
DOCTORAL THESIS

Statistical methods for longitudinal
medical data with applications.

Author:
Martina AMONGERO

Supervisor:
Prof. Mauro GASPARINI

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy in Pure and Applied Mathematics

Statistics and Data Science Group
Department of Mathematical Science Giuseppe Luigi Lagrange

POLITECNICO DI TORINO - UNIVERSITÀ DEGLI STUDI DI TORINO

May 2024

https://www.polito.it/en/staff?p=martina.amongero
https://www.polito.it/personale?p=mauro.gasparini
https://www.disma.polito.it/la_ricerca/gruppi/statistica_e_scienza_dei_dati
https://www.disma.polito.it/il_dipartimento
https://www.polito.it/


i

Abstract

In this thesis, we discuss the use of longitudinal data in biostatistics and their anal-
ysis, focusing on three specific real cases of study.

Longitudinal data refer to collections of repeated measurements of specific vari-
ables of interest at multiple time points. Their analysis offers many advantages:
among others, it enables the evaluation of temporal evolutions of quantities of in-
terest (biomarkers, tumor size, daily counts,..), also from an individual perspective,
and it provides stronger evidence for causal relationships. Various statistical meth-
ods can be used to analyze longitudinal data. They range from generalized mixed-
effect models, growth and evolution modeling (often combined with the mixed-
effects structures), to time-to-events analyses. However, such statistical method-
ologies might sometimes involve complicated issues to deal with, especially those
related to censoring and missing data problems.

In this work, we present three longitudinal studies. (I) The first one focuses on
modeling and forecasting the COVID-19 pandemic in Italy using a newly developed
compartmental model called SIPRO. Its analysis shows the necessity of extending
the well-known SIR model to account for the asymptomatic part of the population,
in order to realistically describe the COVID-19 pandemic. Moreover, it warns about
identifiability issues that arise when the extended model is too complicated with re-
spect to the collected information. (II) The second one focuses on longitudinal data
from prostate cancer patients and it aims at estimating the optimal time to recom-
mend an expensive examination for prostate cancer patients who presented a resur-
gence after surgery. In particular, this study highlights that better estimates can be
obtained, with respect to logistic models applied so far, using a more complex joint
model that incorporates all the patients clinical history. (III) Finally, the third one
addresses the practical implementation of pre-existing methodologies discussed in
the literature. Specifically, it focuses on adapting one of these methods to account for
informative withdrawal in recurrent event problems, with the aim of estimating vac-
cine efficacy. Based on a real case study, provided by GSK, this work shows how to
obtain more reliable estimates in case of missing data due to informative censoring,
and warns about numerical issues that can arise during the analyses.
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Introduction

In statistics, measurements of a set of variables that are repeated over time from
the same unit are typically referred to as longitudinal data. Examples of longitu-
dinal studies include tracking the academic performance of students over several
years, observing the health condition of individuals at regular intervals to study dis-
ease progression, or understanding the economic trends of a country over several
decades.

In biostatistics, the units of longitudinal studies are usually patients who are fol-
lowed by researchers over an extended period, and their data are recorded at specific
intervals. Those data can be used to track changes and patterns over time, making
longitudinal studies particularly valuable for understanding trends, growth, and de-
velopment, as well as investigating cause-and-effect relationships. In the following,
we describe some advantages of the use of longitudinal data.

• Temporal Insight: longitudinal data allow researchers to examine changes and
developments over time, capturing the dynamics of the variables under study.

• Individual Variation: by studying the same individuals over time, researchers
can account for individual differences and analyze how different people re-
spond to various factors.

• Causality: longitudinal studies can provide stronger evidence for establishing
causal relationships between variables, as researchers can observe changes oc-
curring before and after specific events or interventions.

However, many challenges can also arise with longitudinal data analyses. Some of
the major ones are listed below.

• Censoring: some participants may drop out of the study over time, leading to
missing data and potential bias.

• Time and Cost: conducting longitudinal studies can be time-consuming and
expensive due to the extended data collection period.

• Compliance: participants repeated exposure to measurements can lead to
changes in their behavior or responses, affecting the validity of the results.
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Several statistical methods may be used to analyze longitudinal data, includ-
ing repeated measures ANOVA, growth curve modeling, mixed-effects models, and
many more. These techniques account for within-subject correlations and dependen-
cies within the data, enabling more reliable conclusions regarding observed patterns
and changes over time.

When analyzing longitudinal data, two primary statistical questions of interest
arise, which lead to the application of different methodologies.

The first focus is on modeling, estimating, and forecasting the evolution of quan-
tities of interest, for one or multiple individuals. This quantity could be the growth
curve of a patient tumor or the concentration of a specific biomarker when examin-
ing clinical data, or the count of infected individuals during an epidemic.

The second focus is the analysis of repeated events over time, often referred to
as recurrent events. These events typically pertain to adverse occurrences like mi-
graines, heart attacks, respiratory obstructive events, epileptic seizures... In this sce-
nario, the primary interest lies in studying the times between these recurrent events
and their intensity over time. Researchers often compare these quantities between
patients receiving an experimental treatment and patients receiving the standard of
care to analyze the treatment efficacy.

This thesis presents three longitudinal studies based on real data. The first two
studies pertain to the first class of problems, while the last one belongs to the second
class of problems.

The first problem we address is the analysis of the Italian COVID-19 data by
means of a new epidemic model. In March 2020, Italy, like the rest of the world,
faced numerous challenges due to the COVID-19 pandemic. The scientific commu-
nity dedicated several efforts to studying the SARS-CoV-2 virus from various angles,
including medical, statistical, and economic perspectives. In particular, statisticians
focused on modeling and forecasting the dynamics of the pandemic using data of
different natures, including public daily data on infected and recovered patients.

Researchers applied classical tools in infectious disease modeling and statisti-
cal epidemiology [KM27; ISSb; WHO; Ita; AM92; Cap93; KR08; Mar15] and built
upon the experience acquired during the previous SAR-CoV outbreak in 2002-2003
[Gum+04]. Many different models have been constructed, mostly using population
dynamics or compartmental models. It became soon apparent that the well-known
Susceptible-Infective-Recovered (SIR) model was too simplistic to describe the com-
plexity of the pandemic [Mul21]. Consequently, numerous papers used extended
versions of the SIR model to analyze the COVID-19 pandemic in Italy.

A widely recognized model is the SEPIA introduced in [Gat+20], which divides
the population into nine categories: Susceptible, Exposed, Pre-symptomatic, In-
fected with symptoms, Asymptomatics, hospitalized, isolated, recovered, and de-
ceased. Other relevan models are the SEIRD model [LZ20] (with Susceptibles, Ex-
posed, Infected, Recovered, and Deceased), the SUIHTER model [Par+21] (with Sus-
ceptible, four different types of infected, namely Undetected with or without symp-
toms, Isolated, Hospitalized and Threatened, and finally Extinct and Recovered),
the SIDARTHE model [Gio+20] (with Susceptible, Infected, Diagnosed, Ailing, Rec-
ognized, Threatened, Healed and Extinct), the SI2R2D model [BCV21] (with Sus-
ceptible, Infected not notified, Infected notified, Recovered not notified, Recovered
notified, Deceased), and many others, e.g., [FP20]. For a comprehensive overview
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of COVID-19 literature related to Italian data modeled with compartmental models,
the reader can refer to [BL22].

Despite all the efforts, these models are hardly applicable to the analysis of public
data. In most countries, the only data that are publicly available are the epidemic
curves (the daily counts of the newly detected infections and that of the recovered
and dead) and bed occupancies in the hospitals (both in ICU and other units). In
this situation, inferring a complex model with numerous equations is impossible
without making several arbitrary choices about the parameter values: data simply
do not contain sufficient information to identify and estimate them all.

Our aim is to analyze the available data using a newly developed compartmen-
tal model called SIPRO (Susceptible-Infected-Positive-Recovered-Out model) that
extends the well-known SIR model while maintaining simplicity and identifiabil-
ity. Additionally, we seek to incorporate the heterogeneity of the Italian regions
[Del+20], by combining different regional SIPRO models with a mixed-effect ap-
proach [Pra+20].

We exploit advanced Bayesian techniques to estimate the model parameters. De-
spite the abundance of available data, the complex nature of the pandemic makes
inference challenging. Our primary focus is on estimating the asymptomatically
infected individuals percentage and understanding the impact of social distancing
measures on the pandemic progression in Italy. Furthermore, we estimate values
during the first wave (i.e., February-June 2020) and compare our results with those
obtained with the simple SIR model to assess the advantages and disadvantages of
our new methodology. For our analysis, we use Italian public data collected by the
Italian "Protezione Civile," available at the link [DPCa], starting from February 2020.

The second work is in collaboration with the researchers of the Urology depart-
ment of the San Luigi Gonzaga Hospital, in Orbassano (Torino). In an observational
study, they collected data from prostatectomized patients who underwent surgery
due to prostate cancer and then had a clinical resurgence. As prostatectomized pa-
tients are at risk of resurgence, during a follow-up period, they have been monitored
for prostate-specific-antigen (PSA) growth, an indicator of tumor progression.

The presence of tumor can be evaluated with an expensive exam, called Positron
Emission Tomography with Prostate-Specific Membrane Antigen (PET-PSMA). To
justify the high cost of the PET-PSMA and, at the same time, to contain the risk for
the patient, this exam should be recommended only when there is strong evidence of
tumor progression. Clinicians aim was estimating the optimal time to recommend
the exam. There is a huge literature, both from a clinical and a statistical point of
view, studying prostate cancer and, in particular, PSA, which has been proven to be
one of the most significant biomarkers associated with this cancer [Sta+87; LUV08;
Vic+09]. Tumor evolution and tumor resurgence have been directly modeled by
ordinary differential equations models, as in [TT17], or through the PSA biomarker
[Pea+91; Car+92; Mor+95; SC97; PT09; Hir+12].

With the development of new techniques and machinery to improve the early de-
tection of the location of tumors and resurgence, the estimation of the optimal time
to perform them has become a hot topic in the last decade. Since its introduction in
2016, PET-PSMA has gained high relevance. This technique has shown promising
results in various clinical scenarios, including the initial staging of prostate cancer,
detecting local recurrence after primary treatment, and identifying metastatic sites
in men with rising PSA levels due to biochemical recurrence, as [Eib+16; Ver+16;
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Afs+17; Fen+19; Fos+19; Hof+19; Reg+20] and many more. It can aid in the accu-
rate assessment of the extent and location of prostate cancer, leading to better treat-
ment planning and improved patient management. Some works also proved how
the PET-PSMA examination results correlate with PSA [Per+19]. However, the es-
timation of the optimal time to perform this examination to early detect locations
of disease is still an open problem. In [Lui+20], several biomarkers were studied to
find the ones significantly associated with prostate resurgence that can be used as an
indicator of the optimal time to perform the examinations.

The aim of our work is to construct a sensitive model to improve the estimation of
time-to-examination. Our proposed model incorporates new information each time
a new patient enters the dataset. Based on the patients history and collected data, we
develop a hierarchical Bayesian model that jointly describes the PSA growth curve
and the probability of a positive PET-PSMA result. By utilizing all past and present
information about patients PSA measurements and PET-PSMA results, we aim to
provide an informed estimate of the optimal time for examinations, thus enhancing
current medical practices.

The third project is in collaboration with GSK Siena (Italy) and GSK Rixensart
(Belgium) and aims at analyzing data from a clinical trial involving patients affected
by Chronic Obstructive Pulmonary Disease (COPD). COPD is characterized by air-
flow obstructions known as acute exacerbations, categorized as mild, moderate, or
severe. The frequency of these adverse events can vary significantly among patients.
To address this issue, GSK developed an investigational vaccine that aims at reduc-
ing the frequency of moderate and severe exacerbations. Details about the safety
and efficacy analysis conducted in phase 1 and phase 2b of the clinical trials can be
found in [And+22; Aro+22].

Our aim is to re-analyze the clinical study data to make a sensitivity analysis,
exploiting different models and making different assumptions about the missing
data structure.

In the field of recurrent events, numerous models have been developed to un-
derstand the relationship between repeated occurrences of individual events. Exam-
ples of these models include the semi-parametric Andersen-Gill (AG) model [AG82]
and the Prentice-Williams-Peterson model [PWP81]. Additionally, other approaches
consider the interdependence of recurrent events by using shared random effects, as
seen in joint frailty models [TD04], or by modeling it through a nuisance parameter,
like the frailty parameter in a Negative Binomial model [Jah08].

However, the modeling task is further complicated by the presence of infor-
mative censoring, when individuals experiencing frequent exacerbations are more
likely to withdraw from the study. In the literature, the Inverse Probability Cen-
soring Weights approach (IPCW) [RR92; Rob93; RF00] is a well-known method to
correct models while accounting for informative censoring. Nonetheless, correc-
tions for informative censoring in the context of recurrent events, especially with
time-varying covariates, are not commonly applied in practical scenarios [Wil+18].

The aim of our work is to provide a user-friendly introduction to IPCW for re-
current events data, explaining in detail how to apply the AG model, in conjunction
with IPCW, based on the theoretical explanations given in [Mil+04]. We provide a
step-by-step code to simulate and analyze the data. The method is finally applied to
the COPD vaccine trial.
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In addition, other collaborations with the Laboratory for Cardiovascular Theranos-
tics, Cardiocentro Ticino Foundation (Lugano, Switzerland), and with the Division of
Internal Medicine and Hypertension, Dipartimento di Medicina, Università degli Studi
di Torino (Torino, Italy), produces to some medical papers not included in this thesis
[Amo+20; Bur+20a; Bur+20b; Buf+21; Bur+21; Bur+22a; Bur+22b].

The thesis incorporates not only theoretical explanations and results but also the
implemented and utilized R code (with R version ≥ 3.4). It is structured into two
main parts. Part I presents evolution and dynamic problems and is composed of
three chapters:

• in Chapter 1 we give some basics of Bayesian statistics and Markov Chain
Monte Carlo algorithms;

• in Chapter 2 we present the analysis of the COVID-19 data;

• in Chapter 3 we present the analysis of the prostate cancer dataset.

Part II presents the recurrent events problem and is composed of three chapters:

• in Chapter 4 we provide some basics of survival analysis;

• in Chapter 5 we provide some basics of recurrent events settings and algo-
rithms;

• in Chapter 6 we present the analysis of the COPD dataset.

Finally, in Chapter 7, we sum up the results and give some overall considerations,
discussing future research lines.
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Part I

Bayesian inference for the
dynamics of longitudinal data
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Chapter 1

Background of Markov Chain
Monte Carlo methods

This section shortly gives the fundamentals of Bayesian parametric inference which
the first part of the thesis is based on. In particular, we give some fundamentals of
Markov Chain Monte Carlo (MCMC) algorithms and related techniques used and
learned before and during the Ph.D. period. No full details are given, but some
references are provided.

We introduce the concept of prior, posterior, proposal, and predictive densities,
and we clarify how these quantities are related to the standard Gibbs update. Then,
we go into detail about how to define conjugate prior in easy and more complex
settings, giving details on the Metropolis-Hastings algorithm and discussing how to
tune and adapt the proposal densities. Finally, we describe the parallel tempering
algorithm to deal with multimodal problems. In the following, we refer to random
variables with capital letters and to their realizations with small ones.

The general application of MCMC algorithms is to infer the distributions of the
parameters of a model of interest using the information given by the collected data.
We call {yi}n

i=1 the data, which are independently collected from the distribution
fY |Θ( · | θ) with unknown p-dimensional parameter Θ. The main statistical interest
is estimating θ and its conditional distribution fΘ|Y( · | y1, . . . , yn). The main idea of
MCMC methods is to infer the latter distribution using Bayes’ theorem, namely

fΘ|Y(θ | y1, . . . , yn) =
fY|Θ(y1, . . . , yn | θ) fΘ(θ)

fY(y1, . . . , yn)
. (1.1)

In particular, MCMC methods aim at constructing a Markov Chain whose stationary
distribution is the target density fΘ |Y. Thus, simulating realizations of the chain for
a sufficient number of iterations provides samples from the stationary distribution
of interest. Generally, statisticians refer to fΘ( · ) as prior density, as it encapsulates
all the prior information available about the parameter of interest, to fY|Θ( · | θ) as
likelihood, and to the target density fΘ|Y( · | y1, . . . , yn) as posterior density.

1.1 Gibbs sampler

The problem of estimating the p-dimensional density of Θ is usually decomposed
in p smaller steps, thanks to the Gibbs Sampler scheme (GS). This iterative scheme
is particularly useful when we can simulate from the single conditional densities
fΘj|Θ(−j)

( · | y1, . . . , yn, θ(−j)), also called full conditionals, for each component j of Θ,
where Θ(−j) is the vector Θ except for the j-th component, and θ(−j) its realization.
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After initializing the vector Θ of parameters to θ0, the b-th iteration of the Gibbs
sampler can be summed up as follow:

• step 1: simulate Θb
1 from fΘ1|Θ(−1)

( · | y1, . . . , yn, θb−1
2 , θb−1

3 , . . . , θb−1
p ),

• step 2: simulate Θb
2 from fΘ2|Θ(−2)

( · | y1, . . . , yn, θb
1, θb−1

3 , . . . , θb−1
p ),

...

• step p: simulate Θb
p from fΘp|Θ(−p)

( · | y1, . . . , yn, θb
1, θb

2, . . . , θb
p−1).

This method requires a good knowledge of the conditional densities: for particular
scenarios, some choices of prior densities fΘ( · ), called conjugate densities, allow to
directly compute the conditional densities of interest and to exploit the Gibbs sam-
pler structure. In the following, we report two particular scenarios that are widely
used later on in the thesis, for normal and binomial data problems.

The first case we present is the Gaussian-likelihood problem: if {yi}n
i=1 are

Gaussian distributed data (e.g., the temperature measured in some buildings) the
marginal density is then

yi
i.i.d.∼ N (µ, σ2), (1.2)

where Θ = (µ, σ) is the 2-dimensional parameter of interest. Assuming priors
µ ∼ N (µ0, σ2

0 ) and σ2 ∼ IG(a1, a2), the Gibbs scheme iteratively samples, for each
iteration b, from the following distributions

µb | yi, σ2b−1 ∼ N
(

1
1/σ2

0 + n/σ2b−1

(
µ0

σ2
0
+

∑n
i=1 yi

σ2b−1

)
,

σ2
0 + σ2b−1

σ2b−1 + nσ2
0

)
,

σ2b | yi, µb ∼ IG
(

a1 +
n
2

, a2 +
∑n

i=1(yi − µb)2

2

)
.

(1.3)

The example can be extended to include baseline covariates Zi = (z1i, . . . , zpi)
T col-

lected for each observation (e.g., the architectural features of each building under
analysis), to obtain the new model

yi
i.i.d.∼ N (ZT

i µ, σ2), with µ = (µ1 . . . µp)
T. (1.4)

In this case, the vector of parameters is Θ = (µ1, . . . µp, σ). A good prior choice is to
assume µ ∼ Np(M, V) and σ2 ∼ IG(a1, a2) and to iterate the GSS scheme

µb | yi, σ2b−1 ∼ Np(Mb−1
p , Vb−1

p ),

σ2b | yi, µb ∼ IG
(

a1 +
n
2

, a2 +
∑n

i=1(yi − ZT
i µb)2

2

)
.

(1.5)

where Vb−1
p =

( 1
σ2,b−1 ZTZ + V−1)−1 and Mb−1

p = Vb−1
p

( 1
σ2,b−1 ZT

i y + V−1M
)
, with

Z = (Z1, ..., Zn) matrix of the data of dimension p × n and y column vector of the
data.

The other common scenario we describe is the binomial one. Let {yi}n
i=1 be

the number of successes obtained out of ni independent trials (e.g., the number
of positive/negative examinations a patient had over a fixed period of time) and
Zi = (z1i, . . . , zpi)

T the vector of measured covariates collected for each observation
(e.g., physical characteristics of each patient), then the marginal density of the model
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is

yi
i.i.d.∼ Bin

(
ni,

1
1 + exp(−ZT

i µ)

)
. (1.6)

Polson et al. [PSW13] suggest using a Gaussian prior µ ∼ Np(µ0, V), and exploit
the Pólya-Gamma Gibbs update which gives the following full conditionals for the
parameters µ and the latent variables ωi, which are needed for the algorithm

ωb
i | µb−1 ∼ PG(ni, ZT

i µb−1),

µb | yi, ωb ∼ N (mωb , Vωb),
(1.7)

where

Vωb = (ZTΩbZ + V−1)−1,

mωb = Vωb(ZTk + V−1µT
0 ),

(1.8)

with k = (y1 − n1/2, . . . , yn − nn/2), Ωb = diag(ωb
1, . . . , ωb

n), and Z the matrix of the
full covariate, defined as for the Gaussian case.

This update derives from the intrinsic structure of the Pólya-Gamma density:

Definition 1.1.1 (Pólya-Gamma distribution). A random variable ω has a Pólya-Gamma
distrubution with parameters d > 0 and c ∈ R, indicated with ω ∼ PG(d, c), if

ω
D
=

1
2π2

∞

∑
h=1

Gk

(k − 1/2)2 + c2/(4π2)
, where Gk

i.i.d.∼ Γ(d, 1). (1.9)

Polson et al. [PSW13] show that the binomial likelihood parametrized by log-
odds can be represented as a mixture of Gaussians variables with respect to the
Pólya-Gamma distribution. In particular, they proved the Theorem 1.1.1.

Theorem 1.1.1 (Theorem Pólya-Gamma). Let pd,0(ω) denote the density of a random
variable ω ∼ PG(d, 0), with d > 0, then the following integral identity holds for all a ∈ R

(eψ)a

(1 + eψ)d = 2−dekψ
∫ ∞

0
e−ωψ2/2 pd,0(ω)dω, (1.10)

with k = a − d/2. Moreover, the conditional distribution of ω |ψ is p(ω |ψ) ∼ PG(d, ψ),
with ψ linear function of predictors.

Definition 1.1.1 and Theorem 1.1.1 can be exploited to write the single observa-
tion contribution to the likelihood, where ψi = ZT

i µ, as

Li(µ) =
(exp(ZT

i µ))yi

1 + exp(ZT
i µ)

∝ exp(kiZT
i µ)

∫ ∞

0
exp(−ωi(ZT

i µ)2/2)pni ,0(ωi)dωi, (1.11)
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with ki = yi − ni/2. Extending Equation (1.11) to the product over all the observa-
tion leads to the conditional density

p(µ |ω1, .., ωn, y1, ..., yn) ∝ p(µ)
n

∏
i=1

Li(µ|ωi)

= p(µ)
n

∏
i=1

exp(kiZT
i µ − ωi(ZT

i µ)2/2)

∝ p(µ)
n

∏
i=1

exp
(

ωi

2
(ZT

i µ − ki/ωi)
2
)

∝ p(µ)exp
(
−1

2
(m − Zµ)TΩ(m − Zµ)

)
,

(1.12)

with m = (k1/ω1, ...kn/ωn) and Ω = diag(ω1, ..., ωn). It can easily be seen that a
Gaussian prior on µ leads to the Gibbs scheme in Equation (1.7).

1.1.1 Metropolis-Hastings algorithm

Whenever the conditional densities are not directly computable, some other schemes
should be used to sample. The Metropolis-Hastings algorithm (MH) is an iterative
procedure to sample from a general target distribution fΘ|Y: starting from an appro-
priate value θ0 for Θ, for each iteration b, it proposes a new value θ∗ which can be
properly accepted or rejected. The current value of Θ at the beginning of iteration b
is here denoted by θb−1. The single update scheme, for iteration b, is the following

• step 1: propose θ∗ from the distribution Q(θ) with density function q( · | θb−1);

• step 2: set

θb =

{
θ∗ with probability a(θb−1, θ∗),

θb−1 otherwise,
(1.13)

where

a(θb−1, θ∗) =
fΘ|Y(θ

∗ | y1, . . . , yn)q(θb−1 | θ∗)

fΘ|Y(θb−1 | y1, . . . , yn)q(θ∗ | θb−1)
(1.14)

is called acceptance ratio and is usually difficult to compute, we refer to it as
ab for brevity. Exploiting Bayes theorem this can be rewritten as

a(θb−1, θ∗) =
fY|Θ(y1, . . . , yn | θ∗) fΘ(θ

∗)q(θb−1 | θ∗)

fY|Θ(y1, . . . , yn | θb−1) fΘ(θb−1)q(θ∗ | θb−1)
, (1.15)

which is easier to compute.

In particular, we refer to q( · ) as the proposal density, as it is used to sample pro-
posal candidates. The prior and proposal densities, initial conditions, and the num-
ber of iterations are user-defined values that significantly impact the algorithm’s
performance. Selecting an adequate number of iterations is crucial to ensure con-
vergence. Furthermore, the initial conditions have a substantial influence on the
first few iterations; thus, it is recommended to discard a certain number of sam-
ples. This step is called Burn-in. Additionally, if the values exhibit high correlation,
it is recommended to retain only every k-th sample instead of all of them. This
process is referred to as thinning. Finally, by exploiting the obtained estimation,
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we can make predictions for the new variable Ỹ through the predictive distribution
fỸ|Y( · | y1, . . . , yn).

Choosing the proposal density is the most challenging part of the MH algorithm.
One of the most exploited proposal densities is based on random walk structure, in
particular on the symmetric normal random walk for parameters defined on R. The
main advantage of symmetrical proposals is that they cancel out from the acceptance
ratio ab. If Θ is a one-dimensional parameter, the proposal density for θ∗, at iteration
b, is equal to

q(θ∗ | θb−1) =
1√

2πω2
exp

(
− 1

2ω2 (θ
∗ − θb−1)2

)
, (1.16)

where the standard deviation ω of the random walk step is a user-defined parameter
that has a big impact on the rate of convergence and on the final results, and it is not
trivial to be defined. In particular, ideally, the aim is to initially use ω big enough to
explore all the admitted values for Θ, and, once the algorithm reaches convergence,
to use a smaller ω to better explore the posterior. The best solution is to iteratively
adapt this quantity as part of the algorithm, allowing the variance to enlarge or de-
crease if the acceptance rate is not close to a user-defined threshold (ideally the ratio
at iteration b should be ab ≃ 0.25), as explained in [AT08]. We present here some
strategies to automatically tune ω in the univariate and the multivariate case.

For the univariate case, the adaptive proposal variance should be updated as

log(ωb) = log(ωb−1) + γb(âb−1 − a∗), (1.17)

where {γb} ⊂ (0,+∞)N is a user-defined sequence of possible stepsize, âb−1 is the
acceptance ratio evaluated at iteration b− 1 and a∗ the desired acceptance ratio (usu-
ally around 0.25) to achieve through the adaptive method. The non-increasing se-
quence {γb} satisfies the low decay assumption [AM06] such that ∑∞

b=1 γb = ∞, and
∑∞

b=1 (γ
b)1+δ < ∞ for some δ < 0. The full detailed theory about how to properly

tune θ can be found in [AT08]. The update step can be performed at each iteration,
but sometimes it is preferred to do it every m iteration to give the MCMC procedure
some steps to stabilize before adapting the proposal variance. In this case

âb−1 =
∑b−1

k=b−m ak

m
. (1.18)

The multivariate problem is an extension of the univariate case. If Θ is a p-
dimensional parameter, the proposal density for θ∗, at iteration j, is

q(θ∗ | θb−1) =
1√

det Ω(2π)p/2
exp

(
−1

2
(θ∗ − θb−1)TΩ−1(θ∗ − θb−1)

)
, (1.19)

where Ω is the covariance matrix that we need to carefully define. The adaptive
procedure (procedure 4 in [AT08]) suggests, at each iteration b, modifying Equation
(1.19) as

q(θ∗|θb−1) =
1√

det(λb−1Ωb−1)(2π)p/2
exp

(
−1

2
(θ∗ − θb−1)T(λb−1Ωb−1)−1(θ∗ − θb)

)
,

(1.20)
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where

log(λb) = log λb−1 + γb[ab−1 − a∗],

µb = µb−1 + γb(θb − µb−1),

Ωb = Ωb−1 + γb[(θb − µb−1)(θb − µb−1)T − Ωb−1].

(1.21)

The quantities θ0, µ0, Ω0, and the non-increasing sequence {γb} (see details above)
are user-defined.

Sometimes, the MH and GS algorithms are utilized in combination to estimate
a high-dimensional vector of parameters: the presented MH algorithm can be used
to sample from the target density fΘj|Θ(−j)

( · | y1, . . . , yn, θ(−j)) and then included into
the GS steps. We refer to this procedure as the Metropolis-within-Gibbs update.
In such cases, certain parameters are simulated by conditional distributions, while
others require a proposal via an MH update. We refer to [ST10] for further details
about Gibbs Sampler. While, for the MH algorithm, we refer to the first published
paper in which this algorithm was proposed [Met+53] and to a more recent one
[RC10].

1.2 Bayesian cross-validation predictive density

Up to this point, we have defined prior, posterior, proposal, and predictive densi-
ties as the fundamental components of Bayesian inference. Yet, another density of
significant statistical interest can be introduced: the cross-validation predictive den-
sity, a tool to assess the accuracy and reliability of predictive models. This density
is instrumental in evaluating the generalization performance of statistical models by
systematically partitioning the dataset into training and validation sets. Through
this iterative process, the model predictive power is tested on data not used dur-
ing the training phase, allowing for a robust assessment of its predictive accuracy.
This methodology is particularly useful when overfitting or underfitting may pose
challenges to model generalization. The predictive density provides a representa-
tion of the uncertainty associated with the model predictions, helping researchers
to make informed decisions based on a deep understanding of the model reliability
across different data scenarios. In this Section, we define the cross-validation pre-
dictive density and give small insights into its theoretical justification and practical
implementation. We refer to [GRS95] for additional details.

For the set of observation y = {yi}n
i=1, the cross-validation predictive densities is

defined to be the set
{ fYi |Y(−i)

(·|y(−i)), i = 1, 2, ..., n},

where y(−i) denotes the set of all elements of y except yi, and Y(−i) and Yi are respec-
tively the random variables corresponding to y(−i) and yi.
Cross-validation predictive densities are usually calculated as

fYi |Y(−i)
(yi|y(−i)) =

∫
fYi |Θ,Y(−i)

(yi|θ, y(−i)) · fΘ|Y(−i)
(θ|y(−i))dθ.

The distributions fYi |Y(i)
(yi|y(i)) permit us to work with univariate distributions.

Single-element deletion is standard in classical regression diagnostics and is called
leave-one-out cross-validation. However, we can also work with set deletion rather
than a single element, and the presented theory can be extended to this latter case.
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For clarity, we omit the subscript from distributions in what follows (in particular, in
Equations 1.22-1.23-1.24). From a computational point of view, the cross-validation
predictive density can be written as

f (yi|y(−i)) =
f (y)

f (y(−i))

=

(∫ f (y(−i), θ)

f (y, θ)
f (θ|y)dθ

)−1

=

(∫ 1
f (yi|y(−i), θ)

f (θ|y)dθ

)−1

,

(1.22)

that can be approximated, through Monte Carlo integration, as

f̂ (yi|y(−i)) =
1

1
B ∑B

b=1
1

f (yi |y(−i),θb)

, (1.23)

where {θb, b = 1, ..., B} is the posterior sample for Θ. Equation (1.23) can be utilized
to sample from the cross-validation density of interest in an importance-sampling
scheme. The key advantage of this method is that there is no necessity to rerun the
MCMC sampler using only y(−i) to obtain samples from the cross-validation density
f (yi|y(−i)). In fact, by appropriately leveraging the set {θb, b = 1, ..., B} we can
obtain the sample {θb∗, b = 1, ..., B} from f (θ|y(−i)) which enable us to draw {yb∗}
from f (y|θb∗), resulting in its component yb∗

i beeing a sample f (yi|y(−i)). Thus, to
sample θb∗, we only need to compute the importance ratio

f (θb|y(−i))

f (θb|y) ∝
1

f (yi|y(−i), θb)
= wb, (1.24)

and subsequently resample from the set {θb} with probabilities proportional to
{wb}. Further details on how to utilize the importance sampling scheme to sample
from cross-validation densities can be found in Section 9.6.3 of [GRS95].

