇t ,
(9)

where J† = J⊤(JJ⊤)−1 denotes the Moore-Penrose pseudo
inverse of J and JN = I − J†J is a null-space matrix that
projects the additional secondary task into the null space of robot

movement. In this case, the joint trajectories τ̂
j ∼ N(µ̂τ j, 6̂

τ j
)

retrieved from demonstrations are set as the secondary task and
thus represent null-space movement. Upon transformation from
Cartesian to joint space, the obtained probabilistic joint trajectory
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also satisfies Gaussian distribution qC ∼ N(µC,6C) with mean
µC and variance 6C given by:

µC = J̃†µ̂τx + J̃Nµ̂
τ j +3t−1,

6C = J̃†6̂
τx
J̃†⊤ + J̃N6̂

τ j
J̃N⊤,

(10)

where 3t−1 =
[
[µC

t−1 − J†µ̂x
t−1 − JNµ̂

j
t−1]
⊤ 0⊤

]⊤
, J̃† =

diagblock(J†, J†) and J̃N = diagblock(JN , JN). To address
the competing constraints, the final probabilistic trajectory q̂ ∼

N(µ̂, 6̂) is retrieved by fusion of Cartesian and joint constraints
with the help of the Gaussian product (Calinon and Billard,

2008). That is, q̂ ∼ N(µ̂, 6̂) ∝ N(µC,6C) × N(µ̂τ j, 6̂
τ j
) with

mean µ̂ and variance 6̂ given by Rasmussen (2003):

µ̂ = 6̄
(
(6C)−1µC + (6̂

τ j
)−1µ̂τ j),

6̂ =
(
(6C)−1 + (6̂

τ j
)−1

)−1
.

(11)

By executing the retrieved probabilistic trajectory, robots are able
to satisfy both Cartesian and joint constraints simultaneously.

3.2. Learning to Avoid Obstacles
Once the probabilistic trajectories are retrieved, the robot will
be required to track the reference trajectories in presence of
obstacles. We present a novel imitation metric other than the
simple sum of squares in section 3.2.1 in order to compare
the performance of different potential fields. The joint limit
avoidance issue is addressed in section 3.2.2. Subsequently,
section 3.2.3 formulates the search of the optimal potential field
hyperparameters in terms of a Reinforcement Learning problem.

3.2.1. Imitation Metric for Potential Field

Since we expect robots to behave like humans during the
process of obstacle avoidance, our choice for the potential
field is the Fajen potential field, which is derived from a bio-
inspired perspective (Fajen and Warren, 2003). The basic idea
behind Fajen field is to first calculate the angle between the
current velocity and the direction toward the obstacle. Given this
angle, the method determines how much to change the steering
direction in order to keep away from the obstacle. The steering
effect from the Fajen potential field is used to design the
coupling term:

p(x) = γRẋϕe−βϕ , (12)

with

ϕ = arccos

(
(o− x)⊤ẋ

|o− x||ẋ|

)
, (13)

r = (o− x)× ẋ, (14)

where R is a rotation matrix with axis r and rotation angle π/2,
o denotes the position of the obstacle in Cartesian space and ϕ is
the angle between the velocity of the end-effector ẋ and the vector
o− x, which is always positive.

As there are a number of other potential fields that can
also be used for obstacle avoidance within PbD, an interesting

issue arising is how to compare the performance of different
potential fields. In order to evaluate the reproduction quality
of the trajectory, imitation metrics are required. Traditionally,
imitation metrics are mainly formulated as a weighted sum
of squares of differences between the reproduced and the
demonstrated trajectories, where the weights usually come from
the variance matrix across multiple demonstrations (Billard et al.,
2008; Calinon and Lee, 2016; Huang et al., 2018). Such evaluation
metric is improper in the case of obstacle avoidance since the
trajectory shapes are changed much more severely with respect
to straightforward reproduction.

