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Abstract

In a chase-and-run dynamic, the interaction between two individuals is such that one moves
towards the other (the chaser), while the other moves away (the runner). Examples can be found
in both interacting cells and interacting animals. Here we investigate the behaviours that can
emerge at a population level, for a heterogeneous group that contains subpopulations of chasers
and runners. We show that a wide variety of patterns can form, from stationary patterns to
oscillatory and population-level chase-and-run, where the latter describes a synchronised collective
movement of the two populations. We investigate the conditions under which different behaviours
arise, specifically focusing on the interaction ranges: the distances over which cells or organisms can
sense one another’s presence. We find that when the interaction range of the chaser is sufficiently
larger than that of the runner – or when the interaction range of the chase is sufficiently larger
than that of the run – population-level chase-and-run emerges in a robust manner. We discuss the
results in the context of phenomena observed in cellular and ecological systems, with particular
attention to the dynamics observed experimentally within populations of neural crest and placode
cells.

1 Introduction

In cellular and animal systems, interactions frequently trigger movement responses. The collective
movements that emerge at a population level have become the focus of considerable interest, in phe-
nomena that range from the swarming and flocking of animals [1], to embryonic development [2], and
cancer invasion [3]. Mathematical modelling has helped uncover the mechanistic basis of these emerg-
ing dynamics, using methods that range from agent-based (interacting particle systems) to continuous
PDE systems [4, 5, 6].

Attraction and repulsion form two fundamental interaction types, whereby the nearby presence
of another individual induces movement towards (attraction) or away from it (repulsion). Within a
single homogeneous population, attracting interactions can drive a population to self-organise into an
aggregated group, such as a herd of animals, while repelling interactions can enhance the dispersal of
an aggregated population. For multiple or heterogeneous populations – a mixture of distinct animal
species or cell types, or subpopulations with different traits – greater complexity is possible [7]. In
a binary system with two distinct populations, there are four principal interactions: a set of two
homotypic interactions between individuals of same type, and a set of two heterotypic interactions
between individuals of different type. A broad set of interaction combinations can be conjured and
the question as to how these subsequently translate into population level dynamics are of manifest
interest when it comes to understanding how heterogeneous populations become spatially structured.

Beyond the fundamental nature of an interaction – whether it is attracting or repelling – a second
important point of consideration is its range: the distance of separation over which an interaction
can occur. These distances will naturally depend on the mechanism through which an interaction
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is mediated. Animals and cells can use a multitude of mechanisms to sense other individuals [8],
through both direct and indirect means. By direct we mean a sense that could (almost) exactly
signal the current position of another individual, for example through directly touching or sighting
the neighbour; indirect refers to detection through an intermediary, such as chemical cues or tracks left
by the neighbour, that may indicate its recent presence. Whether a sensing is direct or indirect, within
heterogeneous groups the interaction ranges of the homotypic and heterotypic interactions could vary
considerably: animals range widely with respect to the form and range of their sensory systems –
certain species of baleen whales are believed to be possible of communicating over 100s of kilometres
[9]; different cells can extend a spectrum of cell protrusions from shorter to long range [10].

We will focus here on a particular type of heterotypic interaction, which we call chase-and-run (or
pursue-and-escape). Here, individuals of (say) the first population move towards individuals of the
second population, which in turn move away. While for the most part we eschew a specific application
in favour of broader insights, we note that such dynamics feature within numerous contexts. In an
ecological context the obvious example would be between a predator and its prey [11], but it could
also occur between dominant and submissive members of a pack. At the cellular level, chase-and-run
has been observed both in vitro and in vivo for a variety of heterogeneous cell groups, such as between
distinct zebrafish pigment cell types [12] or between embryonic neural crest and placode populations
[13].

The case of neural crest and placode cell interactions offers a particularly illuminating exemplar
in the context of the objectives here. Chase-and-run in this system is manifested at the population
level, demonstrated through in vitro experiments in which a smallish (circa 100 cells) cluster of neural
crest cells are cultured close to a similarly-sized cluster of placode cells [13]. These two clusters are
subsequently observed to move in concert, maintaining a similar distance of separation as the neural
crest cell cluster persistently pursues the cluster of placode cells. Given that certain pathologies may
arise from failed migration of neural crest cells to a target tissue [14], the robustness of collective
migrations of this nature may be crucial for correct tissue development.

Logically, population-level chase-and-run would seem a natural outcome of chase-and-run inter-
actions at the individual level. However, it would seem equally plausible to suppose other possible
outcomes: for example, a running cluster may escape a chasing group and move out of range, or
chasers may catch the escaping group. Alternatively, individuals could be chasing one another in a
range of different directions, causing the overall populations to be more-or-less homogeneously spread.
The objective here is to systematically explore the various dynamics that can emerge within systems
where a chase-and-run interaction occurs. To achieve this, in the next section we will describe a some-
what minimal population-level model whereby each interaction is characterised by its type (attracting
or repelling), strength, and range. We show that this simple model is capable of exhibiting a broad
spectrum of population-level dynamics, including those described above. We subsequently explore the
conditions under which particular types of pattern can robustly emerge, focussing on the crucial role
played by the interaction ranges.

2 Methods

We present our model as a system of nonlocal advection-diffusion PDEs for continuous population
densities, a structure commonly used to phenomenologically describe interaction-based movements in
cellular and animal populations (see [6] for a review). However, it is noted that these equations can
also be derived through coarse-graining a stochastic individual (agent-based) model, see Supplemen-
tary Information (SI); this connection is exploited later to determine the extent to which behaviours
observed at the continuous (deterministic) level translate to the discrete (stochastic) level.

The model assumes that movements are governed by a set of homotypic and heterotypic interactions
between neighbouring members of two populations: chasers, C, and runners, R. Neighbouring here
refers to those members within a distance specific to a particular interaction. Precisely, we consider
(see Figure 1(a)):

• Attracting homotypic interactions. This could represent animal species with naturally tendencies
to herd or pack with conspecifics, or cell populations that blue attract each other, e.g. through
cell-cell adhesion or ligand-mediated co-attraction.

2



Figure 1: (a) Individual chasers (dark red circles) and runners (dark blue circles) interact across range
ξij (light coloured circles) such that (left) chasers are attracted to other chasers, (middle) runners
are attracted to other runners, and (right) chase-and-run describes the heterotypic interactions. (b)
Distinct ranges lead to various possibilities, such as distances over which (left) chasers detect runners
but not vice versa, or (right) runners detect chasers but not vice versa. (c) In the absence of the
other population, self-attracting interactions aggregate populations. (d) The principal question we
ask in this paper is as follows: in a mixed scenario, what dynamics can arise and what drives the
selection of a particular dynamic? Logical reasoning would suggest possibilities that could include a
segregated scenario, where the two populations separate into two essentially non-interacting groups,
or a population-level chase-and-run dynamic.

• Chase-and-run heterotypic interactions. Specifically, members of C are attracted to neighbouring
members of R (the chase), but members of R are repelled by neighbouring members of C (the
run).

We note that in real systems a particular interaction could be composed from both attracting and
repelling components, e.g. “come close (attraction), but not too close (repulsion)”. Incorporating
this subtlety would increase parametrisation and complexity, so presently we have reduced to a net
interaction: attraction or repulsion. We return to this in the discussion.

