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Abstract— This article discusses the use of the Internet of 

Things (IoT) in Industry 4.0, which involves connecting 

different devices and creating an integrated digital workspace 

to improve efficiency and coordination within a company. IoT 

allows peripherals to transmit relevant process data to a 

gathering system, typically on the cloud. However, in some 

cases, real-time communication is needed, and to reduce costs, 

firms may use other systems like edge and fog computing. These 

systems use additional local grids of storage systems near the 

sensors to execute some elaborations and reduce network 

bandwidth, latency, and costs of storing in the cloud. The article 

introduces a fog-computing device called Concentrator, which 

works as a local center where data are stored and elaborated 

before being sent to the cloud system. The Concentrator can 

communicate with different sensors, making it customizable. 

The article's key contribution is proposing a solution for user-

customizable fog-computing systems, using low-cost hardware, 

by implementing a sandbox through a Linux container. The 

capabilities of the Concentrator can hence be extended by the 

user without the intervention of the Concentrator-maker. 

Keywords— Arduino, container, docker, industrial 

automation, IoT 

I. INTRODUCTION 

The Internet of Things (IoT), which is one of the key features 

of Industry 4.0, indicates the usage of the internet to connect 

different devices and create an integrated digital workspace 

[1]. This connection does not regard only the people but also 

the machinery inside of a company, to have direct control 

over how things are working. This technology leads firms to 

both vertical and horizontal system integrations between the 

different departments, bringing improved efficiency and 

coordination [2]. The difference between the two is that while 

the former is an alignment within the company, the latter is 

more centered on connecting the various parts of a supply 

chain [3]. As more time passes, the Internet of Things has 

taken a significant role in the constant increase of the 

complexity of industrial systems which cannot pursue their 

goals if not updated on the recent technologies. It has 

economic advantages since it improves operational efficiency 

and production, saves time and costs, having better 

collaboration and autonomous decisions because of 

decentralization. It has a new modus operandi, where it let the 

production change depending on the requests of the market, 

having also better quality on the final product due to the more 

personalization of products for the customer [2]. 

 

This application is nowadays used in every business, where 

data are transmitted by peripherals towards a gathering 

system, typically the cloud. This is called cloud computing 

and is the most used for data storage, analysis, and 

elaboration. However, in some cases, real-time 

communication is needed, and, reducing costs too, firms 

prefer to apply other systems like edge and fog computing. 

Both use additional local grids of storage systems near the 

sensors to execute some elaborations (usually done by the 

cloud system) to reduce the network bandwidth, latency, and 

costs of storing in the cloud [4]. This improves decentralized 

decisions.  

 

Fog computing is an extension of the cloud computing 

method where the information is gathered from the different 

peripherals, elaborated, and stored inside a local central. That 

is why real-time applications are more applicable since the 

data are exchanged almost immediately between the two 

devices. The elaborations help have a local idea of how the 

machines are performing and reduce the amount of 

knowledge uploaded on the cloud, reducing the space and 

saving costs [5]. The first main distinction is where the data 

are located. Cloud computing stores data mainly on cloud 

services and does there its elaborations. In edge computing, 

the data are treated by gateway devices positioned near the 

edge sensors, and so the operations are done on the sensor 

itself. Instead, for fog-computing, data are transmitted on the 

LAN (Local Area Network) hardware so that they can be 

distinguished by sensors and actuators, doing their operations 

on different devices. The second main distinction is how 

those data are transmitted: while in cloud computing the 

measurements are always sent through internet connections 

and are more related for deep analysis in long terms, in fog 

and edge computing the transmission can be done offline, 

more securely and immediately, allowing the real-time 

solutions [6] [7]. 

 

This paper presents a fog-computing device, called 

Concentrator, which works as a local center where data are 

stored and elaborated before sending them to the cloud 

system. It is designed with the collaboration of AROL 

Closure Systems, a mechanical company producing capping 

machines, using their systems and their sensor nodes to test 

and deploy innovative smart solutions. The Concentrator can 

communicate with different sensors, provided by the 

producer company and a generic customer, becoming a 

customizable asset. The personalization of the system can be 

improved by using virtualization, to create different 

containers where client software can be uploaded to add 

features that were not implemented by default. These storages 

would share the same operating system and will not interfere 

with the others, to let the user try safely to append different 

software for the elaborations already done by the 

Concentrator itself. 