Here, we employ a novel perspective on the formalism of
imitation metrics, such that the effects of different potential fields
can be fairly evaluated. Specifically, we propose to formulate
the imitation similarity metric from the perspective of curve
similarity analysis (Dryden, 2014). In general, the technique of
curve similarity analysis has a wide rage of applications, such as
signal alignment, DNAmatching, signature comparison, etc. and
is very pertinent to our situation (Mitchel et al., 2018). As there
are a number of curve similarity analysis methods, the Procrustes
distance is used for our case as an example (Dryden, 2014).

Overall, the Procrustes distance facilitates shape analysis
by removing relative translational, scaling, and rotational
components. Here we consider how to calculate the
Procrustes distance d(X1,X2) between two trajectories
X1 = {[x1

k
, y1

k
, z1

k
]⊤}K

k= 1
and X2 = {[x2

k
, y2

k
, z2

k
]⊤}K

k= 1
with

K the length. First, the translational component will be removed.
To this end, all the trajectory points are translated as a whole
such that the mean value of all the points coincide with the
origin point. The mean value X̄i of all the points for trajectory i
is calculated as

X̄i =

∑
k X

i
k

K
. (15)

Similarly, the scaling component is removed by normalizing the
root mean square distance between the points and the origin
point. The scaling factor si of trajectory i is calculated as

si =

√∑
k(X

i
k
− X̄i)2

K
. (16)

The scale of trajectory i is normalized by

X̃i
k =

Xi
k
− X̄i

si
(17)

The removal of the rotation effect is not straightforward because
the calculation of the optimal rotation matrixW requires to solve
an optimization problem

W = argmax
ϒ

∑

k

‖ϒX̃1
k − X̃2

k‖
2, (18)

where ‖ · ‖ denotes the Euclidean norm of a vector. It
can be verified that the optimal rotation matrix is given by
Dryden (2014)

W = UΣ ′V⊤, (19)
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where UΣV⊤ is the Singular Value Decomposition (SVD) of the
matrix

∑
k X̃

2
k
X̃1⊤
k

. In order to make W a valid rotation matrix,
i.e., det(W) > 0 where det(·) denotes the determinant of amatrix,
Σ is modified into Σ ′ by replacing its smallest singular value
with the sign of det(UV⊤), and the other singular values with 1.
Finally, the Procrustes distance is given by

d(X1,X2) =

√∑

k

‖X̃1
k
−WX̃2

k
‖2. (20)

The process to calculate the Procrustes between two trajectories
is summarized in Algorithm 1.

Algorithm 1: Procrustes distance between trajectories

Input: Trajectories X1 and X2

Output: Procrustes distance d(X1,X2)
1: Compute X̄i as per (15)
2: Compute si as per (16)
3: for k = 1 to K do

4: Xi
k
← (Xi

k
− X̄i)/si

5: end for

6: UΣV⊤← SVD(
∑

k X
2
k
X1⊤
k

)
7: if det(UV) < 0 then
8: min(Σ)← sign

(
det(UV)

)

9: nonmin(Σ)← 1
10: end if

11: Compute d as per (20)
12: return d

3.2.2. Joint Limit Avoidance

Once a suitable type of potential field has been chosen, we
are ready to modify robot trajectories for obstacle avoidance.
One problem here is how to guarantee that joint limits are
respected. It can be conceived that the modified trajectories are
very susceptible to the strength of the potential field and a strong
field could drive joint trajectories out of the allowable range.
To cope with such issue, we will drive the robot’s trajectories
using our recently developed Constrained Dynamic Movement
Primitives (CDMPs) (Duan et al., 2018). CDMPs are derived
by parameterizing the original trajectory using the hyperbolic

tangent function tanh(x) =
exp(x)− exp(−x)

exp(x)+ exp(−x)
. We make

modifications on the hyperbolic tangent space such that the joint
trajectories will always evolve within the given bound. Formally,
assume the joint limits are determined by qmin and qmax. The
feasible joint space in terms of the exogenous variable ξ is
as follows

q(ξ ) = qe tanh(ξ )+ qo, (21)

where qe = diag
(
1
2 (qmax − qmin)

)
and qo =

1
2 (qmax +

qmin). Therefore, given the desired reference trajectory qd, its
transformation into tanh-space is given as

ξd = arctanh
(
q−1e (qd − qo)