Denoting by C(x, t) and R(x, t) the two population densities at position x ∈ Ω ⊂ Rn and time
t ∈ [0,∞), we consider the following system of equations:

∂C

∂t
= ∇ ·

[
DC∇C − CαCC

Vn(ξCC)
ϕ(C +R)

∫
Bn
ξCC

C(x+ y, t)ey dy − CαCR

Vn(ξCR)
ϕ(C +R)

∫
Bn
ξCR

R(x+ y, t)ey dy

]
,

(1a)

∂R

∂t
= ∇ ·

[
DR∇R− RαRR

Vn(ξRR)
ϕ(C +R)

∫
Bn
ξRR

R(x+ y, t)ey dy − RαRC

Vn(ξRC)
ϕ(C +R)

∫
Bn
ξRC

C(x+ y, t)ey dy

]
.

(1b)

The three movement terms on the right hand side of (1a) correspond to an undirected (diffusive)
component, a directed movement due to homotypic interactions between members of C, and a directed
movement due to heterotypic interactions. Correspondingly, those on the right hand side of (1b) derive
from diffusive movement, homotypic interactions between members of R, and heterotypic interactions.
We use Bn

ξ to denote the n-dimensional ball of radius ξ, Vn(ξ) to denote its corresponding volume,
and set ey as the unit vector in the direction of y (if n = 1, this is understood to be the sign of y).
Models with the above structure have been readily adopted in recent years – see the review [6] and
we note in particular a number of studies for two (or more) species for both cellular [15, 16, 17, 18,
19, 20, 21] and ecological [22, 23, 24, 25, 26] interactions.

The direction and strength of each directed movement term is determined according to the integral
evaluations of the surrounding population densities, and each requires two parameters, αij and ξij .
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Parameters αij , for ij ∈ {CC,CR,RC,RR}, measure the strength and form of response; specifically,
the response of members of population i to members of populations j. A positive (negative) value
for αij indicates that i is attracted to (repelled by) j and the magnitude determines the strength of
response. Accordingly, to describe our chase-and-run configuration, we concentrate on a regime in
which αCC , αRR, αCR ≥ 0, but αRC ≤ 0. The parameters ξij , for ij ∈ {CC,CR,RC,RR}, denote
interaction range parameters: the maximum separation distance over which each type of interaction
can occur. Therefore, a relationship ξCR > ξRC implies that the range over which the chase occurs is
greater than that of the run (see Figure 1(b)). Note that we will often restrict to a two-dimensional
parameter space (ξR, ξC), where ξRC = ξRR ≡ ξR represents the runner interaction range and ξCR =
ξCC ≡ ξC represents the chaser interaction range. Restricting to these two parameters could be
broadly interpreted as defining distinct perception ranges for each population: ξR (or ξC) represents
the perception range of runners (or chasers), and subsequently defines the maximum range over which
its homotypic and heterotypic interactions can form. As a note, for simplicity the model relies on a
“top hat” interaction kernel (for other kernels, see [6] and references therein), in which the magnitude
of an interaction response does not change with the separation distance (beyond individuals needing to
be within the relevant range). The asymmetric interaction (the chase-and-run) coupled to the distinct
interaction ranges distinguishes the present work from others noted above, which largely are restricted
to symmetric interactions across identical ranges.

We note that DC and DR are diffusion coefficients that measure the level of random movement. The
function ϕ(C +R) curbs directed movement if the population density becomes excessively high. This
is not an issue in one dimension, where we will therefore set ϕ(C + R) = 1 for simplicity. In two
dimensions, however, self-attraction tends to generate highly concentrated population densities when
ϕ(C +R) = 1, and we will set ϕ(C +R) = 1/(1 + C +R) to avoid this unwanted behaviour in 2D.

We study (1) in both 1D and 2D geometries. To minimise domain/boundary-induced effects we impose
wrap-around (periodic) boundary conditions, by setting the domain Ω to be a circle (of circumference
L) in 1D, or torus (of dimensions L×L) in 2D. Under these boundary conditions the total population
masses are conserved and uniform steady state distributions are therefore determined by the mean
initial distributions, i.e. (Cs, Rs) =

(
1
Ln

∫
ΩC(0, x)dx, 1

Ln

∫
ΩR(0, x)dx

)
. Two forms of initial conditions

are considered: pre-aggregated, where C(0, x) and R(0, x) are concentrated as Gaussian distributions;
dispersed, where C(0, x) and R(0, x) are uniform, bar a small random perturbation. For convenience
we assume identical diffusion coefficients and mean initial densities and an a priori scaling of length,
time and densities such that Cs = Rs = DC = DR = 1.

3 Results

Chase-and-run generates a broad spectrum of population dynamics

To motivate the investigation that follows, we pose a simple question: does chase-and-run at an
individual level lead to chase-and-run at the population level? More precisely, can aggregated groups of
the two populations move in synchronicity (see Figure 1(d))? Logically, positive homotypic interactions
should allow runners and chasers to maintain aggregated forms, and the heterotypic chase-and-run
should coordinate the group movements. Simulations confirm this natural conceit, where we observe
that two groups placed in proximity (such that a non-negligible level of heterotypic interactions is
initially present) form a sustained synchronised movement, see Figure 2(a).

However, this (numerically) stable configuration is found to break down under relatively subtle
variations to the interaction strengths. For other parameter combinations we observe population
segregation. Here, runners escape the interaction range of chasers and the two populations settle
into fixed and separated aggregates, see Figure 2(b), each supported through self-attraction. An
alternative form of stationary pattern occurs when chasers are able to reach and trap the runners,
resulting in a single mixed aggregate, see Figure 2(c). More complicated dynamics arise for other
parameter combinations where, rather than settling into stable chase-and-run or stationary aggregates,
we observe sustained oscillations in space and time, which can be both periodic (Figure 2(d)) or
aperiodic (Figure 2(e)). Having established that a broad spectrum of patterns are possible, we next
explore how interaction range impacts on emergent dynamics in populations of chasers and runners.
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Figure 2: Dynamics of the chase-and-run system (1) in 1D on [0, 10]: each panel shows chasers (red) and
runners (blue) on a kymograph and distributions at the stated times. Here interaction ranges ξRR =
ξCR = ξRC = ξRR = 1 and interactions strengths αCC = αRR = 3 with: (a) (αCR, αRC) = (1,−1),
(b) (αCR, αRC) = (2,−3), (c) (αCR, αRC) = (2,−1), (d) (αCR, αRC) = (5,−5), (e) (αCR, αRC) =
(4,−4). Note that DC = DR = 1 with initial conditions C(0, x) = C∗ exp (−50(x− 1.5)2), R(0, x) =
R∗ exp (−50(x− 2.5)2), where C∗ and R∗ are set such that Cs = Rs = 1. For details of the numerical
scheme we refer to the SI.

Interaction ranges determine pattern selection

As noted, different interactions may operate across different ranges, e.g. if populations have distinct
limits to their perception depth. We consider emergent dynamics across (ξR,ξC) parameter space from
dispersed initial conditions, which allows us to determine whether a particular pattern forms without
initial bias. Then, a Turing-type linear stability analysis (LSA) can be used to establish whether the
uniform steady state can be unstable to inhomogeneous perturbations and patterns emerge (see SI).
Largely speaking, homotypic attractions drive pattern formation – although we note some subtleties
that emerge in two dimensions [20] – and allow one or both of the populations to accumulate into
one or more groups. The presence of a heterotypic chase-and-run typically leads to a ‘Turing-wave’
type instability, so that emerging patterns are predicted to oscillate in both space and time; these
oscillations are observable in the early time dynamics for each of the simulations plotted in Figure
3(a)ii-v.