1.3 Parallel Tempering

Estimating the parameters of complex hierarchical models is the target of MCMC al-
gorithms. Even when combining proper MH and GS updates, priors, and proposals,
problems characterized by multimodal density functions make the inference very
challenging. Specifically, the standard MCMC techniques described earlier may fail
or have a long convergence time, as the simulated parameter values can get trapped
in incorrect high-density regions of the parameter space.

To address complex density functions and low-identifiability problems, Sam-
bridge [Sam13] proposed a meta-algorithm that can be combined with MCMC up-
dates to improve the exploration of the parameter space, called Parallel Tempering
(PT). The main idea behind this technique is to run some MCMC methods, each with
likelihood proportional to f 1/Tl

Y|Θ (y1, . . . , yn | θ), each differing for the temperature pa-
rameter {Tl}l=1,...,L. The method then proposes swap-updates to exchange the values
of parameters between different chains. The role of the temperature parameter is to
flatten the multimodal distribution, allowing the chains to explore the space more



Chapter 1. Background of Markov Chain Monte Carlo methods 9

effectively. At iteration b, θb,j is the sampled values for chain j with temperature Tj

and θb,k the sampled values for chain k with temperature Tk. The main idea is to per-
form an MH step with the deterministic proposal to swap the parameters between
the chains. The corresponding acceptance ratio at iteration b, for chain j and k is

ab(j, k)=min
(

1,
[ fY|Θ(y1, . . . , yn | θb,k) fΘ(θ

b,k)

fY|Θ(y1, . . . , yn | θb,j) fΘ(θb,j)

] 1
Tj
[ fY|Θ(y1, . . . , yn | θb,j) fΘ(θ

b,j)

fY|Θ(y1, . . . , yn | θb,k) fΘ(θb,k)

] 1
Tk
)

.

(1.25)
The vector of temperatures T = (T1 = 1 < T2 < T3 < · · · < TL) should be carefully
defined by the user. The swap update is usually performed between couples of
neighboring temperatures. The base PT update should not be done at each iteration:
usually, a single PT update is performed after a batch of standard MCMC iterations
is run (for each temperature). The procedure is then repeated multiple times and the
results associated with Tl = 1 are retained to form the desired sample.
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Chapter 2

Analyzing the COVID-19
pandemic in Italy with the SIPRO
model

Part of this chapter has been published as the following conference communication:
Amongero, Martina and Bibbona, Enrico and Mastrantonio, Gianluca (2021) Ana-
lyzing the COVID-19 pandemic in Italy with the SIPRO model. In: Book of short
papers - SIS 2021, pp. 1568–1573. ISBN: 9788891927361. [ABM21]

Understanding disease transmission and modeling the spread of infectious dis-
eases has attracted a lot of interest from mathematicians and statisticians. In 2019,
with the worldwide COVID-19 pandemic, epidemic modeling has become a hot
topic. Researchers focused on very different aspects of the problem, using differ-
ent data: household transmissions, generation intervals, the spread of the different
variants, etc. These problems motivated the development of new approaches, mod-
els, techniques, and algorithms.

In this Chapter, we focus on the formulation of a new mathematical model that
incorporates the presence of unaccounted infections, estimated as latent quantities.
The model can be applied to analyze the publicly available data, to model and fore-
cast the spread of the epidemic, and the effectiveness of public policies.

To compare the new approach with the existing literature, we shortly recall the
definitions of the main quantities that are usually monitored during an epidemic,
such as the basic reproduction number, and then we review the two main modeling
approaches that have been proposed: mechanistic models and phenomenological
ones. Mechanistic models try to interpret the data by identifying the underlying ba-
sic mechanisms. Phenomenological models instead focus on making accurate fore-
casts, no matter what the data-generating mechanism is.

Then, we focus on compartmental models, introducing the well-known
Susceptible-Infected-Recovered model (SIR). Our new model, the Susceptible-
Infected-Positive-Recovered-Out (SIPRO) model, is then explained in detail, and
applied to model the time course of the epidemic in each of the 21 Italian regions.
To set up our inferential procedure, we integrate our SIPRO model in a statistical
framework where the distribution of the measurement errors is fully specified
together with a mixed effect model that takes into account regional heterogeneities.
We perform a simulation study to investigate the strengths and weaknesses of our
proposal and then apply it to the real data collected by the Italian Protezione Civile
[DPCa]1.

1License creative commons attribution 4.0 international
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2.1 Background of Epidemics models for COVID-19 data

All over the world, the COVID-19 pandemic has had a terrible impact on every-
day life, causing nearly 6.486.277 deaths by the end of July 2023. The first cases of
COVID-19 were described in December 2019 in Hubei, China. In a few months, the
virus spread worldwide, and on March 11, 2020, the World Health Organization de-
clared the pandemic stage. Given the severity of the disease, COVID-19 has gained
the attention of many researchers, who studied its evolution from different points of
view in the last two years. Many statisticians are contributing in different ways. We
discuss here the interest in mathematical models (mechanistic of phenomenological)
and the related inference task. Such models can help, in particular, the surveillance
of the epidemic, the evaluation of public policies, and the estimation of vaccine effi-
cacy. In this direction, the most interesting quantities are:

• number of people who get infected I(t) over time (which is usually measured
in days);

• the mean number of new cases deriving from a single infectious one (both the
so-called basic reproduction number ρ0 and effective reproduction number ρeff(t)),
defined below;

• the generation time s: the difference between the time of infection of an in-
dividual and the time of infection of one of the people the individual got in
contact with. Usually, the probability of getting infected after day s is indi-
cated with ωs.

These quantities are generally linked by the renewal equations:

I(t) = ρeff(t)
t

∑
s=1

I(t − s)ωs, (2.1)

where s is the number of infectiveness days. For further explanation, see [Fra07;
AMM22].

Definition 2.1.1. The basic reproduction number is a baseline quantity and gives the mean
number of new infections from an individual in the population who happens to be the first
and only one infected.

Definition 2.1.2. The effective reproduction number is a time-dependent quantity, which
gives the mean number of new infections from each infective individual in the population at
the current state at time t (when other individuals are possibly infected).

Values of the effective reproduction number greater than one indicate that the
epidemic will spread, while values smaller than one indicate that the pandemic will
eventually end. This is the reason why the government decisions were mostly based
on this quantity and its estimation became the goal of many approaches developed
during the last years.

Many methods have been proposed to estimate ρeff(t), but all of them need I(t)
to be known (or estimated). Thus, the biggest difficulty in estimating the effective re-
production number is to make inference on I(t) despite some data are not available:
the only data that can be collected are the number of positive people, the number
of hospitalized people, the number of people with complications, and the number
of deaths. On the other hand, the number of asymptomatic people (who do not
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make a nasopharyngeal swab) is unknown, as is the number of recovered people
who were not tested. However, the asymptomatic part of the population makes the
most significant contribution to the pandemic spread.

In Italy, the first ascertained case of COVID-19 was detected on January 30, 2020,
when two Chinese tourists tested positive. On February 21, the first outbreak was
found in Lombardy, starting a very quick growth in the number of cases that antic-
ipated the trend that was later seen in most European Countries and almost every-
where in the world. Since February 24, Italy started to keep track of the daily counts
of people that tested positive, and of those that have been declared removed in each
of the 21 Italian administrative divisions called regions. Official data are publicly
available at [DPCa]. Most of the literature we briefly recap here takes advantage of
these data. Few papers were able to also include data from the asymptomatic part of
the population, one of the most interesting analyses on Italian data being [Lav+20].
This study is based on the population of Vo’, an Italian municipality. Here more than
75% of the population was tested, even if without symptoms. However, note that
this work uses a restricted dataset which leads to very wide confidence intervals of
the parameters of interest.

2.1.1 Phenomenological models

Phenomenological models manage to give excellent estimations and forecasts at the
cost of losing the interpretability of the model describing the data, allowing for the
construction of more flexible models. In addition, modeling directly the quantity
of interest, without having to construct the whole structure to mimic the whole dy-
namics, speeds up computational and inference times. Many different structures
and models were used to analyze the Italian public data.

In [Ala+21], the authors proposed a parametric regression model based on the
use of the Richards’ curve (a generalized logistic function) in place of the widely
used exponential or polynomial trends. In particular, they replace the Gaussian as-
sumption for the distribution of log-daily counts (positive, infected,...) with the Pois-
son and/or Negative Binomial distributions for counts. The peculiarity of Richards’
curve lies in the ability to describe a great variety of growing processes, which in-
cludes as special cases the standard logistic growth curve and the Gompertz growth
curve. On the other hand, Bonifazi et al. [Bon+21] studied Equation (2.1) using an
exponential function to estimate the number of infected people and a fixed mean
generation time, computed by the Italian Istituto Superiore di Sanità. Those are just
two examples of the works published in this direction, but many other ones could
be mentioned.

However, as the main interest of our contribution is to analyze the applicability
of compartment models more than phenomenological ones, we do not make a full
overview of this literature but, instead, we focus more on the procedure utilized by
the Italian government, used later on in this chapter. The procedure applied by the
government to analyze the pandemic evolution and to make informed decisions is
based on a Poisson distribution assumption as

C(t)− Is(t)
i.i.d.∼ Pois

(
G(t)∑

s
ω(s)C(t − s)

)
,

ρeff(t) =
1
7

6

∑
s=0

G(t − s),
(2.2)
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where C(t) is the number of symptomatic cases with symptoms arising on day t,
G(t) is the daily transmissibility, Is(t) is the number of symptomatic cases with
symptoms arising on day t and arriving from a different region, and ωs defined as
before. The big advantage of this procedure was the possibility to exploit the infor-
mation contained in more detailed data owned by the Italian Government [GM20].

2.1.2 Compartmental models

Mechanistic models are highly popular as they interpret the data based on the un-
derlying mechanism. Compartmental models are a very general tool often applied
to describe the evolution of an infectious disease: a systematic review, published
in 2021 [Gna+21], revealed that 46.1% of the proposed models so far was based on
compartmental approaches.

The population is divided into labeled compartments (e.g., susceptible, symp-
tomatic, recovered, and so on). Each individual is originally assigned to one of
these compartments and can move between compartments at some rates. The
compartmental structure mimics the real word spread of the infection. The main
focus is studying nature, time, and rate of flows between compartments. The
most famous and simplest compartmental models are the SIR and the Susceptible-
Infectious-Susceptible (SIS) [KM27].

For the intrinsic structure of the COVID-19 pandemic and the available mea-
sured data, the direct application of these basic and well-known models was possi-
ble but not realistic. The reason being that only symptomatic people were tested and
counted in the daily number of infected cases, while the asymptomatic part of the
population, which was mainly responsible for new cases, was not measured [Gae20;
Mul21]. Consequently, applying the SIR or SIS model gives a wrong interpretation
of reality. To address this issue, many modifications of the SIR model have been
proposed, accounting for new compartments: asymptomatic, hospitalized, Inten-
sive Care Unit beds (ICU), deaths, and many more. For instance, the Italian public
data were analyzed in [Gio+20] with a SIDARTHE model, which accounts for symp-
tomatic and asymptomatic cases, both detected or not. Similarly, the SEIRD model
proposed in [LZ20] accounts also for the exposed people. The SEPIA model [Gat+20]
divides the population into nine categories: Susceptible, Exposed, Pre-symptomatic,
Infected with symptoms, Asymptomatics, hospitalized, isolated, recovered, and de-
ceased. Another model is the SUIHTER [Par+21] that considers Susceptible, and
four different types of infected, namely Undetected with or without symptoms, Iso-
lated, Hospitalized and Threatened, and finally Extinct and Recovered. Some mod-
els strongly rely on daily dead count: in [BCV21], the authors define a compart-
mental model SI2R2D that accounts for both detected and undetected infections and
assumes that only notified cases can die (compartments are: Susceptible, Infected
not notified, Infected notified, Recovered not notified, Recovered notified and De-
ceased). Finally, many other models, such as the one in [Gat+20], also include the
migration phenomena.

To compare and summarize the vast number of proposed compartmental mod-
els, several meta-analyses, comparative papers, and reviews are available [CVB22;
Kon+22]. For a comprehensive overview of COVID-19 literature related to Italian
data modeled with compartmental models, we refer the reader to [BL22]. Further-
more, as the pandemic evolved, new data were collected, and new tasks needed to be
solved: with the introduction of vaccines, in December 2020, all compartment mod-
els needed updates to include the immune segment of the population. For example,
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FIGURE 2.1: Graphical representation of SIR model.

the SIDARTHE model was modified to include vaccinations in [Gio+21]; moreover,
over time, the SARS-CoV-2 virus also mutated, requiring new models to distinguish
between different variants [Cal+21; FRL22; Del+23].

SIR model

The most famous compartmental model for epidemic dynamics is the SIR model
[KM27]. It divides a population of m individuals into three groups: people who
never had the illness before and can be infected by people who are infectious, re-
spectively S and I, and finally, people who recover from the infection and become
immune or died, R (see Figure 2.1).

Several simplifying assumptions are made: the population is assumed to be
closed, homogeneous, and homogeneously mixed. Moreover, the latent periods,
the time-varying infectivity, and the practical immunity are not taken into account.
We refer to the transition parameter associated with the infection (going from S to I)
as β and to the recovery parameter, that regulates the transition from I to R, as µ.

It also exists a stochastic version of the SIR model, that can be expressed through
the chemical reaction network reported in the reactions table below (Table 2.1), in-
volving three species {S, I, R}, namely Susceptibles, Infected, and Recovered, two
reactions {r1, r2}, one that regulates the infections and one that regulates the recov-
ery, and four complexes {S + I, 2I, R, I} [AK15].

The stochastic model assumes the infectious periods of different individuals to be
independent and identically distributed. During the infectious period, an infective
individual can make contact with another specific individual at a time that is sup-
posed to be from a time-homogeneous Poisson process with intensity β/m. If the lat-
ter individual is susceptible, then they will immediately become infected. If we de-
note with S(t), I(t), and R(t) respectively the number of individuals Susceptible, In-
fected, and Recovered at time t, then the stochastic process {(S(t), I(t), R(t)); t ≥ 0}
is a Markov process only if the infectious period has the lack-of-memory property.
For this reason, despite it is not the most realistic assumption, one particular choice
of the time distribution, which guarantees the Markovian property to hold, is the
exponential one.

The transition model can be summarized by a CRN reaction table that sums up
the possible transition from state (S(t), I(t), R(t)) = (s, i, r) and the respective rates,
as shown in Table 2.1.

TABLE 2.1: SIR reactions scheme.

reaction from to rate
r1 : s + i → 2i (s, i, r) (s − 1, i + 1, r) βsi/m

r2 : i → r (s, i, r) (s, i − 1, r + 1) µi
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If (s, i, r) is the current state of the system, with transition rate βsi/m the system
will evolve in (s, i + 1, r) through reaction r1, and with reaction rate µi reaction r2
will occur, leading to state (s, i − 1, r + 1). The probability of r1 or r2 occurring, are

P(r1) =
βs

βs + mµ
, P(r2) =

mµ

βs + mµ
. (2.3)

Let us consider a single infectious individual and let X be the number of people he
will infect before his recovery. Assuming β and s to be approximatively constant
over the short time range of a single recovery, X is a geometric distributed variable

X ∼ Geo
(

p =
mµ

βs + mµ

)
, (2.4)

where we consider a new infection as a failure and the recovery as success, so the
probability of success of the Geometric distribution coincides with P(r2). We can di-
rectly derive the mean number of people infected by a single infected individual as
the mean of the geometric distribution E[X] = βS/mµ, which gives the reproductive
number for the fixed time with status (s, i, r). It should be noted that, if S ≃ m, then
ρ = β/µ, which is the well-known basic reproduction number (indicated with ρ0)
associated with the initial status of the pandemic, namely the number of individuals
that a single infectious person can infect before they recover. All the stochastic the-
ory behind the SIR model can be translated into the deterministic SIR model when
the population size m is large enough [AK15]: using the property of Markov pro-
cesses, we can derive the deterministic and diffusion approximations for the whole
trajectories S(t), I(t), R(t) describing the number of people in each of the compart-
ments, for each time t. The deterministic version of the SIR model is determined by
the following Ordinary Differential Equations (ODE) system :

dS(t)
dt

= −βS(t)I(t)
m

,

dI(t)
dt

=
βS(t)I(t)

m
− µI(t),

dR(t)
dt

= −µI(t).

(2.5)

From the stochastic model, we can also derive the interpretation of the parameters:
in particular, 1/µ gives the mean number of days of the transition from I to R.

2.2 SIPRO model

The classical SIR model divides the population into three different compartments:
Susceptibles, Infectives, and Recovered (including deads). However, for a virus as
the Sars-Cov2, it seems inappropriate to compare official data on infected and re-
covered people with the curves predicted by the SIR model at least for two reasons
[Mul21]:

1. the infection is to a large extent carried by asymptomatic people that are nor-
mally not counted in official records;

2. people that tested positive, and hence counted as infected, are usually quaran-
tined and should not be considered as a source of contagion.
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FIGURE 2.2: Graphical representation of SIPRO model.

We propose a new model that can account for these two facts, but that, at the same
time, remains sufficiently tractable to be fit using public data. In our model, as in
the SIR, after having been in contact with an infected person, Susceptible individ-
uals immediately become Infected themselves. However, only some of the infected
are diagnosed by a test and then enter the Positive compartment. In this case, they
stop spreading the virus, since we assume they are isolated. People that have been
counted as positive finally enter the Out compartment once they either recover or
die. Those infected that remain undetected, will eventually recover or die, enter-
ing the Recovered compartment. The population is then divided into five different
compartments (see Figure 2.2):

• Susceptibles (S);

• Infectives (I);

• Positives (P), individuals that have been infected, and after testing positive,
are quarantined or isolated;

• Recovered (R), individuals that have been infected, and recover or die without
having been tested;

• Out (O), recovered or dead people who were accounted as positive.

The ODE system associated with SIPRO model is the following

dS(t)
dt

= −β(t)
m

I(t)S(t),

dI(t)
dt

=
β(t)
m

I(t)S(t)− µ I(t)− α I(t),

dP(t)
dt

= α I(t)− ν P(t),

dR(t)
dt

= µ I(t),

dO(t)
dt

= ν P(t).

(2.6)

We name this model SIPRO-(β(t), α, µ, ν). As for the SIR model, our dynamical sys-
tem is the large population limit of a stochastic model; the chemical reaction network
which describes the stochastic model is composed of five species {S, I, P, R, O}, six



Chapter 2. Analyzing the COVID-19 pandemic in Italy with the SIPRO model 17

complexes {S+ I, I, 2I, P, R, O}, and four reactions {r1, r2, r3, r4} in the reaction table
below (see Table 2.2). Moreover, the stochastic representation of the model allows
us to interpret the parameters: 1/ν can be interpreted as the mean time an individ-
ual spends in the positive compartment, while 1/α is the mean time between the
infection and its detection, and 1/µ is the mean time it takes to recover for a person
whose infection has never been detected. These interpretations can be carried over
to the deterministic limit model.

The function β(t) denotes the rate of infection as a function of time. It varies over
time due to changes in population behavior in response to containment measures
like social distancing or mask-wearing, as well as the spread of new viral strains
with different characteristics.

To derive the reproductive number for the SIPRO model, we first introduce the
transition scheme for the stochastic model in Table 2.2.

Let (s, i, p, r, o) be the current state of the system at time t. The system can evolve
in (s − 1, i + 1, p, r, o), (s, i − 1, p + 1, r, o), (s, i − 1, p, r + 1, o), (s, i, p − 1, r, o + 1) for
reactions r1, r2, r3 or r4, respectively, with reactions rate that are β(t)si/m, αi, µi and
νp. An infectious individual can lead to a new infection, through reaction r1, or can
become positive/recovered through reaction r2 or r3, with

P(r1) =
β(t)s

β(t)s + (µ + α)m
and P(r2 ∪ r3) =

(µ + α)m
β(t)s + (µ + α)m,

. (2.7)

Let us consider a single infectious individual and let X be the number of people he
will infect before his recovery. Assuming β and s to be approximatively constant
over the short time range of a single recovery, X is a geometric distributed variable

X ∼ Geo
(

p =
(µ + α)m

β(t)s + (µ + α)m

)
. (2.8)

We can directly derive the mean number of people infected by a single infected in-
dividual as

E[X] =
1 − p

p
=

β(t)s
(µ + α)m

. (2.9)

Observe that, for t = 0, the number s of susceptible individual is almost equal to
m, so that ρ0 = β(0)/(µ + α), which is the basic reproduction number. Evaluating
the expected number of secondary cases E(X) for each time t characterized by S(t)
susceptibles, we can define the effective reproduction number for the SIPRO model as

ρeff(t) =
β(t)S(t)
(µ + α)m

. (2.10)

Despite the SIPRO carries more information with respect to the original SIR model,

TABLE 2.2: SIPRO reactions scheme.

reaction from to rate
r1 : s + i → 2i (s, i, p, r, o) (s − 1, i + 1, p, r, o) β(t)si/m

r2 : i → p (s, i, p, r, o) (s, i − 1, p + 1, r, o) αi
r3 : i → r (s, i, p, r, o) (s, i − 1, p, r + 1, o) µi
r4 : p → o (s, i, p, r, o) (s, i, p − 1, r, o + 1) νp
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it remains dramatically simplified: it does not account for many features, as the in-
cubation period, the weekly pattern of the new infected caused by the decreased
testing on weekends, the possibility of reinfections, the age structure of the popula-
tion, the non-uniformity of the contact network. Its main advantage is that it remains
a tractable model.

2.3 Analyzing the COVID-19 pandemic in Italy with SIR and
SIPRO models

In this section, we present the statistical models in which we combine SIR and SIPRO
structures with the available data, to construct the algorithm used to make inference.
Using both models, we use the daily proportions of positive tested people and re-
covered recorded individuals in each region i, derived from the Protezione Civile
database [DPCa], dividing the daily counts by the total population of each region
(that we consider constant across the analysis). Note that the theory explained in
Sub-section 2.1.2 and Section 2.2 still holds if we substitute counts with proportions.
Let T denote the number of days analyzed, while n = 21 is the number of regions
considered. We first present the performances of SIPRO and SIR mixed models on
simulations to better understand the practical applicability of the proposed model:
data were respectively simulated from SIPRO and SIR models, and estimated with
the relative schemes. We then present the real data analysis of the first wave of the
pandemic (February 2020 – May 2020).

To the extent of clarifying the estimation of the underlying parameter of the
COVID-19 pandemic in Italy, we briefly outline the data collection process employed
by the Italian system (see Figure 2.32). The daily data collection process in Italy in-
volves four key steps: (i) within each region, data are recorded on an institutional
application by hour 16:30; (ii) the Ministry of Health verifies the data and transmits
them to the Department of Civil Protection (DPC) by hour 17:30; (iii) the DPC thor-
oughly analyzes and processes the dataset to standardize it by hour 18:00; finally,
(iv) the data are uploaded onto GitHub and the Dashboard. It’s worth noting that
the execution of this plan was influenced by the evolution of the pandemic, resulting
in variations during different phases. However, focusing on data collected during
the first wave (February 2020-July 2020), we can reasonably consider the regional
internal policy to be sufficiently homogeneous.

2.3.1 SIPRO statistical model to analyze Italian data: a simulation study

We assume that the epidemic evolution in the i-th region is described by an in-
dependent SIPRO-(βi(t), αi, µ, νi) model, neglecting contacts between the popula-
tions in different regions. However, the SIPRO compartments cannot be directly
observed. Instead, the available data comprises a noisy version of the proportions
of Positive and Out individuals, denoted as yP,i(t) and yO,i(t), respectively, which
we envision as a realization of the random variables YP,i(t) and YO,i(t). We can in-
troduce a third complementary component YC,i(t) = 1 −YP,i(t)−YO,i(t) that makes
our state vector Yi(t) = (YP,i(t), YO,i(t), YC,i(t)) naturally confined in the simplex
{y ∈ [0, 1]3 : ∥y∥1 = 1}.

Our choice is to model Yi(t) using a Dirichlet distribution centered at
(pi(t), oi(t), si(t) + ıi(t) + ri(t)) with a further parameter γ that rules the noise

2License creative commons attribution 4.0 international
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FIGURE 2.3: Italian mechanism for the collection and storage of the
Covid daily data (see [DPCb]).

amplitude and that we consider as common to all regions. The precise formulation
is given in Equation (2.14).

The assumption of no communication between regions is overall unrealistic, ex-
cept for the period of the national lock-down (from March 9 to May 4, 2020), but
public data do not contain any piece of information about the traffic flows, and it
would be impossible to estimate the contribution of people getting sick in a region
and infecting other people in a different one. While we know that Sars-Cov-2 can
reinfect its host due to the waning of immunity, this effect can be neglected, since
the time period considered in this study is short enough. The Italian regions have
a significant heterogeneity: their communication networks, containment measures,
testing policies, health systems, and availability of ICU beds are different and the
quantities (βi(t), αi, νi) are affected by such heterogeneity. We consider them as in-
dividual characteristics of each region. In particular, to help gather common infor-
mation, we assume that the νi are drawn for a common lognormal population (with
parameters ν and ων, as in Equation (2.16)) while, after some preliminary test, we
prefer not to impose any common distribution on the αi. The parameter µ is related
to the natural duration of the contagion of the undetected cases, we assume it to be
the same all over the countries. To simplify inference, the functions βi(t) are selected
into the parametric family of continuous linear interpolations between the values
βik = βi(tk) at pre-specified equi-spaced days {tk}K

k=1 = (k − 1)∆, where ∆ is the
number of days between each node of the time grid and the following one. More-
over, we impose that βi(t) is constant in the last time interval of the grid, namely
between day tK−1 and day tK = T − 1. Indeed, identifying a change in the repro-
duction number in the latest period is practically impossible since its effect would
be visible only later.

The values at the nodes, {βik} i=1...n
k=1...K

, are regional parameters to be estimated, and

we assume they are drawn from a common lognormal population with parameters
(β(k), ωρ) to be estimated. The solutions of each regional ODE system in Equation
(2.6), are uniquely determined by the parameters that we have introduced, and the
initial conditions xi(0) = (si(0), ıi(0), pi(0), ri(0), oi(0)) that have to be estimated as
well. Let us denote by

ϕ =

(
{xi(0)}i=1,...,n, {αi}i=1,...,n, {νi}i=1,...,n, {βik} i=1,...,n

k=1,...,K

)
(2.11)
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the vector of the individual (regional) parameters and by

θ = (log ν, ων, µ, γ, {log β(k)}k=1,...,K, ωβ) (2.12)

the vector of the global parameters. Adopting a Bayesian approach, our statistical
model is defined through the joint probability density

f (y, ϕ, θ) =
n

∏
i=1

T

∏
t=0

f (yP,i(t), yO,i(t), yC,i(t)|ϕi, θ) f (ϕi|θ) f (θ), (2.13)

where y = {yP,i(t), yO,i(t), yC,i(t)} i=1...n
t=0...T

, with yC,i(j) = 1 − yP,i(j)− yO,i(j), for all i

and t, ϕi = (xi(0), αi, νi, {βik}k=1,...,K), and the conditional probability densities in the
right-hand side are specified as follows, for i = 1, ..., n,

YP,i(t), YO,i(t), YC,i(t)|ϕi, θ
i.i.d.∼ Dirichlet

(
γ pi(t), γ oi(t), γ (1−pi(t)−oi(t))

)
, (2.14)

log(βik)|θ
i.i.d∼ N (log(βk), ω2

β), k = 1, ..., K, (2.15)

log(νi)|θ
i.i.d∼ N (log(ν), ω2

ν), (2.16)
1
αi

i.i.d∼ U (1, 30), (2.17)

while (
si(0) + ri(0), ıi(0), pi(0), oi(0)

)
|ri(0)

i.i.d∼ Dirichlet(4, 2, 2, 2), (2.18)

ri(0)
i.i.d.∼ U (0, 0.001), (2.19)

and f (θ) are the appropriate prior distributions we now define.
To infer the parameters of our model we use a Bayesian approach, with the fol-

lowing prior distributions

f (θ) = f (ν) f (ων) f (µ) f (γ) f (ωβ)
K

∏
k=1

f (β(k)), (2.20)

where the marginal priors of each parameter are

log β(k) ∼ log γ ∼ log ν ∼ log µ ∼ N (0, 1000), (2.21)

ω2
β ∼ ω2

ν ∼ IG(0.1, 0.1). (2.22)

Priors (2.18), (2.21), and (2.22) carry very little information; in particular, (2.21)
and (2.22) are standard weakly-informative choices commonly used for mean and
variance of random effects. On the contrary, on the other parameters, some prior
information is encapsulated in the prior densities. In particular, we assume the tran-
sition Infected-Positive time (namely 1/αi) is between 1 to 30 days (prior (2.17)). In
addition, we treat ri(0) in a slightly different way compared with other initial con-
ditions: as we expect it to be hardly identifiable, we constrain it in a reasonable and
realistic interval, assuming that at the beginning of the pandemic, the percentage of
recovered individuals was smaller than 0.1%. As can be observed from Equation
(2.19), it remains in a small interval around zero so that it does not strongly impact
the dynamics.

Our proposed model was tested on simulations, which helped us understand its
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strengths and weaknesses. In our first contribution [ABM21], we used a Metropolis-
within-Gibbs algorithm, obtaining quite good results but facing some identifiability
problems, despite the simplicity of the proposed model. Thus, we re-approach here
the estimation by combining the implemented Metropolis-within-Gibbs algorithm
with parallel tempering (see Chapter 1). The main problem concerns the recovery
transition from Infected to Recovered compartment: estimation of ri(0) and µ is
very challenging and negatively reflects also on the estimation of other parameters
of the model. This can be intuitively justified by the fact that the cumulative number
of Recovered individuals at day t is not really impacting the evolution of the pan-
demic (and thus the estimation of the Observed part of the pandemic which enters
directly into the likelihood): small fluctuations of the individual parameters αi and
βik around their true values can account for (small) deviations of µ from the true
values. The higher the information of the dataset under analysis, the lower the error
on the final parameters estimates.

The code, implemented in Julia 1.8.5, is composed of 6000 iterations of PT (out
of which 5000 discarded in burning), each composed of 1000 MCMC repetitions with
990 iterations discarded by burn-in, and the last one used to perform PT swap. For
each region i, at each iteration b, all the individual parameters are proposed using a
Metropolis-Hastings update. In particular, on (αi, xi(0)) we use a multivariate adap-
tive random walk proposal, on νi an adaptive univariate random walk proposal,
and, finally, on the nodes {βik} i=1,...,n

k=1,...,K
we use again a multivariate adaptive ran-

dom walk proposal. All proposals’ standard deviations are adapted using method
4 in [AT08], with hyperparameters γb+1 = 1/(b + 1)0.7 and α∗ = 0.25. Each time
we propose a new parameter we solve the ODE system numerically with the Euler
discretization scheme with a unit time step and compute the likelihood. All global
parameters are updated with standard Gibbs or Metropolis-Hastings updates.