)
. (22)

Consequently, Dynamic Movement Primitives (DMPs) are
trained in tanh-space with modifications from potential field
exerted therein. DMPs are described by

τ ω̇ = −αω,

τ 2ξ̈ = Kp(g− ξ )− τKvξ̇ + ωf(ω)+ p,

fk(ω) =

∑N
i= 1 φi(ω)χk,i∑N
i= 1 φi(ω)

,

(23)

where τ > 0 denotes movement duration, α > 0 is a scalar,
ω is the phase variable on which the forcing term f depends,

φi(ω) = e−hi(ω−li)
2
is the basis function with hi > 0 and li ∈ [0, 1]

and χk,i is the corresponding weight. Moreover, p is the coupling
term that modifies the DMPs trajectory according to the potential
field. It should be noted that the training of DMP is the same
as the usual procedure, i.e., fitting the acceleration profile with
Gaussian radial basis functions. Here the only difference is that it
happens in tanh-space. The working flow of CDMPs is illustrated
in Figure 3 and the corresponding algorithm is summarized in
Algorithm 2.

Algorithm 2: CDMPs

Input: Feasible trajectories q̂
Output: Bounded trajectories q̃

Initialization : qmin, qmax, DMPs hyperparameters
1: Transform q̂ into tanh-space as per (22)
2: Train DMPs as per (23)
3: Add coupling term for obstacle avoidance as per (12)
4: Transform back for q̃ as per (21)
5: return q̃

3.2.3. Reinforcement Learning of Hyperparameters

Normally, the strength of a potential field determined by
the hyperparameters can affect the performance of obstacle
avoidance greatly. If the strength is too high, then the robot
will react more than enough to avoid the obstacle. Yet, although
joint limit cannot be exceeded thanks to CDMPs, the similarity
with respect to the demonstrated behavior will be very much
sacrificed. On the other hand, if the strength is too low, the robot
would be in danger of hitting the obstacle. In order to find the
optimal hyperparameter values, a non-parametric reinforcement
learning algorithm called Cost-regularized Kernel Regression
(CrKR) is employed (Kober et al., 2012). CrKR is used to learn
the optimal policy that maps the state, which is the position of
the obstacle, to the optimal action, which is associated with the
corresponding hyperparameters. At the beginning of each trial,
for a query obstacle position so, the hyperparameters are sampled
from the Gaussian distribution γi ∼ N

(
γi(so), σ

2(so)
)
with the

mean given by

γi(so) = k(so)
⊤(K+ λC)−1Ŵi, (24)

and the variance to facilitate exploration given by

σ 2(so) = k(so, so)+ λ− k(so)
⊤(K+ λC)−1k(so), (25)
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FIGURE 3 | Illustration of the principle of CDMPs. Joint trajectory q is first transformed into the exogenous state ξ using the arctangent hyperbolic function and then

transformed back using the hyperbolic tangent function. Trajectory modifications are done in tanh-space.

where k(·, ·) is a kernel function; k(so) = φ(so)
⊤8⊤ with φ(·)

being basis functions and 8i = φ(si), K = 88⊤, C =
diag(c1, c2, . . . , cn) is a cost matrix, λ is a ridge factor and Ŵi is a
vector containing the training examples for the hyperparameters.
It should be noted that the cost element ci stored in the cost
matrix C is calculated by the Procrustes distance between the
collision-free trajectory τ̃i and the demonstrated trajectory τ̂ , i.e.,
ci = d(τ̃i, τ̂ ). The learning process terminates when the distance
between the robot end-effector and the obstacle is smaller than
the threshold.

Algorithm 3 : Learning to avoid obstacles with minimal
intervention control
1: Trajectory retrieval:

– Collect dataset {{tn,m, τ
x
t,m, τ

j
t,m}

T
t= 1}

M
m= 1.

– Extract statistical information as per (8).
– Fuse Cartesian and joint trajectories as per (11).

2: Obstacle avoidance

– Choose potential field as per Algorithm 1.
– Train CDMPs as per Algorithm 2.
– Hyperparameters learning as per (24) and (25).