LSA provides insight into initial pattern emergence, but for longer time dynamics we rely on
numerical simulations. We numerically solve (1) for different (ξR,ξC) combinations and classify the
dynamics at the end of each simulation. We cannot exclude that an observed pattern represents a
long-time transient rather than a stable form [27], but simulations are performed for times that extend
significantly beyond the characteristic timescale of pattern formation (an order of magnitude or more).
Figure 3(a) shows the classification of parameter space, where we observe a clear demarcation into
distinct regions. If both species have small interaction ranges, patterns do not form and densities evolve
to the uniform steady state solution, Figure 3(a)i – this region coincides with the region of stability
predicted by LSA. Intuitively, small interaction ranges limit the size of the observable population and
restrict how much interaction-based movement can be generated. Adjacent to this region we observe
sustained spatiotemporal oscillations. These transform from periodic and low amplitude (Figure 3(a)ii)
to aperiodic and large amplitude (Figure 3(a)iii) with increasing distance from the stability/instability
boundary; this coincides with increased pattern growth rates and an increase in the number of unstable
modes, predicted by the LSA (see SI).

Setting even larger interaction ranges results in patterns that initially oscillate before transitioning
into one of two general forms: a population-level chase-and-run (Figure 3(a)iv) or stationary aggre-
gates (Figure 3(a)v). Significantly, the regions where these two pattern types develop depend on the
interaction range relationship. Broadly speaking, population chase-and-run emerges when the chasers
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Figure 3: (a) Pattern selection across interaction range space. We classify the pattern for each
(ξR, ξC) pair as: uniform solution (gray), spatiotemporal oscillations (white), population chase-and-run
(magenta), stationary aggregates (yellow). The kymographs plotted in (i-v) illustrate representative
solutions for certain (ξR, ξC) pairs, as indicated in (a). For other model parameters, we fix αCC =
αCR = −αRC = αRR = 3, DC = DR = 1, L = 10 and initial conditions in the dispersed form, such
that Cs = Rs = 1. (b) Pattern selection across interaction strength space. Here, the pair (αRC , αCR)
is varied, whilst interaction ranges are selected (left) from the chase and run region (specifically,
(ξR, ξC) = (1, 1.5)), and (right) from the stationary aggregates region (specifically, (ξR, ξC) = (1.5, 1)).
We fix DC = DR = 1, L = 10 and set initial conditions in the dispersed form. Specifically, we set
C(x, 0) = 1 + r1(x) and R(x, 0) = 1 + r2(x), where r1(x), r2(x) ∈ [−0.1, 0.1] denote noises added to
the uniform steady state densities (Cs, Rs) = (1, 1)
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have a (sufficiently) larger interaction range than the runners, whereas stationary aggregates form
when runners have the larger interaction range. This division is more strongly accentuated when
higher interaction strengths are used (see Figure S3(a)), where we find chase-and-run (ξC > ξR) or
stationary aggregates (ξC < ξR) and greatly reduced regions of oscillating or uniform solutions. To
test whether it is the heterotypic interactions that drive this pattern selection, we see a similar division
when only (ξCR, ξRC) are varied: ξCR > ξRC (ξRC > ξCR) biases pattern selection to a chase-and-run
(stationary) form (Figure S3(b)).

To probe further how the nature of the chase-and-run interactions drive the dynamics, we inves-
tigate pattern selection in each of two regimes ξC > ξR and ξR > ξC , while changing (αRC , αCR).
This allows a test into the robustness of an observed dynamic while modulating the strength of the
heterotypic interactions. Corroborating the key importance of interaction range, we see a robust
emergence of chase-and-run across a wide range of interaction strengths, if ξC > ξR (Figure 3(b),
left panel). Similarly, we see robust emergence of stationary aggregates when ξR > ξC (Figure 3(b),
right panel). These explorations also highlight some further subtleties. For example, stationary ag-
gregates are found to range from completely segregated (clusters of only chasers or only runners), to
mixed/segregated (some clusters contain both chasers and runners), to completely mixed (the two
populations are co-localised), see Figure S3(c). This transition follows changing strengths of the het-
erotypic interactions: αRC > αCR can allow runners to completely escape chasers and form a separate
group, while αCR > αRC can allow chasers to catch and trap runners. Modulations to the chase-and-
run can also occur. For example, lower run interaction strength results in some runners being left
behind; on the slightly artificial periodic domain, these runners are subsequently recollected and the
process repeats (Figure S3(d)).

Summarising, we find that distinct interaction ranges have a strong influence on emergent popu-
lation level dynamics under chase-and-run type interactions.

Chase-and-run in the plane

In two dimensions a runner can escape a chaser across all angles of the circle. We therefore investigate
how dynamics change for populations distributed across Ω = [0, L] × [0, L], under the same general
homotypic and heterotypic interactions. Populations are initially dispersed (Figure 4(b)) and we again
explore (ξR, ξC)-space. Simulations in this section are accompanied by SI animations.

Principally, we observe the same separation of parameter space into sustained population-level
chase-and-run (when ξC > ξR) or stationary aggregates (when ξR > ξC), see Figure 4(a). Consis-
tent with 1D, a more defined separation emerges with higher interaction strengths: lower interaction
strengths lead to smaller regions of chase-and-run or stationary aggregates (see Figure S4(a, top)),
and larger regions of oscillating (see Figure S4(b)i for an example) or uniform solutions. While chase-
and-run is implemented through the heterotypic interactions, increasing the chase-and-run strength
alone does not encourage emergence of these dynamics at the population level; in contrast, we see an
expansion of the oscillating regime (see Figure S4(a, bottom)). This reinforces that both homotypic
and heterotypic interactions play a critical role in setting the population level dynamics.

Consistent with 1D, we find that stationary aggregates range from mixed (Figure 4(c)) to segre-
gated (Figure 4(d)). In regions of chase-and-run, homotypic self-attraction first organises the dispersed
populations into clusters. Then, heterotypic interactions drive the cluster of chasers to pursue the clus-
ter of runners, maintaining consistent shape and speed (Figure 4(e), Supplementary Movie 1). This
stereotypical chase-and-run robustly emerges when self-interaction strengths are sufficiently strong,
and on larger domains (Figure S4(c)). However, some subtler features become apparent according to
the runner interaction range. Under more-or-less equal interaction ranges the two groups are roughly
equal in size (Figure 4(f), Supplementary Movie 2). Reducing the runner interaction range groups run-
ners into a smaller (and more concentrated) group (Figure 4(e)). Below some critical value, however,
runners instead organise into multiple small groups. Run-and-chase still occurs, but in an atypical
form: chasers continue to pursue runners, but with multiple runner clusters the chasing direction
changes over time (Figure 4(g), Supplementary Movie 3). With its limited interaction range, a cluster
of runners remains fixed in position until a chasing group is sufficiently close, at which point it moves
away.

