
17 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A user-extensible solution for deploying fog computing in industrial applications / D'Agostino, Pietro; Violante, Massimo;
Macario, Gianpaolo. - ELETTRONICO. - (2023), pp. 1-6. (Intervento presentato al convegno International Symposium
on Industrial Electronics (ISIE) 2023 tenutosi a Helsinki- (FIN) nel 19-21 June 2023)
[10.1109/ISIE51358.2023.10227939].

Original

A user-extensible solution for deploying fog computing in industrial applications

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ISIE51358.2023.10227939

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2981386 since: 2023-09-26T10:15:18Z

IEEE

A user-extensible solution for deploying fog

computing in industrial applications

Pietro d’Agostino

Politecnico di Torino

AROL Closure Systems

Torino, Italy

pietro.dagostino@polito.it

Massimo Violante

Politecnico di Torino

Torino, Italy

massimo.violante@polito.it

Gianpaolo Macario

AROL Closure Systems

Torino, Italy

gianpaolo.macario@arol.com

Abstract— This article discusses the use of the Internet of

Things (IoT) in Industry 4.0, which involves connecting

different devices and creating an integrated digital workspace

to improve efficiency and coordination within a company. IoT

allows peripherals to transmit relevant process data to a

gathering system, typically on the cloud. However, in some

cases, real-time communication is needed, and to reduce costs,

firms may use other systems like edge and fog computing. These

systems use additional local grids of storage systems near the

sensors to execute some elaborations and reduce network

bandwidth, latency, and costs of storing in the cloud. The article

introduces a fog-computing device called Concentrator, which

works as a local center where data are stored and elaborated

before being sent to the cloud system. The Concentrator can

communicate with different sensors, making it customizable.

The article's key contribution is proposing a solution for user-

customizable fog-computing systems, using low-cost hardware,

by implementing a sandbox through a Linux container. The

capabilities of the Concentrator can hence be extended by the

user without the intervention of the Concentrator-maker.

Keywords— Arduino, container, docker, industrial

automation, IoT

I. INTRODUCTION

The Internet of Things (IoT), which is one of the key features

of Industry 4.0, indicates the usage of the internet to connect

different devices and create an integrated digital workspace

[1]. This connection does not regard only the people but also

the machinery inside of a company, to have direct control

over how things are working. This technology leads firms to

both vertical and horizontal system integrations between the

different departments, bringing improved efficiency and

coordination [2]. The difference between the two is that while

the former is an alignment within the company, the latter is

more centered on connecting the various parts of a supply

chain [3]. As more time passes, the Internet of Things has

taken a significant role in the constant increase of the

complexity of industrial systems which cannot pursue their

goals if not updated on the recent technologies. It has

economic advantages since it improves operational efficiency

and production, saves time and costs, having better

collaboration and autonomous decisions because of

decentralization. It has a new modus operandi, where it let the

production change depending on the requests of the market,

having also better quality on the final product due to the more

personalization of products for the customer [2].

This application is nowadays used in every business, where

data are transmitted by peripherals towards a gathering

system, typically the cloud. This is called cloud computing

and is the most used for data storage, analysis, and

elaboration. However, in some cases, real-time

communication is needed, and, reducing costs too, firms

prefer to apply other systems like edge and fog computing.

Both use additional local grids of storage systems near the

sensors to execute some elaborations (usually done by the

cloud system) to reduce the network bandwidth, latency, and

costs of storing in the cloud [4]. This improves decentralized

decisions.

Fog computing is an extension of the cloud computing

method where the information is gathered from the different

peripherals, elaborated, and stored inside a local central. That

is why real-time applications are more applicable since the

data are exchanged almost immediately between the two

devices. The elaborations help have a local idea of how the

machines are performing and reduce the amount of

knowledge uploaded on the cloud, reducing the space and

saving costs [5]. The first main distinction is where the data

are located. Cloud computing stores data mainly on cloud

services and does there its elaborations. In edge computing,

the data are treated by gateway devices positioned near the

edge sensors, and so the operations are done on the sensor

itself. Instead, for fog-computing, data are transmitted on the

LAN (Local Area Network) hardware so that they can be

distinguished by sensors and actuators, doing their operations

on different devices. The second main distinction is how

those data are transmitted: while in cloud computing the

measurements are always sent through internet connections

and are more related for deep analysis in long terms, in fog

and edge computing the transmission can be done offline,

more securely and immediately, allowing the real-time

solutions [6] [7].