We present here the result obtained on a simulated dataset. To better show the
low-identifiability problems, we present the results obtained on the same simulated
dataset (1) estimating all the parameters and (2) keeping µ fixed to the real value
(e.g., the one used to simulate the data). We report the percentage of individual
parameters correctly estimated (true values is in the 95% credible interval) in Table
2.3 and the posterior 95% credible interval with the true value of global parameters
in Table 2.4. Moreover, we report in Figure 2.4 the chain of the parameter µ, in the
case in which we try to estimate it, to show that the algorithm almost reaches the true
value (red solid line) but does not correctly identify it. For lack of space, we avoid

TABLE 2.3: Simulated SIPRO dataset - Results on individual parame-
ters.

Parameter Percentage (µ estimated) Percentage (µ fixed)
ıi(0) 80.95 95.24
pi(0) 47.62 47.62
ri(0) 0.00 0.00
oi(0) 28.57 23.81

αi 76.19 95.24
νi 90.48 90.48

βi(t) 92.55 76.30
ρeff

i (t) 82.35 95.13
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FIGURE 2.4: Chain of parameter µ (black). The horizontal red line
indicates the true value of the parameter.

reporting the fitted trajectories for each region and each compartment, but we define
an adapted-MSE time-dependent index to give an overall idea of the goodness of fit
of the SIPRO model.

Definition 2.3.1. Given the B posterior sampled trajectories {X̂b
i (t)}B

b=1, for each patient i,
and the true trajectories {Xi(t)}, the overall MSEX

adp(t) time dependent index is

MSEX
adp(t) =

n

∑
i=1

B

∑
b=1

(X̂b
i (t)− Xi(t))2

nB
. (2.23)

The adapted-MSE plot, for each compartment, is shown in Figure 2.5: the shape
of the trajectories and of the index is quite similar, as higher errors correspond to
higher proportions of people in the compartment. We also evaluate, for each trajec-
tory of interest, the percentage of times t such that the true value is in the posterior
95% credible interval (Table 2.5).

An overall view of the reported results shows that fixing the parameter µ largely
improves the estimation (in particular, the Infected part of the SIPRO model): the
percentage of correctly estimated individual αi goes from 76.19% to 100%, ıi(0) from
85.71% to 90.48%. A huge improvement can also be seen in the trajectory fit: the
percentage of correctly identified time points increase in all trajectories (for ı(t) from
64.35% to 92.86%). Parameter ri(0) still remains practically non-identifiable, but this

TABLE 2.4: Simulated SIPRO dataset - Results on global parameters.

µ estimated µ fixed
Parameter 2.5% Mean 97.5% Real 2.5% Mean 97.5%

log(ν) -3.203 -2.997 -2.795 -3.045 -3.211 -3.000 -2.796
ων 0.334 0.453 0.645 0.500 0.330 0.451 0.622
γ 5.859 5.915 5.967 6.000 5.846 5.902 5.957
µ 0.055 0.059 0.063 0.067 - - -

ωβ 0.091 0.156 0.735 0.100 0.084 0.113 0.153
log(β1) -0.772 -0.154 -0.019 0.000 -0.638 -0.089 0.015
log(β2) -1.061 -0.899 -0.816 -0.916 -1.048 -0.893 -0.827
log(β3) -1.064 -0.911 -0.640 -0.916 -0.928 -0.837 -0.692

log(β4) = log(β5) -1.921 -1.329 -0.449 -1.204 -1.119 -0.800 0.112
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FIGURE 2.5: Mean time-dependent MSE index (black-solid line and
black-dotted line) to evaluate the fit of SIPRO-mixed-model, for In-
fected, Positive, Recovered, and Out trajectories, respectively with
fixed µ = 1/5 and µ estimated (see MSE Definition 2.3.1). The red
line is the number of Infected, Positive, Recovered, and Out in Italy
for each day. The y-axes values of the red line are shown on the left-

side, while the ones of the black lines are on right-side.
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does not impact the overall performance of the method, as it only affects the Re-
moved part of the epidemic. Moreover, we note that the posterior density for ri(0)
coincides with the uniform prior we use. As the main goal of the SIPRO model is
to describe the asymptomatic part of the population that can transmit the infection
without being part of the daily counts, and, thus, estimate the effective reproduc-
tion number taking into account that most infections are carried on by them, the
results obtained give positive feedback on the model applicability. However, some
warnings and remarks need to be pointed out: the model identifiability (even when
we keep µ fix) is quite unstable, and particular parameter configurations can lead
to a total non-identifiability of the model. This, in particular, may happen when
si(t) or ıi(t) are almost zero, leading to a vanishing contribution of the transition
parameter βi(t) that becomes non-identifiable. For this reason, long periods of con-
trolled pandemic, with almost no cases, should not be part of the analysis, as results
are not reliable anymore. Moreover, as the impact of huge changes in the effective
reproduction number is delayed in time (which can be clearly seen by the time of
effectiveness of social distances measures), the last part of functions βi(t) is more
difficult to estimate.

Full Simulation Study

To assess the applicability of the SIPRO model and its corresponding MCMC code,
we conduct numerical tests across five additional scenarios. In what follows, we
refer to the case study presented in Section 2.3.1 as scenario S1. These scenarios,
distinguished by varying parameter values, are visually depicted in Figures 2.6 to
2.9. Changes include adjusting measurement noise, altering the level and/or timing
of the epidemic peak, and modifying the initial conditions levels. The performance
summaries of the algorithm are presented in Tables 2.6 to 2.7. As for the intrinsic
structure of the SIPRO model, parameters pi(t), oi(t), and νi, whose estimation di-
rectly relies on the collected data, are well-estimated across all analyzed scenarios.
However, low-identifiability issues affect other parameters. Initial conditions (ıi(0),
pi(0), oi(0)), typically low, pose challenges in estimation. Scenario S5 provides in-
sight into the impact of higher initial condition values, indicating that higher initial
conditions lead to improved estimation. Furthermore, we employ scenarios S1-S6 to
test the identifiability of βi(t) (and ρeff

i (t)) in different epidemic phases. Scenarios
S1-S4 represent ongoing epidemics with a sufficient infected proportion for estimat-
ing βi(t). Scenario S5 differs a little bit; it presents a situation when right after a
high peak of infections, the number of infected slowly decreases and almost reaches
zero: the number of infected is still high enough to give the necessary information to
estimate βi(t). Finally, Scenario S6, with infections rapidly decreasing to zero, indi-
cates a loss of identifiability for βi(t). Additionally, S1-S6 are utilized to examine the

TABLE 2.5: Trajectories percentage of correctly estimated values over
all times t.

Parameter Percentage (µ estimated) Percentage (µ fixed)
ıi(t) 71.21 95.90
pi(t) 83.94 87.38
ri(t) 71.87 81.45
oi(t) 82.23 84.22
si(t) 76.36 86.60
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impact of measurement noise (e.g., parameter γ) on estimation quality. As expected,
lower measurement noise leads to more accurate parameter and trajectory estima-
tions. In line with the earlier discussion in Section 2.3.1, simulations underscore the
persisting non-identifiability of ri(0). The posterior density is still identical to the
prior, implying that, when the simulated value falls outside the prior 95% interval,
it will not count in the percentage of the estimated parameter. Nevertheless, the
simulation study provides an overview of potential scenarios, offering guidelines
on real-world occurrences, how to address such situations, and which parameters of
interest yield reliable results. It specifically emphasizes that estimating the effective
reproduction number and the proportion of infective individuals becomes challeng-
ing during low-incidence transition periods, like the interval between one peak and
the following (e.g., summer 2020 in Italy). Therefore, additional attention should be
given when modeling these situations. From a practical standpoint, challenges arise
when estimating the random effect parameters (log βk) for time-nodes tk in this low-
incidence time window. A possible solution is to set only two nodes for the entire
period, defining the beginning and the end, thus reducing the number of parameters
reliant on a period with insufficient information. To further investigate the role of µ,
we test each scenario (S1-S6) with and without estimating it: fixing µ to its simula-
tion value yields overall better performance, as previously highlighted. Given that
the simulation study enforces the importance of carefully handling µ in the SIPRO
model, Section 2.3.1 provides additional insights into the model identifiability of µ.

TABLE 2.6: Percantage of correctly estimated individual parameters,
under different scenarios S1-S6, with µ as a parameter to be estimated
(µ) or µ fixed to the true value used to simulate the corresponding

dataset.

Param. S1 (µ) S1 S2 (µ) S2 S3 (µ) S3 S4 (µ) S4 S5 (µ) S5 S6 (µ) S6
ıi(0) 80.95 95.24 85.71 90.48 57.14 76.19 90.48 90.48 80.95 80.95 95.24 100
pi(0) 47.62 47.62 95.24 95.24 66.67 61.9 9.52 9.52 95.24 95.24 95.24 95.24
ri(0) 0 0 0 0 0 0 0 0 0 0 0 0
oi(0) 28.57 23.81 76.19 76.19 23.81 23.81 33.33 33.33 90.48 90.48 66.67 66.67

αi 76.19 95.24 66.67 85.71 61.90 100 85.71 100 90.48 61.90 85.71 95.24
νi 90.48 90.48 100 100 95.24 95.24 95.24 95.24 90.48 95.24 95.24 100

ıi(t) 71.21 95.20 70.10 88.43 60.74 92.30 77.13 94.41 89.31 82.00 42.97 49.56
pi(t) 83.94 87.38 94.63 97.07 88.37 89.99 89.94 91.86 94.08 94.30 71.54 73.53
ri(t) 71.87 81.45 74.20 80.12 77.91 84.33 84.94 89.42 84.61 84.27 83.00 82.83
oi(t) 82.23 84.22 90.75 91.25 81.67 84.05 84.33 85.05 97.67 97.51 91.09 91.14
si(t) 76.36 86.60 84.16 82.22 76.25 88.87 86.32 93.96 90.53 89.81 82.78 82.28

ρeff
i (t) 82.35 95.30 48.85 94.29 89.92 95.24 95.57 95.69 93.67 86.78 44.37 45.55
βi(t) 92.55 76.30 13.00 81.57 89.58 57.48 96.30 88.18 89.52 96.36 45.55 50.25
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TABLE 2.7: Quantile of global parameters, in different scenario S1-S6,
with µ as a parameter to be estimated (µ) or µ fixed to the true value.

µ estimated µ fixed
Parameter S2 2.5% Mean 97.5% Real 2.5% Mean 97.5%

log(ν) -1.672 -1.422 -1.178 -1.609 -1.678 -1.418 -1.151
ων 0.432 0.587 0.793 0.500 0.441 0.594 0.826
γ 9.919 9.970 10.013 10.00 9.911 9.961 10.009
µ 0.227 0.264 0.303 0.200 - - -

ωβ 0.172 0.285 0.551 0.100 0.116 0.167 0.304
log(β1) -0.919 -0.208 -0.007 0.000 -0.272 -0.067 0.028
log(β2) -1.597 -1.282 -0.524 -0.916 -1.163 -1.031 -0.924
log(β3) -1.869 -1.382 -0.416 -0.916 -1.102 -0.987 -0.880

log(β4) = log(β5) -3.089 -1.990 -0.090 -1.204 -1.522 -1.356 -1.225
Parameter S3 2.5% Mean 97.5% Real 2.5% Mean 97.5%

log(ν) -3.100 -2.842 -2.594 -3.045 -3.097 -2.858 -2.604
ων 0.424 0.579 0.810 0.50 0.428 0.574 0.803
γ 4.831 4.887 4.939 5.00 4.818 4.880 4.936
µ 0.054 0.058 0.058 0.067 - - -

ωβ 0.107 0.206 0.629 0.10 0.096 0.157 0.698
log(β1) -0.854 -0.215 -0.037 0.00 -0.404 -0.092 0.005
log(β2) -1.159 -0.852 -0.727 -0.916 -0.995 -0.842 -0.760
log(β3) -1.892 -1.094 -0.802 -0.916 -1.030 -0.901 -0.741

log(β4) = log(β5) -1.623 -1.020 -0.612 -1.204 -1.021 -0.739 -0.304
Parameter S4 2.5% Mean 97.5% Real 2.5% Mean 97.5%

log(ν) -3.090 -2.853 -2.611 -3.045 -3.115 -2.859 -2.592
ων 0.424 0.581 0.789 0.50 0.427 0.591 0.834
γ 5.866 5.917 5.968 6.00 5.852 5.908 5.959
µ 0.061 0.064 0.066 0.067 - - -

ωβ 0.103 0.187 0.587 0.10 0.098 0.151 0.484
log(β1) -1.187 -0.471 -0.293 -0.357 -0.562 -0.398 -0.285
log(β2) -1.485 -0.673 -0.483 -0.693 -0.727 -0.627 -0.484
log(β3) -1.406 -0.919 -0.718 -0.916 -1.071 -0.84 -0.623

log(β4) = log(β5) -2.996 -0.946 -0.382 -0.916 -0.931 -0.580 0.095
Parameter S5 2.5% Mean 97.5% Real 2.5% Mean 97.5%

log(ν) -1.668 -1.420 -1.168 -1.609 -3.115 -2.859 -2.592
ων 0.432 0.581 0.795 0.500 0.427 0.591 0.834
γ 9.963 10.010 10.060 10.000 5.852 5.908 5.959
µ 0.047 0.048 0.048 0.048 - - -

ωβ 0.100 0.202 1.338 0.100 0.098 0.151 0.484
log(β1) -1.641 -0.790 -0.623 -0.693 -0.562 -0.398 -0.285
log(β2) -2.849 -1.013 -0.616 -0.916 -0.727 -0.627 -0.484
log(β3) -5.011 -1.536 -0.658 -0.916 -1.071 -0.84 -0.623

log(β4) = log(β5) -1.399 -0.901 0.352 -1.204 -0.931 -0.580 0.095
Parameter S6 2.5% Mean 97.5% Real 2.5% Mean 97.5%

log(ν) -1.676 -1.417 -1.152 -1.609 -1.682 -1.423 -1.180
ων 0.433 0.586 0.819 0.500 0.429 0.588 0.777
γ 9.864 9.916 9.965 10.000 9.960 10.009 10.054
µ 0.199 0.200 0.202 0.200 - - -

ωβ 0.371 0.530 1.792 0.100 0.106 0.168 0.454
log(β1) -2.819 -0.092 0.230 0.000 -0.782 -0.697 -0.552
log(β2) -0.032 0.340 0.581 0.336 -2.123 -0.808 -0.461
log(β3) -14.000 -7.148 -2.867 0.336 -1.241 -0.970 -0.142

log(β4) = log(β5) 3.065 3.766 4.465 0.000 -1.175 -0.722 0.742
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FIGURE 2.6: Regional trajectories YP(t) for scenarios S1-S6.

FIGURE 2.7: Regional trajectories YO(t) for scenarios S1-S6.
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FIGURE 2.8: Regional trajectories i(t) for scenarios S1-S6.

FIGURE 2.9: Regional trajectories ρeff(t) for scenarios S1-S6.
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Robustness analysis for µ

In Section 2.3.1, we address the identifiability challenges inherent in applying the
SIPRO model, with a specific focus on the parameter µ. We emphasize the necessity
of fixing µ to enhance the estimation of other crucial parameters. While fixing µ to
the value of the simulated dataset during a simulation study is optimal, practical
considerations arise when dealing with real-world data. Despite numerous clinical
studies offering reliable estimates of the mean time to recovery for asymptomatic in-
dividuals (i.e., µ), we explored the robustness of our method to different choices of
µ. Using the dataset simulated under scenario S1, with µ = 1/15, we conduct a sen-
sitivity analysis by running the algorithm nine times. We vary the choice of µ from
a set of values {1/5, 1/10, 1/13, 1/14, 1/15, 1/16, 1/17, 1/20, 1/25}, which includes
the correct value. For each run, we assess the goodness of fit by calculating the per-
centage of correctly estimated individual parameters, presented in the heatmaps in
Figure 2.10. The top heatmap addresses trajectories initial values, α, and ν parame-
ters, revealing that all parameter estimates, except for α, remain largely unaffected
by changes in µ. As anticipated, for α, the estimation improves when µ is closer to
the true value. The bottom heatmap pertains to time-dependent parameters: trajec-
tories, βi(t), and ρeff

i (t). The darker central portion of the map indicates that smaller
differences between the true µ and the one used in estimation lead to improved
method performance. In both cases, slight variations from the true µ value, such
as 1/17 ≤ µ ≤ 1/13 in our sensitivity analysis, ensure consistently good method
performance. Upon examining the percentage of parameter estimations with µ es-
timated and µ fixed to unrealistic values, the findings suggest a practical guideline
for real-world applications. When there is the option to select a suitable value from
existing studies, fixing µ leads to robust and reliable results. On the contrary, when
reliable estimations for µ are not available in the literature, it is advisable to keep µ
as a parameter to be estimated using the MCMC procedure. This approach allows
flexibility in handling situations where precise information on µ is lacking, ensuring
a more adaptive and accurate modeling of the data.

2.3.2 SIR statistical model to analyze Italian data: a simulation study

To compare the performances of our model with the simpler SIR, we also construct a
statistical mixed model based on SIR dynamic and estimate the parameters of inter-
est with a Bayesian structure. The epidemic evolution in the i-th region is described
by an independent SIR-(βi(t), µi) model, assuming no contacts can happen between
the populations in different regions. We assume the data {yI,i(t), yR,i(t)}, realization
of the ranodm variables {YI,i(t), YR,i(t)}, are noisy observations of the proportion of
individuals in compartment I and R, for each region i-th region evaluated at day
t. We assume a noise structure quite similar to Sub-section 2.3.1, and therefore we
introduce a third complementary component YC,i(t) = 1 − YI,i(t) − YR,i(t) which
enters the random vector Y = {YI,i(t), YR,i(t), YC,i(t)}. We model Y using a Dirich-
let distribution centered at (ıi(t), ri(t), si(t)) with a shared parameter γ that rules
the noise amplitude (see Equation (2.27)). Italian regions heterogeneity is modeled
through random effects on (βi(t), µi): µi are drawn for a common lognormal pop-
ulation (with parameters µ and ωµ, as in Equation (2.30)), while βi(t) are regional
linear splines with random effect on parameters βik = βi(tk) at prespecified eq-
uispaced days {tk}K

k=1 = (k − 1)∆, where ∆ is the number of days between each
node of the time grid and the following one. We impose that βi(t) is constant in
the last time interval of the grid, namely between day tK−1 and day tK = T − 1,
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FIGURE 2.10: Heatmap with the percentage of individual parame-
ters correctly estimated, darker colors indicate higher percentages.
The estimations are obtained running the code for the same synthetic
dataset (with µ=1/15) but fixing the value of µ to {1/5, 1/10, 1/13,

1/14, 1/15, 1/16, 1/17, 1/20, 1/25}.

for further details the reader is referred to the Sub-section 2.3.1. Initial conditions
xi(0) = (si(0), ıi(0), ri(0)) are parameters that have to be estimated as well. We de-
fine the vector of individual (regional) parameters as

ϕ =

(
{xi(0)}i=1,...,n, {µi}i=1,...,n, {βik} i=1,...,n

k=1,...,K

)
, (2.24)

and the vector of the global parameters as

θ =
(
log µ, ωµ, γ, {log β(k)}k=1,...,K, ωβ

)
. (2.25)

The joint probability density of the model is

f (y, ϕ, θ) =
n

∏
i=1

T

∏
t=0

f (yI,i(t), yR,i(t), yC,i(t)|ϕi, θ) f (ϕi|θ) f (θ), (2.26)

where y = {yI,i(t), yR,i(t), yC,i(t)} i=1,...,n
t=0,...,T

, with yC,i(j) = 1 − yI,i(j) − yR,i(j), for all
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i and t, ϕi = (xi(0), µ,{βik}k=1,...,K), and the conditional probability densities in the
right-hand side are specified as follows:

YI,i(t), YR,i(t), YC,i(t)|ϕi, θ
i.i.d.∼ Dirichlet

(
γ pi(t), γ oi(t), γ (1 − ıi(t)− ri(t))

)
, (2.27)

log(βik)|θ
i.i.d∼ N (log(βk), ω2

β), i = 1, ..., n, k = 1, ..., K, (2.28)

log(µi)|θ
i.i.d∼ N (log(µ), ω2

µ), i = 1, ..., n, (2.29)

(si(0), ıi(0), ri(0))
i.i.d∼ Dirichlet(8, 1, 1). (2.30)

The prior distribution f (θ) is assumed to factorize as

f (θ) = f (µ) f (ωµ) f (γ) f (ωβ)
K

∏
k=1

f (β(k)), (2.31)

where

log β(k) ∼ log γ ∼ log µ ∼ N (0, 1000), (2.32)

ω2
β ∼ ω2

µ ∼ IG(0.1, 0.1). (2.33)

The statistical model presented is fully identifiable, as the SIR model is composed of
only observed compartments. To sum up the performance of the MCMC algorithm
we tested it on a simulated dataset. As we do for the SIPRO model in Section 2.3.1,
we present the percentage of individual parameters correctly estimated (true values
is in the 95% credible interval) in Table 2.8, the posterior 95% credible interval with
the true value of global parameters in Table 2.9, and the adapted-MSE plots (see
Definition 2.3.1) in Figure 2.11 to quantify the goodness of fit of the SIR trajectories.
The overall performance is very good.

TABLE 2.8: Simulated SIR dataset - Results on individual parameters.

Parameter Percentage
ıi(0) 95.24%
ri(0) 95.24%

µi 90.48%
βi(t) 90.48%

ρeff
i (t) 90.48%

TABLE 2.9: Simulated SIR dataset - Results on global parameters.

Parameter 2.5% Mean 97.5% Real
log(ν) -3.011 -2.818 -2.614 -2.708

ων 0.338 0.449 0.632 0.500
γ 5.937 5.989 6.035 6.000

ωβ 0.110 0.135 0.170 0.100
log(β1) -0.408 -0.338 -0.272 -0.357
log(β2) -1.707 -1.644 -1.584 -1.609
log(β3) -1.286 -1.224 -1.163 -1.204

log(β4) = log(β5) -1.262 -1.186 -1.115 -1.204
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FIGURE 2.11: Mean MSE index (black) for each time to evaluate the
fit of SIR-mixed-model, for Infected and Recovered trajectories (see
Definition (2.3.1)). The red line is the number of Infected, Positive,
Recovered, and Out in Italy for each day. The y-axes values of the red
line are shown on the left-side, while the ones of the black lines are

on right-side.
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2.3.3 Real Data analyses and results

The results obtained on synthetic data, as presented in Sections 2.3.1 and 2.3.2, offer
insights into the strengths and weaknesses of the SIR and SIPRO models, along with
their respective MCMC estimation procedures. Both methods exhibit outstanding
performance when applied to data generated from their respective models. Specif-
ically, the SIR model, which encompasses all observed compartments, does not en-
counter any identifiability issues. On the other hand, the SIPRO model, incorporat-
ing both observed and unobserved compartments, may face practical identifiability
challenges, as illustrated in 2.3.1. The motivation behind extending from the SIR to
the SIPRO model is to achieve a more accurate representation that mimics the un-
derlying mechanism of the COVID-19 pandemic. The ultimate goal of this work is
to analyze public COVID-19 data and assess whether the developed SIPRO model
can indeed improve the results obtained with the SIR model. Therefore, based on
the simulation results, before applying the method to real data, careful considera-
tion must be given to the characteristics of the data under analysis. This is essential
to understand the applicability of the model and the reliability of the final results
in a real-world context. We report, in Figure 2.12, the data collected from the Ital-
ian Protezione Civile [DPCa] from February 2020 to July 2021. The figure shows
the overall evolution of the pandemic in Italy, each color represents a different re-
gion (21 regions are reported as autonomous regions are counted as well). The plot
reveals a major phase that characterized the pandemic, followed by a period of con-
sistently low cases during the summer of 2020. In particular, as per the discussion
on the weak identifiability problems highlighted in the previous section, to be able
to model the data we should divide the first wave data from the low-case period in
Summer 2020. We choose the set one node every 3 weeks, to capture weekly pat-
terns and to avoid having to estimate a huge number of parameters. We estimate
the parameters of interest with SIPRO and SIR mixed-effect models.

To compare the goodness of fit with SIR and SIPRO mixed models (with fixed
1/µ = 1, 3, 5, 7, 10, for the reason explained in Sub-section 2.3.1) to the selected data,
we report the WAIC index (see Table 2.10), as defined in [GHV14]. The performances
are quite similar overall, but SIPRO with µ = 1/5 was selected to give the best fit
(outperforming also the SIR model). All the further analyses involving the SIPRO
model are performed assuming µ = 1/5.

To give an overall idea of the fit of SIPRO estimates, we randomly selected three
regions, Abruzzo, Toscana, and Lombardia, and report the estimated trajectory, with
their 95% credible interval, in Figure 2.13: the SIPRO model gives a good description

TABLE 2.10: Comparison of SIPRO (1/µ = 3, 5, 7, 10) and SIR model
performances with WAIC and ES indexes. For both indexes, the lower

(in bold) is the best.

Method (First Period) WAIC ES1 ES2

SIR −254.09 · 104 56.12 · 10−4 68.05 · 10−4

SIPRO (1/µ = 3) −246.43 · 104 42.58 · 10−4 69.84 · 10−4

SIPRO (1/µ = 5) −255.51 · 104 43.12 · 10−4 69.60 · 10−4

SIPRO (1/µ = 7) −255.03 · 104 43.23 · 10−4 69.54 · 10−4

SIPRO (1/µ = 10) −254.11 · 104 43.04 · 10−4 67.11 · 10−4
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FIGURE 2.14: On the top: posterior boxplot of 1/αi with posterior
samples (points). On the bottom: posterior boxplot of 1/νi with pos-

terior samples (points).
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FIGURE 2.15: Posterior boxplot to compare mean time of transition
between observed compartments in SIR and SIPRO model: the pa-
rameter of interest is 1/µi in the SIR model and 1/νi in the SIPRO

model, but they refer to the same quantity.

of the observed data, even if the underlying parameters are not always perfectly es-
timated. In particular, we report the posterior distribution of the mean time of the
transition from Infected to Positive 1/αi and from Positive and Out 1/νi in Figure
2.14: the first quantity, which is close to one for each region, is a little bit lower than
we expect, and is probably suffering of the low-identifiability problems we already
discussed when we analyzed the SIPRO simulations (Sub-section 2.3.1). The second
one, which estimates are absolutely reliable, reflects the delay in reporting the in-
formation that characterized the first wave of the pandemic. To confirm the latter
result, we compare the estimated transition time between observed compartments,
with both SIR and SIPRO dynamics, in Figure 2.15.

To better motivate the necessity of extending the SIR model to a more complex
one, we compare the SIR and SIPRO (with 1/µ = 5 ) in terms of reproductive num-
ber estimation and new case predictions.

Comparison of basic reproduction numbers

The performances of SIR and SIPRO models in fitting the data and the evolution
of the pandemic are very good and quite similar, despite some of the common un-
derlying parameters being hugely different: in particular, the estimated basic and
effective reproduction number are completely different, as they assume a different
source of contagiousness. With SIR and SIPRO mixed model we estimated the re-
gional basic and effective reproduction number for each region, but to graphically
show their difference we only report, in Figure 2.16, a national estimation of ρeff(t),
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FIGURE 2.16: National effective reproduction number on first phase,
day by day (dd-mm-yyyy), estimated with SIR mixed model (on the
left, in blue), SIPRO (µ = 1/5) mixed model (on the right, in orange),
and with ISS code in black [GM20]. The vertical red line indicates the
starting date of the lockdown, while the horizontal red line indicates

the epidemic spread threshold, set to 1.

computed from the posterior B sample as

ρeffSIPRO,b(t) =
βb(t)Sb(t)

µ + ᾱb and ρeffSIR,b(t) =
βb(t)Sb(t)

ᾱb , B = 1, ..., b, (2.34)

where βb(t) is the linear spline interpolating the mean of random effects {βb
k}k=1,...,K,

Sb(t) the national proportion of Susceptibles, ᾱb the mean of individual parameters
{αb

i }i=1,...,n, and µ fixed to 1/5.
Not surprisingly, ρeffSIR(t) is ten times higher than ρeffSIPRO(t), as it does not ac-

count for asymptomatics and, thus, explains all the registered cases to arise from
previously registered infections.

We also compare ρeffSIPRO(t) and ρeffSIR(t) with the estimations provided by the
Government in [GM20], which are based on different data sources. The two es-
timations, ρeffSIR(t) and ρISS(t), show significant differences. At the beginning of
the epidemic, ρeffSIR(t) is more than three times greater than ρISS(t). Additionally,
ρeffSIR(t) takes considerably longer to drop below the key threshold of one com-
pared to ρISS(t). Moreover, towards the end of the pandemic, the SIR estimation
approaches almost zero, which is unrealistic.

On the contrary, even though the SIPRO and ISS estimations differ noticeably
during the first month of the pandemic, they exhibit similar behavior concerning
the critical threshold. Both estimations are above the critical threshold, indicating
a dramatic evolution of the epidemic during the initial phase and becoming quite
similar afterward.
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Evaluating the predictions with Energy Score

More than simply modeling the daily count of positive and infected, it is interesting
to make short-term predictions. In particular, predictions can be helpful to promptly
make healthcare and political decisions. To explain how to make predictions with
SIPRO model we look at fifteen days predictions, after the last measured time-point
on phase one. To better validate how good our model is in making good provisions,
with respect to standard SIR, we fit SIPRO and SIR models and then we make predic-
tions for fourteen days after the last observed data, keeping all the time-dependent
parameters fixed to the value estimated at the final fitting time. To evaluate the
predictions, and to avoid reporting all the estimates, we use the Energy Score, as
described in [JKL19], and defined as

Definition 2.3.2 (Energy Score for SIPRO model). Let Pb = {Pb
i (t)}

i=1,...,n
t=T+1,...,T+14 and

Ob = {Ob
i (t)}

i=1,...,n
t=T+1,...,T+14 be the b-th sampled proportion of positive and out for each

region and for each day of the prediction interval, for the SIPRO model. We evaluate the
goodness of our estimates by calculating the energy score for Observed Positive and Observed
Out, respectively as

ES1 =
1
B

B

∑
b=1

∥Pb − YP∥2 −
1

2B2

B

∑
b=1

B

∑
m=1

∥Pb − Pm∥2, (2.35)

ES2 =
1
B

B

∑
b=1

∥Ob − YO∥2 −
1

2B2

B

∑
b=1

B

∑
m=1

∥Ob − Om∥2, (2.36)

with YP = {YP,i(t)}i=1,...,n
t=T+1,...,T+15 and YO = {YO,i(t)}i=1,...,n

t=T+1,...,T+15 the true observed pro-
portions we want to predict, and ∥ · ∥2 the Euclidean norm.

Definition 2.3.3 (Energy Score for SIR model). Let Ib = {Ib
i (t)}

i=1,...,n
t=T+1,...,T+14 and Rb =

{Rb
i (t)}

i=1,...,n
t=T+1,...,T+14 be the analogous quantity for the SIR model, then the energy scores

can be computed as

ES1 =
1
B

B

∑
b=1

∥Ib − YI∥2 −
1

2B2

B

∑
b=1

B

∑
m=1

∥Ib − Im∥2, (2.37)

ES2 =
1
B

B

∑
b=1

∥Rb − YR∥2 −
1

2B2

B

∑
b=1

B

∑
m=1

∥Rb − Rm∥2, (2.38)

with YI = {YI,i(t)}i=1,...,n
t=T+1,...,T+15 and YR = {YR,i(t)}i=1,...,n

t=T+1,...,T+15 the true observed pro-
portions we want to predict, and ∥ · ∥2 the Euclidean norm.