3: Minimal intervention control:

– Apply control law as per (31).

3.3. Minimal Intervention Control
To track the reference trajectory µ̃ with optimal control inputs
U∗ = [u⊤t u

⊤
t+1 . . . u⊤t+m−1]

⊤, a minimal intervention control
strategy can be employed (Calinon et al., 2014). To start with, an
optimization problem is formulated as

U∗ = arg min
U∈Rm

t+m∑

i=t

(
(τ

j
i − µ̃i)

⊤6̂
−1

i (τ
j
i − µ̃i)

)
+

t+m−1∑

i=t

u⊤i Riui,

(26)
where Ri is a positive definite weight matrix.
To find the analytical solution U∗, we formulate joint dynamics
in terms of a double integrator:

[
qt+1
q̇t+1

]

︸ ︷︷ ︸
τ
j
t+1

=

[
I I1t
0 I

]

︸ ︷︷ ︸
A

[
qt
q̇t

]

︸︷︷︸
τ
j
t

+

[
0

I1t

]

︸ ︷︷ ︸
B

ut . (27)

By applying (27) repetitively, we have




τ
j
t

τ
j
t+1

τ
j
t+2
...

τ
j
t+m




︸ ︷︷ ︸
τ̄ j

=




I

A

A2

...
Am




︸ ︷︷ ︸
Ā

τ
j
t+




0 0 · · ·0

B 0 · · ·0

AB B · · ·0
...

...
. . .

...
Am−1BAm−2B· · ·B




︸ ︷︷ ︸
B̄




ut
ut+1
...

ut+m−1




︸ ︷︷ ︸
U

. (28)
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Therefore, the original optimization problem as in (26) can be
re-written compactly:

f (U) =
(
(τ̄ j − µ̄)⊤6̄

−1
(τ̄ j − µ̄)

)
+ U⊤R̄U (29)

where

µ̄ = [µ̃⊤t , µ̃
⊤
t+1, . . . , µ̃

⊤
t+m]

⊤,

6̄ = blockdiag(6̂t , 6̂t+1, . . . , 6̂t+m),

R̄ = blockdiag(Rt ,Rt+1, . . . ,Rt+m−1).

(30)

By inserting (28) into (29) and setting the derivative with respect
toU equal to 0, the optimal control policyU∗ can be calculated as

U∗ =
(
B̄⊤6̄

−1
B̄+ R̄

)−1(
B̄⊤6̄

−1
(µ̄− Āτ

j
t)
)
. (31)

The complete procedure for the proposed approach to obstacle
avoidance with minimal intervention control is summarized in
Algorithm 3.

4. EXPERIMENTS

This section illustrates the effectiveness of the proposed approach
by reporting the results of two evaluative experiments. The first
experiment is a toy example where the comparison between
different potential fields is conducted. With the help of the
toy example, the necessity of introducing a novel imitation
metric under obstacle avoidance is unveiled. Subsequently,
the second experiment is devised as a transportation task
under obstacle avoidance, following the proposed framework
to obstacle avoidance under PbD. The real experiment is
conducted on an iCub, a full-body child-size humanoid robot
(Natale et al., 2017).

4.1. Toy Example
By convention, the imitation metric between the reproduced
trajectory and the demonstrated one is designed as RMSE.
However, in the context of obstacle avoidance, we show in the
toy example that RMSE is not a proper imitation metric as it
can not reflect the real imitation fidelity. Therefore, a novel
imitation metric instead of RMSE is required to measure the
imitation fidelity. As discussed earlier, we choose the imitation
metric by resorting to the technique of curve similarity analysis.
Specifically, the Procrustes distance is employed to replace the
RMSE so as to compare the performance of different potential
fields. In our toy example, the performances of the Fajen potential
field as provided in (12) and the Khatib potential field (Khatib,
1986) are compared against each other. The mechanism of
the Khatib potential field for obstacle avoidance is that the
repulsive force becomes larger as the manipulator moves closer
to the obstacle:

U(x) =

{
η
2 (

1
ρ(x)
− 1

ρ0
)2, ρ(x) ≤ ρ0,

0, ρ(x) > ρ0,
(32)

where ρ(x) is the distance between the current position and the
obstacle, η is a gain term and ρ0 is called the threshold distance

FIGURE 4 | Illustration of the comparison between Khatib and Fajen potential

field with Procrustes distance.