This paper presents a fog-computing device, called

Concentrator, which works as a local center where data are

stored and elaborated before sending them to the cloud

system. It is designed with the collaboration of AROL

Closure Systems, a mechanical company producing capping

machines, using their systems and their sensor nodes to test

and deploy innovative smart solutions. The Concentrator can

communicate with different sensors, provided by the

producer company and a generic customer, becoming a

customizable asset. The personalization of the system can be

improved by using virtualization, to create different

containers where client software can be uploaded to add

features that were not implemented by default. These storages

would share the same operating system and will not interfere

with the others, to let the user try safely to append different

software for the elaborations already done by the

Concentrator itself.

The key contribution of the paper is to propose a solution for

custom fog-computing systems, using low-cost hardware,

trying to implement a sandbox where through

containerization it is possible to modify easily and safely the

features of a proposed device functioning as central. The

AROL assets are used to evaluate experimentally the

proposed solution, using the same sensors already mounted

on their machines and simulating in a laboratory a first

instance of what the final implementation would look like.

This paper is organized as follows. First, section II presents

the state of the art, with different applications for

virtualization in a fog computing system context; then section

III presents the proposed solution, detailing the Concentrator

design and the sensors we used, which simulates a

heterogeneous scenario where AROL sensor and data

processing algorithms are consolidated with third-party

sensors and data processing algorithms. In this case, third-

party sensors/algorithms mimic the scenario of an AROL

customer that performs in-house customization of the fog

architecture extending the capabilities of the Concentrator

with proprietary code that cannot be used by AROL.

Experimental results are discussed in section IV. Finally,

section V draws some conclusions.

II. RELATED WORKS

The usage of containers and virtualization in fog computing

systems has been discussed since the first decade of the 21st

century, and recent topics have shown a great improvement

on the matter.

As a starting point, the authors in [8] present a technological

review of the different methods to perform virtualization, also

depending on the different operating systems used, and how

the clusters can be efficiently managed. They went through

the technological requirements for a cloud system, the

architectural principles, and the challenges that these

networks must face. About virtualization, an overview is

shown, with an explanation of what Docker is and how it

works. Most of the users that implement these services use

that program, alongside Docker Swarm or Kubernetes to

manage the resources. This means deploying the different

apps using principally Linux systems. However, examples for

Windows and Cloud PaaS (Platform as a Service) are looked

through, to present other solutions. They finish with an

overview of cluster management and their orchestration,

through the usage of different nodes.

An interesting approach has been presented in [9], where a

virtualization system has been built using low-cost hardware

(Arduino, raspberry pi boards, and some sensors) to create a

smart home infrastructure. The network has been divided into

different homes, each with different sensors, where the

central fog node was represented by a Raggedpod, a micro

data center.

Virtualization is used to cope with production-grade

requirements and integration of the various systems, using the

docker application with individual Linux containers. The aim

of the experiment shows some differences, but it was

interesting to notice how to proceed with virtualization using

similar components. In the article [10], virtualization is used

to create a novel on-demand fog creation framework based

on requesters’ needs anytime anywhere a volunteering device

exists, to have the least initialization cost possible. They

deployed on-the-fly services through Docker, managed by

Kubeadm, with newly formed nearby fogs and efficient

orchestration for better response time, studying the latencies

of the different processes. To reduce them, in some cases, the

clusters are created in advance and fog’s IPs are always

updated to localize the nearest volunteer to the customer.

Every part has different responsibilities, depending on the

management of the cluster.