We report the evaluated energy scores in Table 2.10: the prediction of new Pos-
itive individuals is better performed by SIPRO model, while the prediction of new
Recovered/Out individuals is better with the SIR. This result is consistent with the
mechanism described by the models under analysis: the SIPRO model better de-
scribes the real dynamic of the pandemic involving symptomatic and asymptomatic
individuals and thus gives better intuition of the virus transmission, on the other
hand, the SIR model better describes the transition between observed compartments
and, thus, gives a more reliable estimation of how tested people will recover. We
only report the full prediction for the three selected regions, in Figure 2.17.
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FIGURE 2.17: Median YP(t) and YO(t) estimated with SIPRO (1/µ =
5), with 50% and 95% credible interval. Red line represents the data.
Vertical black-dotted line divides the time points used for estimation

and the time points predicted by the model.

2.4 Final remarks and conclusions

The aim of the SIPRO model is to improve upon the SIR model, which inadequately
described the COVID-19 pandemic. The goal is to create a simple yet identifiable
model that avoids an excessive number of arbitrarily chosen parameters. Further-
more, the main objective is to construct a realistic model capable of estimating the
reproductive number, the daily number of infections, and the time from infection
to positivity. We develop a statistical mixed model that combines the SIPRO dy-
namics with a random effect structure, enabling us to account for the heterogeneity
among the Italian regions during the initial phase of the pandemic. The parame-
ter estimation is performed using a Metropolis-within-Gibbs algorithm combined
with Parallel tempering updates, which help us addressing low-identifiability is-
sues. The model performs well in estimating trajectories (both observed and un-
observed) and provides accurate short-term predictions, outperforming the SIR dy-
namic. Although the estimation of the reproductive number does not perfectly align
with the ISS estimation, the model correctly identifies when this index is above or be-
low the critical threshold of one, which is not possible with the SIR model. However,
some identifiability problems persist with parameters β, α, and µ, representing the
transitions from Susceptible to Infected, from Infected to Positive, and from Infected
to Recovered, respectively. These parameters individually face low-identifiability
issues, but they compensate for each other, resulting anyway in a good fit for the
data.
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Chapter 3

Estimating the optimal time to
perform a PET-PSMA exam in
prostatectomized patients based on
data from clinical practice

This chapter is based on the paper:
Amongero, Martina and Mastrantonio, Gianluca, and De Luca, Stefano, and Gas-
parini, Mauro (2023). Estimating the optimal time to perform a PET-PSMA exam
in prostatectomized patients based on data from clinical practice. (Under review).
[Amo+23]

Nowadays, one of the most important areas of medical statistical development
is oncology. The statistical and clinical interest varies from the early detection of
tumor presence and locations, the estimation of (personalized) treatment efficacy, the
definition of optimal personalized treatment strategies, the analyses of resurgences,
the development of ethical trial structures, to many others. This chapter focuses on
the early detection of locations of disease and arises from a collaboration with the
clinicians of the Department of Urology of San Luigi Gonzaga Hospital in Torino
(Italy).

The main focus of this work is to analyze data from an observational study
on prostatectomized patients. Prostatectomized patients are at high risk of resur-
gence: this is the reason why, during a follow-up period, they are monitored for
PSA (Prostate-Specific Antigen) growth, an indicator of tumor progression. The
presence of tumors can be evaluated with an expensive exam, called PET-PSMA
(Positron Emission Tomography with Prostate-Specific Membrane Antigen). To jus-
tify the high cost of the PET-PSMA and, at the same time, to contain the risk for the
patient, this exam should be recommended only when the evidence of tumor pro-
gression is strong. To estimate the optimal time to recommend the exam based on
the patient’s history and collected data, we build a hierarchical Bayesian model that
describes, jointly, the PSA growth curve and the probability of a positive PET-PSMA,
basing it on a Gompert model. With our proposal we process all past and present
information about the patients PSA measurement and PET-PSMA results, in order
to give an informed estimate of the optimal time, improving current practice.

The chapter is divided as follows: before going into the details of our work, we
give a small recap of the Gompertz model 3.1, and we sum up the literature for the
problem of interest 3.2. Then, In Section 3.3, we present the joint model for PSA mea-
surements and test results. Section 3.4 is devoted to the definition and the estimation
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FIGURE 3.1: Gomperts functions fG(t) varying the parameters a, b, c.

of the optimal time to perform a test. We test our model on simulated datasets, as ex-
plained in Section 3.5, before applying it to real data, Section 3.6 contains the results
of the model estimated on a group of patients from San Luigi Gonzaga Hospital, in
Torino, Italy. The Chapter ends with some conclusive remarks in Section 3.7.

3.1 Gompertz model

The Gompertz curve is a famous function that can be used to describe time series,
named after Benjamin Gompertz. It is a sigmoid function, with left asymptotic value
(or lower-valued asymptote) equal to 0 and the right one (or future value asymptote)
which is a parameter of the function. The right-side (or future value asymptote)
of the function is approached much more gradually by the curve than the left-side
(or lower-valued asymptote). It is closely related to the logistic function but, while
the logistic function is anti-symmetrical with respect to its central point (the x-value
where the central point between the two asymptotes is reached), the Gompertz curve
is more flexible, allowing different rates of changes in reaching the asymptotes. The
function is often applied in literature to describe tumor growth when physical barri-
ers prevent the tumor to spread out [Xu87]. The equation depends on three different
values a, b, and c, as

fG(t) = ae−be−ct
, (3.1)

where a = limt→+∞ fG(t), b displaces the graph on x-axis, and finally c gives the
growth rate. In Figure 3.1 some Gompertz functions are plotted to show which roles
play the parameters a, b, and c on the shape of the function.
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3.2 Literature

Prostate cancer is the most frequent neoplasm in men, with an incidence of around
7% among all new cancer cases [IAR], and has therefore attracted a lot of interest
in the last twenty years. Research focuses on very different topics, starting from
the causes and the incidence of the tumor, modeling its growth, analyzing the effect
of therapies, and, finally, analyzing the risk, the locations, and time of biochemical
relapse (BCR) and clinical recurrences.

High levels of serum Prostate-Specific Antigen (PSA) after primary treatments,
such as surgery or radiotherapy, were identified in the literature to be significant
indicators of tumor progression taking place at some locations different from the
original one [Afs+17; Eib+16; Ver+16; Fen+19; Hof+19]. This means that prostatec-
tomized patients are at risk of developing BCR and metastasis, which is the reason
why, during a follow-up period of several years, they are usually monitored for PSA
recurrence.

PET-PSMA is a nuclear medicine survey, that is currently one of the most sensi-
tive tests for the early detection of tumor presence and location. It is very expensive
and complex and, for this reason, patients should be referred to a PET-PSMA exam
only in case of confirmed high risk of BCR. The timing of the exam is very important
since if it is performed too late, the patient is subject to excessive risks, while, if it
is too soon, there is a high probability of false negative results. The estimation of
the optimal time to perform such an examination is still an open problem widely
discussed in the literature.

Currently, the most used indicator of BCR is the PSA Doubling Time (PSA-DT)
which is usually monitored over time to control the PSA evolution [Reg+20]. This in-
dicator is calculated using only the last two measurements available for the patient
analyzed. According to literature [Reg+20], a PSA-DT<6 months, together with a
thorough clinical examination of the patient stage and conditions, should be used as
an indication to perform a PET-PSMA exam. Some authors model the PSA evolution
over time trying to link it to tumor progression [SC97; Hir+12], distinguishing be-
tween patients with and without disease [Car+92; PT09], or accounting of the impact
of aging on its evolution [Pea+91]. Other work mainly focuses on the PET exami-
nation [Fos+19] or on the correlation between PSA levels and PET results [Per+19].
Finally, some researchers link PSA kinetics and tumor recurrence [PT09], whereas
other authors try to determine the optimal time of PET-PSMA [Lui+20] regardless
of the kinetics of PSA. Our work combines many aspects of all these papers into an
overall joint statistical model [VM97; TD04; DJ08], and exploits its structure to make
predictions. We base our model construction on the joint-model idea proposed by
[PT09]. However, our final aim differs: while they jointly model the PSA growth
curve and the probability of a resurgence, we substitute for the latter part a logis-
tic model for the probability of positive PET-PSMA results in the presence of resur-
gences. Specifically, we focus on estimating more precisely the evolution of the prob-
ability of a positive PET-PSMA and, consequently, determining the optimal time to
recommend such an exam in cases of suspected BCR. The aim of the present study
is to gain accuracy by basing decisions on the individual clinical and serological pa-
tient history and on an entire database of similar patients, built on clinical practice,
rather than relying solely on the last two individual measurements of PSA. To do so,
a Bayesian Network [CP12] is built, or more precisely a Bayesian hierarchical model.
Bayesian Networks are Probabilistic Graphical Models which represent a set of vari-
ables and their probabilistic interdependencies, allowing for the data analyst to have
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an accurate uncertainty quantification of all model unknown parameters.
We assume that the true, yet unobservable, PSA levels depend on patient covari-

ates and on the presence of BCR, the latter being a model parameter, which is then
estimated during the model fitting. Specifically, as modeled by [PT09], the latent
PSA level is expected to decrease before BCR and to increase afterward. Both the
measured PSA level and PET-PSMA results are dependent on this latent structure,
which is probabilistically linked with them. One of the significant advantages of
our approach is that we are utilizing all available information jointly to determine
the presence of BCR and the likelihood of a positive PET-PSMA. Moreover, in con-
trast to other methods that link PET-PSMA results to the measured PSA level, our
approach allows for estimating the probability of a positive PET-PSMA without an
associated PSA measurement. By selecting a target probability of having a positive
PET-PSMA and a confidence level, we can estimate the optimal time to perform the
test with Markov Chain Monte Carlo methods. Inference is performed according to
the principles of Bayesian Statistics, which allows us to have a complete evaluation
of the uncertainty associated with each model component.

3.3 Joint model of PSA growth curve and PET-PSMA results

This Section is devoted to explain the statistical joint model: we first describe the
growth model for the PSA curve (Sub-section 3.3.1), and then how this model is
linked to the logistic structure for the result of PET-PSMA (Sub-section 3.3.2). Finally,
Sub-section 3.3.3 deals with random effects.

3.3.1 The data and its likelihood

Let xi(t) be the PSA level of the i-th patient at time t, where t = 0 indicates the time
the patient has had a prostatectomy (only operated patients are considered in this
work) and i = 1, 2, . . . , n, where n is the total number of patients in the study. The
recorded variable yi(t) is a noisy version of the non-negative quantity xi(t), therefore
we assume

log yi(t) ∼ N (log xi(t), σ2
i ). (3.2)

The choice of the functional form of xi(t), i.e., how PSA levels depend on time
and other covariates, is one of the two major components of our proposed joint
model (described in Sub-section 3.3.2), but before we discuss it, let us introduce
the second component, which is the probability πi(t) for patient i at time t that, if
a PET-PSMA is taken, the result will be positive. For each patient, the test outcome
zi(t) ∈ {0, 1} is assumed to be Bernoulli random variable with a patient-specific and
time-dependent probability, i.e.,

zi(t) ∼ Ber(πi(t)). (3.3)

Variables xi(t) and πi(t) are not observed, and we can only observe yi(t) and zi(t) at
specific time points. The time points where these two variables are recorded can dif-
fer within and between patients, and we indicate as Ty,i and Tz,i the set of time points
of patient i where yi(t) and zi(t) are recorded, respectively. The set Ti = Ty,i ∪ Tz,i is
the set of points where we have a measure of at least one of the two variables.

Let yo
i = {yi(t)}t∈Ty,i , xo

i = {xi(t)}t∈Ty,i be the observed and latent PSA values
over the time points in Ty,i and let zo

i = {zi(t)}t∈Tz,i , πo
i = {πi(t)}t∈Tz,i be the test

results and probabilities over Tz,i (i.e., multiple tests for the same patient can be
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collected, at multiple times, that do not necessarily correspond to times PSA mea-
surements are collected). Conversely, using the superscript u for "unobserved" (as
opposed to the previous o for "observed"), let yu

i = {yi(t)}t∈Tz,i , xu
i = {xi(t)}t∈Tz,i ,

zu
i = {zi(t)}t∈Ty,i , πu

i = {πi(t)}t∈Ty,i the vectors of variables at the time points where
the associated process is not measured, i.e., (yi(t), xi(t)) at time points Tz,i where the
exams are taken, and (zi(t), πi(t)) at time points Ty,i where the PSA is measured,
respectively.

High values of PSA are indicators of tumor progression and are thus associated
with a high probability of positive PET-PSMA results. We will then assume that
πi(t) is a function of xi(t), and use this relation to find the optimal PET-PSMA time
since the central idea of this work is to exploit the joint model structure [TD04; PT09]
to describe the available longitudinal data. To specify the model we have to define
the joint density of variables (log yi(t), zi(t))′ over Ti, for both observed and missing
data. Hence, the missing data are considered further parameters to be estimated
during the model fitting, which are easy to estimate within the Bayesian framework.

The joint density for a random sample is then factorized in the following way

f
(

log yu, log yo, zu, zo | log xu, log xo, πu, πo, θ
)
=

n

∏
i=1

∏
t∈Ti

f
(

log yi(t) | log xi(t), θ
)

f
(
zi(t) | log xi(t), πi(t), θ

)
,

(3.4)

where f (·) stands for a generic probability density function (to be identified by its
arguments) and θ is a vector of parameters. In Equation (3.4) we are assuming
that (log yi(t), zi(t)) are conditionally independent given the latent variables since
the connection between the two measurements yi(t) and zi(t) is through the la-
tent PSA level xi(t), and once we know xi(t), no further information is needed to
explain the PET-PSMA result. In the next paragraphs we illustrate our proposals
for f (log yi(t) | log xi(t), θ) and f (zi(t) | log xi(t), πi(t), θ). We want to remark that
in Equation (3.4) we are assuming conditional independence between the measure-
ments, but, on the other hand, as we show in Sub-section 3.3.3, we introduce random
effects over some components of θ, to model a form of dependence.

3.3.2 Joint model for each patient

To model the time evolution of PSA levels, we assume that it is composed of two
phases, the first one, right after prostatectomy, where the PSA level is stationary or
even decreasing over time, and the second one, after a patient-dependent change
point in time τi, where it is assumed that the PSA increases, until reaching a plateau
after some time, that we indicate as ai. For each patient, the time τi can be interpreted
as the unknown time at which resurgence starts, which is a crucial object of inference
in our model. The component log xi(t) is modeled as a linear function with patient-
specific intercept, λi and slope −µi, for non negative µi, i.e., if t ≤ τi

log xi(t) = λi − µit, (3.5)

while for t > τi, we model log xi(ti) as a weighted mean of the value assumed by
log xi(t) at the change point, i.e., log xi(τi), and its asymptotic value ai:

log xi(t) = log xi(τi)ei(t) + ai(1 − ei(t)). (3.6)
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The weight function ei(t) is defined as

ei(t) = exp(−γi(t − τi)), (3.7)

with γi ∈ R+, to ensure that log xi(t) is continuous at the change point τi, and it
reaches the asymptotic value ai as t → ∞. Hence, for t > τi, xi(t) is a version of the
log-Gompertz growth function (3.1) with rate γi. We assume non-negative µi and γi
to model the decreasing phase before τi and the increasing phase after it.

The second part of the joint model is instead focused on the binary PET-PSMA
results zi(t), and in particular on modeling its probability πi(t). To connect the prob-
ability πi(t) to the PSA levels we use a logistic regression model

logit{πi(t)} = β0,i + β1 log xi(t) + β2t, (3.8)

where the linear prediction has a patient-specific intercept and an extra term linear
on time to model temporal trends that are not be explained by log xi(t). It should be
noted that we define the relation in terms of the true latent PSA levels xi(t), not the
observed ones yi(t). We expect β1 to be positive since the larger the PSA, the larger
the probability of a positive test. It is easy to see, from Equation (3.8), that, if β1 > 0,
then πi(t) goes to zero as xi(t) goes to zero:

lim
xi(t)→0+

πi(t) = lim
xi(t)→0+

xβ1
i (t)eβ0,i+β2t

1 + xβ1
i (t)eβ0,i+β2t

= 0. (3.9)

All the unknown quantities in the model {(λi, µi, ai, γi, τi, β0,i, β1, β2, σ2
i )}i=1,...,n

make up the parameter vector θ.

3.3.3 Random effects

We now extend the base model, where each patient has its own set of parameters, to
a random effects model. Generally, random effects can help to account for variability
and heterogeneity in the data, due to unobserved or unmeasured factors, and may
lead to more accurate and reliable estimates of treatment effects.

More precisely, we assume that the model describing PSA evolution can be en-
riched by the following second-level distributions:

log µi ∼ N (ψi,µ, w2
µ),

log γi ∼ N (ψi,γ, w2
γ),

ai ∼ N (ψi,a, w2
a),

λi ∼ N (ψi,λ, w2
λ),

σ2
i ∼ IG(ai,σ2 , bi,σ2),

(3.10)

where IG indicates the inverse gamma distribution with scale parameter ai,σ2 and
shape parameter bi,σ2 , and ψi,χ and w2

χ are respectively mean and variance of the
normal distributions, for χ ∈ {µ, γ, a, λ}. The log transformations are used to ensure
that the parameters are defined in the correct domain. In Equation (3.10), the means
of the normal distributions are allowed to vary from patient to patient since there
may exist covariates that affect them via a linear regression as follows,

ψi,χ = Ci,χαχ, (3.11)
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where Ci,χ is a patient-specific vector of covariates of dimension pχ and αχ is a vector
of regressors. Finally, covariate information can also be added to the component of
the model that is used to define πi(t) by adding, in Equation (3.8), the following
random intercept,

β0,i = Ci,βαβ. (3.12)

The random effects (ai,σ2 , bi,σ2 , ψi,χ, w2
i,χ), for χ ∈ {µ, γ, a, λ}, as well as the hyperpa-

rameters αχ, χ ∈ {µ, γ, a, λ, β} are all appended to the parameter vector θ.

3.4 Estimating the optimal time

Equation (3.8) links the probability of a positive PET-PSMA test and the latent PSA
level; this relation between the two is what we use to find the optimal time. We
recall that the PSA level (when observed) is not the true underlying level, but a
noisy version of the true latent one that cannot be directly measured.

3.4.1 Defining and identifying the optimal time

A solution to find the optimal time could be to plug in point estimates of all model
parameters (maximum likelihood estimates, or Bayesian posterior means), and then
invert Equation (3.8) to target the desired probability. This strategy is viable, but it
does not take into account all sources of uncertainty. The Bayesian approach, which
we follow globally to fit the model, gives a better way to estimate the optimal time
and, simultaneously, account for uncertainty quantification in a controlled way.

In the Bayesian approach, the overarching goal is to compute the posterior den-
sity

f (log yu, zu, log xu, log xo, πu, πo, θ | log yo, zo), (3.13)

based on which all quantities of interest may be computed. Marginalizing the pos-
terior density in Equation (3.13), one can obtain, for each fixed time point t, the
posterior predictive density

f
(
πi(t), τi | log yo, zo). (3.14)

It should be noted that this can be done since each specific τi is a component of the
high dimensional parameter vector θ and, similarly, for each t, πi(t) is a parametric
function. For each t, we can then verify whether the following condition is satisfied:

P
(
πi(t) > π∗ ∩ t > τ | log yo, zo) = ∫ 1

π∗

∫ t

0
f
(
πi(t), τi | log yo, zo)dτidπi(t) ≥ ρ,

(3.15)
where:

• P stand for posterior predictive probability based on the density in Equation
(3.14);

• π∗ is a target probability of positive PET-PSMA;

• ρ is a posterior assurance probability (say 95%), similar to a confidence coeffi-
cient.

It should be noted that in Equation (3.15) we require t to be greater than the change
point τi, whereas π∗ and ρ are design parameters. The resulting decisions are
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FIGURE 3.2: Joint modeling of xi(t) and πi(t). The plot shows the
relation between time and PSA evolution and between PSA and the
probability of a positive test. After choosing the desired probability,
the associated PSA and time can be recovered through the model,

following the arrows.

strongly dependent on the latter quantities, which should be carefully chosen in
advance, in accordance with clinicians. Default values is ρ = 0.95, while π∗ is
usually selected with additional ROC analysis or according to clinicians expertise.
Finally, to select the optimal time t∗i for the i-th patient, we can choose the first
available time in the future satisfying Equation (3.15), i.e., the smallest t greater
than the largest time in Ti satisfying Equation (3.15). Figure 3.2 contains a graphical
depiction of the procedure used to obtain the optimal time and how the latent PSA
level is connected to the probability of a positive test. In particular, the plot shows
the relation between time and PSA evolution, on the left side, and between PSA
and the probability of a positive test, on the right side. After choosing the desired
probability (on the right-side x-axis), the associated PSA and time can be recovered
through the model, following the black arrows, from left to right.

3.4.2 Computing the optimal time

Due to the complexity of the hierarchical joint model, the posterior distribution is de-
fined on high-dimensional data, which prevents us to compute, in closed form, any
of the quantities that we may need for inference, as well as normalization constants.
As often done with Bayesian models, we use Markov Chain Monte Carlo (MCMC)
[Bro98] algorithms to obtain samples from the density in Equation (3.13) and Monte
Carlo integration [GL06] approaches to approximate the posterior quantities of in-
terest, such as posterior expectations and posterior probabilities and, specifically, the
integral in Equation (3.15), which is the main focus of inference.

Let log yu,b, zu,b, log xu,b, log xo,b, πu,b, πo,b, θb be the b-th posterior samples from
the associated parameters, where b = 1, 2, . . . , B and B is a large number of MCMC
iterations. Using these posterior samples we can approximate the optimal-time t∗i ,



Chapter 3. Estimating the optimal time to perform a PET-PSMA exam 49

since samples from the predictive distribution in Equation (3.14) are easily obtain-
able. From Equations (3.5), (3.6) and (3.8) we can see that πi(t), for all t, is a deter-
ministic function of the parameters, even if t is not in Ti. Therefore, for a given t, and
each b sample, we can compute

log xb
i (t)=

{
λb

i − µb
i t, if t < τb

i ,
log xb

i (τ
b
i ) exp(−γb

i (t − τb
i )) + ai(1 − exp(−γb

i (t − τb
i ))), otherwise,

(3.16)
and

πb
i (t) =

(
xb

i (t)
)βb

1 eβb
0,i+βb

2t

1 +
(
xb

i (t)
)βb

1 eβb
0,i+βb

2t
. (3.17)

As a consequence, the set of samples {πb
i (t), τb

i }B
b=1 are from the predictive distri-

bution of Equation (3.14). It is easy to see that the integral in Equation (3.15) can be
seen as an expectation if we rewrite it as∫ 1

π∗

∫ t

0
f
(
πi(t), τi | log yo, zo)dτidπi(t) =∫ 1

0

∫ ∞

0
1[π∗,1]

(
πi(t)

)
1[0,t)(τi) f

(
π(t), τi | log yo, zo)dτidπi(t),

(3.18)

where 1·(·) is the characteristic function of a set. Hence, using samples from the
predictive distribution, we can approximate the quantity in Equation (3.18) using a
standard Monte Carlo integration, leading to the estimator∫ 1

0

∫ ∞

0
1[π∗,1]

(
πi(t)

)
1[0,t)(τi) f

(
π(t), τi | log yo, zo)dτidπi(t) ≈

∑B
b=1 1[π∗,1]

(
πb

i (t)
)
1[0,t)(τ

b
i )

B
.

(3.19)

This means that the integral can be approximated by the proportion of posterior
samples that are in the set [πi(t) > π∗, τi < t]. The approximation in Equation (3.19)
must be computed for a fine grid of time points and the smallest t ≥ max(Ti) that
satisfies

∑B
b=1 1[π∗,1]

(
πb

i (t)
)
1[0,t)(τ

b
i )

B
≥ ρ (3.20)

is the desired optimal time.

3.5 Simulations

To conduct an investigation of the model and its practical estimation, and to empha-
size the efficacy of the employed algorithm, we conduct a simulation study. Due to
the complexity of the model, it may be useful to first investigate a single simulation
and comment on its results, before going into the details of the full simulation study.

In this section, with a simulated dataset, we want to show that the model, and
especially the change point values τi, can be estimated using the MCMC algorithm.
We simulate a scenario where m = 80 patients are undergoing surgery at time 0 and
then followed up for several months. For each patient, we simulate the number of
elements of Ty,i from the distribution Ud(5, 8), where Ud( · , · ) indicates a uniform
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distribution over the integers between the two arguments (included). The times
associated with the measurements are sampled randomly without replacement from
the set {1, 2, . . . , 25}, while the numbers of time points of the PET-PSMA exams are
from the Ud(3, 5) and the times are randomly sampled without replacement from
the set {26, 27, . . . , 38}. For each i, we assume min{Tz,i} > max{Ty,i}, meaning that
the exams are always performed after the last PSA measurement and we have a
small set of measurements for each patient. Let Ty,i = {ti,j}ni

j=1 be the set of ordered
points: given these values, to simulate τi we sample from U(ti,3, ti,(ni−2)), so that τi
is in the middle of the temporal window. We simulate data in this way to create a
challenging situation, where the data points are very few, and the PET-PSMA exams
{zi(t)}i are all performed much later than the last PSA measurement {yi(t)}i. This
is done to highlight better how the method can be used to predict the PET-PSMA
results for future time t, for which we have not observed the PSA level, and when
data information is poor. For each patient i, we simulate 9 dichotomous variables

{Cij}9
j=1 , and a final variable Ci10 = ⌊Ĉi10⌋, with Ĉi10

i.i.d.∼ N (75, 7), used to describe
the patient age. We then assume Ci,µ = Ci,µ = (1, Ci1, Ci2, Ci3, Ci4, Ci5) and Ci,β =
(1, Ci6, Ci7, Ci8, Ci9, Ci10). The remaining parameters are

αµ =



1
0.1
0.3
0.5
0.2
0.1

 , αγ =



−1
−0.01
−0.01
−0.01
−0.01
−0.01

 , αβ =



1
1
1

0.5
−0.5
−0.5

 ,



β1
β2
ψa
ωµ

ωγ

ωa
aσ2

bσ2


=



4
0.5
5.7
0.1
0.1
1
3
5


.

(3.21)
Note that most of the parameters chosen for the simulation are randomly selected
and there is no intention to be realistic. A Gaussian prior N (0, 100) is used on

λi, log ωµ, log ωγ, ψa, log
bσ2

(aσ2 − 1)
, log

b2
σ2

(aσ2 − 1)2(aσ2 − 2)
, (3.22)

and all regression coefficients, where bσ2 /(aσ2 − 1) and b2
σ2 /

(
(aσ2 − 1)2(aσ2 − 2)

)
are

respectively mean and variance of the parameter σ2
i . The prior of τi is a patient-

specific mixed-type distribution: τi can assume value in {ti1, [ti2, ti Ji−1 ], ti Ji}, where
{ti1, ti2, ..., ti Ji} ≡ Ty,i, with a probability mass of 1/3 on ti1 and ti Ji , and a Uniform
distribution in [ti2, ti Ji−1 ]. The reasoning behind this choice is that a change point in
[0, ti2) is not identifiable, since only the observation collected at time ti1 is available
to estimate the decreasing phase. The same applies in the time window (ti Ji−1 ,+∞)
where we could gain information only from ti Ji to estimate the log Gompertz coeffi-
cients. Since the change point is one of the most important parameters for the final
identification of the optimal time, we prefer to have a parameter that is always iden-
tifiable. We run our algorithm for 150.000 iterations, with burn-in equal to 100.000
and thinning parameter equal to 10. The algorithm is a Metropolis-within-Gibbs
MCMC with the adaptive Metropolis steps proposed in [AT08], and a Pólya-Gamma
update [PSW13] for (β1, β2, αβ).

We sum up the results in two tables. In Table 3.1, for each individual parameter,
we compute the posterior 95% credible interval (CI) and we evaluate the percent-
age of parameters correctly estimated (for which the true value used for simulation
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falls in the 95% CI), across individuals. On the other hand, Table 3.2 sums up the
results obtained for the global parameters, in particular, it reports the true values,
the posterior mean, and the 95% CIs. From Table 3.1, we see good performances on
individual parameters’ estimation, as expected the performance on change points τi
is more challenging, but the results are still accurate, compared with other individ-
ual parameters. From Table 3.2 we can see that 24 out of 26 global parameters are
well estimated as the true value is contained in the 95% CI.

3.5.1 Full simulation study

The full simulation study comprises four scenarios: scenario 1 and scenario 2 differ
only in the noise value (determined by parameters aσ2 and bσ2), while the third sce-
nario differs in most of the parameters. Scenario 4 closely resembles scenario 1 but
is composed of fewer data points. Specifically, in scenarios 1-2-3, the datasets consist
of 80 patients, with each patient having between 8 and 15 PSA measurements and
between 3 and 5 PET-PSMA examinations. In scenario 4, the dataset is composed
of 80 patients, with each patient having between 6 and 10 PSA measurements, and
between 1 and 3 PET-PSMA examinations. The underlying parameters used to sim-
ulate the datasets are summarized in Table 3.3. For each of the four scenarios, we
simulate 100 datasets and run the MCMC procedure to obtain samples from the
posterior. The results are summarized in Tables 3.4 and 3.5, reporting the percentage
of global and individual parameters correctly estimated (the true values are within
the posterior 95% interval). Additionally, the tables include information about these
intervals lengths (at levels 0.25, 0.5, and 0.975). Overall, the performances are sat-
isfactory. Moreover, the simulation study highlights that higher values of the noise
term lead to a decrease in the model ability to estimate the growth coefficients µi
and γi, which can be seen by interval lengths in Table 3.5. However the general
performance of the model is still satisfactory. The simulation study, in particular,
underscores how the quality of estimation and the result reliability strongly depend
on the number of available data points for each patient: if the number of collected
PET-PSMA measurements decreases, although the percentage of correctly identi-
fied parameters remains relatively high, the posterior credible interval amplitude
increases, resulting in reduced precision in estimating the parameters for the logistic
model.

TABLE 3.1: Simulated dataset - Results on individual parameters:
percentage of correctly identified individual parameters out of 80 pa-

tients.

Parameter Percentage
log(λi) 95.00%

τi 95.00%
log(µi) 91.25%
log(γi) 95.00%
log(ai) 100%

σ2
i 96.25%
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TABLE 3.2: Simulated dataset - Results global parameters.

Parameter 2.5% Mean 97.5% Real
αµ[1] 0.903 0.978 1.055 1.00
αµ[2] 0.012 0.075 0.134 0.10
αµ[3] 0.233 0.296 0.355 0.30
αµ[4] 0.459 0.519 0.578 0.50
αµ[5] 0.131 0.188 0.247 0.20
αµ[6] 0.091 0.149 0.213 0.10
αγ[1] -1.074 -0.952 -0.844 -1.00
αγ[2] -0.119 -0.039 0.042 -0.01
αγ[3] -0.045 0.025 0.098 -0.01
αγ[4] -0.034 0.047 0.171 -0.01
αγ[5] -0.076 -0.006 0.079 -0.01
αγ[6] -0.151 -0.072 0.003 -0.01
β[1] 2.486 4.809 8.742 4.000
β[2] 0.500 0.859 1.346 0.500
αβ[1] -6.384 7.025 20.764 1.00
αβ[2] -0.482 2.492 6.046 1.00
αβ[3] -1.820 1.121 4.564 1.00
αβ[4] -2.099 0.878 4.276 0.50
αβ[5] -4.558 -1.242 1.597 -0.50
αβ[6] -1.213 -0.783 -0.463 -0.50
ωµ 0.084 0.109 0.136 0.10
ωγ 0.059 0.103 0.157 0.10
ψa 4.825 5.582 6.405 5.70
ωa 0.837 1.272 1.915 1.00
aσ2 2.000 2.239 9.486 3.00
bσ2 3.671 5.276 9.486 5.00

TABLE 3.3: Four simulated scenarios: global parameters of interest
used to simulate the dataset.