To investigate further patterning subtleties, we perturbed specific interaction range parameters
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Figure 4: (a) Classification of (ξR, ξC) parameter space, for simulations of (1) in 2D. (b) Dispersed
initial conditions at t = 0, specifically C(x, y, 0) = 1 + r1(x, y) and R(x, y, 0) = 1 + r2(x, y), where
r1(x, y), r2(x, y) ∈ [−0.1, 0.1] denote noises added to the uniform steady state (Cs, Rs) = (1, 1). (c)
Stationary aggregate solution found at point c in (a). (d) Stationary aggregate solution found at point
d in (a). (e, left) Stereotypical chase-and-run found at e in (a), see Supplementary Movie 1; (e, right
panel) The positions of the centre of masses for chasing and running groups over a range of times. (f)
Chase-and-run, with interaction ranges found at f, see Supplementary Movie 2. (g, left panel) Atypical
chase-and-run found at g in (a), see Supplementary Movie 3; (g, right panel) Centre of masses for
the chasing and the running groups. (h) Crescent-shaped runners for ξCC = ξCR = ξRR = 4 and
(left) ξRC = 2, (middle) ξRC = 1, (right) ξRC = 0.5. See Supplementary Movies 4-6. (i, left panel)
Atypical chase-and-run for ξCR = ξRC = ξRR = 4 and ξCC = 1, see Supplementary Movie 7; (i, right
panel) Centre of masses for the chasing and the running groups. All simulations in this figure use
αCC = αRR = αCR = −αRC = 15, DC = DR = 1, Lx = Ly = 10 and ϕ(C +R) = 1/(1 + C +R).

and comment on notable instances. Lowering only the run interaction range (ξRC) leads to a crescent-
shaped configuration ahead of the chasing group (Figure 4(h), Supplementary Movies 4-5). Here,
runners only detect the nearest portion of the chasing group and, consequently, the escape direction
can vary significantly across the runner population. Self-attraction of runners (ξRR) occurs over
longer range, maintaining cohesion and generating the crescent. When ξRC decreases below a critical
value, runners entirely surround chasers in an annulus-like shape, so that net motion is prevented
(Figure 4(h), Supplementary Movie 6). Finally, reducing the chaser self-attraction range (ξCC) below
a critical value results in multiple (smaller) chaser groups. At a phenomenological level, the subsequent
dynamics can be viewed as a reversal of the atypical chase-and-run above, where now a single group of
runners is chased by multiple groups of chasers (Figure 4(i), Supplementary Movie 7). These results
highlight that the individual homotypic interaction ranges strongly influence the spatial extension of
groups at the population level.

Broadly speaking, investigations in 2D reinforce that interaction ranges dictate the emerging dy-
namics. Yet we also observe increasingly nuanced patterning, suggesting that greater control is re-
quired if a particular pattern is to emerge in higher dimensions.
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Figure 5: Simulation output of the IBM. (a)-(c) 1D simulations. (a) Classification of (ξR, ξC) space
analogous to Figure 3(a). (b) Representative examples of chase-and-run dynamics in the IBM. (c)
Representative examples of stationary aggregate dynamics in the IBM. (d-e) 2D simulations. (d) 2D
chase-and-run, analogous to Figure 4(e) with plots showing chasers (red) and runners (blue) at a
reference time (top) t0 and (bottom) t0 +0.09. (e) 2D stationary aggregates analogous to Figure 4(c)
with plots at a reference time (top) t0 and (bottom) t0 + 3.

Individual-based modelling

The continuous model is predicated on an assumption that the populations can be approximated
by density distributions, rather than individual positions. The extent to which this is valid for the
population sizes encountered in real-world instances of collective movement is uncertain, and we now
determine whether behaviours observed for (1) carry to an individual-based model (IBM). The lattice-
based IBM is described in the SI, and features two populations of particles which interact according
to the homotypic and heterotypic interactions described previously. Notably, coarse-graining the IBM
leads to the continuous formulation given by Equation (1) (see SI). Consequently, an IBM parameter
set (including lattice spacing and time step) can be chosen in correspondence to a given simulation
of the continuous model. Note that for all IBM simulations we use 100 individuals per populations
(consistent with typical sizes of populations of neural crest and placode cells in the example cited in
the introduction).

For the 1D IBM (see SI) we consider a lattice of length L = 10 with spacing l = 0.1. Setting
the time step τ = 0.005 then ensures D = 1, as used in simulations of the continuous models. As
before, we keep αRC < 0 and αCC , αCR, αRR > 0, so that individuals of population C chase those
of population R. In Figure 5(a) we classify the type of pattern observed following simulations of the
IBM, covering the same parameter space as in Figure 3(a). Consistent with the continuous model, we
see sustained chase-and-run when the interaction range of chasers is large compared to those of the
runners (Figure 5(b)), otherwise we see more-or-less stationary aggregates (Figure 5(c)); there can be
some ‘wobble’ in a stationary aggregate position over time, due to inherent stochasticity, but there
is no clear chasing. Finer points of detail also translate, such as the range of stationary aggregate
patterns from completely segregated to mixed. We further confirmed through simulations of a 2D IBM,
using equivalent settings to simulations of the continuous models reported in Figure 4. A population
chase-and-run behaviour can be observed when ξC > ξR (Figure 5 (d)), and stationary aggregates for
ξR > ξC (Figure 5 (e)).

However, some noteworthy differences emerge. First, for the IBM we have not observed (clear)
patterns representing homogeneity or sustained oscillations, at least not when using parameter settings
equivalent to those within the continuous simulations. This perhaps suggests that these patterns are
more reliant on the assumption that a population can be approximated by a continuous distribution,
rather than individual positions. Also, in 2D simulations we have found chase-and-runs where the
direction of group movements change over time: at lower population sizes, the occasional loss of
individuals from runner or chaser groups can prove influential, creating ‘rogue’ individuals that can
subsequently alter cluster dynamics.
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Figure 6: Dynamics for various self-aggregating tendencies. (a-b) Classification of (ξR, ξC)-space for
(1) in 1D with αCR = 3, αRC = −3 and (αRR, αCC) = (a) (3, 0), (b) (0, 3). (c) Typical chase-and-run
profiles in 1D, for positions marked with the white star in (a-b). (d) Irregular chase-and-run in 2D
when only runners self-aggregate, from dispersed initial conditions (Supplementary Movie 8). Here,
ξC = 4, ξR = 3, αRR = αCR = 15, αRC = −15, αCC = 0. (e) Stationary aggregate of chasers in 2D
when only chasers self-aggregate. Here, ξC = 4, ξR = 2, αCC = αCR = 15, αRC = −15, αRR = 0.
(f) Pre-aggregated initial conditions C(x, y, 0) = C∗ exp (−0.2(x− 10)2 − 0.2(y − 10)2), R(x, y, 0) =
R∗ exp (−0.2(x− 7)2 − 0.2(y − 7)2), where C∗ and R∗ are such that Cs = Rs = 1 (left panel).
Columns from left to right show snapshots for (αCC , αRR) = (i) (15, 15), (ii) (0, 15) (Supple-
mentary Movie 9), (iii) (15, 0) (Supplementary Movie 10), (iv) (0, 0). Other parameters set at
ξC = 4, ξR = 2, αCR = 15, αRC = −15 and “t → ∞” indicates the long time pattern form.
(g) Populations initially arranged into parallel stripes, specifically a small random perturbation of
C(x, y, 0) = C∗ exp (−(x− 5)2), R(x, y, 0) = R∗ exp (−(x− 6)2), where C∗ and R∗ are such that
Cs = Rs = 1. Other parameter values are αCC = αCR = −αRC = αRR = 15, ξC = 4, ξR = 2. All
simulations use DC = DR = Cs = Rs = 1.

Self-attraction is required for robust chase-and-run

We have observed how population chase-and-run emerges in 1D, 2D and in IBM simulations, when
the range of the chase is greater than that of the run. However, all simulations to date assume that
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each population has a self-attraction that allow their self-aggregation. We investigate whether this is
crucial for the emergence and maintenance of a pattern type.

First we repeat the 1D analysis, investigating pattern selection in (ξR, ξC)-space under two cases: (i)
only runners self-aggregate (αRR > 0, αCC = 0); (ii) only chasers self-aggregate (αCC > 0, αRR = 0).
In both instances we (broadly) find the same behaviour: across a large region of parameter space
corresponding to ξC > ξR, a sustained chase-and-run emerges at the population scale (Figure 6(a-b)).
Self-aggregation in the runners leads to their clustering which – via the heterotypic interactions –
collect chasers into a looser group in the rear (Figure 6(c), top). Self-aggregation in the chasers lead
to a chaser cluster that ‘herds’ runners ahead (Figure 6(c), bottom).