An example of the use of virtualization is done by the

experiment presented in [11], where virtualization is applied

to a dew computing system. However, even though we used

a fog computing system, the purpose of the experiment was

interesting: defining a virtual resource as a software-defined

component that becomes smart as they communicate with the

cloud and stores data locally. They managed to create replicas

of the service to give elasticity on an edge level. When a

service is saturated by requests, a replica is awakened to solve

those that are attending. These smart resources improve the

portability of the services. They also focused the security,

since they had no central gateways, with the risk of having

corrupted devices. For this reason, they implemented a

blockchain protocol achieving reliability and security at the

edge level. Finally, in the work done in [12], the authors

showed how the main framework are principally two:

Container-Based Pair-Oriented IoT Service Provisioning,

where two devices are cooperating and responsible for the

interactions, the second one is Container-Based Edge-

Managed Clustering, where serving IoT nodes are being

monitored by a manager node. The difference between the

two is how the creation of containerization is divided between

the different devices, and how the IoT resources are managed

by them, in terms of CPU and energy consumption.

In our paper, we present a hardware device, the Concentrator,

used as a data storage/data crunching element in a fog-

computing architecture, which offers the capability of hosting

third-party data processing algorithms. Virtualization is used

to sandbox algorithms belonging to two different domains: a

native domain, which hosts the application coming from the

Concentrator developer, and hosted domain, which is offered

to the Concentrator end user for running custom code.

Looking at the present system composition, the paper

suggests using the first configuration, since there are multiple

nodes and the IoT client must guarantee service continuity in

case of failure. This approach can ensure a fast management

procedure through direct interaction between the cooperating

nodes.

This kind of utilization of virtualization has not yet been used,

to create a completely customizable system for an industrial

end user where the containers can be modified depending on

his/her needs. By starting from the same operating system,

the different applications will not interfere with each other,

offering a secure implementation inside his/her production

line.

III. METHODOLOGY AND ARCHITECTURE

In this section of the paper, we discuss the architecture of our

proposed framework illustrated in Fig. 1. It is a fog

computing system, composed of three layers: the Wide Area

Network (WAN) Local Area Network (LAN), and the

Personal Area Network (PAN).

The first layer is the connection between the fog nodes to the

cloud, which is responsible mainly for storing data: from the

elaborations made by the fog system to the images used for

the containerization with Docker. The second layer is the

interconnection between the Wireless Sensor Networks

(WSN) gateway with its nearest fog node. It is the part of the

system that gathers all the information, elaborates them, and

sends them to the cloud. The LAN is composed of one or

more devices, which are inserted inside an industrial system,

and connected to a machine from a production line. The third

layer is the interconnection of all the information extraction

devices (the sensors). They can be from the industry for

which the concentrator has been created or from external

providers, to measure whatever they need.

A. The Cloud

The Cloud is the main component of the WAN layer. It has

the role of the database, where all the information is stored,

including the history of every device. It will communicate

directly with the different Concentrators, gathering the

elaborations and saving them in the company computer

system. Since this system is thought for machine producers

that must be inserted in customer production lines, it should

communicate also with the customer cloud, depending on if

they are legally authorized to do so, to have a more complete

idea of how the different parts are working. Since the fog

system uses containerization to host different applications,

the Cloud must contain and exchange also the images that the

programs (like Docker) should use to create the

environments.

B. The Concentrator

The Concentrator is a central device part of the LAN layer,

which will be interconnected between the edge sensors, the

local systems, and the cloud with different protocols. Its

presence would allow to:

1) Reduce the usage of bandwidth and the amount of data

transmitted between the cloud and the peripheral sensors.

2) Reduce the delay between the data measurement and

the elaborations made by them

3) Implement better control to exploit warnings or other

types of anomalies in the system

It will have the ability to gather and store the information

given by the components, through different types of

communication. The types of data are shown in Fig. 2, with

all the parts for a single machine, since, in a production line,

each of them will have a central device connected. This

device will register all the information about how the system

is performing (number of pieces made, machine efficiency,

number of functioning hours, etc.) through an ethernet

connection. It is linked also to a local system (like a PLC on

the machine itself) to set an event-based communication, for

anomalies warnings, or other messages. The edge sensors,

instead, use a wireless protocol for transmitting their data.