 

The key contribution of the paper is to propose a solution for 

custom fog-computing systems, using low-cost hardware, 

trying to implement a sandbox where through 

containerization it is possible to modify easily and safely the 

features of a proposed device functioning as central. The 

AROL assets are used to evaluate experimentally the 

proposed solution, using the same sensors already mounted 

on their machines and simulating in a laboratory a first 

instance of what the final implementation would look like. 

 

This paper is organized as follows. First, section II presents 

the state of the art, with different applications for 

virtualization in a fog computing system context; then section 

III presents the proposed solution, detailing the Concentrator 

design and the sensors we used, which simulates a 

heterogeneous scenario where AROL sensor and data 

processing algorithms are consolidated with third-party 

sensors and data processing algorithms. In this case, third-

party sensors/algorithms mimic the scenario of an AROL 

customer that performs in-house customization of the fog 

architecture extending the capabilities of the Concentrator 

with proprietary code that cannot be used by AROL. 

Experimental results are discussed in section IV. Finally, 

section V draws some conclusions. 

 

II. RELATED WORKS 

The usage of containers and virtualization in fog computing 

systems has been discussed since the first decade of the 21st 

century, and recent topics have shown a great improvement 

on the matter. 

As a starting point, the authors in [8] present a technological 

review of the different methods to perform virtualization, also 

depending on the different operating systems used, and how 

the clusters can be efficiently managed.  They went through 

the technological requirements for a cloud system, the 

architectural principles, and the challenges that these 

networks must face. About virtualization, an overview is 

shown, with an explanation of what Docker is and how it 

works. Most of the users that implement these services use 

that program, alongside Docker Swarm or Kubernetes to 

manage the resources. This means deploying the different 

apps using principally Linux systems. However, examples for 

Windows and Cloud PaaS (Platform as a Service) are looked 

through, to present other solutions. They finish with an 

overview of cluster management and their orchestration, 

through the usage of different nodes. 

 

An interesting approach has been presented in [9], where a 

virtualization system has been built using low-cost hardware 

(Arduino, raspberry pi boards, and some sensors) to create a 

smart home infrastructure. The network has been divided into 

different homes, each with different sensors, where the 

central fog node was represented by a Raggedpod, a micro 

data center. 

Virtualization is used to cope with production-grade 

requirements and integration of the various systems, using the 

docker application with individual Linux containers. The aim 

of the experiment shows some differences, but it was 

interesting to notice how to proceed with virtualization using 

similar components. In the article [10], virtualization is used 

to create a novel on-demand fog creation framework based 

on requesters’ needs anytime anywhere a volunteering device 

exists, to have the least initialization cost possible. They 

deployed on-the-fly services through Docker, managed by 

Kubeadm, with newly formed nearby fogs and efficient 

orchestration for better response time, studying the latencies 

of the different processes. To reduce them, in some cases, the 

clusters are created in advance and fog’s IPs are always 

updated to localize the nearest volunteer to the customer. 

Every part has different responsibilities, depending on the 

management of the cluster.  

An example of the use of virtualization is done by the 

experiment presented in [11], where virtualization is applied 

to a  dew computing system. However, even though we used 

a fog computing system, the purpose of the experiment was 

interesting: defining a virtual resource as a software-defined 

component that becomes smart as they communicate with the 

cloud and stores data locally. They managed to create replicas 

of the service to give elasticity on an edge level. When a 

service is saturated by requests, a replica is awakened to solve 

those that are attending. These smart resources improve the 

portability of the services. They also focused the security, 

since they had no central gateways, with the risk of having 

corrupted devices. For this reason, they implemented a 

blockchain protocol achieving reliability and security at the 

edge level. Finally, in the work done in [12], the authors 

showed how the main framework are principally two: 

Container-Based Pair-Oriented IoT Service Provisioning, 

where two devices are cooperating and responsible for the 

interactions, the second one is Container-Based Edge- 

Managed Clustering, where serving IoT nodes are being 

monitored by a manager node. The difference between the 

two is how the creation of containerization is divided between 

the different devices, and how the IoT resources are managed 

by them, in terms of CPU and energy consumption.  

 

In our paper, we present a hardware device, the Concentrator, 

used as a data storage/data crunching element in a fog-

computing architecture, which offers the capability of hosting 

third-party data processing algorithms. Virtualization is used 

to sandbox algorithms belonging to two different domains: a 

native domain, which hosts the application coming from the 

Concentrator developer, and hosted domain, which is offered 

to the Concentrator end user for running custom code. 