αµ αγ

Scen. 1 0.5 0.1 0.3 0.5 0.2 0.1 -0.5 -0.1 -0.1 -0.1 -0.1 -0.1
Scen. 2 0.5 0.1 0.3 0.5 0.2 0.1 -0.5 -0.1 -0.1 -0.1 -0.1 -0.1
Scen. 3 0.1 0.3 0.3 0.5 0.2 0.5 -0.1 -0.5 -0.5 -0.5 -0.5 -0.5
Scen. 4 0.5 0.1 0.3 0.5 0.2 0.1 -0.5 -0.1 -0.1 -0.1 -0.1 -0.1

αβ β ψa ωa ωµ,γ aσ2 bσ2

Scen. 1 0.5 1 1 0.5 -0.5 -0.5 (1; 2) 2.48 1 0.1 3 5
Scen. 2 0.5 1 1 0.5 -0.5 -0.5 (1; 2) 2.48 1 0.1 3 15
Scen. 3 0.5 0.5 0.5 0.1 -0.1 -0.1 (0.2; 4) 2.48 1 0.5 2 7
Scen. 4 0.5 1 1 0.5 -0.5 -0.5 (1; 2) 2.48 1 0.1 3 5
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TABLE 3.4: Four simulated scenarios, for each 100 dataset are ana-
lyzed. Table reports the percentage of global parameters correctly
contained in their posterior estimation intervals, in addition the 95%
quantile with the median value for the intervals length is reported in

square brackets.

Par. Scenario 1 Scenario 2 Scenario 3 Scenario 4
αµ[1] 91% 87% 90% 91%

[0.13 0.17 0.22] [0.15 0.21 0.29] [0.10 0.30 0.30] [0.13 0.17 0.22]
αµ[2] 95% 95% 94% 95%

[0.10 0.13 0.17] [0.11 0.15 0.20] [0.52 0.66 0.82] [0.10 0.13 0.17]
αµ[3] 97% 94% 98% 97%

[0.10 0.13 0.16] [0.11 0.16 0.21] [0.45 0.51 0.60] [0.10 0.13 0.16]
αµ[4] 97% 97% 93% 97%

[0.10 0.13 0.16] [0.12 0.15 0.23] [0.43 0.52 0.60] [0.10 0.13 0.16]
αµ[5] 96% 94 % 94% 96%

[0.10 0.13 0.17] [0.11 0.15 0.20] [0.44 0.52 0.59] [0.10 0.13 0.17]
αµ[6] 95% 95% 94 % 95%

[0.10 0.13 0.16] [0.11 0.16 0.23] [0.44 0.51 0.60] [0.10 0.13 0.16]
αγ[1] 100% 99% 97 % 100 %

[0.30 0.39 0.61] [0.28 0.48 0.76] [0.65 0.80 0.99] [0.30 0.39 0.61]
αγ[2] 99% 98% 97 % 99%

[0.19 0.24 0.36] [0.16 0.27 0.39] [0.45 0.57 0.67] [0.19 0.24 0.36]
αγ[3] 97% 91% 94 % 97%

[0.19, 0.24 , 0.33] [0.14 0.29 0.44] [0.45 0.58 0.69] [0.19 0.24 0.33]
αγ[4] 98% 96% 95 % 98%

[0.19 0.25 0.37] [0.17 0.30 0.51] [0.47 0.58 0.69] [0.19 0.25 0.37]
αγ[5] 99% 92% 96 % 99%

[0.19 0.25 0.31] [0.14 0.29 0.43] [0.47 0.57 0.72] [0.19 0.25 0.31]
αγ[6] 99% 97% 96 % 99%

[0.19 0.25 0.34] [0.15 0.28 0.44] [0.48 0.58 0.70] [0.19 0.25 0.34]
β[1] 60% 61% 26 % 60%

[4.80 13.95 2426] [11.73 25.28 31.50] [11.73 25.28 31.50] [4.80 13.95 24.45]
β[2] 94% 95% 89 % 55 %

[0.05 0.07 0.13] [0.07 0.11 0.27] [3.34 7.38 11.52] [0.54 1.49 9.31]
αβ[1] 100% 100% 100% 100%

[25.18 36.32 39.44] [26.06 36.20 39.26] [38.23 39.04 40.10] [25.18 36.32 39.44]
αβ[2] 95 % 94% 100 % 95%

[4.54 13.73 30.38] [4.58 13.86 31.50] [23.07 31.95 37.77] [4.54 13.73 30.55]
αβ[3] 92% 92% 100% 92%

[4.34 14.12 30.32] [4.48 14.58 30.72] [21.06 32.27 35.65] [4.34 14.12 31.00]
αβ[4] 94% 93% 100% 94%

[4.42 13.22 30.24] [4.57 13.62 30.62] [23.31 32.14 36.10] [4.42 13.22 30.40]
αβ[5] 98% 98% 100% 98%

[4.16 13.34 30.44] [4.30 13.73 30.49] [21.71 32.04 36.27] [4.16 13.34 30.94]
αβ[6] 48% 50% 95 % 48%

[0.60 1.82 6.62] [0.64 1.81 6.81] [1.39 2.99 4.52] [0.60 1.82 6.62]
ωµ 56% 82% 99 % 94%

[0.11 0.15 0.27] [0.15 0.22 0.39] [0.18 0.21 0.26] [0.05 0.07 0.13]
Continued on next page
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Table 3.4 – Continued from previous page
Par. Scenario 1 Scenario 2 Scenario 3 Scenario 4
ωγ 56% 54% 99 % 57%

[0.54 1.46 9.31] [0.55 1.49 11.67] [0.20 0.26 0.34] [0.11 0.15 0.27]
ψa 98% 100% 99% 98%

[1.19 1.74 3.05] [1.45 2.21 4.66] [1.11 1.69 5.30] [1.19 1.74 3.05]
ωa 99% 100% 95 % 99%

[0.70 1.10 1.94] [0.86 1.29 2.40] [1.08 3.28 10.28] [0.70 1.10 1.94]
aσ2 95% 97% 100 % 95%

[0.75 2.55 7.12] [0.86 2.92 8.37] [0.19 0.61 2.26] [0.75 2.54 7.12]
bσ2 100% 98% 78% 100%

[3.25 7.71 19.09] [9.92 22.83 61.88] [3.51 5.26 13.38] [3.25 7.58 19.09]

TABLE 3.5: Four simulated scenarios, for each 100 dataset are ana-
lyzed. Table reports the percentage of individual parameters correctly
contained in their posterior estimation intervals, in addition the 95%
quantile with the medial value for the intervals length is reported in

square brackets.

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4
log(λi) 95% 93% 94% 95%

[3.11 5.17 9.96] [4.38 7.04 12.79] [4.11 8.08 18.63] [3.11 5.17 9.98]
τi 98% 96% 95% 98%

[0.26 0.90 3.52] [0.40 1.25 4.58] [0.34 1.78 6.99] [0.26 0.90 3.52]
log(µi) 98% 90% 96% 98%

[0.10 0.25 0.44] [0.00 0.27 0.52] [0.01 0.22 1.93] [0.10 0.25 0.43]
log(γi) 95% 90% 93% 95%

[0.30 0.67 1.45] [0.33 0.79 1.67] [0.40 1.16 3.90] [0.30 0.67 1.45]
log(ai) 94% 93% 97% 94%

[2.40 3.90 6.34] [2.72 4.42 8.04] [2.56 4.39 7.10] [2.40 3.90 6.35]
σ2

i 88% 91% 94% 88%
[0.94 1.53 2.88] [1.39 2.08 3.98] [1.07 1.77 4.04] [0.94 1.53 2.89]

3.6 Application to clinical data

The database is built on clinical practice in the San Luigi Hospital in Torino. In
prostate cancer follow-up setting post radical prostatectomy (RP), PSA is the main
source of information to base clinical decisions regarding interventions such as PET-
PSMA exam. We have n = 111 patients and, for each of them, we have several de-
mographic and clinical variables, as well as the PSA measurements and PET-PSMA
results taken at different times after RP. The number of time points in Ty,i ranges
from 4 to 17, while the ones in Tz,i from 1 to 4, and the follow-up period is between
4 and 280 months. We can distinguish between patients who, after prostatectomy,
show relatively low values of PSA after RP, but may be eventually subject to a bio-
chemical relapse at change point (BCR patients), and Biochemical-persistence pa-
tients (BCP patients), who present persistent benign/malignant residual tissue after
surgery (conventionally signaled by PSA > 0.2) and are usually treated with therapy
to inhibit cancer growth - for them, PSA levels may even initially decrease until a
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FIGURE 3.3: PSA measurements collected on three patients. Patients
1 and 2 are BCP but with quite different PSA levels, while 3 is BCR.

new increase occurs at the change point. The presence of a mixed population of BCR
and BCP patients and the possible administration of different therapies make the
inference task a very difficult exercise. To present the possible data paths, Figure 3.3
shows data collected for some anonymous patients, that we refer to from now on as
patients 1, 2, and 3. The shape of the data for these patients is quite different (patients
1 and 2 are BCP, while patient 3 is BCR), but also similar shapes can correspond to
quite different PSA values (patient 1 and patient 2). Before surgery, each patient is
assigned to a different category according to the status (Si), but some more infor-
mation is collected at surgery time; in particular, pathological stadiation according
to TNM classification, and the clinical status of prostate margins. Regarding tumor
status PT

i , the clinicians use four different categories: T1 (clinically unapparent tu-
mor), T2 (tumor confined within prostate), T3 (tumor extends through the prostate
capsule), T4 (tumor is fixed or invades adjacent structures). For the sake of simplic-
ity, here the 4 tumor categories have been reduced to two: PT

i = 0 if T1 and T2 and
PT

i = 1 otherwise. The lymph nodes implication is evaluated through a binary vari-
able (PN

i ), while metastases are always present and, thus, not relevant. Moreover, the
clinical stage of the tumor is usually represented using the Gleason Score [Ege+02],
and we reduced the original nine categories to two: Si = 0 if Gleason Score is less
than 6 or if it is equal to 3+4, Si = 1 otherwise. Finally, prostate resection margins
(PR

i ) are evaluated after the surgery.
According to clinical evaluation, each patient with BCR and/or BCP can then

be administered four different therapies: adjuvant or salvage androgen deprivation
hormone therapy (OAi or OSi), adjuvant or salvage radiotherapy (RAi or RSi). Some
patients also underwent regional lymphadenectomy (Li). Adjuvant therapies are ad-
ministered within 6 months from surgery, while salvage ones are performed after six
months on from surgery. In addition, for each patient, we know the age Ai. All these
data are used as clinical and demographic covariates to gain information useful for
our model. In particular, we assume that µi, γi, σ2

i and ai are random effects, with
ψi,a = ψa, ai,σ2=aσ2 , and bi,σ2=bσ2 (constant for each patient), while the means of both
µi, γi depend on covariates, to gain more information from the available data. How-
ever, the observed difference between the reported categories of patients, namely
BCR and BCP patients, suggests that the parameters λi do not come from a common



Chapter 3. Estimating the optimal time to perform a PET-PSMA exam 56

population. Instead of constructing a bimodal random effect which is out of our
scope, we take each λi to be an individual parameter. We estimated three models
with different combinations of covariates Cµ, Cγ, Cπ, all suggested by clinical ev-
idence, and among them, we selected the best model using the Watanabe–Akaike
information criterion (WAIC) [GHV14], see Table 3.6. The results we describe refer
to the best configuration selected, namely Model 2. In Tables 3.7, 3.8, 3.9, and 3.10
we show the global parameter estimates for the best model, with relative 95% CIs.
Interpretation of coefficients can be difficult and misleading, particularly when re-
ferring to therapies. These are the usual difficulties in interpreting causality with
observational and clinical practice databases rather than clinical trials. From a clini-
cal perspective, one could expect therapies to decrease the PSA level before change
point τ and to reduce the growth speed after it. However, the analysis is not target-
ing therapeutic efficacy. Therapies are used here as indicators of the severity of the
disease rather than for estimating their effect. For this reason, we report the logis-
tic analyses used to determine the relationship between administrations of therapies
and baseline covariates (see Table 3.11), where it is easy to notice that, as expected,
patients with the worst clinical situation at the surgery time have higher probabili-
ties of receiving one or more of the analyzed therapies. On the other hand, baseline
covariates have relatively simple interpretations. Following the theory, PSA decreas-
ing level turns out to be almost zero for patients that do not receive therapies (see
αµ[1]). Gleason score is a significant factor, as higher levels determine an increase in
PSA values. In particular, the standard deviation of decreasing coefficient ωµ and
increasing coefficient ωγ are quite different. The high level of the former reflects
the heterogeneity of the dataset: PSA levels right after surgery and preceding the
changing points are different for BCR and BCP. Finally, the probability of a positive
PET-PSMA result at time t strongly depends on the PSA level at t (as was to be ex-
pected), on the Gleason score, and on lymph nodes implication. In particular, as the
PSA level increases, also the probability increases.

TABLE 3.6: Different configuration of covariates. □ indicates values
included in the mean of µ; △ indicates values included in the mean
of γ; × indicates values included in the logistic regression, namely π;

for each configuration the WAIC is reported.

Model OA RA OS RS L PR PT PN S A WAIC
1 □△× □△× □△× □△× □△× □△× □△× □△× □△× □△× 1230819
2 □△ □△ □△ □△ □△ △× △× △× △× △× 1093648
3 □ □ △ △ □△ △× △× △× △× △× 1205765

TABLE 3.7: Clinical dataset - Results on global parameters for PSA
growth curve before change point. Positive coefficients are associated

with a lower level of PSA.

Parameter 2.5% Mean 97.5%
αµ[1] - Intercept -10.37 -7.76 -5.81

αµ[2] - Ormono adj -0.20 1.84 3.84
αµ[3] - Ormono salvage -5.67 -3.18 -0.49

αµ[4] - Radio adj -1.66 0.58 2.85
αµ[5] - Radio salvage -0.53 1.46 3.36

αµ[6] - Lymphadenectomy -1.30 1.13 4.25
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TABLE 3.8: Clinical dataset - Results on global parameters for PSA
growth curve after the change point. Positive coefficients are associ-

ated with a higher level of PSA.

Parameter 2.5% Mean 97.5%
αγ[1] - intercept -2.99 -2.58 -2.18

αγ[2]− PR -0.14 0.20 0.56
αγ[3]− PT -0.29 0.08 0.44
αγ[4]− PN -0.78 -0.17 0.47
αγ[5]− S 0.32 0.64 1.03

αγ[6] - Age -0.25 -0.04 0.14
αγ[7] - Ormono adj 0.18 0.71 1.28
αγ[8] - Ormono slv 0.26 0.73 1.28

αγ[9] - Radio adj -1.69 -1.13 0.547
αγ[10] - Radio Slv -0.65 -0.24 0.21

αγ[11] - Lymphadenectomy -0.41 0.03 0.49

TABLE 3.9: Clinical dataset - Results on global parameters for logistic
model. Positive coefficients are associated with higher probabilities

of positive PET-PSMA examinations.

Parameter 2.5% Mean 97.5%
αβ[1] - Intercept -0.59 0.84 2.34

αβ[2]− PR -0.11 0.68 1.62
αβ[3]− PT -0.84 0.22 0.85
αβ[4]− PN 0.05 0.88 2.56
αβ[5]− S 0.05 1.28 2.56

αβ[6] - Age -0.52 -0.14 0.24
β1 1.64 2.56 3.68
β2 -0.01 0.00 0.01

TABLE 3.10: Clinical dataset - Results on global parameters.

Parameter 2.5% Mean 97.5%
ωµ 2.53 3.14 3.91
ωγ 0.63 0.75 0.90
Ψa -0.41 -0.26 -0.13
ωa 0.57 0.66 0.76
aσ2 2.00 2.01 2.02
bσ2 0.18 0.22 0.27

TABLE 3.11: Clinical dataset - Coefficients of logistic regression on
probability to receive therapies. Bold coefficients refer to p-values

smaller than 0.005.

Therapy Intercept PR PT PN S L PSA at surgery
Ormono adjuvant -3.22 -0.02 -0.46 1.92 1.20 0.46 1.54
Ormono salvage -1.57 -0.08 -0.95 -0.51 0.90 0.54 -1.39
Radio adjuvant -2.94 2.21 -0.57 0.92 0.35 -0.30 -0.25
Radio salvage -3.14 0.52 1.02 -0.70 1.01 0.23 -0.79

Lymphadenectomy -0.03 -0.26 0.84 N.A. 1.12 -0.60 0.25
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FIGURE 3.4: PSA growth curves and probability curves for the three
patients introduced in Figure 3.3. Patients 1 and 2 are BCP but with

quite different PSA levels, while 3 is BCR.

In Figure 3.4 we show examples of the model outputs. In the first row, the fitted
curves for the selected patients (first row) are shown, where the grey solid regions
are used to show the 95% CI if τi. In the second row, the approximation on the
right-hand side of Equation (3.19) is computed using thresholds 0.5, 0.7, and 0.9:
as expected, the higher the threshold, the lower the probability. Filled circles and
squares are used to indicate the true and negative outcomes of the test, respectively.
The posterior distributions of individual parameters λi, τi, γi, µi, ai are reported in
Figure 3.5. The posterior distributions λi show differences that reflect the difference
between BCP and BCR patients. In particular, it is easy to see that we obtain different
fits for patients 1 and 2 of type BCP, in comparison with BCR patients 3.

In the PET-PSMA case study presented, data are collected in an observational
setup and not in a clinical trial. Therefore the time-grid of measurements (in par-
ticular on PET-PSMA) is not prespecified, but affected by the clinician decision and
the severity of the illness itself, sources of potential bias. However, our work aims
to develop a general tool to be used in several scenarios, not to construct a model
to analyze the specific dataset presented, which served more as a case study. To test
and promote our new method, the final idea is to construct a general database, that
can be accessed by multiple clinicians, containing patients from multiple centers,
whose information should be updated and added at each new visit, to enforce the
power of the statistical methodology. Clearly, the data collected with this procedure
are heterogeneous and we try to model them in a realistic and parsimonious way.

3.6.1 Comparison of the joint model to the logistic model

We compare the performance of our joint model to the closest method existing in the
literature [Lui+20], that can be considered the current standard of care. In particular,
a logistic regression model is fit with the R function glm [R C] (following the idea
proposed in [Lui+20]), including the same baseline covariates as our joint-logistic
model and the observed PSA level. In this logistic model, which we compare to
our joint model, the response is 1 if the PET-PSMA gives a positive result (i.e., the
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FIGURE 3.5: Individual parameters posterior distributions for the
three patients introduced in Figure 3.3.

location of the disease is identified) and 0 if not. We apply to the San Luigi Hos-
pital dataset presented in Section 3.6 both methods. Overall, the results obtained
from this logistic analysis (see Table 3.12) are largely consistent with those from our
method. Moreover, the significant covariates are also overall consistent with the
reference paper [Lui+20], based on a different but similar dataset. Specifically, we
found that tumor status and log-PSA level have strong and significant effects on
the probability of positive PET-PSMA results, while resection margin and time have
weaker effects. Notably, all of these covariates have positive coefficients, indicating
that higher values increase the likelihood of positive PET-PSMA results. To formally
compare the two fitted models, we use them to predict the PET-PSMA binary out-
puts, on the dataset under analysis, and we evaluate the relative Receiver Operating
Characteristic curves (ROCs), shown in Figure 3.6, computing their areas under the
curve (AUCs). Figure 3.6 shows the ROC curves for the logistic and the joint model,

TABLE 3.12: R output of the logistic model based on the idea of
[Lui+20] applied to the medical data.

Estimate Std. Error z value Pr(> z|)
(Intercept) -0.2754 0.4757 -0.58 0.5627

PR 0.6082 0.3622 1.68 0.0931
PT 0.0918 0.3613 0.25 0.7994
PN 0.3738 0.5504 0.68 0.4971

S 1.0768 0.3628 2.97 0.0030
Age -0.1381 0.1649 -0.84 0.4023

log(PSA) 1.3855 0.2628 5.27 0.0000
time 0.0070 0.0042 1.69 0.0915
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FIGURE 3.6: ROC curves for simple logistic model and join logistic
model on real data. The AUC for simple logistic ROC is 0.79, the
AUC for mean joint model ROC is 0.86, while the posterior 95% dis-
tribution of the AUC index ranges between 0.78 and 0.86. Results are

obtained with R package pROC [Rob+].

computed with real data using R function auc of the pROC package [Rob+]. The AUC
for the simple logistic (red line) is 0.79, while the AUC for mean joint model (black
line) is 0.86, with the 95% of posterior AUC values ranging between 0.78 and 0.85,
with median 0.81. As a result, we can see that the use of the latent PSA level, i.e.,
xi(t), one of the main points of our proposal, instead of the measured level, which
is used in the competing model [Lui+20], gives better results. From the mean ROC
curves, we can select the optimal π∗ probability, namely the one corresponding to
the higher trade-off between sensitivity and specificity; it is selected as the point on
the ROC closest to coordinates (0, 1), which corresponds to π∗ = 0.55. Moreover,
one big advantage of our joint model is that it enables the prediction of probabilities
of positive results for future times, for which the PSA level may still be unknown.
For example, this prediction of the PSA level and the related probability of posi-
tive success can still impact the treatment strategy adopted in the meantime, thus
improving the patient benefit.

In addition to the logistic regression presented in [Lui+20] and analyzed in this
Section, a common procedure used by clinicians is the evaluation of PSA-doubling
time (PSA-DT) and PSA-velocity, based on the last couple of PSA measurements.
In literature, PSA-DT higher than six months is significantly associated with a high
probability of positive PET-PSMA results, but no clear and well-defined guidances
are available, resulting in subjective decisions of time to examination, which depend
on the clinician belief and past experiences. For this reason, a comparison of the per-
formances of our proposed joint model and this methodology cannot be performed.
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FIGURE 3.7: Predictive probability of positive PET-PSMA results for
observed negative (0) and positive (1) examinations of the whole
dataset (left panel), of misclassified results only (middle panel),
and correctly classified results (right panel), obtained through cross-

validation (with π∗ = 0.55).

3.6.2 A Cross-Validation study

To evaluate the performance of the proposed algorithm on the real dataset, we addi-
tionally perform a leave-one-out cross-validation analysis, according to Section 1.2.
We exploit the cross-validation predictive density sets

{ f (yi(t)| log xo, πo, log yo
it, zo); ∀ yi(t) ∈ yo},

for the PSA levels, where log yo
it is the set of observed log-PSA values except for

log yi(t), and
{ f (zi(t)| log xo, πo, log yo, zo

it); ∀ zi(t) ∈ zo},

for the PET-PSMA examination, where zo
it is the set of observed log-PSA values ex-

cept for zi(t). For each PSA and PET-PSMA measurement collected, we sample 1000
realizations from the corresponding cross-validation predictive density, estimated
through 150.000 iterations of the algorithm (burn-in 100.000, thinning parameter 10).
To evaluate the goodness of the prediction we use the accuracy index. The PSA ac-
curacy, i.e. the percentage of predictive 95% CI containing the true values of the cor-
responding measurement, equals 98.20%. On the other side, PET-PSMA accuracy,
i.e. the percentage of PET-PSMA results correctly predicted (threshold π∗ = 0.55, as
selected with ROC analysis in Section 3.6.1), equals 77.08%. Moreover, to validate
the posterior distribution of πi(t), Figure 3.7 shows the probability of positive re-
sults across different subsets (0 for negative and 1 for positive) PET-PSMA results.
In the left panel, we present the overall dataset, the middle panel focuses on mis-
classified instances, and, finally, the right panel highlights correctly classified cases.
The plot shows that the posterior median of πi(t), respectively for the outcome 0
and 1, is approximately 0.4 and 0.78 when considering the entire dataset. However,
when we restrict our analysis to the correctly characterized data, these values shift
to ≈ 0.35 for 0 and ≈ 0.82 for 1, which demonstrates that the right decision can be
made with a high degree of confidence. In the middle panel, when the method en-
counters challenges in classifying the data, there is a notable increase in uncertainty.
The values of πi(t) are close to the threshold π∗, confirming that the methods fail
when uncertainty is high. This underscores the sensitivity of the model to situations
with increased ambiguity and suggests that the uncertainty in predictions increases
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FIGURE 3.8: Mean estimated log-psa (on x-axis) compared with ob-
served log-psa (y-axis): black points are estimated through our joint
model, blue points are estimated through exponential model. Red

line is the bisector. Results are obtained through cross-validation.

when the method encounters difficulty in making accurate classifications.
We compare the accuracy of our joint model with results obtained with standard

methods, consistently with existing literature practices. We conduct leave-one-out
cross-validation to assess the performance of the PET-PSMA logistic model (based
on [Lui+20] and presented in Section 3.6.1), but also the exponential-fit model, a sim-
pler method which predicts the future (and yet unknown) PSA level at time t3 based
on pairs of PSA measurements (PSA1, PSA2) collected at previous times t1 and t2,
utilizing an exponential fit [Ben+08; MSK]. Note that the PSA level at the given time
t3, is predicted by only using two previous recorded values and not the entire his-
tory. While this technique offers predictions, its efficacy is limited compared to our
joint model, as shown in Figure 3.8. It illustrates the difference between true and pre-
dicted log-PSA levels, estimated with both exponential and joint models. The plot
distinguishes predictions made with the exponential model (1647 predictions shown
in blue) and our joint model (1671 predictions represented in black), underlying the
limited predictive capacity of the exponential basic model, which handles 24 fewer
data predictions due to the intrinsic structure of the prediction mechanism (points
referring to time t1 and t2 can not be handled). Nevertheless, it is worth noting that
the variability of the predicted values with the exponential model is higher than that
with the proposed joint model. This highlights the superior predictive performance
of the proposed joint model. Finally, the accuracy for PET-PSMA examination pre-
dictions, with the simple logistic model (threshold π∗ = 0.55), as presented in Sec-
tion 3.6.1, is 69.17%, which is improved by the 77.08% accuracy obtained with our
joint model.
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3.7 Final remarks and conclusions

Correct and quick identification of the locations of possible metastasis in prostate
cancer is a challenging open problem. Despite the availability of several new tech-
niques, their calibration is still debated. In particular, the results obtained using the
sensitive nuclear examination known as PET-PSMA can be improved if correctly
combined with a good estimation of the optimal time to perform the examination.
The previous sections contain our proposal on how to estimate the optimal time to
perform PET-PSMA which exploits information from the whole history data of each
patient. We have introduced the joint model approach, addressing both PSA growth
and the probability of a positive PET-PSMA, enriched with random effects to enable
predictions for future patients. Our proposal is therefore not just a method for pre-
dicting individual PSA growth curve and time to PET-PSMA, but a proposal to drive
optimal decisions regarding the patient, which is the core of personalized medicine.
After explaining the model structure and the joint approach, we have discussed the
optimal time estimation. Finally, the model has been estimated both on simulated
and real data. Simulations were used to test the proposed model under challeng-
ing settings. In particular, we showed that the resurgence changing point time τ is
difficult to estimate, as well as the regressive parameters entering the mean of the
random effects. On the other hand, simulations also highlight the adaptability of
the method to quite different growth patterns of PSA. The results obtained on real
data, for an optimal probability π∗ = 0.55 with a confidence of ρ = 95% on the
result, give new insights into the model applicability and performance. Both the
growth model estimated patterns and the logistic results are easy to interpret and in
accordance with clinical evidence. Despite the improvements gained with our joint-
model proposal, its complex mathematical structure makes it challenging the clinical
daily applicability. Further research directions could include the implementation of
a graphical interface to help clinicians exploit the model in an easy way: any new pa-
tient under analysis should be easily included in the database through the interface,
enforcing the model accuracy, and enabling good and quick predictions.
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Part II

Recurrent events data
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Chapter 4

Survival analysis

Survival analysis is the branch of statistics that analyzes waiting times until an event
of interest occurs. In medicine, usually, the events of interest are adverse events: in-
fections, deaths, withdrawals from clinical trials, and many others. Survival analy-
sis seeks to investigate the proportion of the population that will survive (or remain
event-free) over time, the rate of events occurring, and the factors that can influence
this event rate. More generally, survival analysis focuses on modeling time-to-event
data.

4.1 Modeling Survival data

A survival dataset, for a population of n individuals, is generally composed of base-
line covariates, time-varying covariates, and the time of the event (when it occurs) or
the last observed time, when it does not occur (or something prevents from observ-
ing it) together with a dichotomous indicator variable (1 if event occurs, 0 otherwise).
If the follow-up window is too short to observe the event of interest, we refer to the
data as right-censored. Survival data are usually described and modeled in terms of
survival and hazard probabilities.

The survival probability, usually indicated with S(t), is the probability that an
individual survives from the time origin t0 to a specified future time t. The hazard
is usually denoted by λ(t) (or h(t)) and is the probability that an individual under
observation at a time t will experiment an event in the infinitesimal time interval
[t, t + ∆t): it represents the instantaneous event rate for an individual who survived
until time t. Integrating the hazard function over [0, t] gives the cumulative hazard
function Λ(t) =

∫ t
0 λ(s)ds, which is linked to the survival by

S(t) = exp
(
−

∫ t

0
λ(s)ds

)
= exp(−Λ(t)). (4.1)

Many models and methods are used to describe, evaluate and estimate survival,
hazard, and cumulative hazard functions. In this chapter we present an overview of
the most popular ones.

4.1.1 Estimating the Survival function

The survival probability can be non-parametrically estimated from observed sur-
vival data, using the Kaplan-Meier (KM) [KM58] and the Breslow methods (B)
[Cox+50]. For a population under observation, composed of n individuals, suppose
that H out of n patients experimented the event of interest during the follow-up
period [0, τ] at ordered times t(1) < t(2) < · · · < t(H). In this particular scenario,
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events are assumed to occur independently of one another, thus multiplying the
probabilities of surviving from one interval to the next gives the cumulative survival
probability. More formally, the probability of being alive at time t(h), namely Ŝ(th),
is estimated from the probability Ŝ(th−1) of being alive at t(h−1), the number nh of
patients alive at t(h), and the number dh of events happening at t(h).
KM estimator uses the recursive formula

ŜKM(t(h)) = ŜKM(t(h−1))

(
1 − dh

nh

)
, where ŜKM(0) = 1, (4.2)

which gives

ŜKM(t) = ∏
h:t(h)<t

(
1 − dh

nh

)
. (4.3)

The step-function KM, a plot of the KM survival probability in time, provides a vi-
sual summary of the data.
Breslow method is based on a similar idea and suggests estimating the survival
probability by ŜB(t) = exp(−Λ̂(t)), which gives

ŜB(t) = ∏
h:t(h)<t

e−dh/nh , where ŜB(0) = 1. (4.4)

For small increments, the presented estimators are similar, since e−x ≈ 1 − x, which
happens, in particular, when many subjects are still at risk. Thus, it can be shown for
n → ∞ that the estimators in Equations (4.3) and (4.4) are asymptotically equivalent.

The value of ŜB(t) and ŜKM(t) are constant between consecutive times of events,
and therefore the estimated probability is a step function that changes value only at
times of events.