Another connection will be established with the cloud not

only to send the elaborations from these data but also to

download the images used for containerization.

The Concentrator will implement a containerization system,

like Docker, which will create a sandbox for third-party’s

programs that could be used to measure or perform actions

decided by the customer. This in fact will create storages

inside the system, which will all have the same operating

system, without them being interfered with by the others. In

this way, it is added flexibility to the system, and it is given

the opportunity to customers to add features that are not

implemented by default on the Concentrator in a secure and

controlled way.

C. The Sensors

The edge sensors are applied in the production line inside the

different machines to execute predictive maintenance under

the development of Industry 4.0. They will be present in

critical places to measure parameters like temperatures,

vibrations, or any other kind of value that can be useful to the

customer. They will use wireless communication protocols to

send data to the Concentrators. It is very important for them

to be small, easy to manage, and preferably low cost, to have

a functioning system without any large expense. Their initial

condition will be machine off–sensor off, to save battery

power, and they will be initialized and configured at the start

of the system.

IV. EXPERIMENT AND DISCUSSION

We dedicate this section to describing the implemented

scenario and experiments to prove the feasibility and

effectiveness of our approach.

To demonstrate the utilization of virtualization on industrial

systems and create a sandbox for the final user to be

implemented and modified, a first instance of the

Concentrator described before is created. The experiment's

purpose is to implement multiple containers running through

Docker Compose, each doing a different task. By using this

system, it can be possible to create a single network for an

application, dividing it into multiple containers running at the

same time. In this way, these containers can send each other

Fig. 1 - General architecture

requests and share data. The sensor chosen is the Nicla Sense

ME from Arduino. We will use multiple instances of the same

board, making them work some as native sensors, and others

as host sensors, measuring different variables.

The Nicla Sense ME is a tiny, low-power tool that combines

four state-of-the-art sensors from Bosch Sensortec. It

analyses ’Motion’ and ’Environment’ with industrial-grade

Bosch sensors that can accurately measure rotation,

acceleration, pressure, humidity, temperature, air quality, and

CO2 levels. This board is their smallest form factor yet and

gives the possibility for Bluetooth Low Energy connectivity

(version 4.2), by using an ANNA-B112 module [13].

As for the Concentrator, a first instance is created using a PC

Linux using Ubuntu 20.04.5 LTS 64-bit with GNOME

version 3.36.8, where the instance of Docker Compose will

be implemented using JavaScript and the library node-ble.

The version of Docker is 20.10.23, Docker Compose is

version 2.15.1, node version 14.21.2, and node-ble version

1.9.0.

The experiment, described in Fig 3, consists of dividing the

Concentrator into two main containers using Docker. The

first is the Native one, which will connect to all the sensors

used for the experiment, record their measurements, and

produce a report about only the native sensors. The second is

the Host one, which will take the measurements from the

Native and produce a different report with respect to the

previous one. To make them communicate, the first container

will write two text files: one called host-report, with the

measurements from all the sensors, and a second called

native-report, with the measurements of only the native

sensors. They will be created inside a volume called

experiment that could be accessed by all the different

containers. The application logic handles read-write access to

shared data stores. The volume will be both writing and

reading for the Native container, while it will be read-only for

the Host container, to prevent accidental data corruption since

they have only to read what the sensor measured. For multiple

containers using the same volume, it must be individually

designed the applications running in those containers to

handle writing to shared data stores.

Four Nicla Sense ME will be implemented: three will use

their sensors and will be registered as native, while the fourth

will be seen as a host sensor, to make it act as an external

custom sensor. In this way, the Native controller will consider

only the three native peripherals for the report, while the Host

will consider all the sensors used. This will simulate the case

in which the native container will study how the machine is

performing, while the host container will see only what the

final customer would need, producing different elaborations

from the same data.

To illustrate the advantage of our proposed architecture, we

have taken into consideration the differences between

running the solution with the host Linux system and running

it with the Docker solution. Three main areas have been

exploited: resource usage, the time needed for the solution to

run, and the security that it offers.