Looking at the present system composition, the paper 

suggests using the first configuration, since there are multiple 

nodes and the IoT client must guarantee service continuity in 

case of failure. This approach can ensure a fast management 

procedure through direct interaction between the cooperating 

nodes.  

 

This kind of utilization of virtualization has not yet been used, 

to create a completely customizable system for an industrial 

end user where the containers can be modified depending on 

his/her needs. By starting from the same operating system, 

the different applications will not interfere with each other, 

offering a secure implementation inside his/her production 

line. 

III. METHODOLOGY AND ARCHITECTURE 

In this section of the paper, we discuss the architecture of our 

proposed framework illustrated in Fig. 1. It is a fog 



computing system, composed of three layers: the Wide Area 

Network (WAN) Local Area Network (LAN), and the 

Personal Area Network (PAN). 

 

The first layer is the connection between the fog nodes to the 

cloud, which is responsible mainly for storing data: from the 

elaborations made by the fog system to the images used for 

the containerization with Docker. The second layer is the 

interconnection between the Wireless Sensor Networks 

(WSN) gateway with its nearest fog node. It is the part of the 

system that gathers all the information, elaborates them, and 

sends them to the cloud. The LAN is composed of one or 

more devices, which are inserted inside an industrial system, 

and connected to a machine from a production line. The third 

layer is the interconnection of all the information extraction 

devices (the sensors). They can be from the industry for 

which the concentrator has been created or from external 

providers, to measure whatever they need. 

A. The Cloud 

The Cloud is the main component of the WAN layer. It has 

the role of the database, where all the information is stored, 

including the history of every device. It will communicate 

directly with the different Concentrators, gathering the 

elaborations and saving them in the company computer 

system. Since this system is thought for machine producers 

that must be inserted in customer production lines, it should 

communicate also with the customer cloud, depending on if 

they are legally authorized to do so, to have a more complete 

idea of how the different parts are working. Since the fog 

system uses containerization to host different applications, 

the Cloud must contain and exchange also the images that the 

programs (like Docker) should use to create the 

environments. 

B. The Concentrator 

The Concentrator is a central device part of the LAN layer, 

which will be interconnected between the edge sensors, the 

local systems, and the cloud with different protocols. Its 

presence would allow to: 

 

1) Reduce the usage of bandwidth and the amount of data 

transmitted between the cloud and the peripheral sensors. 

2) Reduce the delay between the data measurement and 

the elaborations made by them 

3) Implement better control to exploit warnings or other 

types of anomalies in the system 

 

It will have the ability to gather and store the information 

given by the components, through different types of 

communication. The types of data are shown in Fig. 2, with 

all the parts for a single machine, since, in a production line, 

each of them will have a central device connected. This 

device will register all the information about how the system 

is performing (number of pieces made, machine efficiency, 

number of functioning hours, etc.) through an ethernet 

connection. It is linked also to a local system (like a PLC on 

the machine itself) to set an event-based communication, for 

anomalies warnings, or other messages. The edge sensors, 

instead, use a wireless protocol for transmitting their data. 

Another connection will be established with the cloud not 

only to send the elaborations from these data but also to 

download the images used for containerization.  

The Concentrator will implement a containerization system, 

like Docker, which will create a sandbox for third-party’s 

programs that could be used to measure or perform actions 

decided by the customer. This in fact will create storages 

inside the system, which will all have the same operating 

system, without them being interfered with by the others. In 

this way, it is added flexibility to the system, and it is given 

the opportunity to customers to add features that are not 

implemented by default on the Concentrator in a secure and 

controlled way. 

C. The Sensors 

The edge sensors are applied in the production line inside the 

different machines to execute predictive maintenance under 

the development of Industry 4.0. They will be present in 

critical places to measure parameters like temperatures, 

vibrations, or any other kind of value that can be useful to the 

customer. They will use wireless communication protocols to 

send data to the Concentrators. It is very important for them 

to be small, easy to manage, and preferably low cost, to have 

a functioning system without any large expense. Their initial 

condition will be machine off–sensor off, to save battery 

power, and they will be initialized and configured at the start 

of the system.  