Comparing Survival curves: the Log-Rank test

It is often of high clinical interest to assess whether there is any difference in survival
probability (or cumulative incidence of events) among different groups of individu-
als. For example, in a clinical trial with a survival outcome, it might be interesting to
compare survival probabilities between participants receiving a new drug and those
receiving placebo (or standard therapy). In an observational study, the focus might
be to compare survival probability between men and women, or between partici-
pants with and without a particular risk factor (e.g., hypertension or diabetes). In lit-
erature, several tests are available to compare survival among independent groups.
The log-rank test is the most popular: it tests the null hypothesis of no difference
in survival between two or more independent groups, compared to the alternative
hypothesis of significant differences. The log-rank test compares the entire survival
experience between groups and can be thought of as a test to determine whether
the survival curves are identical (overlapping) or not. Survival curves are estimated
for each group separately using the KM method, and then statistically compared.
Considering two groups of individuals with t(1) < t(2) < · · · < t(H) times of events.
Let’s N1h and N2h be respectively the number of individuals at risk in [t(h), t(h+1)),
and O1h and O2h respectively the number of events in [t(h), t(h+1)) for group 1 and
group 2. Finally, Nh = N1h + N2h and Oh = O1h + O2h.
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The test comparing the survival probabilities S1(t) and S2(t) can be summarized
by the following null and alternative hypotheses

H0 : S1(t) = S2(t),
H1 : S1(t) ̸= S2(t).

(4.5)

In both groups, under H0, we have Oi,h ∼ Hypergeometric(Nh, Nih, Oh), thus it comes
by definition that

Eih = E[Oih] = Oh
Nih

Nh
,

Vih = Var[Oih] = Eih

(
Nh − Oh

Nh

)(
Nh − Nih

Nh − 1

)
.

(4.6)

For each time t(h), h = 1, . . . , H, the log-rank test compares Oi,h to its expectation
under H0, using the statistic

Zi =
∑H

h=1(Oih − Eih)√
∑H

h=1 Vih

, (4.7)

which, under H0, by central limit theorem (when H goes to infinity), converges in
distribution to a standard normal distribution.

4.1.2 Estimating Hazard functions

Despite the survival function S(t) and the hazard function λ(t) being linked by
Equation (4.1), it is not always easy to estimate λ(t). A popular approach to estimat-
ing the hazard is to assume that the survival time follows a specific mathematical
distribution. The most used distributions are reported in Table 4.1.

TABLE 4.1: Characteristics of the exponential, the Weibull, and the
Gompertz distributions.

Distributions

Characteristic Exponential Weibull Gompertz

Parameter scale scale λ > 0 scale λ > 0
λ > 0 shape ν > 0 shape α ∈ R

Hazard function λ λνtν−1 eαt

Cumulative hazard function λt λtν λ
α (e

αt − 1)

Density function λe−λt λνtν−1e−λtν
λe(αt)e

λ
α (1−exp(αt))

Survival function e−λt e−λtν
e

λ
α (1−eαt)
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4.2 Cox model for time to event

One of the main focuses of survival analysis is to describe the relationship between
survival times and covariates. Usually, this is done by a linear-like regression model
for the log hazard. The Cox model is the most famous semi-parametric model with
this regression structure. It links the covariates Zi = (z1i, ..., zpi)

T of patient i to the
individual log hazard as

log λi(t) = α0(t) + α1z1i + α2z2i + · · ·+ αpzpi, (4.8)

or, in exponential form,

λi(t) = λ0(t)eα1z1i+α2z2i+···+αpzpi , where λ0(t) = eα0(t). (4.9)

The label semi-parametric refers to the hazard structure, obtained as a product of
a non-parametric function λ0(t) and a parametric term eα1z1i+α2z2i+···+αpzpi , where
λ0(t) = eα0(t). This model is also called proportional-hazard model, as the ratio
of individual hazards does not depend on time: taking individual i and individual j
and their hazard λi(t) and λj(t), the ratio is then

λi(t)
λj(t)

=
λ0(t)eα1z1i+α2z2i+···+αpzpi

λ0(t)eα1z1j+α2z2j+···+αpzpj
=

eα1z1i+α2z2i+···+αpzpi

eα1z1j+α2z2j+···+αpzpj
. (4.10)

This means that, even if the baseline hazard λ0(t) remains unspecified, the Cox
model can be estimated by the partial-likelihood method. The partial likelihood
function for Cox model was introduced by Cox et al. [Cox72] and can be written as

PL(α1, . . . , αp) =
n

∏
i=1

{
λi(t)

∑j:tj<ti
λj(t)

}δi

=
n

∏
i=1

{
eα1z1i+α2z2i+···+αpzpi

∑j:tj<ti
eα1z1j+α2z2j+···+αpzpj

}δi

, (4.11)

where 1 − δi is an indicator function, equal to one when the patient event Is not
observed due to right censoring, and tj is the time of event for patient j. From the
log-partial-likelihood

log(PL(α1, . . . , αp))=
n

∑
i=1

δi

{
log λi(t)− log ∑

j:tj<ti

λj(t)
}

=
n

∑
i=1

δi

{
α1z1i+α2z2i+. . .+αpzpi−log ∑

j:tj<ti

eα1z1j+α2z2j+···+αpzpj

}
,

(4.12)

it is possible to derive the system of score functions Uαk , for all k = 1, . . . , p,

Uαk =
∂ log(PL(α1, . . . , αp))

∂αk
=

n

∑
i=1

δi

{
zki −

∑j:tj<ti
zkjeα1z1j+α2z2j+···+αpzpj

∑j:tj<ti
eα1z1j+α2z2j+···+αpzpj

}
, (4.13)

and the estimator α̂ = (α̂1, . . . , α̂p)T by solving the system (Uα1 , . . . , Uαp) = 0. It can
be shown that the solution α̂ is consistent and asymptotically normally distributed
with mean α.
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The Cox model can also be extended to include time-varying covariates, as

λi(t) = λ0(t)eα1z1i(t)+α2z2i(t)+···+αpzpi(t), (4.14)

and all the theory explained still holds.

4.2.1 Residuals

The Cox model main assumptions can be summarized as

• the baseline hazard rate λ0(t) is common between all patients at any time t,
meanings that all individuals are assumed to experience the same baseline
hazard;

• the effect of the regression variables on the instantaneous hazard experienced
by an individual is assumed to remain constant over time;

• the regression coefficients α does not vary with time.

It is possible to see Equations (4.11), (4.12), and (4.13) from a different perspective,
that allows constructing a fully parametric model for survival analysis. Let us con-
sider again n individuals, for each individual i the p-dimensional vector of covariate
Zi = (z1i, . . . , zpi)

T is collected. Let D be the set of indices of the non-censored indi-
viduals and let Ri be the set of indices of those who were under observation when
the i-th individual experienced the event, namely Ri = {j : tj < ti}. Then, for each
i ∈ D, the probability Pm of sample index m ∈ Ri is

Pm =
eα1z1m+α2z2m+···+αpzpm

∑j∈Ri
eα1z1j+α2z2j+···+αpzpj

, (4.15)

In this scenario, Zi is considered to be a random vector with components conditional
expectations

E[zki|Ri] =
∑j∈Ri

zkjeα1z1j+α2z2j+···+αpzpj

∑j∈Ri
eα1z1j+α2z2j+···+αpzpj

, k = 1, ..., p. (4.16)

Substituting Equation (4.16) in Equation (4.13), we obtain this equivalent formula-
tion for the score functions that we use to estimate α = (α1, ..., αp)T:

Uαk = ∑
i∈D

{zki − E[zki|Ri]}. (4.17)

Denoting with α̂ the estimate of the parameter of interest, and with Ê[zki|Ri] the es-
timate of the true expectation E[zki|Ri] computed by sobstitution of α̂, we can define
the residual r̂i = (r̂1i, ..., r̂pi)

T as

r̂ki = zki − Ê[zki|Ri], k = 1, ..., p. (4.18)

It can be proved that the r̂i residuals are uncorrelated [Sch82]. If the proportional
hazard assumption holds, then E[r̂i] ≃ 0, and a plot of r̂ik versus ti should be cen-
tered around zero. A formal test, named Schoenfeld Residual Tests, can also be
conducted, with proportional assumption holding as a null hypothesis. For further
details, we refer to [Sch82; PH15].
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4.2.2 Simulate survival times from Cox proportional hazards models

Simulating the event times for a Cox model is quite useful in many different contexts.
To better understand the mechanism of the simulation procedure we first describe
the constant-covariate case, then the time-varying covariate framework, which is of
main interest. In particular, combining Equations (4.1) and (4.9), we can generally
define for a patient i the distribution function of the Cox model as

Fi(t) = 1 − exp(−
∫ t

0
λ0(s) e∑

p
j=1 αjzji ds)

= 1 − exp(−Λ0(t)eZT
i α),

(4.19)

and explot it to generate the time of event t as t = Λ−1
0 [− log(u) exp(−ZT

i α)], where
u is a sample from a uniform variable u ∼ U(0, 1), as demonstrated by both Leemis
[Lee87] and Bender et al. [BAB05].

Things become more complicated when also time-varying covariates are in-
cluded in the model. Many different cases can be analyzed and treated differently
depending on the structure of the time-varying covariates. We focus here only on
discrete time-varying covariates with multiple but finite changes in the follow-up
period, while for ohter senarios we refer to [Aus13].

We consider here, for the sake of simplicity, a model with p = 2, where for each
patient i a baseline covariate z1i and a time-varying covariate z2i(t) are measured,
thus the array of the individual covariates for patient i is zi(t) = (z1i, z2i(t))T. The
hazard Equation (4.14) becomes

λi(t) = λ0(t)eα1z1i+α2z2i(t). (4.20)

We are interested in the case when the time-varying covariate has a finite number G
of changes, respectively at times 0 = g0,i < g1,i < g2,i < · · · < gG,i, which may differ
from patient to patient. Defining the time-varying covariate as

z2i(t) =


v1i, 0 ≤ t < g1,i,
v2i, g1,i ≤ t < g2,i,

...
vGi, gG−1,i ≤ t < gG,i,

(4.21)

we can rewrite the hazard as a step-wise constant function

λi(t) =


λ0(t)eα1z1i+α2v1i , 0 ≤ t < g1,i,
λ0(t)eα1z1i+α2v2i , g1,i ≤ t < g2,i,

...
λ0(t)eα1z1i+α2vGi , gG−1,i ≤ t < gG,i,

(4.22)

and decompose the problem of generating the time-to-event for a Cox hazard model
with a time-varying covariate, to the problem of generating the time-to-event for a
Cox hazard model with a fixed covariate, on G intervals. The ease of the procedure
only depends on the shape of λ0(t). Here we consider the case λ0(t) = λ0, just as an
example, and derive the full methodology to simulate the time-to-event.
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The cumulative hazard can be derived by integrating Equation (4.22), to obtain

Hi(t) =



λ0eα1z1i+α2v1i(t), 0 ≤ t < g1,i,
λ0eα1z1i+α2v1i(g1,i) + λ0eα1z1i+α2v2i(t − g1,i), g1,i ≤ t < g2,i,

...
G−1

∑
j=1

[
λ0eα1z1i+α2vji(gj,i−gj−1,i)

]
+λ0eα1z1i+α2vGi(t−gG−1,i), gG−1,i ≤ t < gG,i,

(4.23)
and then inverting each of the piece-wise components of the cumulative hazard
function, we have the inverse cumulative hazard function

H−1
i (t) =



t
λ0eα1z1i+α2v1i

, t ∈ R1,

t − H(g1,i)

λ0eα1z1i+α2v2i
+ g1,i, t ∈ R2,

...
t − H(gG−1,i)

λ0eα1z1i+α2vGi
+ gG−1,i, t ∈ RG,

(4.24)

where the intervals can be defined as

R1 = [0, λ0eα1z1i+α2v1i g1,i],
R2 = [H(g1,i), H(g1,i) + λ0eα1z1i+α2v2i(g2i − g1,i)],

...
RG = [H(gG−1,i), H(gG−1,i) + λ0eα1z1i+α2vGi(gG,i − gG−1,i)].

(4.25)

To simulate a survival time for individual i it suffices to evaluate H−1
i (− log u),

where the value of log u determines which of the G components of the inverse is
used.

4.3 Geneneralized linear models for time to event data

Generalized linear models (GLM) can be used as a parametric tool to model survival
data. The approach is different from the hazard-based methods proposed so far. To
better understand how to apply GLM, we should think of the data to be organized
in the time-person format: the dataset is composed of a row for each patient at each
time {tk}K

k=1 which is in the time-partition-grid. Times tk do not need to correspond
to the event time t(1) < t(2) < · · · < t(H). Furthermore, let Dk be an auxiliary indica-
tor variable, such that Dk = 1 if T ≤ tk and 0 otherwise. The survival probability at
time k is P(T > k), or equivalenty P(Dk = 0) and can be factorized as

P(T > k) =
k

∏
j=1

P(T > tj|T > tj−1)

=
k

∏
j=1

P(Dj = 0|Dj−1 = 0)

(4.26)
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In particular, if ∆k = tk − tk−1 is small enough, P(T > tk+1|T > tk) is the discrete-
time hazard function. An easy way to parametrically approximate the hazard P(T >
tk+1|T > tk) is to construct a logistic regression model. Hernan and Robins [HR20]
proposed to model the logit of the hazard as

logit[P(Dk+1 = 1|Dk = 0, z1, . . . , zn)] = θ0,k + θ1zi + θ2zi × k + θ3zi × k2,

θ0,k = θ0 + θ4 × k + θ5 × k2.
(4.27)

It should be noted that the time-varying intercept and the product between covari-
ates and time model a time-varying hazard and ratio, respectively. When using the
hazard ratio as a measure of causal effect, an important property of the hazard ratio
needs to be taken into account: because the hazards vary over time, the hazard ratio
generally does too. That is, the ratio at time tk may differ from that at time tk+1.
The validity of this procedure requires no misspecification of the hazards model.
Of course, the smaller the time intervals ∆j = tk − tk−1 are, the better the statistical
methods will approximate the survival. To show how the logistic approximation
holds, let us consider a simple scenario with a simple one-dimensional binary co-
variate z ∈ {0, 1} (e.g., the treatment indicator). The discrete-time hazard ratio is
then

P(Dk+1 = 1|Dk = 0, z = 1)
P(Dk+1 = 1|Dk = 0, z = 0)

= exp(α1), (4.28)

meaning that for all k we have

P(Dk+1 = 1|Dk = 0, zi = 1) = P(Dk+1 = 1|Dk = 0, zi = 0)× exp(α1). (4.29)

Taking the logarithm on both sides we obtain

log(P(Dk+1 = 1|Dk = 0, zi = 1)) = log(P(Dk+1 = 1|Dk = 0, zi = 0))× (α1)

= α0,k + α1.
(4.30)

If the hazard at k + 1 is close to 0 (i.e., P(Dk+1 = 1|Dk = 0, z) ≃ 0), then the hazard
is approximately equal to the odds

P(Dk+1 = 1|Dk = 0, z) ≃ P(Dk+1 = 1|Dk = 0, z)
P(Dk+1 = 0|Dk = 0, z)

, (4.31)

thus

log
P(Dk+1 = 1|Dk = 0, z)
P(Dk+1 = 0|Dk = 0, z)

= logit[P(Dk+1 = 1|Dk = 0, z)] ≃ α0,k + α1. (4.32)

That is, if the hazard is close to zero at k + 1, we can approximate the log hazard
ratio α1 by θ1 in a logistic model as logit[P(Dk+1 = 1|Dk = 0, z)] = θ0, k + θ1 like
the one we used in Equation (4.27). As a rule of thumb, the approximation is often
considered to be accurate enough when P(Dk+1 = 1|Dk = 0, z) < 0.1 for all k. This
rare event condition can almost always be guaranteed to hold taking a time unit k
that is short enough.
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4.4 Example and Code

We destinate this section to clarify the literature introduced in Chapter 4 by means
of a toy example, applying the methods and models presented, and reporting the
related R code. We simulate a dataset to emulate a randomized trial that aims at
estimating the treatment efficacy of a new therapy for cancer compared with the
standard of care. The main focus is to understand if patients who received the new
treatment have longer expected life compared to those receiving the standard of
care. The dataset, simulated in R, is composed of 200 patients, for each of them the
baseline covariates measured are

• trt: 0 = standard of care, 1 = new treatment

• time: time of death

• status: censoring status

• age: age of the patient at enrollment

• sex: male or female

• biomarker: an indicator of tumor progression

The interest is to analyze the time-to-censoring to understand which covariates are
associated with it, and to understand if the treatment is improving the life-duration.
The dataset structure is in Table 4.2. Patients are followed from enrollment (time
0) until the end of follow-up (time 200). The status variable indicates whether the
patient was alive or not at the time of recording. Status 1 refers to death, status 0
indicates that the patient did not die before the end of follow-up. The dataset is in
the person-time format, meaning that it is composed of a single line for each patient.

TABLE 4.2: Some rows of the dataset under analysis.

trt time status age sex biomarker
1 1 200 0 65 0 1.77
2 0 200 0 58 0 2.18
3 0 174 1 72 0 2.55
4 1 200 0 67 1 1.80
5 1 123 1 69 1 1.91
6 0 197 1 61 1 1.87

TABLE 4.3: Some rows of the dataset analyzed in the long format.

trt age sex biomarker tstart time status
1 1 65 0 1.77 0 1 0
2 1 65 0 1.77 1 2 0
3 1 65 0 1.77 2 3 0
4 1 65 0 1.77 3 4 0
5 1 65 0 1.77 4 5 0
6 1 65 0 1.77 5 6 0
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Cox estimating function (coxph) provided by R package survival [The+] can be
applied to this format but the dataset needs to be modified to apply the GLM model
(with glm function in R package stats [R C]). For this reason, the long.dataset

function splits the dataset over all the times selected (line 5), in this case the smallest
unit is considered, and creates a record for each person-time.

1 ## Function to modify the dataset in the long format

2 long.dataset <-function(data)

3 {

4 # Define times to split dataset

5 events =1:max(data$time)

6

7 # Split data over event -times

8 data.long <- survSplit(Surv(time ,status) ~ .,data=data , cut=events)

9

10 # add variable time^2 to the dataset

11 data.long$startsq=data.long$tstart ^2

12

13 # return dataset in time -person format

14 return(data.long)

15 }

The new long-format dataset is in Table 4.3, where time indicates the time at
which each record is collected, and tstart indicates the last time at which each
patient was observed (at last occurence recorded in the previous row). All the other
variables remain the same.

The R package survival [The+] provides the coxph function to fit the Cox model
for time-to-event. The function requires the user to specify the event/status variable,
the corresponding time and the covariates to be included in the analysis. We present
here two different Cox models, namely cox0 and cox1 (lines 1-6), which differ for
the treatment covariate and compare them with the ANOVA test. In addition, we
investigate the treatment effect on the survival function using the log-rank-test (line
10). We finally test the proportional-hazard assumption using Schoenfeld’s residu-
als, looking graphically at them and performing the corresponding test which shows
that Cox proportional model assumption is satisfied (lines 12–13). The biomarker co-
variate is significantly related to survival times if treatment is not considered, but is
no more significant when treatment is added. To understand the reason behind this,
further models should be tested, namely adding the interaction between treatment
and biomarker value, but this is out of the scope in this section.

1 # Cox model without terapy

2 cox0=coxph(Surv(time ,status) ~ age + sex + biomarker ,

3 data = dataset.cancer.long)

4 # Cox model with terapy

5 cox1=coxph(Surv(time ,status) ~ trt + age + sex + biomarker ,

6 data = dataset.cancer.long)

7 # comparison with ANOVA

8 anova(cox0 ,cox1 ,test="Chisq")

9 # Log -rank -test

10 survdiff(Surv(time ,status) ~ trt , data = dataset.cancer)

11 # Analysis of residuals

12 residuals(cox1)

13 print(cox.zph(cox1))

We list in Table 4.4 to Table 4.8 the outputs, used to interpret the results.
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TABLE 4.4: Output of Model cox0: coefficients estimates with stan-
dard error and pvalues.

term estimate std.error statistic p.value
1 age -0.01 0.01 -1.18 0.24
2 sex -0.15 0.17 -0.89 0.37
3 biomarker 0.21 0.09 2.33 0.02

TABLE 4.5: Output of Model cox1: coefficients estimates with stan-
dard error and pvalues.

term estimate std.error statistic p.value
1 trt -0.49 0.18 -2.73 0.01
2 age -0.01 0.01 -1.30 0.19
3 sex -0.23 0.17 -1.34 0.18
4 biomarker 0.14 0.10 1.44 0.15

TABLE 4.6: ANOVA test output to compare model 1 (cox1) and model
2 (cox0).

loglik chisq df p.value
1 -1196.57
2 -1200.36 7.58 1 0.0059

TABLE 4.7: Log-rank test output (p.value = 0.004).

trt N obs O exp E (O-E)2/E (O-E)2/V
1 0 105.00 80.00 63.24 4.44 8.15
2 1 95.00 61.00 77.76 3.61 8.15

TABLE 4.8: Analysis of Residuals.

chisq df p.value
trt 3.49 1 0.06
age 0.76 1 0.38
sex 1.25 1 0.26
biomarker 0.30 1 0.59
GLOBAL 4.81 4 0.31

TABLE 4.9: Output of model glm0 (AIC: 1692.2), with coefficient esti-
mates, standard errors and pvalues.

estimate std. error statistic p.value
(Intercept) -8.0778 0.7535 -10.72 0.0000

tstart 0.0433 0.0092 4.69 0.0000
I(tstart^2) -0.0001 0.0000 -3.12 0.0018

age -0.0070 0.0084 -0.83 0.4075
sex -0.0841 0.1711 -0.49 0.6230

biomarker 0.1433 0.0867 1.65 0.0981
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As a second approach, we model the simulated data using the binomial general-
ized linear model on the dataset in the long-time-person format, as

1 ## GLM model

2 glm0=glm(status ~ tstart+I(start ^2) + age + sex + biomarker ,

3 family=binomial (),

4 data=dataset.cancer.long)

5 glm1=glm(status ~ tstart+I(start ^2) + age + sex + biomarker + trt ,

6 family=binomial (),

7 data=dataset.cancer.long)

8 anova(glm0 ,glm1 ,test="Chisq")

The GLM models, with the ANOVA test, confirm that survival time is strongly
dependent on the treatment received. Tables 4.9 and 4.10 report the output.

Finally, we give a small graphical comparison of the Cox and GLM model to de-
scribe time-to-event data (see Figure 4.1). We reduce the models of interest to the
treatment variable only, to make it more easily representable. We first construct the
GLM model and use it to make predictions, time by time, for treated and standard-
of-care arms. We then use bootstrap to obtain 95% confidence survival curve. We
plot the KM estimates with 95% confidence interval for the Cox model and the me-
dian GLM curves with 95% confidence region, exploiting survfit and ggsurvplot

R functions, respectively in survival and survminer package [The+; Kas+].

1 ## Model comparison : Cox an GLM

2 glmcompare=glm(status ~ tstart+I(start ^2) + trt ,

3 family=binomial (),

4 data=dataset.cancer.long)

5 # Make predictions for treated and untreated

6 times=seq(1,max(dataset.cancer.long$time)+20,1)

7 LT=length(times)

8

9 dataset0=as.data.frame(cbind(rep(0,LT),c(0,times [1:(LT -1)]),times))

10 colnames(dataset0)=c("trt","tstart","time")

11 glmpred=1-predict(glmcompare ,dataset0 ,type='response ')

12 datasetplot_trt0=as.data.frame(cbind(times ,cumprod(glmpred)))

13 colnames(datasetplot_trt0)=c("timepred", "pred")

14

15 dataset1=as.data.frame(cbind(rep(1,LT),c(0,times [1:(LT -1)]),times))

16 colnames(dataset1)=c("trt","tstart","time")

17 glmpred=1-predict(glmcompare ,dataset1 ,type='response ')

18 datasetplot_trt1=as.data.frame(cbind(times ,cumprod(glmpred)))

19

20 colnames(datasetplot_trt1)=c("timepred", "pred")

TABLE 4.10: Output of model glm1 (AIC: 1687.3), with coefficient es-
timates, standard errors and pvalues.

estimate std. error statistic p.value
(Intercept) -7.7223 0.7652 -10.09 0.0000

tstart 0.0440 0.0092 4.76 0.0000
I(tstart^2) -0.0001 0.0000 -3.18 0.0015

age -0.0078 0.0084 -0.93 0.3542
sex -0.1384 0.1721 -0.80 0.4214

biomarker 0.0856 0.0918 0.93 0.3511
trt -0.4634 0.1779 -2.60 0.0092
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FIGURE 4.1: Comparison survival curves estimated with KM (step
solid-point line with 95% filled interval) and logistic bootstrapped

median (bold solid lines with 95% confidence lines).

4.5 Censoring problem

Statistical censoring is a crucial concept in statistical modeling, particularly when
dealing with time-to-event data in survival analysis. Various types of censoring ex-
ist, depending on the statistical quantity of interest. These include right censoring,
left censoring, and interval censoring, each posing unique challenges and requiring
specific modeling approaches. Understanding and appropriately addressing these
assumptions are essential for ensuring the reliability of statistical analyses and the
validity of conclusions drawn from survival data.
In the survival framework, right censoring occurs when the exact time of the event
of interest is not observed or recorded within the study period, which may happen
for various reasons, such as the study concluding before an event happens or par-
ticipants being lost to follow-up. Three main assumptions are usually considered
to describe right censoring mechanism. The first assumption, named independent
censoring, is the most useful of the three to draw correct inferences that compare
the survival experience of two or more groups. Independent censoring means that,
within any subgroup of interest, the subjects who are censored at time t should be
representative of all the subjects in that subgroup who remained at risk, with re-
spect to their survival experience. In other words, censoring is independent given
that it is random within any subgroup of interest (defined by observed and mea-
sured covariates). The second assumption, called random censoring, is a stronger
and more restrictive assumption than independent censoring. Random censoring
means that subjects censored at time t are representative of all the study subjects
who remained at risk at that time with respect to their survival experience. In other
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words, the failure rate for censored subjects is assumed to be equal to the failure
rate for uncensored subjects who remained in the risk set. Note that independent
censoring is random censoring, conditional on each level of covariates. Finally, non-
informative censoring occurs if the distribution of survival times provides no infor-
mation about the distribution of censoring times, and vice versa. The assumption
of non-informative censoring is usually easily justifiable when censoring is inde-
pendent and/or random; nevertheless, these three assumptions are not equivalent.
In many situations, censoring can be reasonably considered non-informative, and
hence standard likelihood-based procedures can be used without the necessity of
any correction. However, in other situations, it is not clear whether censoring is
non-informative; in fact, it is sometimes clear that censoring is related to survival
times. Despite its crucial importance, the non-informative censoring assumption
is not possible to test without making additional restrictions, for example, restric-
tions on the joint distribution of times of events and censoring times. Choosing the
appropriate assumption is crucial, as violations can lead to biased estimates and er-
roneous conclusions. Researchers must carefully assess the assumptions underlying
these mechanisms to ensure the reliability and validity of their statistical models.
For a detailed description with additional examples, we refer to [KK12].

4.5.1 Right dependent censoring for survival analysis: how to apply
IPCW

So far we assumed all data to be fully recorded or to be randomly censored (in-
dependent censoring mechanism implying no dependence between lifetime Ti and
censoring time Ci for each patient i).
Being hi(t) the censoring mechanism, the assumption we made so far is

hi(t|Ti, z1i, ..., zpi) = hi(t). (4.33)

However, more than often, subjects lost to follow-up are not representative of the
patients at risk. They may have characteristics that differ from the average patient
characteristics: in this case, we refer to the censoring as dependent censoring, which
implies

hi(t|Ti, z1i, ..., zpi) ̸= hi(t). (4.34)

When Equation (4.34) holds, meaning that time-to-event and censoring are depen-
dent, the methods presented so far will poorly perform and give biased estimates.
In particular, when clinicians believe that withdrawal is likely to be related to health
status, as the covariate that best determines the health status is also one of the co-
variates used in the definition of the event time, corrections should be applied while
estimating survival probability and time-to-event distribution. In causal inference
literature, the most popular approach to deal with missing data problems in survival
analysis is to apply the Inverse Probability Censoring Weigthing (IPCW) technique
[Wil+18]. IPCW estimator corrects for censored subjects by giving extra weight to
subjects who are not censored. Each subject i is weighted by the inverse of an esti-
mate of the conditional probability of having remained uncensored until time t. To
illustrate how IPCW works an example will be given. Let’s consider a sample of 4
individuals and suppose that the estimated chance of remaining uncensored until
time t = 5 is 1/4, hence 3 out of each 4 subjects are censored before time t = 5. For
each subject at risk, there would have been 3 extra subjects at risk for the event of
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interest at time t = 5 if censoring was absent. By weighting the contribution of sub-
jects that are not censored at time t = 5 by P−1(survive to time t = 5)=4, the censored
subjects are included in the final estimates.

We present here the KM-IPCW estimator, indicated by ŜKM−IPCW(t), but IPCW
methods can be combined with many other approaches. Combining Equation (4.3)
with IPCW, we obtain

ŜKM−IPCW(t) = ∏
j:tj<t

(
1 −

∑i:δi(tj)=1 Ŵi(tj)

∑n
i=1 Yi(tj)Ŵi(tj)

)
, (4.35)

with Yi(tj) at-risk indicator function for patient i at time tj, and

Ŵi(t) =
1

ŜC(t|z1i, ..., zpi)
(4.36)

the inverse of the estimated probability of censoring ŜC(t|z1i, ..., zpi) happening after
time t, estimated for example using KM estimator.

To give a small insight on how to apply and evaluate KM-IPCW we show a toy
simulated example, based on [Wil+18]. We consider a dataset composed of n = 100
patients. For each patient i the collected data are:

• the patient indicator id;

• the level of the continuous biomarker of interest Z1 measured at baseline;

• the treatment received Z2 (1 or 0);

• the time=min(ti, ci) which is the minimum between the event time ti and the
withdrawal time ci;

• the withdrawal indicator delta=I(ci < ti);

• the event indicator status.

Thus, the resulting dataset contains entries like in Table 4.11.
To understand if the assumption in Equation (4.33) holds, we perform a survival

analysis for time-to-withdrawal using Cox model:
1 CoxModel <- coxph(Surv(time , delta) ~ Z1+Z2 , data = dataset)

and we obtain that withdrawal is significantly dependent on covariates Z1 and Z2
(p-values are almost zero, respectively 6.51 · 10−6 and 1.43 · 10−7). Table 4.12 sum-
marizes the results.

TABLE 4.11: Some rows of the dataset under analysis.

id Z1 Z2 tstart time delta status
1 1 -0.63 0 0 317 0 1
2 2 0.18 0 0 550 1 0
3 3 -0.84 1 0 171 1 0
4 4 1.60 0 0 211 1 0
5 5 0.33 0 0 187 1 0
6 6 -0.82 1 0 1 1 0
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From the analyses performed so far, it is necessary to apply IPCW correction to
obtain an unbiased estimate of survival probability (see following code). To compute
IPCW, the dataset must be in the time-person format (rows 1–9). Lines 12–13 defines
the censoring mechanism used to evaluate the weights (line 15–27).