However, these observations of emergent and sustained chase-and-run in 1D evaporate in higher
dimensions. When only runners aggregate, scenarios of chase-and-run (ξC > ξR) become ‘incoherent’,
with the groups repeatedly splitting and reforming over time (Figure 6(d), see supplementary Movie 8).
Here, the somewhat dispersed chasing group transmits variable directional information into the cluster
of runners, inducing their escape into directions that can split the group; the reformation of groups
can be part-attributed to the peculiarities of the boundary conditions. When only chasers aggregate,
a ξC > ξR scenario leads to a stationary cluster of chasers surrounded by uniformly dispersed runners
(Figure 6(e)). Unlike in 1D, where runners can be herded and trapped by the geometry, different
escape directions mean that runners spread until chasers have no coherent direction of pursuit.

To test this under a more controlled setting, chasers and runners are initialised as juxtaposed
clusters, Figure 6(f): this could be regarded as an optimal initial state to encourage chase-and-run.
Also, to limit the influence of boundary conditions we consider a larger domain. Setting ξC > ξR, if
both populations self-aggregate we observe robust and coherent chase-and-run in (seeming) perpetuity
(Figure 6(f)i). When only runners self-aggregate a transient chase-and-run can occur, but the runner
and chaser groups lose mass over time and eventually chase-and-run disintegrates (Figure 6(f)ii, see
Supplementary Movie 9). When only chasers self-aggregate, any chase-and-run is extremely brief:
the runners quickly disperse in all directions to leave a stranded group of chasers (Figure 6(f)iii, see
Supplementary Movie 10). Similarly, when neither population can self-aggregate any coherent motion
is transient and the populations disperse to the uniform steady state (Figure 6(f)iv). Finally, we
investigate dynamics for populations that are initially arranged into stripes (Figure 6(g)), for the
same interactions as in Figure 6(f)i. At first the populations move in stripes of chasers and runners,
before the front destabilises and resolves into discrete clusters that undergo separate chase-and-run.
This clustering principally stems from the self-attraction terms that round populations into compact
groups.

4 Discussion

We have explored the collective dynamics that emerge within mixed populations of chasers and runners,
where the two populations have an inherent tendency to aggregate with members of their own kind and
pursue and evade the other population, respectively. Focussing on the interaction ranges, we observe
two dominating pattern forms: (i) when runners interact over larger distances than chasers (or the
range of the run is greater than that of the chase), quasi-stationary and separated clusters emerge that
undergo negligible interaction; (ii) when chasers interact over larger distances than runners (or the
range of the chase is greater than that of the run), a collective chase-and-run forms where the cluster
of chasers pursues the cluster of runners. Given sufficiently strong interaction strengths, this overall
observation is apparently robust with respect to moderate parameter variations, when extended into a
higher dimension setting, and when examined within the finite population sizes and stochastic setting
of a corresponding individual-based model. As such, distinct interaction ranges between species appear
to significantly determine emergent collective dynamics.

Intentionally, we have formulated the model in a minimal and generic manner, so that (in principal)
the results could be interpreted for cellular or animal populations. For the former, chase-and-run
dynamics have been observed in zebrafish pigment cells [12] and Xenopus laevis neural crest cell
(NCC)–placode cell (PC) populations [13]. The latter forms a particularly apposite example, as in vitro
studies reveal an analogous phenomenon of population-level chase-and-run [13]: NCCs form the chasing
group, and PCs the running group. Experiments have uncovered various cellular interactions, including
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contact inhibition of locomotion (CIL) [28, 13] between all cells: the touching of two cells reverses their
movement directions. Consequently, CIL forms a repulsion between all cells, but other interactions
may switch some of these to attracting. First, PCs adhere to each other (through E-cadherin), which
overcomes CIL to allow PC-to-PC attraction[13]. Second, attracting homotypic interactions also occur
between NCCs [29, 30], seemingly autotaxis-mediated through a secreted attractant. Third, NCCs are
attracted to PCs through the latter secreting a chemotaxis factor (Sdf-1) [13]. Under the reductive
reasoning of a considered ‘net interaction’, it is plausible that the set of interactions may conform to
those explored here and we predict that a robust population chase-and-run will arise if NCCs interact
over larger ranges. Indeed, this is quite plausible: PC interactions are seemingly through direct contact
(membrane-membrane binding), while NCC interactions involve diffusing ligands. The simulations
presented in Figure 6(f) are particularly apposite for this application, as the in vitro experiments
place NCCs and PCs as juxtaposed clusters (akin to the t = 0 setting of those simulations). While
indefinite chase-and-run requires both populations to have self-attraction, long transient chase-and-
runs can still occur when only the runners have (strong) self-attraction: if this transient is much longer
than the timescale of experiments, this may be sufficient. Thus, our simulations would suggest that
while strong self-attraction is essential in the runner group (i.e. the PCs), a similar requirement may
not be strictly necessary for the chasers (i.e. the NCs); possibly this could be tested through knocking
out the mechanism of co-attraction between NC cells.

Initialising as clusters recapitulates an in vitro setting. The neural crest itself forms along the
dorsal neural tube, creating a ‘stripe’ along the vertebrate embryo. Experimental observations of the
Xenopus NCC-PC system – and simulations of an ABM – have revealed that as the NCCs move away
from the crest, they insert into alternating ‘streams’ with the surrounding PCs [31]. In other words, a
form of symmetry-breaking takes place along the length of the (cranial) neural crest. Our simulations
with a stripe setting (Figure 6(g)) also show a symmetry-breaking, with the stripe destabilising into
multiple clusters. We do not, however, observe a formation of alternating streams. This is not in
itself surprising, given that our (current) model is not explicitly tailored to describe this particular
application. A more considered investigation would be a very interesting avenue, necessitating exten-
sion to a ‘next level’ model, for example: dropping the reduction to a net interaction, so that the
relationship between two cell types may be composed from both repulsive (e.g. CIL) and attractive
(e.g. co-attraction) interactions; explicitly modelling key extracellular factors (e.g. Sdf-1), receptor-
ligand interactions etc; parametrising the model as far as possible according to data. This would offer
a complementary approach for modelling the Xenopus NCC-PC system, as previous approaches have
been restricted to agent-based models (e.g. [31, 32]).

In ecology, our chase-and-run can be viewed analogously to a pursuit and escape interaction and
the model described here could help in understanding the spatial arrangements of predators and prey
on a landscape. The concept of a ‘landscape of fear’, whereby prey avoid areas they believe predators
to be living, has gained much attention in recent years [33, 34]. Improvements in animal tracking
technology [35] have begun to allow researchers to map such landscapes and rigorously demonstrate
prey avoidance [36, 37]. Likewise, the notion of prey-taxis [38], whereby predators seek to locate
themselves near prey, is well-understood from both empirical [39] and mathematical [40] perspectives.
Both aspects have been studied mathematically in a model similar to ours but with quadratic rather
than linear diffusion [41]. However, in empirical situations, it is less clear whether a combination
of predator-avoidance and prey-taxis behaviour ever actually leads to the kind of population-level
chase-and-run described here. Indeed, empirical evidence suggests that most animals tend to locate
themselves in relatively-stationary home ranges rather than moving over the landscape in response
to predation pressure or seeking out mobile prey [42]. A possible reason for this is that landscape
heterogeneity might ‘pin’ the population-level movements, so that, for example, prey might spend time
in a woodland area where they can hide from predators, whereas predators might live close to the
forest in hope of catching any prey that venture out [43]. Mathematical investigation of individual-
level chase-and-run within heterogeneous environments would help understand why we still tend to
see predators and prey using relatively stationary home ranges, despite the theoretical possibility of
population-level chase-and-run in homogeneous environments.