 

IV. EXPERIMENT AND DISCUSSION 

We dedicate this section to describing the implemented 

scenario and experiments to prove the feasibility and 

effectiveness of our approach.  

 

To demonstrate the utilization of virtualization on industrial 

systems and create a sandbox for the final user to be 

implemented and modified, a first instance of the 

Concentrator described before is created. The experiment's 

purpose is to implement multiple containers running through 

Docker Compose, each doing a different task. By using this 

system, it can be possible to create a single network for an 

application, dividing it into multiple containers running at the 

same time. In this way, these containers can send each other 

Fig. 1 - General architecture 



requests and share data. The sensor chosen is the Nicla Sense 

ME from Arduino. We will use multiple instances of the same 

board, making them work some as native sensors, and others 

as host sensors, measuring different variables. 

 

The Nicla Sense ME is a tiny, low-power tool that combines 

four state-of-the-art sensors from Bosch Sensortec. It 

analyses  ’Motion’ and ’Environment’ with industrial-grade 

Bosch sensors that can accurately measure rotation, 

acceleration, pressure, humidity, temperature, air quality, and 

CO2 levels. This board is their smallest form factor yet and 

gives the possibility for Bluetooth Low Energy connectivity 

(version 4.2), by using an ANNA-B112 module [13]. 

 

As for the Concentrator, a first instance is created using a PC 

Linux using Ubuntu 20.04.5 LTS 64-bit with GNOME 

version 3.36.8, where the instance of Docker Compose will 

be implemented using JavaScript and the library node-ble. 

The version of Docker is 20.10.23, Docker Compose is 

version 2.15.1, node version 14.21.2, and node-ble version 

1.9.0.  

 

The experiment, described in Fig 3, consists of dividing the 

Concentrator into two main containers using Docker. The 

first is the  Native one, which will connect to all the sensors 

used for the experiment, record their measurements, and 

produce a report about only the native sensors. The second is 

the Host one, which will take the measurements from the 

Native and produce a different report with respect to the 

previous one. To make them communicate, the first container 

will write two text files: one called host-report, with the 

measurements from all the sensors, and a second called 

native-report, with the measurements of only the native 

sensors. They will be created inside a volume called 

experiment that could be accessed by all the different 

containers. The application logic handles read-write access to 

shared data stores. The volume will be both writing and 

reading for the Native container, while it will be read-only for 

the Host container, to prevent accidental data corruption since 

they have only to read what the sensor measured. For multiple 

containers using the same volume, it must be individually 

designed the applications running in those containers to 

handle writing to shared data stores. 

 

Four Nicla Sense ME will be implemented: three will use 

their sensors and will be registered as native, while the fourth 

will be seen as a host sensor, to make it act as an external 

custom sensor. In this way, the Native controller will consider 

only the three native peripherals for the report, while the Host 

will consider all the sensors used. This will simulate the case 

in which the native container will study how the machine is 

performing, while the host container will see only what the 

final customer would need, producing different elaborations 

from the same data.  

 

To illustrate the advantage of our proposed architecture, we 

have taken into consideration the differences between 

running the solution with the host Linux system and running 

it with the Docker solution. Three main areas have been 

exploited: resource usage, the time needed for the solution to 

run, and the security that it offers.  

While for the Docker application, the terminal is used and so 

are the commands belonging to the infrastructure, the 

application is made to run in the host Linux system by using 

the same JavaScript codes, debugged using Nodejs.  

A. Resources 

The first main characteristic is studied by looking at two 

factors: CPU usage and memory space needed. The gnome 

system monitor is employed on the host device to see how the 

situation changes depending on the solution applied. By  

Fig. 2 - Concentrator data exchange 

Fig. 3 - Experiment representation 



 
Table 1 - Resources used in the system 

 

looking at the results in Table 1, generated by the system 

monitor, the CPU usage is almost null when the system does 

not perform any action. Instead, when the application is 

running on different systems, they do not have similar 

behavior. In fact, during the Native script, the usage of the 

CPU is at 20.4% while it is at 35.3% during the Host script 

Docker functioning. Instead, when run on the Linux host, it 

is always at 38.6%. These values are not constant and they 

fluctuate a bit,  however, the range in which they stay is not 

that far from the one signed by the images. 

 

Regarding memory occupation, the Docker solution occupies 

more space than the single application on the host system. 