1 # Modifing the dataset from person format to time -person format

2 test.long <- survSplit(dataset , cut=dataset$time , end="time",

3 start="start", event="status")

4 test.long <- test.long[order(test.long$id,test.long$time),]

5 test.long.cens <- survSplit(dataset , cut=dataset$time , end="time",

6 start="start", event="delta")

7 test.long.cens <- test.long.cens[order(test.long.cens$id ,

8 test.long.cens$time),]

9 test.long$event <- test.long.cens$delta

10

11 # Construct model for censoring

12 C0 <- coxph(Surv(start , time , censored) ~ 1, data = test.long)

13 CZ <- coxph(Surv(start , time , censored) ~ Z1+Z2 , data = test.long)

14

15 # Compute the weigths

16 C0fit <- summary(survfit(C0), times = test.long$start)

17 test.long$K0ti <- C0fit$surv

18 test.long$KZti <- NULL

19 for(i in 1:nrow(test.long))

20 {

21 datai <- test.long[i,]

22 sfiCZ <- survfit(CZ , newdata = datai)

23 ssfiCZ <- summary(sfiCZ , times = datai$start)

24 test.long$KZti[i] <- ssfiCZ$surv

25 }

26 test.long$WUnStab <- 1/test.long$KZti

27 test.long$WStab <- test.long$K0ti/test.long$KZti

Finally, we exploit the IPCW technique to obtain a correction to KM estimator in lines
1–4 (in the following code), and compare the result plotting the survival curves in
Figure 4.2. We evaluate both weigths and stabilized weigths (see [HR20], Technical
point 12.2). Once the weigths are evaluated, we can compute the survival probabil-
ity, applying the IPCW correction:

1 # Estimating time -to -event with KM, KM -IPCW , and KM-IPCW Stabilized

2 KM<-survfit(Surv(start , time , status) ~ Z2, data = test.long)

3 KM_IPCW <-survfit(Surv(start , time , status) ~ Z2 ,data = test.long ,

weights = WUnStab)

4 KM_IPCWStab <-survfit(Surv(start , time , status) ~ Z2, data = test.long

, weights = WStab)

TABLE 4.12: Output of Model CoxModel, with coefficient estimates,
standar errors and pvalues.

term estimate std.error statistic p.value
1 Z1 0.85 0.19 4.51 0.00
2 Z2 1.98 0.38 5.26 0.00



Chapter 4. Survival analysis 81

FIGURE 4.2: Survival probability curves evaluated with KM (red),
KM-IPCW (green), and KM-IPWStab (blue) for a time-to-event set-
ting with informative censoring. Results are compared with true sur-

vival curve (solid black line).

For further details on methods and implementation of IPCW, we refer to [Wil+18].
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Chapter 5

Background of recurrent events
analysis

In science and technology, interest often lies in studying processes that generate
events repeatedly over time. Such processes are referred to as recurrent event pro-
cesses and the data they provide are called recurrent event data. Recurrent event
data arise in fields such as medicine and public health, business and industry, reli-
ability, social sciences, and insurance. In these settings, the main interests include
(i) understanding and describing (individual) event processes, (ii) identifying and
characterizing variation across a population of processes, (iii) comparing groups
of processes, and (iv) determining the relationship with fixed external agents (e.g.,
baseline covariates), and time-varying factors (e.g., time-dependent covariates) to
event occurrence [CL07].

In medicine, whenever the same patient can be involved in more than one event,
of the same type or not, we refer to it as a recurrent event setting. Examples of recur-
rent events can be epileptic seizures, heart attacks, tumor resurgence, infections, and
many more. A common characteristic among these events is the intrinsic correlation
between those occurring in the same subject. The statistical literature on the anal-
ysis of recurrent events for medicine has grown rapidly over the past twenty years
and a variety of models and methods has been developed. This chapter provides a
little sum-up of the background of recurrent events. We first introduce the notation
to describe relevant models, explain their underlying assumptions and properties,
consider settings where they are appropriate, and briefly discuss how to fit these
models. Parametric, nonparametric, and semiparametric methods are briefly dis-
cussed. Modeling recurrent events can be approached in several ways: the most
exploited ones are through event counts or waiting times. We particularly focus
on one-type-of-events methods based on counts and rate functions, starting from
the Poisson parametric model, relaxing the parametric structure, and describing the
semi-parametric Andersen-Gill model [AG82], which is the main focus of the sec-
ond part of the thesis. We finally discuss the applicability of the Poisson model on a
simplified example, which is later highly discussed in Chapter 6.

5.1 Notation and Framework

In a recurrent event process, with starting point set to t = 0, the ordered event times
are T1 < T2 < · · · < Tne , where Tj is the time of event j, and ne is the total number of
events. It can be defined the associated counting process {N(t), 0 ≤ t}, which stores
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the cumulative number of events that occurred in [0, t] as

N(t) =
∞

∑
j=1

I(Tj ≤ t). (5.1)

Counting processes are usually defined to be right continuous, namely N(t) =
N(t+), where t+ (and t−) denotes a time that is infinitesimally greater (smaller) than
t. The instantaneous probability of an event occurring at time t, conditional on the
process history X(t−) in [0, t), is given by the intensity function

λ(t) = lim
∆t→0

P(N(t + ∆t)− N(t)|X(t−))
∆t

, (5.2)

or equivalently
λ(t)dt = E(dN(t)|X(t−)). (5.3)

The right-continuity property makes Equations (5.2) and (5.3) well defined.

Sometimes, it is reasonable to assume that the intensity depends on some mea-
sured baseline or time-dependent covariates. We will present, in this chapter, some
possible dependencies of intensity functions on the internal process history, while
always assuming covariates to be external. In particular, we define Z(t) to be the
history over [0, t] of external covariates (baseline and time-dependent), and we de-
fine the history of the whole process X(t) to be X(t) = {N(s), Z(s) : 0 < s < t}.
Finally, for each recurrent event process observed, the at-risk indicator function Y(t)
can be defined as

Y(t) = I(0 < t < τ), with [0, τ] the observation period considered, (5.4)

and Equation (5.2) is sometimes rewritten as

λ(t)Y(t)dt = E(dN(t)|X(t−)). (5.5)

This function defines, time by time, if the process can account for a new event or not:
when dealing with multiple process settings we assume only one process can jump
at time.

For a recurrent event process, with the intensity in Equation (5.2) and Markovian
structure (see [CL07]), the probability of experimenting ne > 0 events at times t1 <
t2 < · · · < tne over the time interval of interest [0, τ] is

ne

∏
j=1

λ(tj|X(tj)) exp
(
−

∫ τ

0
λ(u|X(u))du

)
. (5.6)

Moreover, the probability of no events occurring in [s, t] is

P
(

N(t)− N(s) = 0|N(s+)
)
= exp

(
−

∫ t

s
λ(u|X(u))du

)
. (5.7)
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Using Chapman-Kolmogorov equations [She93], Equation (5.7), can be extended to
obtain the probability

P
(

N(t) = ne|N(0) = 0
)
=

∫ t

0
λ(ω)P

(
N(ω) = ne − 1|N(0) = 0

)
×

exp
(
−

∫ t

ω
λ(v|H(v))dv

)
dω.

(5.8)

and the density functions of the interarrival times ∆x = Tx − Tx−1 to be

f∆x |Tx−1
(ux|tx−1) = λ(tx−1 + ux) exp

(∫ tx−1+ux

tx−1

λ(ω)dω

)
. (5.9)

The theory presented in Equations (5.6)–(5.9) refers to a Markovian setting with
a time-dependent intensity function λ(t), but, in some particular circumstances, it
may be of interest to assume the intensity function λx(t) also depends on the number
of events x already accounted as

P
(

N(t + ∆t)− N(t) = 1|N(t) = x
)
= λx(t)∆t + o(∆t), when ∆t → 0. (5.10)

The notation introduced so far holds for a single recurrent event process. When
we deal with multiple recurrent event processes (e.g., one for each patient under
analysis), we will add the subscript i to refer to a specific one.
For further details on recurrent events theory, we refer to [CL07].

5.2 Parametric model: Poisson model

The Poisson process is the most famous model to describe counting data. It has sev-
eral equivalent definitions, we report here the one based on the intensity function.
Poisson intensity function is of the form

λ(t|X(t)) = ρ(t), (5.11)

meaning that the probability of an event occurring in a time interval may depend
on it but not on the process and covariate history X(t). In particular, this structure
implies that the following two properties hold:

1. N(t)− N(s) ∼ Poisson(
∫ t

s ρ(u)du);

2. if (s1, t1] and (s2, t2] are non overlapping intervals, then N(s1) − N(t1) and
N(s2)− N(t2) are independent random variable.

If the function ρ(t) is time-dependent, the process is called inhomogeneous, if it is
constant then it is called homogeneous. The intensity function is often modified to
include effect of the process of covariates history Z(t), to obtain the multiplicative-
Poisson-intensity-model

λ(t|X(t)) = ρ0(t; α) exp(βZ(t)). (5.12)

This formulation is particularly useful to deal with a population of n patients, each
described by their own Poisson process, with a slightly different shape, that can be
explained by a common baseline parametric function ρ0(t; α) with parameter α, but
different covariates. We report here how to apply the maximum likelihood method
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to estimate the parameters of the Poisson processes for n individuals, and, to this
purpose, we introduce the subscript i to refer to the i-th individual of the popula-
tion. Each individual process is described by its intensity, with structure given by
Equation (5.12), where ρ0(t; α) depends on a r× 1 parameter α, and β is a p× 1-vector
of coefficients (p being the dimension of covariates process Zi(t)). Finally, θ = (α, β)
the vector of coefficients to estimate. Individuals are assumed to be independent of
each other, given the covariates, thus the likelihood function is the product of the
individual likelihood terms Li(θ):

Li(θ) =
ni

∏
j=1

ρ0(tij; α) exp(βZi(tij)) exp
(
−

∫ τ

0
Yi(s)ρ0(s; α) exp(βZi(s))ds

)
, (5.13)

where ni is the number of events of individual i at times (0 < ti1, . . . , tini < τ). Full
likelihood L(θ) and log-likelihood l(θ) are

L(θ) =
n

∏
i=1

Li(θ), (5.14)

l(θ) =
n

∑
i=1

∫ τ

0
Yi(s)[log ρi(s; α)dni(s)− ρi(s; θ)ds], (5.15)

with ρi(s; α) = ρ0(s; α) exp(βZi(s)) for brevity. Deriving the log-likelihood l(θ) with
respect to the parameters of interest, namely α and β, leads to the partial scores
functions

Uα =
n

∑
i=1

∫ τ

0
Yi(s)

∂ log ρ0(s; θ)

∂α
[dni(s)− ρi(s; θ)ds] = 0,

Uβ =
n

∑
i=1

∫ τ

0
Yi(s)Zi(s)[dni(s)− ρi(s; θ)ds] = 0,

(5.16)

which compose the full score vector U(θ) = (UT
α (θ), UT

β (θ))
T. The explicit MLE

estimator θ̂, which is the solution of U(θ) = 0, is not always explicit, and sometimes
it is necessary to exploit optimization tools to maximize l(θ) and find θ̂.

In the easiest case, namely when the n Poisson processes are homogeneous with
constant-intensity-function ρi(t; θ) = ρ and no covariate dependency is modeled, the
maximization problem of the log-likelihood function l(θ) has the explicit solution:

ρ̂ =
∑n

i=1
∫ τ

0 Yi(s)dni(s)
nτ

=
∑n

i=1 ni(τ)

nτ
. (5.17)

Moreover, if we assume the population to be divided into m subgroups (e.g., based
on the treatment received), each having its own constant-intensity-function ρj, for
groups j = 1, . . . , m, then

ρ̂j =
∑i∈group j

∫ τ
0 Yi(s)dni(s)

mjτ
=

∑i∈group j ni(τ)

mjτ
, j = 1, . . . , m. (5.18)

where mj is the number of individuals in group j, such that n = ∑m
j=1 mj. A common

assumption is to divide the individual under observation based on the treatment
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received and to compare the respective intensity functions to estimate treatment ef-
ficacy.

It can be proved that estimators in Equations (5.17) and (5.18) are unbiased, as it
holds

E[ρ̂] = E

[
∑n

i=1 ni(τ)

nτ

]
=

∑n
i=1 E[ni(τ)]

nτ
= ρ, (5.19)

E[ρ̂j] = E

[
∑i∈group j ni(τ)

mjτ

]
=

∑i∈group j E[ni(τ)]

mjτ
= ρj, j = 1, . . . , m, (5.20)

from Poisson model properties (1) and (2). Many other parametric models for recur-
rent events have been studied in the last 30 years. For a full detailed description, we
refer to [CL07].

5.3 Non-Parametric and Semi-Parametric models

For the sake of realism, sometimes, the assumptions made on the baseline hazard
function ρ0(t; α) are relaxed: to obtain a more flexible scenario the baseline func-
tion is not assumed to have any particular parametric form, reducing to the more
general formulation of ρ0(t). Infer recurrent events parameters for semi-parametric
and non-parametric models presents more challenges than for the parametric ones.
We present the main results reported in literature, starting from a simpler non-
parametric case. Let’s consider the case of n individuals, each having ni(t) events
described by an independent Poisson process with intensity ρ(t). The interest is in-
ferring the expected value of ni(t, t + dt), which is equal to dµ(t) = ρ(t)dt.
For this purpose, we start by evaluating the estimating function U

U =
n

∑
i=1

Yi(s)[dni(s)− dµ(s)] = 0, (5.21)

and deriving the estimator dµ̂(s) as

dµ̂(s) = ∑n
i=1 Yi(s)dni(s)

∑n
i=1 Yi(s)

. (5.22)

It can be easily show that dµ̂(s) in an unbiased estimator

E(dµ̂(s)) =E

[
∑n

i=1 Yi(s)dni(s)
∑n

i=1 Yi(s)

]
=E

[
E

[
∑n

i=1 Yi(s)dni(s)
∑n

i=1 Yi(s)

∣∣∣∣Y1(s), . . . , Yn(s)
]]

=dµ(s).

(5.23)

To finally obtain the estimate of interest for µ(t), we should compute µ(t) =
∫ t

0 dµ(s)
by

µ̂(t) =
∫ t

0
dµ̂(s) =

∫ t

0

∑n
i=1 Yi(s)dni(s)

∑n
i=1 Yi(s)

= ∑
h:t(h)≤t

∑n
i=1 Yi(t(h))dni(t(h))

∑n
i=1 Yi(t(h))

, (5.24)
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where t(1) < t(2) < · · · < t(H) denote the H ordered distinct event times across the n
individuals.

The more interesting model for recurrent-event data for our purpose, which
is the main focus of this second part of the thesis, is the semi-parametric Poisson
model, also called the Andersen-Gill model [AG82], and presented in the next sec-
tion.

5.3.1 The Andersen and Gill model

The semi-parametric Poisson model identified by the individual intensity function
formulation

ρi(t|Z(t)) = Yi(t)ρ0(t) exp(βZi(t)), (5.25)

where Z(t) is the full population process history, Zi(t) the individual one. Equation
(5.25) takes the name of the Andersen-Gill model [AG82]. For this semi-parametric
scenario, the inference is much more complicated: we report here the profile likeli-
hood and the partial likelihood approach that are equivalent and commonly used to
estimate the parameter β involved.

Similarly to the non-parametric case presented in Equations (5.21)–(5.24), we
treat dµ0(d) = ρ0(s)ds and we can replace the score functions in Equation (5.16)
by

U1 =
n

∑
i=1

Yi(s)[dni(s)− exp(βZi(s))dµ0(s)] = 0, 0 ≤ s,

U2 =
n

∑
i=1

∫ τ

0
Yi(s)Zi(s)

[
dni(s)−

∑n
l=1 Yl(s)dNl(s)

∑n
l=1 Yl(s) exp(βZl(s))dµ0(s)

exp(βZi(s))
]
= 0.

(5.26)

Solving the system of Equation (5.26) leads to the estimators µ̂0(s) and β̂.
Analogously, the formula for U2 in Equation (5.26) can be derived working with the
partial likelihood PL(β) with expression

PL(β) =
H

∏
h=1

[ exp(∑i∈Sh
βZi(t(h))β)

[∑n
l=1 Yl(t(h)) exp(βZl(t(h)))]sh

]
, (5.27)

where H are the ordered events time t(1) < t(2) < · · · < t(H) and Sh the set of sh
individuals having an event at time t(h), for h = 1, . . . , H. Note that in theory, for
continuous-time problems, sh should be equal to one, but we assume here event
times to be recorded with finite precision. Taking the partial likelihood in Equation
(5.27) and differentiating it with respect to β leads to the same estimating formula-
tion for U2 as reported in Equation (5.26).

5.4 Case study: MLE for censored Poisson data

We briefly report here a motivational real case study, that is the main focus of the
work we fully describe in Chapter 6. We exploit this example, simplifying it a bit,
to clarify and apply some of the theoretical results presented in this chapter and to
make some small mathematical considerations, before going into details in Chapter
6.
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The example we present is based on a real clinical trial conducted by GSK to de-
velop a vaccine for Chronic Obstructive Pulmonary Disease (COPD), characterized
by respiratory adverse events. The vaccine aims at reducing the individual number
of these critical events related to this pathology, but a correct estimation of the effi-
cacy can be prevented by informative withdrawals: the higher the number of events
the higher the probability of dropout. All the details about the study can be found
in Chapter 6 and in the published papers [And+22; Aro+22].

The recurrent event histories of each patient of a randomized population, either
to standard of care or to an experimental treatment, are recorded as i.i.d. copies of the
initial segments of two-point processes. In the simplest case, the two processes can
be modeled as i.i.d. copies of two homogeneous Poisson processes with intensities
λS and λT (S standard of care, T treatment), so that the Intensity Ratio (IR)

IR =
λT

λS
, (5.28)

or its logarithm, is an inverse measure of treatment effect; the greater IR is, the worse
is the treatment since we are dealing with negative events. In the case of therapeutic
vaccines, an opposite but equivalent direct measure of treatment effect is Vaccine
Efficacy

VE = 1 − λT

λS
. (5.29)

In the presence of informative dropout, the reduction of the observation time may
create biases in estimating IR and, consequently, VE; the goal of this example is to
explore simple computable models to describe the data. Suppose each patient is
scheduled to be observed over a deterministic follow-up time FU, but may be subject
to right-censoring by a censoring random variable C, so that the actual observation
Time is

T = min{FU, C}. (5.30)

In particular, for each patient i, let introduce the following random quantities: the
number of events Ni, happening at times Ti,1, . . . , Ti,Ni , and the final time Ti,Ni+1 =
min{FU, Ci}, where Ci is the censoring time.

For each patient i = 1, . . . , n, let us record the observed values for these quanti-
ties, in the following statistics:

• ni the number of events occurred to the i−th patient in the observed time-
window;

• t1,i, ..., ti,ni the observed times of events;

• the last observation times is ti,ni+1 = FU if the i-th patient is not censored,
otherwise ti,ni+1 = ci, where FU is a deterministic follow-up time and ci is the
censoring time ;

• δi, the indicator of censoring, which equals 0 if ti,ni+1 = FU, and equals 1 if
ti,ni+1 = ci;

• τi, the treatment label (1 if the patient is in the treatment group, 0 if control).

To model the censoring mechanism, i.e., the dropout, in a parametric way, several
choices are available, we present here, as an example, two simple possibilities: the
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first one is modeling the censoring independently from the events, the second one is
considering hazard of withdrawal to be proportional to the intensity of the events.

5.4.1 Poisson model with independent censoring

The easiest model to apply is a Poisson-process model for recurrent events with
the independent censoring assumption for withdrawal. In the case of independent
censoring, C1, . . . , Cn are assumed to be i.i.d random variable as

C1, . . . , Cn
i.i.d.∼ Exponential(µ). (5.31)

Then the likelihood is as follows:

L(λt, λs, µ) = ∏
i:δi=0

lim
∆→0

P
(⋂ni

k=1 Ti,k ∈ (ti,k ± ∆), δi = 0
)

∆ni
×

∏
i:δi=1

lim
∆→0

P
(⋂ni

k=1 Ti,k ∈ (ti,k ± ∆), Ti,ni+1 ∈ (ti,ni+1 ± ∆), δi = 1
)

∆ni+1

= ∏
i:δi=0,
τi=0

exp(−λS ti,ni+1)λ
ni
S exp(−µ ti,ni+1) ∏

i:δi=1,
τi=0

exp(−λS ti,ni+1)λ
ni
S µ exp(−µ ti,ni+1)×

∏
i:δi=0,
τi=1

exp(−λT ti,ni+1)λ
ni
T exp(−µ ti,ni+1) ∏

i:δi=1,
τi=1

exp(−λT ti,ni+1)λ
ni
T µ exp(−µ ti,ni+1),

(5.32)

so that the loglikelihood is

l(λT, λs, µ) = l(µ)− λS ∑
i:τi=0

ti,ni+1 + log(λS) ∑
i:τi=0

ni − λT ∑
i:τi=1

ti,ni+1 + log(λT) ∑
i:τi=1

ni,

(5.33)
and we can ignore the terms in µ to evaluate the MLE esimator fro λS and λT. The
Maximum Likelihood Estimator (MLE) of IR is, as expected,

ÎRMLE =
λ̂T

λS
=

∑i:τi=1 ni ∑i:τi=0 ti,ni+1

∑i:τi=1 ti,ni+1 ∑i:τi=0 ni
, (5.34)

i.e., the ratio of the two average numbers of events per unit of time.

The model implementation in R is shown in the following code. In the code,
2000 different datasets, composed of 500 patients each, are simulated. In case of no
censoring, the mean numbers of events, respectively in the control and treatment
arms are 10 and 5. The mean time to withdraw is 70 days and the follow-up period
is 100 days. The true ratio is 0.5, while the mean ratio is estimated to be 0.51 with a
standard deviation of 0.15.

1 set.seed (1)

2 N=500 # population size

3 FU=rep(100,N) # follow -up period

4 MU=0.70 # hazard of censoring

LAMBDA_S=0.10 # intensity for standard of

care

5 LAMBDA_T=0.05 # intensity for treatment

6 VE=1-( LAMBDA_T/LAMBDA_S) # true vaccine efficacy

7 LAMBDARAPPORTO =( LAMBDA_T/LAMBDA_S) # ratio of rates
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8

9

10 MC=2000 # number of Monte Carlo repetitions

11 ESTIMATES=array(MC)

12 EVENTS=array(N)

13

14

15 for(mc in 1:MC)

16 {

17 TRT=sample(c(0,1),N,replace = T) # randomization arm

18 CENS=rexp(N,MU) # censoring time

19 TMAX=ifelse(CENS <FU ,CENS ,FU) # time of observation

20 IDcens=ifelse(CENS <FU ,1,0) # indicator of censoring

21 for(p in 1:N)

22 {

23 EVENTSTIME=cumsum(rexp (100 ,(TRT[p]*LAMBDA_T+(1-TRT[p])*LAMBDA_S)))

24 EVENTSTIME_SELECTED=EVENTSTIME[which(EVENTSTIME <TMAX[p])]

25 EVENTS[p]= length(EVENTSTIME_SELECTED)

26 }

27

28 ESTIMATES[mc]=( sum(EVENTS[TRT ==1])*sum(TMAX[TRT ==0]))/(sum(EVENTS[TRT

==0])*sum(TMAX[TRT ==1]))

29 }

5.4.2 Poisson model with proportional censoring hazard

We can then complicate the model, by assuming dependent censoring. The simplest
form of dependences we can think about is when the censoring hazard censoring
variable is proportional to events intensity:

Ci ∼
{

Exponential(κλS), if τi = 0,
Exponential(κλT), if τi = 1.

(5.35)

The parameter κ quantifies the informativeness of the dropout mechanism. The like-
lihood can be written

L(λt, λs, k) = ∏
i:δi=0

lim
∆→0

P
(⋂ni

k=1 Ti,k ∈ (ti,k ± ∆), δi = 0
)

∆ni
×

∏
i:δi=1

lim
∆→0

P
(⋂ni

k=1 Ti,k ∈ (ti,k ± ∆), Ti,ni+1 ∈ (ti,ni+1 ± ∆), δi = 1
)

∆ni+1

= ∏
i:δi=0,
τi=0

exp(−λSti,ni+1)λ
ni
S exp(−κλSti,ni+1) ∏

i:δi=1,
τi=0

exp(−λSti,ni+1)λ
ni
S κλS exp(−κλSti,ni+1)×

∏
i:δi=0,
τi=1

exp(−λTti,ni+1)λ
ni
T exp(−κλTti,ni+1) ∏

i:δi=1,
τi=1

exp(−λTti,ni+1)λ
ni
T κλT exp(−κλTti,ni+1),

(5.36)
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so that the loglikelihood is

l(λt, λs, k) =− λS(1 + κ) ∑
i:τi=0

ti,ni+1 + log(λS)
(

∑
i:τi=0

ni + ∑
i:δi=1,
τi=0

1
)
+ κ ∑

i:δi=1,
τi=0

1+

− λT(1 + κ) ∑
i:τi=1

ti,ni+1 + log(λT)
(

∑
i:τi=1

ni + ∑
i:δi=1,
τi=1

1
)
+ κ ∑

i:δi=1,
τi=1

1,

(5.37)

where ∑i:δi=1,τi=0 1 is the number of censored observations under S and ∑i:δi=1,τi=1 1
is the number of censored observations under T. The MLE of IR is easily proven to
be

ÎRMLE =
λ̂T

λS
=

(∑i:τi=1 ni + ∑i:δi=1,τi=1 1)∑i:τi=0 ti,ni+1

∑i:τi=1 ti,ni+1(∑i:τi=0 ni + ∑i:δi=1,τi=0 1)
, (5.38)

where

λ̂T =
(∑i:τi=1 ni + ∑i:δi=1,τi=1 1)

∑i:τi=1 ti,ni+1
, λ̂S =

(∑i:τi=0 ni + ∑i:δi=1,τi=0 1)

∑i:τi=0 ti,ni+1
, (5.39)

which shows the interesting effect that censored observations are counted as extra
events in both arms.

Statement 5.4.1. The MLE estimator ÎRMLE is consistent as

ÎRMLE
n→∞→ IR . (5.40)

Proof.

E[λ̂T] = E

[
∑i:τi=1 ni + ∑i:δi=1,τi=1 1

∑i:τi=1 ti,ni+1

]
= E

[
E

[
∑i:τi=1 ni + ∑i:δi=1,τi=1 1

∑i:τi=1 ti,ni+1

∣∣∣∣{ti,ni+1}τi=1

]]
= E

[
∑i:τi=1 E[ni|ti,ni+1]

∑i:τi=1 ti,ni+1
+

∑i:δi=1,τi=1 1

∑i:τi=1 ti,ni+1

]
= λT + E

[
∑i:δi=1,τi=1 1

∑i:τi=1 ti,ni+1

]
= λt + kλT,

(5.41)

where it can be shown that the process which counts the number of withdrawals,
respectively in treatment and placebo arm, is a Poisson process with intensity kλT
and kλS. Similarly, we can derive

E[λ̂S] = λS + kλS. (5.42)
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Moreover it can be computed the variance as

Var[λ̂T] = Var
[

∑i:τi=1 ni + ∑i:δi=1,τi=1 1

∑i:τi=1 ti,ni+1

]
= Var

[
E

[
∑i:τi=1 ni + ∑i:δi=1,τi=1 1

∑i:τi=1 ti,ni+1

∣∣∣∣{ti,ni+1}τi=1

]]
+

E

[
Var

[
∑i:τi=1 ni + ∑i:δi=1,τi=1 1

∑i:τi=1 ti,ni+1

∣∣∣∣{ti,ni+1}τi=1

]]
= E

[
∑i:τi=1 Var[ni|ti,ni+1]

(∑i:τi=1 ti,ni+1)2

]
= E

[
λT ∑i:τi=1 ti,ni+1

(∑i:τi=1 ti,ni+1)2

]
≤ λT

∑i:τi=1 FU
n→∞→ 0.

(5.43)

and, with the same procedure,

Var[λ̂S]
n→∞→ 0. (5.44)

This means that λ̂T
P→ λT and λ̂S

P→ λS, and

E

[
λ̂T

λS

]n→∞
P→ E[λ̂T]

E[λ̂S]
=

λT

λS
, (5.45)

meaning that the estimator ÎRMLE is consistent.

The memoryless structure of the Poisson process also guarantees that the naive
estimator

ÎRNAIVE =
λ̂T

λS
=

∑i:τi=1 ni ∑i:τi=0 ti,ni+1

∑i:τi=1 ti,ni+1 ∑i:τi=0 ni
(5.46)

is a consistent estimator for IR (the proof is similar to the one we reported for ÎRMLE).
From simulations, we can clearly show that for finite and small sample size ÎRMLE

outperforms ÎRNAIVE, at it exploits more information contained in the dataset. The
model implementation, in R, is the following.

1 set.seed (1)

2 n=500 # population size

3 FU=rep(10,n) # follow -up period

4 LAMBDA_S=0.4 # intensity of standard of care

5 LAMBDA_T=0.1 # intensity of treatment

6 K=1 # rate constant of censoring

7 VE=1-( LAMBDA_T/LAMBDA_S) # true vaccine efficacy

8 LAMBDARAPPORTO =( LAMBDA_T/LAMBDA_S) # ratio of rates

9

10 MC=2000 # number of Monte Carlo repetitions

11 ESTIMATES=array(MC)

12 ESTIMATES_NAIVE=array(MC)

13 EVENTS=array(N)

14

15 for(mc in 1:MC)

16 {

17 TRT=sample(c(0,1),n,replace = T) # randomization arm

18 CENS=rexp(n,K*(TRT*LAMBDA_T+(1-TRT)*LAMBDA_S)) # censoring time

19 TMAX=ifelse(CENS <FU ,CENS ,FU) # time of observation

20 IDcens=ifelse(CENS <FU ,1,0) # indicator of

censoring
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FIGURE 5.1: ÎRMLE (black) and ÎRNAIVE (blue) distributions for 1000
repetitions with increasing sample size n = 100, 500, 1000. Red verti-

cal line is on the true value.

21

22 for(p in 1:N)

23 {

24 EVENTSTIMEALL=cumsum(rexp (500 ,( TRT[p]*LAMBDA_T+(1-TRT[p])*LAMBDA_S)))

25 EVENTSTIME=EVENTSTIMEALL[EVENTSTIMEALL <TMAX[p]]

26 EVENTS[p]= length(EVENTSTIME)

27 }

28 N0=sum(EVENTS[TRT ==0])+sum(IDcens[TRT ==0])

29 N1=sum(EVENTS[TRT ==1])+sum(IDcens[TRT ==1])

30 ESTIMATES[mc]=(N1*sum(TMAX[TRT ==0]))/(N0*sum(TMAX[TRT ==1]))

31 ESTIMATES_NAIVE[mc]=(sum(EVENTS[TRT ==1])*sum(TMAX[TRT ==0]))/(sum(

EVENTS[TRT ==0])*sum(TMAX[TRT ==1]))

32 }

The code reported above simulates 2000 different datasets, composed of 500 patients
each. In case of no censoring, the mean numbers of events, respectively in the con-
trol and treatment arms are 4 and 1. The mean time to withdraw is, respectively for
placebo and treatment, 2.5 and 10 days and the follow-up period is 10 days. The
withdrawal percentage is around 80%. The ratio IR is 0.25. We repeated the estimat-
ing procedure for n = 100, 500, 1000 shown in Figure 5.1.
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Chapter 6

Estimating in practice vaccine
efficacy in randomized recurrent
event trials with informative
censoring

This Chapter is based on the paper:
Amongero, Martina and Callegaro, Andrea and Gasparini, Mauro and Moraschini,
Luca and Costantini, Marco and Vansteelandt, Stijn. Estimating in practice vaccine
efficacy in randomized recurrent event trials with informative censoring: an ap-
plication to COPD setting. (Work in progress).