Notions of followers and leaders have gathered considerable traction in recent years [44, 45, 46,
47, 3]. The terms ‘followers’ and ‘leaders’ imply a hierarchy – the latter guide the former – though in
some cases their designations may simply reflect a spatial position [48]: leaders at the front, followers
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at the rear. Placed in the context of the collective run-and-chase that emerges here, the macroscopic
perspective is runners at the front and chasers at the rear. But regarding runners as leaders and
chasers as followers is clearly misleading: while the groups sort into a structured arrangement, there
is no overall guidance and the net movement (from unbiased initial conditions) will be at random.
This susceptibility is highlighted by the (2D) IBM simulations, where the chase-and-run direction was
deflected by ‘rogue’ individuals and/or stochastic fluctuations. The addition of a further directional
bias – such as a chemoattractant – could confer a robustness to the global direction of movement and
in this regard it may be illuminating to observe how robustness alters according to which population
detects the global cue: under what circumstances do runners or chasers make the more effective
leaders?

Coherent chase-and-run – by which we mean a compact cluster of chasers pursuing a compact
cluster of runners – was found to emerge in both 1D and 2D. In 1D this is particularly robust, given
the stipulated relationship between interaction ranges, within both continuous and IBM formulations.
Of course, this robustness can be partly attributed to the peculiarities of a 1D geometry, where
runners can only escape in one of two possible directions. Away from singular or engineered instances
– such as cells restricted to lines along microfabricated surfaces [49] – movements take place in higher
dimensions, e.g. two dimensions for cells plated on a surface or animal movements on the plane.
Despite the greater freedom movement direction, coherent chase-and-run does emerge robustly in
two dimensions, but with caveats: for example (in continuous simulations) ‘complex’ chase-and-runs
where the dynamics of a single large cluster of runners (chasers) is driven by multiple smaller groups
of chasers (runners), or (in IBM simulations) with occasional fluctuations in the movement direction.
Emergence of a particular dynamic in two dimensions may therefore require additional ‘control’, e.g.
more tightly controlled parameters or reinforcement through environmental heterogeneity. A number
of modelling and experimental studies have suggested that microenvironmental factors may indeed
play an important role in confining collective migration of neural crest cells along particular pathways
[50, 51].

We have observed even more diverse pattern forms in certain regimes, including a menagerie of
oscillatory dynamics. These dynamics were robust – in the sense that they continued indefinitely
and persisted under perturbation – and therefore seemingly represent a stable pattern outcome of the
continuous model, rather than a transient dynamic. A deeper analytical study into the patterns that
arise as parameters are varied could be achieved through nonlinear bifurcation analyses [52], a possible
future direction. However, is is noted that in the IBM these oscillatory dynamics were conspicuous by
their absence: under equivalent parameters, solutions evolved to either the population chase-and-run or
stationary aggregate patterns. The continuous model assumes that populations can be approximated
by a continuous density rather than individual particle positions, and it is possible that simulations
of the IBM under larger populations would reveal similar phenomena. It should also be noted that an
IBM will introduce other forms of artificiality – for example, the IBM here is based on point-particles
that make instantaneous jumps in individual location – which could generate particularly high levels of
stochasticity. Convergence to the continuous model involves various limits (e.g. smaller steps, higher
population sizes), and a more detailed investigation into the correspondence between the IBM and
continuous model may pinpoint scenarios under which particular outcomes may be expected to arise.
It may also be worth investigating whether different IBM frameworks – for example, those where
particles move continuously through space – can be scaled to the same continuous model, and whether
those lead to different behaviours. Overall, though, the discrepancies we have observed reinforce a
general lesson that caution should be adopted regarding ‘exotic’ patterning phenomena observed in
models, particularly when found in restricted regions of parameter space.

A number of earlier studies have used similar modelling frameworks to understand the distinct
patterns that can arise from self and cross interactions within heterogeneous systems. Several of these
have been motivated by adhesive cell sorting, for example see [15, 53, 17, 18, 19, 21, 20]. Here,
homotypic and heterotypic interactions are typically nonnegative and studies have focussed on how
distinct adhesions lead to distinct arrangements, consistent with classical predictions of the differential
adhesion hypothesis [54]. A generalisation to interactions that range from attracting to repelling was
conducted in [16], although the subsequent analysis was primarily restricted to simple one-dimensional
geometries and equivalent interaction ranges. Recently, Jewell et al [20] have extended this to two
dimensions where, surprisingly, a pure chase-and-run interaction (with no homotypic interactions) was
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shown to be capable of generating pattern formation in two (and higher) dimensions. Significantly,
unequal interaction ranges form a requirement and the study here further reinforces the critical role
that interaction ranges can play in patterning dynamics.

We have shown that wide-ranging collective dynamics can emerge, even for just two species under-
going chase-and-run interactions. Yet, the relatively simple assumption of distinct interaction ranges
provides a powerful point of control, strongly determining pattern selection. Clearer understanding
into the ranges over which particular interactions are mediated would provide valuable information
into the organisation of complex systems.
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A Individual based model

A.1 Model description

Here we describe the stochastic individual based model (IBM); as noted in the main text, the IBM is constructed
in a manner that permits formal relation to the continuous model (Equations (1) in main manuscript) in an
appropriate limit, demonstrated below. The IBM takes the form of a position jump random walk on a lattice,
where we work on either a 1D line lattice of length L or a 2D square lattice of side L, with periodic boundary
conditions. The lattice spacing is denoted l and defined so that L/l is an integer. We denote by M(x, t) (resp.
N(x, t)) the number of individuals from population C (resp. R) at lattice point x at time t. For the 1D model,
we define

S1
M (x, t) = min

{
1,max

{
−1,ϕ

(
M(x) +N(x)

l

)(
αCC

4rCC

rCC∑
y=−rCC

M(x+ yl, t)
y

|y|

+
αCR

4rCR

rCR∑
y=−rCR

N(x+ yl, t)
y

|y|

)}}
, (1)

S1
N (x, t) = min

{
1,max

{
−1,ϕ

(
M(x) +N(x)

l

)(
αRR

4rRR

rRR∑
y=−rRR

N(x+ yl, t)
y

|y|

+
αRC

4rRC

rRC∑
y=−rRC

M(x+ yl, t)
y

|y|

)}}
, (2)

where rCC , rCR, rRC , rRR < L/l are integers. In 2D, we define

S2
M1(x, t) = min

{
1,max

{
−1,ϕ

(
M(x) +N(x)

l2

)(
αCC

2πlr2CC

∑
y∈B2

rCC

M(x+ yl, t) cos(θy)

+
αCR

2πlr2CR

∑
y∈B2

rCR

N(x+ yl, t) cos(θy)

)}}
, (3)

S2
M2(x, t) = min

{
1,max

{
−1,ϕ

(
M(x) +N(x)

l2

)(
αCC

2πlr2CC

∑
y∈B2

rCC

M(x+ yl, t) sin(θy)

+
αCR

2πlr2CR

∑
y∈B2

rCR

N(x+ yl, t) sin(θy)

)}}
, (4)

where θy is the direction of the vector y. Functions S2
N1(x, t) and S2

N2(x, t) are defined analogously.
For the 1D random walk we assume that, in a time-step of length τ , there is some probability that an

individual at x moves to one of the two adjacent lattice sites at x ± l. For a member of population C, these
probabilities are given by

p1Mτ (x± l|x) = 1± S1
M (x, t)

2
, (5)
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with an analogous expression for the probabilities of movement for members of population R.
In the 2D random walk, movements can take place to one of the four adjacent lattice sites, i.e. from position

x to x± (l, 0) or x± (0, l). For a member of population C, these probabilities are given by

p2Mτ (x± (l, 0)|x) = 1± S2
M1(x, t)

4
, (6)

p2Mτ (x± (0, l)|x) = 1± S2
M2(x, t)

4
, (7)

with analogous expressions for the probabilities of movement for members of population R. To perform simula-
tions, the IBMs were coded in C and the code can be found at https://github.com/jonathan-potts/ChaseAndRun.