While for the Docker application, the terminal is used and so

are the commands belonging to the infrastructure, the

application is made to run in the host Linux system by using

the same JavaScript codes, debugged using Nodejs.

A. Resources

The first main characteristic is studied by looking at two

factors: CPU usage and memory space needed. The gnome

system monitor is employed on the host device to see how the

situation changes depending on the solution applied. By

Fig. 2 - Concentrator data exchange

Fig. 3 - Experiment representation

Table 1 - Resources used in the system

looking at the results in Table 1, generated by the system

monitor, the CPU usage is almost null when the system does

not perform any action. Instead, when the application is

running on different systems, they do not have similar

behavior. In fact, during the Native script, the usage of the

CPU is at 20.4% while it is at 35.3% during the Host script

Docker functioning. Instead, when run on the Linux host, it

is always at 38.6%. These values are not constant and they

fluctuate a bit, however, the range in which they stay is not

that far from the one signed by the images.

Regarding memory occupation, the Docker solution occupies

more space than the single application on the host system.

This is due to different factors: the usage of containers, the

reinstallation of dependencies and useful programs, and the

overhead introduced by Docker itself due to the copies of

packages present in different images. It can be noticed though

that the difference between the two is just 3% about the 15,5

GB present on the host system. The problem with the

comparison between the two solutions is that we cannot

determine how much memory space the different installed

packages would occupy. To do so, we should take a mint

Linux system and verify the values for every application

installed, and all their dependencies.

B. Time

The difference in time is measured by looking not only at the

actual performance of the application but also at the time

needed for the installation of the different packages. In fact,

4 minutes and 3 seconds have been spent on downloading and

installing all the resources for the Docker application to build

the images of the two containers. This time however cannot

be measured on the host system, since we should erase and

reinstall everything from the beginning and see how much it

would take to perform everything. The Docker overhead is

for sure present also in this experiment since some packages

are the same in the images and so doubled. However, the time

needed to run the Docker compose application is 36,89s

(mean of three times: 36,67s, 37,04s, 36,96s) while the time

needed to run the application without Docker is 31,7s (mean

of three times 32.15s, 30,56s, 32.4s). This means that the first

solution is slower by 13,55% than the other. It must be taken

into consideration that there is little time between the closing

and the opening of the different containers, instead in the

second solution the switch between the two scripts is

immediate.

C. Security

The main topic of this comparison, for which this architecture

is presented in the first place, is the fact that Docker let the

creation of multiple environments share the same operating

system and host, without them interfering with the other. A

Linux system is more scalable, suitable for different

operating systems, and the application can be partitioned into

smaller parts, making them communicate with other volumes.

A customer can create applications or introduce external

features in an already existing system without causing any

problems. This can be done only by protecting the Native part

of the network, reducing the possibility of administration to

the host customer. For this reason, Docker has been used: it

limits access to different files and separates containers even

though they share the same host architecture and the same

operating system. The two containers can only share those

data inside the volume created. Files cannot be modified,

deleted, moved or any other kind of action can be performed

since the Docker system protects them. On the other hand,

there is no that kind of limitation on the Linux system. A

folder or a file can be deleted or modified without

administrator privileges, causing a program to may not work.

The only method to let Docker act like the host system would

be to use the root user, nullifying the security purpose of the

architecture.

V. CONCLUSIONS

With the advancement of Industry 4.0, the need for new

systems to collect data efficiently and elaborate them is of

paramount importance. New kinds of systems have been

presented, from cloud computing to edge and fog computing,

improving the communication between the different parts of

a firm and performing actions like real-time measurements,

reducing costs, and predictive maintenance of the types of

machinery. However, it is often impossible to modify those

systems without the risk of introducing bugs or problems in

the software itself. The new device Concentrator presented in

this paper allows the final users not only to benefit from a

native system that executes some elaborations, but it lets

him/her add new features and/or entirely new applications

through the utilization of the Docker containers. We built an

example where the system would recognize the sensors used

in the architecture and generates two reports to describe their

measurements. These are the native report, which will

consider only the sensors Nicla Sense ME built-in in the

system, and the host report, which considers all the sensors

used in the architecture. The application is safe since the two

containers do not interfere one with the other, sharing their

data only through a common volume. In future work, the goal

is primarily to confirm these results by creating a dedicated

embedded system for the architecture and then optimize it,

due to some particulars that are inefficient. An example is the

overhead given by the copies of the same packages in the

different images, or the time spent to open and close the

containers instead of making them run at the same time.