TABLE 1 | Comparison of imitation metric.

Khatib potential field Fajen potential field

Root mean square error 0.37 0.41

Procrustes distance 3.06 0.92

to the obstacle point. The coupling term for obstacle avoidance
with Khatib potential field is calculated by deriving the gradient,
i.e., p(x) = −∇U(x).

The comparison of obstacle avoidance performance between
the Khatib potential field and the Fajen potential field is shown
in Figure 4. A point moves from the starting point (0, 0) to the
goal point (1, 0) with an obstacle located at midway (0.3, 0). The
parameters used for Khatib potential field are chosen as η = 0.12
and p0 = 0.15, while the parameters used for the Fajen potential
field are chosen as γ = 2000 and β = 20/π .

As can be seen in Figure 4, by employing Khatib potential
field, the area enclosed by the distorted obstacle avoidance
trajectory and the demonstrated one is smaller than that of
Fajen field. In this imitation metric, Khatib potential field
preserves higher imitation fidelity than Fajen field. However, this
metric is not reasonable as one can identify intuitively that the
obstacle avoidance trajectory under Fajen field should share more
similarity to the demonstrated one than Khatib field. And by
employing Procrustes distance for the imitation metric, indeed
the obstacle avoidance trajectory under Fajen field has a smaller
deviation from the demonstrated one.

Numerically, when evaluated with root mean square error, the
distance is 0.37 for Khatib potential field and 0.41 for the Fajen
field. However, by using the Procrustes distance as imitation
metric, the distance becomes 3.06 for the Khatib field and
only 0.92 for the Fajen field. In conclusion, Procrustes distance
should be chosen over RMSE when the reproduction trajectory is
modified irregularly. Besides, Fajen field should be preferred for
obstacle avoidance as it preserves imitation fidelity better.Table 1
summarizes the quantitative comparison between two potential
fields under two types of similarity metric. The code is available
as Supplementary Material.
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FIGURE 5 | GMM modeling of demonstrated Cartesian (left three) and joint (right three) trajectories. The red ellipses represent Gaussian components and the gray

trajectories denote multiple demonstrations.

FIGURE 6 | Snapshots of human demonstrations (top row) in a transportation task and its corresponding reproduction (bottom row) under an obstacle.

4.2. Transportation Task
We evaluate the proposed method with a real experiment on
the iCub humanoid robot. In order to show the effectiveness of
the proposed framework for obstacle avoidance within PbD, a
transportation task is considered as a concept-proof experiment.
As iCub is a full-body humanoid robot with 56 DoFs in total, to
accomplish the transportation task in our case, only the right arm
having 7 DoF is activated with 3 from the shoulder, 3 from the
wrist, and 1 from the elbow.

The conceived experimental set-up is as such: a sponge is
first handed over to the robot, and then a human teacher guides
the activated robot right arm to reach a final location. Finally,
the robot is required to reproduce the demonstrated trajectory
with the existence of an obstacle positioned midway through
the demonstrated trajectory. During the kinesthetic teaching
phase, the robot is taught the transportation task for five times.
The collected dataset records both robot Cartesian and joint
trajectories. In order to encode the probabilistic information
underlying the multiple demonstrated trajectories, a GMM with
five components is employed to model the distributions of the
demonstrated Cartesian and joint trajectories, respectively. The
GMM modeling results are plotted in Figure 5, and it can
be observed that the trajectory segment with larger variation
incurs larger covariance. The probabilistic reference trajectories
to control the robot are extracted with GMR. In order to unify the
inconsistency between Cartesian and joint trajectories as a result

of multiple demonstrations, the trajectories from both spaces
are fused by the Gaussian product as in (11). The experimental
illustration is shown in Figure 6.