A.2 From IBM to PDE

To relate the IBMs described in Equations (1)-(7) to the PDEs of Equations (1) in the main manuscript, we
first take expectations and assume that covariances are negligible (i.e. a mean field approximation). With this
assumption, the expected number of individuals, ME(x, t), from population C at lattice site x at time t obeys
the following iterative equation in 1D

ME(x, t+ τ) = ME(x− l, t)p1Cτ (x|x− l) +ME(x+ l, t)p1Cτ (x|x+ l)

=
1

2
[ME(x− l, t)(1 + S1

M (x− l, t)) +ME(x+ l, t)(1− S1
M (x+ l, t))], (8)

and the equation for NE(x, t) (the expected number of individuals from population R at lattice site x at time
t) is analogous. In 2D, the change in ME(x, t) over time is given by

ME(x, t+ τ) =
1

4
[ME(x− (l, 0), t)(1 + S2

M1(x− (l, 0), t)) +ME(x+ (l, 0), t)(1− S2
M1(x+ (l, 0), t))

+ME(x− (0, l), t)(1 + S2
M2(x− (0, l), t)) +ME(x+ (0, l), t)(1− S2

M2(x+ (0, l), t))]. (9)

For the 1D case, we rearrange Equation (8) to give

ME(x, t+ τ)−ME(x, t)

τ
=

l2

2τ

[
ME(x+ l, t)− 2ME(x, t) +ME(x− l, t)

l2

− 2

l

S1
M (x+ l, t)ME(x+ l, t)− S1

M (x− l, t)ME(x− l, t)

2l

]
. (10)

In 2D, a similar rearrangement gives

ME(x, t+ τ)−ME(x, t)

τ
=

l2

2τ

[
ME(x+ (l, 0), t) +ME(x+ (0, l), t)− 4ME(x, t) +ME(x− (l, 0), t) +ME(x− (0, l), t)

l2

− 2

l

S2
M1(x+ (l, 0), t)ME(x+ (l, 0), t)− S2

M1(x− (l, 0), t)ME(x− (l, 0), t)

2l

− 2

l

S2
M2(x+ (0, l), t)ME(x+ (0, l), t)− S2

M2(x− (0, l), t)ME(x− (0, l), t)

2l

]
. (11)

We then take the limit as l, τ → 0 such that dn = l2/(2nτ) is kept constant (i.e. the diffusion limit). We also
send rij → ∞ keeping ξij = rij l constant, for each i, j ∈ {C,R} and write C(x, t) (resp. R(x, t)) for the limit
of ME(xl, t)/l

n (resp. NE(xl, t)/l
n) where xl is the closest lattice site to the point x for any given l (using bold

letters for both 1D and 2D here). A direct calculation of this limit leads to

∂C

∂t
= dn∇ ·

[
∇C − CαCC

Vn(ξCC)
ϕ(C +R)

∫
Bn

ξCC

C(x+ y, t)ey dy − CαCR

Vn(ξCR)
ϕ(C +R)

∫
Bn

ξCR

R(x+ y, t)ey dy

]
,

∂R

∂t
= dn∇ ·

[
∇R− RαRC

Vn(ξRC)
ϕ(C +R)

∫
Bn

ξRC

C(x+ y, t)ey dy − RαRR

Vn(ξRR)
ϕ(C +R)

∫
Bn

ξRR

R(x+ y, t)ey dy

]
.

(12)

In the case dn = 1, this is the same as Equations (1) in the main manuscript for DC = DR = 1. The case
DC = DR = dn = 1 is the only case we are interested in for our numerical analysis. However, note that one
could set d ̸= 0 and rescale the α′

ijs to return Equations (1) of the manin manuscript for any non-zero values
of DC and DR, if required. We leave this general case as an exercise for any interested reader.
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Finally, when comparing between IBM and PDE formulation, it is possible rescale by any constant A, by
setting C 7→ C/A, R 7→ R/A, and αij 7→ Aαij , for i, j ∈ {C,R}. This can be valuable, as the total mass in
the IBM version is by definition the number of individuals. Therefore this rescaling allows comparisons can be
made between a single set of PDEs, where the total mass of A and B is fixed across all the PDE analysis, and
corresponding IBMs with different numbers of individuals.

B Linear Stability Analysis

Following the standard approach (e.g. [1]), we consider small heterogeneous perturbations of the spatially
uniform steady state (Cs, Rs), i.e. C(x, t) = Cs+C̃(x, t) and R(x, t) = Rs+R̃(x, t), with |C̃(x, t)|, |R̃(x, t)| ≪ 1.
Substituting into Equations (1) of the main manuscript, linearising about (Cs, Rs), and looking for solutions of
the form C̃, R̃ ∝ eik·x+λt (where k denotes the wave-vector and λ is the growth rate) leads to the dispersion
relation

λ2 + C(k)λ+D(k) = 0, (13)

where C(k) and D(k) are given by

C(k) = k2(DC +DR)− k (ΛCC + ΛRR) (14a)

D(k) = DC DR k4 − k3 (DR ΛCC +DC ΛRR) + k2 (ΛCC ΛRR − ΛCRΛRC) . (14b)

Each Λuv function represents the nonlocal contribution for each interaction and is evaluated as proposed in [2],
where the authors extend pattern formation analysis to higher spatial dimension for models of form (1a)-(1b).
They are given by:

ΛUV = Us
2π

n
2

Γ(n2 )

αUV

Vn(ξUV )
ϕ(Us + Vs)

∫ ξUV

0

yn−1 j
(n)
1 (ky) dy, (15)

where k = |k|, y = |y| and U, V ∈ {C,R} with corresponding homogeneous steady state Us, Vs ∈ {Cs, Rs}.
In the expression above, j

(n)
1 (x) denote the first order nth dimensional hyperspherical Bessel functions. In

particular, j
(1)
1 (x) = sin(x) and j

(2)
1 (x) = J1(kx), where J1 denotes the first order Bessel function of the first

kind.
In 1D (n = 1), after a few rearrangements, the nonlocal terms in Eq. (15) reduce to

ΛUV = UsαUV ϕ(U + V )ΓUV , where ΓUV =
1− cos(ξUV k)

ξUV k
, (16)

for U, V ∈ {C,R}, Us ∈ {Cs, Rs}.
In 2D (n = 2), we instead have

ΛUV = 2Us
αUV

ξ2UV

ϕ(Us + Vs)

(
−ξUV

k
J0(kξUV ) +

1

k2

∫ kξUV

0

J0(p)dp

)
, (17)

where J0 is the zero order Bessel function of the first kind.
To assess the potential for pattern formation, we investigate when the uniform steady state is stable to

spatially homogeneous perturbations (i.e. ℜ(λ+(0)) ≤ 0, where λ+ = 0.5(−C +
√
C2 − 4D)) and unstable to

spatially inhomogeneous perturbations (i.e. ℜ(λ+(k)) > 0, for some k > 0 – we refer to any such k as unstable
wavenumbers). The former condition is always satisfied. The latter holds if and only if C(k) < 0 or D(k) < 0,
for some positive k. The tractability of the 1D dispersion relation allows for the derivation of some general
insights. Specifically, in 1D (using the simplified form ϕ ≡ 1 for consistency with our numerics) the condition
on C gives

Cs αCC ξCC +Rs αRR ξRR > 2 (DC +DR), (18)

which shows that an instability is possible when the positive homotypic interactions dominate over diffusion:
i.e. at least one of the populations has a sufficiently strong self-attraction.