Another objective is to implement in the system an

application for the host container as close as possible to a real

application in production lines, where this device will be

used, according to the help of AROL Closure Systems and

Politecnico di Torino.

Type of system used

Resources

Memory space CPU usage

Linux host system

1.6Gb (10.2%) of

15.5Gb CPU1 : 0.0%

Application run on Linux host
system

2.4Gb (15.3%) of
15.5Gb

CPU1: 38.6%

Application run on Docker –

Native container

2.8Gb (17.9%) of

15.5Gb
CPU1: 20.04%

Application run on Docker –

Host container

2.8Gb (18%) of

15.5Gb
CPU1: 35.3%

ACKNOWLEDGMENT

Major thanks to AROL Closure Systems for the availability

of their knowledge and assets, without which this work could

not be presented. We would like also to thank Politecnico di

Torino for the access to some essential equipment for the

research. Thanks also to my colleagues who helped me during

this period.

VI. BIBLIOGRAPHY

[1] Lucidworks, «The Difference Between Industry 4.0 and IoT,»

[Online]. Available: https://lucidworks.com/post/how-are-iot-and-

industry-4-related/.

[2] A. Gilchrist, Industry 4.0: The Industrial Internet of Things, Apress,

2016.

[3] M. S.-M. J. M.-S. J. Pérez-Lara, «Vertical and horizontal integration
systems in Industry 4.0,» Wireless Networks, vol. 26, p. 4767–4775,

2020.

[4] P. Sandonnini, «Internet4Things,» 23 October 2020. [Online].
Available: https://www.internet4things.it/iot-library/cose-il-fog-

computing-e-quale-ruolo-ha-nellinternet-of-things/.

[5] R. J. W. G. B. W. Hany F. Atlam, «Fog Computing and the Internet
of Things: A Review,» Big Data Cognitive Computing, vol. 10, 2018.

[6] M. S. Z. a. K. A. H. Aazam, «Deploying Fog Computing in Industrial

Internet of Things and Industry 4.0,» IEEE Transactions on Industrial
Informatics, vol. 14, n. 10, pp. 4674-682, 2018.

[7] A. S. U. K. a. A. Y. Z. Abbas, Fog Computing: Theory and Practice,

vol. 1, Wiley Series on Parallel and Distribuited Computing, 2020.

[8] C. P. a. B. Lee, «Containers and Clusters for Edge Cloud Architectures

-- A Technology Review,» in 3rd International Conference on Future

Internet of Things and Cloud, 2015, pp. 379-386, doi:
10.1109/FiCloud.2015.35, 2015.

[9] F. -G. O. a. T. C. L. Letondeur, «A demo of application lifecycle

management for IoT collaborative neighborhood in the Fog: Practical
experiments and lessons learned around docker,» in 2017 IEEE Fog

World Congress (FWC), Santa Clara, CA, USA, 2017.

[10] H. S. a. A. Mourad, «Towards Dynamic On-Demand Fog Computing
Formation Based On Containerization Technology,» in 2018

International Conference on Computational Science and

Computational Intelligence (CSCI), 2018.

[11] C. E. a. R. D. M. Samaniego, «Smart Virtualization for IoT,» in IEEE

International Conference on Smart Cloud (SmartCloud), pp. 125-128,

doi: 10.1109/SmartCloud.2018.00028, 2018.

[12] I. F. A. I. a. T. T. R. Morabito, «Evaluating performance of

containerized IoT services for clustered devices at the network edge,»

IEEE Internet of Things Journal, vol. 4, n. 4, p. 1019–1030, 2017.

[13] Arduino, «Arduino Nicla Sense ME,» Arduino, [Online]. Available:

https://docs.arduino.cc/hardware/nicla-sense-me.