In order to incorporate joint limit avoidance during
obstacle avoidance, the retrieved trajectories are then used
to train CDMPs according to Algorithm 2. For the design
of the coupling term of CDMPs, the Fajen potential field
is employed for obstacle avoidance. As it has been shown
in the toy example, it outperforms Khatib potential field
with the Procrustes distance as imitation metric. During
the reproduction phase, a virtual obstacle is positioned at
(0.31,−0.25, 0.73) m in Cartesian space with respect to the
world frame. The snapshots of the robot reproducing the
transportation tasks with the obstacle is shown in the bottom
row of Figure 4. The Cartesian trajectory of the obstacle
avoidance trajectory (in green) and the demonstrated trajectory
(in blue) is shown in Figure 7. During the execution of
the obstacle avoidance, no joint violates the corresponding
joint limits.

The hyperparameter values of the potential field are
determined by the reinforcement learning algorithm CrKR in an
off-line fashion. We learn these hyperparameters as a function
of the position of the obstacle. The reward used by CrKR
is formulated as the Procrustes distance between the obstacle
avoidance trajectory and the demonstrated one. To run CrKR,
we choose the Gaussian kernel k = exp

(
(si − sj)

2
)
for the
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FIGURE 7 | Cartesian trajectory for reproduction of demonstrated trajectory

with and without obstacle.

FIGURE 8 | Error-bar curve of cost values with Procrustes distance as

imitation metric. The solid line denotes mean values while the light blue

represents the standard deviation. All quantities are expressed in meters.

algorithm with the distance of a point from itself k(s, s) = 1
and a ridge factor λ = 0.5. During the preparation steps of the
algorithm, the corresponding matrices K, C and Ŵ are initialized

by 20 samples. The total number of trials for each run of the

algorithm is 800. The cost variance is calculated by repeating the

learning process for five times. The learning results are reported

in Figure 8. The learning process terminates when the threshold
of the minimum distance to the obstacle is triggered. When the
learning process finishes, the Fajen field parameters are obtained

as γ = 1260 and β = 3.2 with respect to the specified
obstacle position.

Finally, the reproduction trajectory is executed with aminimal

intervention controller in order to endow the robot with variable

impedance skills. The cost function of the minimal intervention

controller is parameterized by R = 10−2I. The prediction
horizon is set as 10 discrete time steps.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach to obstacle avoidance
in the context of hybrid imitation learning. To exploit the
probabilistic information underlying the trajectories, multiple
demonstrations are taught to the robot. The initial trajectory
is then retrieved from the human demonstration dataset by
fusing Cartesian and joint constraints with the Gaussian product.
Since there are various types of potential field, the Procrustes
distance other than RMSE is employed for the benchmarking
of the performance of different potential fields. As a common
technique in curve similarity analysis, the Procrustes distance
can better reflect the imitation fidelity between the obstacle-
avoidance trajectory and the original demonstrated one. It
should be noted that minimizing the Procrustean imitation
metric might be more numerically expensive than square root
distance. Given that the potential field would modify joint
trajectories unpredictably during obstacle avoidance, joint limit
avoidance is incorporated to guarantee the evolution of the
modified trajectories is always bounded within the allowable
range. To this end, the novel Constrained Dynamic Movement
Primitives (CDMPs) method is employed. CDMPs parameterize
joint trajectories with the help of the hyperbolic tangent function.
By exploiting the boundedness property of the hyperbolic tangent
function, the modified joint trajectories are guaranteed to evolve
within the specified range. Further, in view of the fact that the
performance of obstacle avoidance is quite susceptible to the
hyperparameters of the potential field, a reinforcement learning
algorithm is used to find the most suitable hyperparameters.
The final obstacle avoidance trajectory is tracked with a
minimal intervention controller to endow the robot with variable
impedance capabilities.

As a preliminary attempt to address obstacle avoidance issues
under PbD, a number of topics remain to be investigated for
future work. For example, the position of the obstacle is given
beforehand in this paper, but it could be interesting to exploit
the visual system of iCub such that the obstacle position can
be autonomously determined. In addition, the proposed method
could be considered for extension to the case of moving obstacles
or obstacles with 3D shape.
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