Moreover, for instances in which pattern formation is predicted, we distinguish between Turing instabilities
(i.e. ℑ(λ+(k)) = 0 for unstable wavenumbers) and Turing-wave instabilities (when ℑ(λ+(k)) ̸= 0 for at least
one of the unstable wavenumbers); in the latter, solutions are expected to oscillate in space and time as they
diverge from the uniform steady state. Turing-wave patterns require C2(k)− 4D(k) < 0 and, for the 1D model
with ϕ ≡ 1 and DC = DR = 1, this leads to

(Cs αCC ξAA −Rs αRR ξRR)
2 + 4Cs Rs αCR ξCR αRC ξRC < 0, (19)

Thus, in 1D, Turing-wave patterns may be possible under a sufficiently strong chase-and-run interaction to
emerge.
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Figure S1: Parameter spaces for pattern formation predicted by the LSA in 1D and 2D, for increasing values of
(a) the chase-and-run interactions and (b) all interactions ranges. We classify the resulting solutions as: uniform
solution (blue), stationary pattern (yellow), dynamic pattern (green). The dotted boxes highlight the values
considered in the numerical studies presented in the main text, compare respectively with Figure 3(a) (1D) and
Figure 4(a) (2D). We adopt ϕ(C,R) = 1 in 1D, ϕ(C,R) = 1/(1 + C + R) in 2D. Other model parameters are
set as DC = DR = 1, Cs = Rs = 1.

In Figure S1 we plot the predicted parameter space for patterning in both 1D (using ϕ ≡ 1) and 2D (using
ϕ ≡ 1/(1 + C + R)) across (ξR, ξC) space. Note that the middle panels in Figure S1(a) in the top and bottom
rows correspond to the simulation study settings of Figure 3(a) and Figure 4(a), respectively. In both instances,
the regions of predicted patterning match with the results of the numerical simulations. Moreover, the growth
rate – by which we mean max{ℜ(λ+(k))}, an indicator of how quickly solutions are expected to diverge from the
steady state – is found to increase if we move away from the stability region (paths (i)-(ii)-(iii), (i)-(ii)-(iii)-(iv),
(i)-(ii)-(iii)-(v)) of Figure 3(a), see also Figure S2(a). From left to right we show the impact of an increasingly
strong chase-and-run interaction which, for a moderate interaction leads to a broad transition from Turing to
Turing-wave type instabilities. A more dominant chase-and-run, though, has a diverging impact in 1D and 2D,
where in the former we observe that in 1D patterns are near ubiquitously predicted to be of Turing-wave like,
while in 2D they are of Turing-like. This is consistent with the significant differences between 1D and 2D noted
previously in [2]. We note that if we simultaneously increase all interaction strengths, any regions of uniform
solutions are found to reduce and instabilities are predicted to form under smaller interaction ranges, see Figure
S1(b).

Finally, under a strong chase-and-run parameter setting and in the absence of homotypic interactions (αCC =
αRR = 0), the sign structure in the Jacobian matrix reveals that when ξC > ξR the two populations exhibit an
out-of-phase Turing instability (the entries in the rows of the Jacobian matrix have the same sign). Otherwise,
the two populations remain in-phase in the emerging pattern (the entries in the rows of the Jacobian matrix
have opposite sign), see Figure S2(b). This further reinforces the potentially strong influence of interaction
range on the system.
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Figure S2: (a) Real and imaginary parts of λ+ for different values of the sensing range ξ. In particular, Path 1
corresponds to the diagonal of Figure 3(a); Path 2 corresponds to path (i)-(ii)-(iii)-(iv) of Figure 3(a); Path 3
corresponds to path (i)-(ii)-(iii)-(v) of Figure 3(a). (b) Parameter space for pattern formation predicted by the
LSA in 2D, for αCC = αRR = 0, αCR = −αRC = 300. We classify the resulting solutions as: uniform solution
(blue), in-phase Turing instability (brown), out-of-phase Turing instability (orange). We adopt ϕ(C,R) =
1/(1 + C +R). Other model parameters are set as DC = DR = 1, Cs = Rs = 1.

C Numerical methods

For the 1D simulations we adopt a Method of Lines approach. Specifically, we discretise the domain [0, L] into
a regular lattice of spacing ∆x and solve the resultant system of time-dependent ODEs. Note that the discreti-
sation of the nonlocal terms exploits a Fast Fourier Transform technique to efficiently calculate the integral: full
details of the numerical method itself are provided in [3]. For all 1D simulations we have set ∆x = 0.05. The code
used to solve Equations (1) of the main manuscript in 1D is available at https://zenodo.org/records/13772853.
For the 2D simulations we use the spectral numerical scheme described in [4]. We discretise the spatial domain
[0, L]× [0, L] by defining the grid points (xi, yj), where xi = i∆x, yj = j∆y, and i, j ∈ {0, 1, . . . , 2n − 1}, with
n = 7 for L = 10, and n = 8 for L = 20. The code used to solve Equations (1) of the main manuscript in 2D is
available at at https://zenodo.org/records/13772853.

D Additional figures
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Figure S3: (a) Pattern selection across interaction range space. The form of pattern is classified following a
simulation at each (ξC , ξR) pair as: uniform solution (gray), spatiotemporal oscillations (white), population
chase-and-run (magenta), stationary aggregates (yellow). Here, αCC = αCR = −αRC = αRR = 5. (b) Pattern
selection across heterotypic interaction range space (ξRC , ξCR). We set ξCC = ξRR = 1 and αCC = αCR =
−αRC = αRR = 3. (c) Different forms of stationary aggregate when 1 = ξC < ξR = 1.5 and αCC = αRR = 3:
(top) completely segregated, αCR = 1 αRC = −5; (middle) mixed/segregated, αCR = 3 αRC = −3; (bottom)
completely mixed, αCR = 5 αRC = −1. (d) Chase-and-run, where a group of runners is periodically dropped.
ξC = 1.5, ξR = 1, αCC = αCR, αRR = 3, αRC = −1.5. (e) Chase-and-run on a larger domain ξC = 1.5, ξR = 1,
αCC = αCR = αRR = 3, αRC = −3. For all simulations in this figure, DC = DR = RS = CS = 1 and initial
conditions are dispersed on a domain of length L = 10 for panels (a) - (d), and L = 20 for panel (e).

Figure S4: (a) Pattern selection across (ξR, ξC) space for 2D simulations. The form of pattern is classified
following a simulation at each (ξR, ξC) pair as: uniform solution (gray), spatiotemporal oscillations (white),
population chase-and-run (magenta), stationary aggregates (yellow). For the top panel we consider uniformly
weak interaction strengths (αCC = αCR = −αRC = αRR = 6), while for the bottom panel homotypic interaction
strengths are weak (αCC = αRR = 6) but heterotypic interaction strengths are strong (αCR = −αRC = 20).
(b) Snapshots for the simulations marked in (a, top panel), showing (i) periodic oscillations; (ii) chase-and-run.
(c) Simulation of the 2D model on a larger domain, showing that chase-and-run still forms robustly – the
configuration shown at t = 125 persistently moves in the direction of the arrow with constant shape and speed.
Note that the interaction strength and ranges for this simulation are as in Figure 4. For all simulations in this
figure DC = DR = Rs = Cs = 1 and initial conditions are dispersed.
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