This is due to different factors: the usage of containers, the 

reinstallation of dependencies and useful programs, and the 

overhead introduced by Docker itself due to the copies of 

packages present in different images. It can be noticed though 

that the difference between the two is just 3% about the 15,5 

GB present on the host system. The problem with the 

comparison between the two solutions is that we cannot 

determine how much memory space the different installed 

packages would occupy. To do so, we should take a mint 

Linux system and verify the values for every application 

installed, and all their dependencies. 

B. Time  

The difference in time is measured by looking not only at the 

actual performance of the application but also at the time 

needed for the installation of the different packages. In fact, 

4 minutes and 3 seconds have been spent on downloading and 

installing all the resources for the Docker application to build 

the images of the two containers. This time however cannot 

be measured on the host system, since we should erase and 

reinstall everything from the beginning and see how much it 

would take to perform everything. The Docker overhead is 

for sure present also in this experiment since some packages 

are the same in the images and so doubled. However, the time 

needed to run the Docker compose application is 36,89s 

(mean of three times: 36,67s, 37,04s, 36,96s) while the time 

needed to run the application without Docker is 31,7s (mean 

of three times 32.15s, 30,56s, 32.4s).  This means that the first 

solution is slower by 13,55% than the other. It must be taken 

into consideration that there is little time between the closing 

and the opening of the different containers, instead in the 

second solution the switch between the two scripts is 

immediate. 

C. Security 

The main topic of this comparison, for which this architecture 

is presented in the first place, is the fact that Docker let the 

creation of multiple environments share the same operating 

system and host, without them interfering with the other. A 

Linux system is more scalable, suitable for different 

operating systems, and the application can be partitioned into 

smaller parts, making them communicate with other volumes. 

A customer can create applications or introduce external 

features in an already existing system without causing any 

problems. This can be done only by protecting the Native part 

of the network, reducing the possibility of administration to 

the host customer. For this reason, Docker has been used: it 

limits access to different files and separates containers even 

though they share the same host architecture and the same 

operating system. The two containers can only share those 

data inside the volume created. Files cannot be modified, 

deleted, moved or any other kind of action can be performed 

since the Docker system protects them. On the other hand, 

there is no that kind of limitation on the Linux system. A 

folder or a file can be deleted or modified without 

administrator privileges, causing a program to may not work. 

The only method to let Docker act like the host system would 

be to use the root user, nullifying the security purpose of the 

architecture. 

 

V. CONCLUSIONS 

With the advancement of Industry 4.0, the need for new 

systems to collect data efficiently and elaborate them is of 

paramount importance. New kinds of systems have been 

presented, from cloud computing to edge and fog computing, 

improving the communication between the different parts of 

a firm and performing actions like real-time measurements, 

reducing costs, and predictive maintenance of the types of 

machinery. However, it is often impossible to modify those 

systems without the risk of introducing bugs or problems in 

the software itself. The new device Concentrator presented in 

this paper allows the final users not only to benefit from a 

native system that executes some elaborations, but it lets 

him/her add new features and/or entirely new applications 

through the utilization of the Docker containers. We built an 

example where the system would recognize the sensors used 

in the architecture and generates two reports to describe their 

measurements. These are the native report, which will 

consider only the sensors Nicla Sense ME built-in in the 

system, and the host report, which considers all the sensors 

used in the architecture. The application is safe since the two 

containers do not interfere one with the other, sharing their 

data only through a common volume. In future work, the goal 

is primarily to confirm these results by creating a dedicated 

embedded system for the architecture and then optimize it, 

due to some particulars that are inefficient. An example is the 

overhead given by the copies of the same packages in the 

different images, or the time spent to open and close the 

containers instead of making them run at the same time. 

Another objective is to implement in the system an 

application for the host container as close as possible to a real 

application in production lines, where this device will be 

used, according to the help of AROL Closure Systems and 

Politecnico di Torino. 

Type of system used 

Resources 

Memory space CPU usage 

Linux host system 

1.6Gb (10.2%) of 

15.5Gb CPU1 : 0.0% 

Application run on Linux host 
system 

2.4Gb (15.3%) of 
15.5Gb 

CPU1: 38.6% 

Application run on Docker – 

Native container 

2.8Gb (17.9%) of 

15.5Gb 
CPU1: 20.04% 

Application run on Docker – 

Host container 

2.8Gb (18%) of 

15.5Gb 
CPU1: 35.3% 
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