Although vaccine efficacy estimation for single endpoints has been extensively
studied in various settings and applications, extending this methodology to recur-
rent events settings is not straightforward, and the complexity of the problem can
increase substantially. This study focuses on estimating vaccine efficacy for recur-
rent infection settings with informative censoring, particularly when the outcome
itself contributes to the censoring event’s informativeness. The goal is to provide a
clear and practical guideline on applying the Andersen and Gill (AG) model, one of
the most widely used models for recurrent events, in conjunction with inverse prob-
ability of censoring weighting method (IPCW), a causal inference technique used to
correct biased estimates. The method is applied to a real case study, an investiga-
tional clinical trial conducted by GSK to develop a vaccine for Chronic Obstructive
Pulmonary Disease. The vaccine aims at reducing the individual number of moder-
ate and severe events (Acute Exacerbations) related to this pathology, but a correct
estimation of the efficacy can be prevented by informative withdrawals: the higher
the number of events the higher the probability of dropout.

We briefly describe the available literature in Section 6.1, and we introduce the
motivating case study which justifies our work in Section 6.2. We then give a de-
tailed explanation of the method studied (Section 6.3) and test it on some simulated
datasets (Section 6.4). We finally apply the method to the real case study in Section
6.5 and give an overall conclusion in Section 6.6.
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6.1 Literature

Recurrent events problems are common in many areas. In medicine, typical exam-
ples are epileptic seizures, heart attacks, tumor resurgence, infections, ..., which all
can occur more than once in a single patient. Statistical analyses which aim to re-
late to occurrence of such events to subject-specific covariates, are typically com-
plicated by the intrinsic correlation that is present between events occurring in the
same subject. A large literature was developed to accommodate this (see [Aka+18]
for an overview), with solutions that can largely be classified into 3 classes. Some
methods model correlation between recurrent events under a Markov assumption
that future events depend only on the immediate past. Well-known examples are
semi-parametric methods based on the Andersen and Gill model [AG82] and the
Prentice-Williams-Peterson (PWP) model [PWP81], which all invoke a proportional
hazards assumption. Other approaches model the dependency between recurrent
events via shared random effects in so-called joint frailty models [TD04]. A third
class of approaches refrains from making explicit assumptions about the correla-
tion structure, by viewing it as a nuisance parameter in a semi-parametric marginal
model; marginal models instead take it into account, during the estimation proce-
dure, using a sandwich variance estimator. Poisson and Negative binomial cases are
the most famous models which refer to the latter category [Jah08; CKS19].

The statistical analysis of recurrent events is additionally complicated by censor-
ing of the event process due to e.g., withdrawal, concomitant medications, ... This
censoring process is often informative and may in particular depend on the history
of the event process, in which case we say that the censoring process depends on
the outcome of interest. For instance, in our motivating application, patients who
experience many exacerbations of COPD during the trial are more likely to leave
the study. Standard recurrent event analyses then typically give biased results. In-
deed, most available methods assume that censoring is solely explained by the base-
line covariates in the model. Joint frailty models [DJ08] allow for a dependence be-
tween the censoring and recurrent event process that is not explained by baseline co-
variates. However, their assumption that a fixed (unknown) baseline characteristic
can explain this residual dependence, conflicts the typically data-generating process
whereby the presence of many events in a given subject makes it more likely to leave
the study. Alternatively, it may be tempting to consider additional adjustments for
a time-varying covariate that summarizes the history of the recurrent event process
at each time. However, such adjustment is inappropriate in studies that aim to learn
the effect of a (randomized) treatment on the event process [RHB00]. In this Chap-
ter, we therefore focus on IPCW methods [RR92; RR95]. The use of such techniques

www.clinicalstudydatarequest.com
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has been considered in the context of Poisson and negative binomial models for re-
current events data [HL99]. We here instead focus on the AG model, as estimation
strategies under this model extract more information from the data (by analyzing
event times as opposed to numbers of events). IPCW estimators have also been
developed under this model [Mil+04], but are rarely used to the best of our knowl-
edge. The aim of this work is therefore to provide a user-friendly introduction to
IPCW methods for the AG model.

We conclude this introduction with an overview of the work. In Section 6.2 we
present the trial that motivates the use of the presented techniques. In Section 6.3 we
review the literature and give insight into its application. Then, in Section 6.4, we ap-
ply IPCW for the AG model on simulated data and give user-friendly explanations
on how to handle, in practice, the informative withdrawal problem. We highlight
potentially problematic settings that should be carefully avoided. In Section 6.5, we
provide an analysis of the motivating trial. Finally, we briefly summarize and dis-
cuss the results in Section 6.6. Detailed codes, figures, and tables with full results are
reported in Section 6.7.

6.2 Motivating example

Chronic Obstructive Pulmonary Disease (COPD) is characterized by persistent,
progressive, and only partially reversible airflow obstruction. Patients affected by
COPD usually face events that worsen their respiratory symptoms, called acute
exacerbations (AECOPDs). These exacerbations are categorized, depending on their
acuteness, as mild (controlled with an increased dosage of regular medications),
moderate (treated with standard of care: systemic or oral corticosteroids and/or
antibiotics), or severe (when hospitalization is required). The rate of these events
can vary significantly between patients. An investigational multicomponent vaccine
has been developed to reduce the frequency of moderate and severe AECOPDs
associated with Non-Typeable Haemophilus influenzae (NTHi) and Moraxella
catarrhalis (Mcat), pathogens that are frequently identified in association with
AECOPD. The NTHi-Mcat vaccine safety was established in a previous phase 1
study of adults with a smoking history and in a multicentre, randomized, observer-
blinded, placebo-controlled, proof-of-concept, phase 2b trial of adults with a history
of AECOPD [And+22]. Subjects were assigned in a 1:1 ratio through utilization of
a minimization algorithm for the administration of two intramuscular injections
of the NTHi–Mcat vaccine or a placebo, spaced 60 days apart, in conjunction
with standard care. The allocation algorithm factored in age category, number
of prior exacerbations, COPD severity at study initiation, and country, serving as
minimization variables to ensure equitable distribution of treatment within each
variable. Both vaccine recipients and individuals responsible for evaluating study
endpoints were kept unaware of group allocation. In the efficacy analysis, the
primary outcome was the rate of any moderate or severe AECOPD occurring within
a 1-year period (starting 1 month after the second dose in patients who received two
vaccine doses). Safety was assessed in the total vaccinated cohort. The completed
trial is registered at ClinicalTrials.gov with the number NCT03281876. The
vaccine was immunogenic if administered in a two-dose schedule and no safety
concerns were identified. In this phase 2b trial, eligible patients aged 40-80 years
suffered from diagnosed COPD, with at least one documented moderate or severe
event in the previous year. Patients were selected from eight countries: Belgium,
Canada, France, Germany, Italy, Spain, the UK, and the USA. They were categorized
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by looking at the degree of airflow limitation, according to the Global Initiative for
Chronic Obstructive Lung Disease (GOLD grade 2, 3, or 4). They were administered
two intramuscular injection doses of the investigational vaccine or placebo and
were monitored twice a day, in the morning and evening, using an electronic
self-compiled diary. Symptoms of COPD are divided into major (such as dyspnoea,
sputum volume, and sputum purulence) and minor ones (such as sore throat,
cold, fever, increased cough, and increased wheeze). Whenever at least two major
symptoms (or one major symptom and some minor ones) got worse for at least two
days, a potential event was recorded by the diary and needed to be confirmed and
classified by the investigators. At each medical examination, sputum samples were
collected and analyzed. Patients received the first injection on day one, the second
injection on day 60, and the efficacy starting date was set to be day 90. The desired
follow-up period was 1 year from the efficacy starting date, but some patients
withdrew from the study before the end of follow-up. The primary endpoint was
the reduction in the yearly rate of moderate and severe events.

In [And+22], a negative binomial model was used to estimate vaccine efficacy
in reducing moderate and severe events. The NTHi–Mcat vaccine administered to
patients with COPD did not show efficacy in reducing the yearly rate of moderate or
severe exacerbations (mean vaccine effect was estimated to be −2.26%). No correc-
tion for informative censoring was implemented. Moreover, the analysis highlights
the low amount of Severe AECOPD which was interpreted as a potential signal to
be further evaluated. For this reason, additional analyses were performed to study
the vaccine efficacy w.r.t. reduction of severe exacerbations only, namely only se-
vere events were considered to be events of interest [Aro+22]; vaccine efficacy was
then estimated to be 36.54% (CI [4.69%, 61.54%], p 0.08). To understand whether
this result is potentially affected by informative censoring, we perform a re-analysis,
accounting for the withdrawal mechanism.

To estimate the withdrawal rate we use generalized additive models (GAMs)
and Cox models. Both GAMs and Cox models describe the censoring mechanism
depending on covariates and a non-parametric baseline function of time. Baseline
covariates are age, sex, race, GOLD grade called GOLDGRD, the history of events
before entering the study called HISTEXA (< 2 or ≥ 2), country (categorized as
Europe or America), and smoker status (current or previous).

The analyzed dataset is composed of 571 protocol-compliant patients, 279 under
treatment, and 292 under placebo. A total of 46 patients withdrew from the study,
of whom 13 were in the treatment arm and 33 in the placebo arm [And+22]. Figure
6.1 shows the Kaplan-Meier estimator for withdrawal by treatment arm. Kaplan-
Meier curves displaying associations with other baseline covariates can be found
in Sub-section 6.7.2. While withdrawals are quite balanced with respect to most of
the covariates, it is interesting to note the imbalance with respect to treatment (log-
rank-test with pvalue 0.001). This may potentially indicate the effectiveness of the
treatment received.

We subsequently study the relationship between withdrawal and the outcome it-
self, to understand if patients with more events are more likely to withdraw. For this,
several functions of the cumulative number of events (linear, logarithm, square root,
and a categorization of the cumulative number of exacerbations (1, 2, 3, or greater)
are added to the censoring models. Comparisons by means of the Akaike informa-
tion criterion (AIC) [Aka92] and ANOVA tests strongly support the hypothesis that
treatment and the cumulative number of exacerbations (pvalues 0.0018 and 0.0004,
respectively) are associated with the withdrawal process (see Sub-section 6.7.2 for
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FIGURE 6.1: Kaplan-Meier curves to compare withdrawal probability
in treatment (light blue) and placebo (yellow) arms.

further details): in fact, the percentage of withdrawal in treated is around 4.32% and
in placebo is around 11.30% (see Figure 6.1). For further details about the design of
the trial, the analysis performed, and the results obtained, we refer to the published
studies [And+22; Aro+22].

6.3 Methods and Models

The analysis of the considered trial are based on the methods proposed by
Miloslavsky et al. [Mil+04]. In particular, consider a randomized clinical trial
composed of n patients that received two vaccine doses at day d1 and day d2,
respectively. Patients are followed from day de (such that de > d2 > d1), which is the
efficacy starting date, until the end of follow-up τ, which is the same for all patients.
The aim of the vaccine is to reduce the number of crises/events that each patient
will experience. Vaccine efficacy is be defined in terms of a contrast of event rates in
the two arms.

Suppose that for each patient in the study, the following data are collected: the
vector of event times Ti = (de ≤ Ti,1, Ti,2, . . . , Ti,ni ≤ τ) and a covariate process
Zi(τ) (e.g., concomitant medication, time-dependent biomarkers), where ni is the
total number of events that the i-th patient faces during the study and Tij is the time
of the j-th event. The covariate process is observed at times t (d1 < t < τ) which
do not need to overlap with event times. We define the recurrent event process
which counts the number of events over time to be Ni(t) = ∑ni

k=1 I(Ti,k ≤ t) for each
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patient i. Finally, we set Xi(t) = {Ni(t), Zi(t)} to be the full multivariate process of
recurrent and covariate events for patient i until time t. X(t) = {N(t), Z(t)} is the
full multivariate process for the whole population involved in the trial, up to time
t. The interest lies in modeling the recurrent event process in function of covariates.
For this, we define the intensity of the full recurrent event process N(t) as

E(dN(t)|X(t−)) = Yλ(t)λ(t|X(t−))dt,
with dN(t) = N(t + dt)− N(t),

(6.1)

where Yλ is an at-risk indicator defined by the data until time t−, namely X(t−), and
λ(t|X(t−)) is the instantaneous probability of the recurrent events process t jumping
at time t conditional on data X(t−). This intensity can be parameterized using the
AG multiplicative intensity model [AG82] as follows:

E(dN(t)|X(t−)) = Yλ(t)λ0, f (t) exp(α f ,λK(t−))dt, (6.2)

with λ0, f (t) the baseline intensity function at time t, α f ,λ the vector of unknown
regression coefficients for the full model and K(t−) a known function of the full data
process X(t−). We can think, for example, the covariate process Z(t) to include some
baseline individual characteristics (treatment, sex, age, ...) and some time-varying
individual measured quantities (concomitant medications prescribed, biomarkers
changing over time, ...).
However, often only a subset of the entire covariate process Z(t) can be observed;
we define the observed covariate process to be Z∗

(t), such that Z∗
(t) ⊂ Z(t). The

observed process is W(t) = {N(t), Z∗(t)}, is part of the full data process. We can
model this second scenario by looking at the intensity, and conditioning on the ob-
served process

E(dN(t)|W(t−)) = Yλ(t)λ(t|W(t−))dt = Yλ(t)λ0,p(t) exp(αp,λV(t−))dt, (6.3)

with λ0,p(t) the baseline intensity function at time t, αp,λ the vector of regression co-
efficients for the partial observed model and V(t−) a known function of the observed
data process W(t−). To recall the previous example, we may consider a realistic sce-
nario where patients may arbitrarily choose to take other medication on top of the
one prescribed by clinicians, to reduce their pain, but no track of all these concomi-
tant medications can be measured and collected in Z∗

(t).
Moreover, the estimation of the parameter α f ,λ indexing the AG-model is usu-
ally complicated by the fact that some patients may leave the study after
time de, but before the end of the planned follow-up (withdrawal). We then
do not observe the full event and covariate process. In particular, for each
patient in the study, a vector Ti = (de ≤ Ti1, Ti2, . . . , Tini , τ ∧ Ci, ∆i(τ)) is col-
lected, where ni is the total number of events that patient i experiences dur-
ing the observation period τ ∧ Ci, with Ci censoring time for patient i, and
∆i(t) = I(t > Ci). The multivariate observed individual process is then
X∗

i (t ∧ Ci) = {N∗
i (t), Z∗

i (t ∧ Ci)}, where N∗
i (t) = ∑k I(Ti,k ≤ t ∧ Ci). The full

complete process is X∗
(t ∧ C) = {N∗

(t), Z∗
(t ∧ C))} with C = (Ci, ..., Cn) vector of

the censoring times. Finally, the censoring individual process is Ui(t) = I(Ci < t),
while U(t) = I(C < t) is the whole population process. Its conditional hazard can
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also be parameterized using the AG-model:

E(dN∗(t)|X∗
(t− ∧ C), A(t−)) = Y∗

λ(t)λ
∗(t|X∗

(t− ∧ C), U(t−))dt
= Y∗

λ(t)λ
∗
0,p(t) exp(α∗

p,λV∗(t−))dt,
(6.4)

with λ∗
0,p(t) baseline intensity function at time t, α∗

p,λ vector of regression coefficients
for the model and V∗(t−) a known function of covariate process X∗(t− ∧ C).

To draw inference for the model in Equations (6.3) and(5.5) in the presence of
censoring, we assume that the censoring process coarsens the data at random (CAR),
as defined in Assumption 1.

Assumption 1. Let λC(t|X(τ)) be the censoring hazard function at time t given the full
data process X(τ) up to final time τ, defined as

λC(t|X(τ)) = E[U(t)|U(t−) = 0, X(τ)], (6.5)

then for right-censored data, the assumption can be mathematically stated as

λC(t|X(τ)) = λC(t|X(t)), (6.6)

meaning that, given the full data, the censoring event defining the observed data depends
only on the observed part of the data.

Note that this assumption allows for censoring to depend on the history of the
covariate and event process. In particular, it allows for the number of events (e.g.,
COPD exacerbations) to influence the censoring mechanism. Under this assumption,
Miloslavsky et al. [Mil+04] proposed to adjust for censoring via inverse probability
of censoring weighting, extending the implementation from the time to event setting
[Wil+18] to the recurrent events one.

We do not go into details of the theoretical explanation which is out of the scope
of this work and can be found in [Mil+04]. We instead describe the IPCW technique
from a more intuitive and practical perspective. To first clarify the methodology,
from a user perspective, we can sum up the procedure in the following steps:

• fit a model for censoring (with the preferred method) incorporating the inter-
esting covariates. If there is enough evidence of informative censoring, pro-
ceed with other steps. The model can be fitted using different methodologies
(Cox model for time-to-event, logistic model, see Chapter 4), but a careful anal-
ysis should be performed. We suggest performing different models, including
different subsets of covariates, and selecting the best model with criteria such
as AIC; If there is enough evidence of informative censoring (i.e., the effect
of one or more covariates is statistically significant), proceed with other steps,
otherwise, the AG estimation procedure can be directly applied;

• ensure the dataset is in the time-person format (i.e., given the list of all times in
the dataset, the time-person format requires one row for each of these times for
each subject). Then, estimate the probabilities Ŝ0

i (t) of remaining uncensored
at each time point time t, for each subject i;

• estimate the probabilities Ŝ0
i (t) of remaining uncensored at each time point

time t given the subset of baseline and, in particular, the time-varying covari-
ates chosen by the user and associated with the censoring (in our motivating
examples, the previous number of exacerbations is included);
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• estimate the probabilities Ŝi(t) of remaining uncensored at each time point
time t, for each subject i, given the subset of baseline and, in particular, the
time-varying covariates chosen by the user and associated with the censor-
ing (in our motivating examples, the previous number of exacerbations is in-
cluded);

• compute the IPCW weights Ŵi(t) and the IPCW stabilized weights ŴS
i (t), for

each time t and each patient i, as

Ŵi(t) =
1

Ŝi(t)
and ŴS

i (t) =
Ŝ0

i (t)
Ŝi(t)

; (6.7)

• estimate vaccine efficacy with AG model with robust sandwich variance es-
timator in the absence of informative withdrawal, with subjects weighted ac-
cording to the IPCW methodology.
R programming language provides the coxph function, in the Survival pack-
age [The+], which can be used to fit AG model with cluster option for robust
variance estimator and weights for IPCW correction.

To give an intuitive explanation, the weights we evaluate are used to construct a hy-
pothetical population in which each observation counts as many times as its weight.
We can imagine a dataset composed of each row of the original one, repeated as
many times as its weight. The rationale behind this is to give each observation a
different informativeness and to make it count differently on the final estimation of
the parameters of interest, according to the censoring scheme. In particular, at a cer-
tain time s, all the information collected for time t > s for a patient who was very
likely to withdraw the study before s (according to the baseline and time-varying
characteristics highlighted by the censoring model) should be considered to be very
informative, while, on the other hand, information collected for patients who are
not likely to withdrawal the study should count less in the final estimate. That is
why weigths are inversely proportional to the survival probabilities. It may happen,
for some pathological cases, that all the information used to estimate the parameters
rely on a few patients whose weights turn out to be very high, compared with other
patient weights. For this reason, before applying AG-IPCW for the final estimate of
interest, it is important to carefully look at the min-max-weigths-ratio, defined as the
ratio between the higher and the lower weigth in the whole dataset, to understand
the impact of the less and most significant observations in the dataset.

6.4 Simulations

We performe a simulation study to evaluate the finite sample performance of the
proposed estimator and to evaluate the weaknesses and strengths of the proposed
methodology. We analyze different scenarios with the Monte Carlo technique: we
simulate N = 1000 datasets, each composed of n = 250 patients with a 2000-day
follow-up period. The underlying simulation mechanism is common to all scenarios,
while the involved parameters may change.

To keep the models simple, only baseline independent covariates Zi =
(Ai, Li) are considered, where Ai ∼ Ber(0.5) is the treatment indicator and
Li ∼ N (−6.75, 0.25) is a continuous covariate. For patient i, the time between of
event j, conditioned on observed time ti,j−1 of event j − 1, is simulated using an
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exponential distribution with intensity

λi(t) = Giλ f ,0 exp(α f ,λ Ai + β f ,λLi). (6.8)

We exploit the frailty term1 Gi
i.i.d.∼ Γ(a, 1/a) to ensure a correlation between

events of the same patients. Event times are simulated so long as their cumulative
sum is smaller than the fixed follow-up time.

The function simrec in the simrec R package [Ing+] is used to simulate the recur-
rent events data from the AG model.

The censoring mechanism used to simulate withdrawal time is described by the
time-dependent hazard

λC,i(t) = λC,0 exp(αC Ai + βCLi + µC f (Ni(t−))), (6.9)

and simulated as in [Aus12]. To uniquely identify each of the simulated scenarios,
we have to specify the vector of involved parameters

θ = (λ f ,0, λC,0, α f ,λ, β f ,λ, αC, βC, µC, f (·), a). (6.10)

In our simulation we use

θ = (0.03, 0.002, −0.4, 0.5, −0.75, 0.4, µC, arctan(
√

· ), a). (6.11)

The function f plays an important role: it determines the impact of the number of
critical events on the probability of withdrawal (namely the faster the growth of f ,
the smaller the censoring times). The used function (i.e., arctan(

√
· )) guarantees a

slow increase in the impact of the recurrent event history.
Changing the parameters a and µC results in different informativeness of withdrawal
event and then different amplitudes of the bias associated with the estimate of the
treatment effect α f ,λ (see Table 6.1).

TABLE 6.1: Bias obtained on treatment coefficients estimation for five
configurations which differ for µC and a. Conf 1: µC = 3, a = 1;
Conf 2: µC = 2, a = 1; Conf 3: µC = 1, a = 1; Conf 4: µC = 3,
a = 0.1; Conf 5: µC = 3, a = 0.5. Methods applied are AG, AG with
exact IPCW (AG exact-IPCW), with exact-stabilized IPCW (AG exact-
sIPCW), with GLM-fitted IPCW, with GLM-fitted-stabilized IPCW
(AG GLM-IPCW ), with Cox-fitted IPCW (AG Cox-sIPCW), with Cox-

fitted-stabilized IPCW (AG Cox-sIPCW).

Configuration 1 2 3 4 5
Withdrawal (%) 67.988 53.916 35.004 79.369 73.687

AG 0.177 0.119 0.038 0.026 0.113
AG exact-IPCW 0.136 0.020 0.002 0.029 0.080
AG exact-sIPCW 0.075 0.010 0.001 0.006 0.035
AG GLM-IPCW 0.139 0.020 0.001 0.029 0.084
AG GLM-sIPCW 0.076 0.011 0.000 0.005 0.037
AG Cox-IPCW 0.138 0.023 0.002 0.028 0.084
AG Cox-sIPCW 0.078 0.013 0.001 0.005 0.038

1The parametrization for the Gamma distribution is with shape and scale parameters.
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Further details on the code used to simulate the data and the code to estimate
the parameters are reported in Sub-section 6.7.1.

The data are analyzed with the AG model, with and without weigths. Weigths
are evaluated with different techniques to better exploit the working mechanism of
the AG-IPCW method; in particular, weights are calculated exactly using the known
parameters (i.e., the ones used to simulate) and are estimated with both logistic re-
gression and Cox models (see Sub-section 6.7.1). Furthermore, we analyze the dif-
ferences between weights and stabilized weigths (see [HR20], Technical point 12.2).

Table 6.1 reports the percentage of withdrawal (WD %) and the bias associated
with α̂ f ,C for five configurations with different levels of µC and a: it can clearly be
seen that higher levels of µC and smaller levels of a correspond to stronger censoring
mechanism (resulting in higher percentage of withdrawal). To better analyze the
effectiveness of the corrections tested, Table 6.1 also reports the percentage of bias
that AG-IPCW removes relative to standard AG, defined as

Correctionm(%) =
|biasm| × 100

|biasAG|
I(|biasAG| > |biasm|). (6.12)

We comment on the results associated with all the configurations in Table 6.2.
Detailed graphics can be found in Sub-section 6.7.1. In particular, Figure 6.3 shows
the 95% confidence intervals of the N estimated treatment coefficients: the first box-
plot, from the left, shows the estimates that we can obtain if we could observe all
the patients until the end of follow-up (i.e., without withdrawal), while the oth-
ers refer to the scenario with censoring (i.e., with withdrawal). The second boxplot
reports the estimates obtained with AG when no corrections to account for infor-
mative censoring are applied. From the third to the eighth boxplot, there are dif-
ferent estimates obtained with AG-IPCW methods: we report AG combined with
exact weigths computation with and without stabilization (AG exact-sIPCW and
AG exact-IPCW), AG combined with logistic weights computation with and with-
out stabilization (AG GLM-sIPCW and AG GLM-IPCW), and finally, AG combined
with Cox weigths computation with and without stabilization (AG Cox-sIPCW and
AG Cox-IPCW). All the details about implementation and methods can be found in
Sub-section 6.7.1.

It can be seen that stabilized weigths deliver better performance than simple
weights, as they manage to get rid of a good percentage of the bias obtained when
no corrections are applied. Moreover, estimating the weights, instead of using exact
ones, does not expand the confidence interval and gives corrections quite similar to
those based on exact computations. Unsurprisingly, some finite-sample bias remains
in all scenarios; results for Configuration 1-5 at larger sample size (n = 500, 750), pre-
sented in Table 6.3, indeed confirm that the finite-samples bias shrinks with sample
size and the coverage probability improves.

We caution the reader that poor results may be obtained under more extreme
scenarios (e.g., configurations 1 and 4) as a result of so-called near-positivity viola-
tions. As shown by simulation, the magnitude of the weights plays an important
role in the final performance of the method: a strong difference between minimum
and maximum weight means that there is an observation in the dataset that will be
most responsible for the final estimated value. Thus, even if, from a theoretical point
of view, correction is guaranteed, numerical problems may arise. Details of weights
distributions can be seen in Figure 6.4 (color code is the same as Figure 6.3).
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TABLE 6.2: Result of 1000 simulations obtained on treatment coefficients estimation for five
configurations which differ for µC and a. Configuration 1: µC = 3, a = 1; Configuration 2:
µC = 2, a = 1; Configuration 3: µC = 1, a = 1; Configuration 4: µC = 3, a = 0.1; Config-
uration 5: µC = 3, a = 0.5. SD stands for standard deviation, WD for withdrawal, SE for
standard error, and COV for coverage. Methods applied are AG, AG with exact IPCW (AG
exact-IPCW), with exact-stabilized IPCW (AG exact-sIPCW), with GLM-fitted IPCW, with
GLM-fitted-stabilized IPCW (AG GLM-IPCW ), with Cox-fitted IPCW (AG Cox-sIPCW),

with Cox-fitted-stabilized IPCW (AG Cox-sIPCW).

Configuration 1 Mean SD MSE Cov (%) Bias Corrected bias (%)
AG -0.223 0.156 0.056 53.6 0.177 0.0

AG exact-IPCW -0.264 0.302 0.110 43.0 0.136 22.9
AG exact-sIPCW -0.325 0.250 0.068 55.3 0.075 57.7
AG GLM-IPCW -0.261 0.293 0.105 44.0 0.139 21.5
AG GLM-sIPCW -0.324 0.242 0.064 54.8 0.076 56.7
AG Cox-IPCW -0.262 0.287 0.101 42.0 0.138 21.9
AG Cox-sIPCW -0.322 0.239 0.063 54.6 0.078 56.1
Configuration 2 Mean SD MSE Cov (%) Bias Corrected bias (%)

AG -0.281 0.155 0.038 62.4 0.119 0.0
AG exact-IPCW -0.380 0.206 0.043 61.0 0.020 83.6
AG exact-sIPCW -0.390 0.188 0.035 69.0 0.010 91.7
AG GLM-IPCW -0.380 0.207 0.043 61.2 0.020 83.0
AG GLM-sIPCW -0.389 0.187 0.035 68.9 0.011 90.7
AG Cox-IPCW -0.370 0.205 0.042 62.1 0.023 81.1
AG Cox-sIPCW -0.387 0.187 0.035 68.9 0.013 89.3
Configuration 3 Mean SD MSE Cov (%) Bias Corrected bias (%)

AG -0.362 0.163 0.028 73.9 0.038 0.0
AG exact-IPCW -0.398 0.171 0.029 74.4 0.002 94.9
AG exact-sIPCW -0.399 0.167 0.028 76.8 0.001 98.0
AG GLM-IPCW -0.399 0.170 0.029 74.1 0.001 97.4
AG GLM-sIPCW -0.400 0.167 0.028 76.7 0.000 99.5
AG Cox-IPCW -0.398 0.170 0.029 73.7 0.002 95.2
AG Cox-sIPCW -0.399 0.166 0.028 75.8 0.001 98.3
Configuration 4 Mean SD MSE Cov (%) Bias Corrected bias (%)

AG -0.374 0.115 0.014 92.3 0.026 0.0
AG exact-IPCW -0.371 0.205 0.043 69.6 0.029 0.0
AG exact-sIPCW -0.394 0.146 0.021 88.7 0.006 76.4
AG GLM-IPCW -0.371 0.211 0.045 71.9 0.029 0.0
AG GLM-sIPCW -0.395 0.147 0.022 89.4 0.005 81.2
AG Cox-IPCW -0.372 0.204 0.042 69.7 0.028 0.0
AG Cox-sIPCW -0.395 0.145 0.021 88.1 0.005 80.1
Configuration 5 Mean SD MSE Cov (%) Bias Corrected bias (%)

AG -0.287 0.136 0.031 75.7 0.113 0.0
AG exact-IPCW -0.320 0.246 0.067 53.2 0.080 29.2
AG exact-sIPCW -0.365 0.192 0.038 70.7 0.035 69.0
AG GLM-IPCW -0.316 0.246 0.068 55.3 0.084 25.6
AG GLM-sIPCW -0.363 0.190 0.037 71.4 0.037 67.3
AG Cox-IPCW -0.316 0.240 0.065 54.0 0.084 25.9
AG Cox-sIPCW -0.362 0.189 0.037 71.1 0.038 66.2
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TABLE 6.3: Result of 1000 simulations obtained on treatment coefficients estimation for five
configurations which differ for µC and a. Configuration 1: µC = 3, a = 1; Configuration
2: µC = 2, a = 1; Configuration 3: µC = 1, a = 1; Configuration 4: µC = 3, a = 0.1;
Configuration 5: µC = 3, a = 0.5. Each configuration was studied for n = 250, 500, 750.
COV stands for coverage. Methods applied are AG, AG with exact IPCW (AG exact-IPCW),
with exact-stabilized IPCW (AG exact-sIPCW), with GLM-fitted IPCW, with GLM-fitted-
stabilized IPCW (AG GLM-IPCW ), with Cox-fitted IPCW (AG Cox-sIPCW), with Cox-fitted-

stabilized IPCW (AG Cox-sIPCW).

Bias Cov (%)

Configuration 1 n = 250 n = 500 n = 750 n = 250 n = 500 n = 750
AG 0.177 0.186 0.183 53.6 77.7 43.7

AG exact-IPCW 0.136 0.138 0.106 43.0 80.3 57.9
AG exact-sIPCW 0.075 0.079 0.106 55.3 88.8 78.0
AG GLM-IPCW 0.139 0.142 0.113 44.0 81.4 59.9
AG GLM-sIPCW 0.076 0.081 0.059 54.8 88.7 78.1
AG Cox-IPCW 0.138 0.140 0.110 42.0 81.2 60.9
AG Cox-sIPCW 0.078 0.082 0.059 54.6 88.8 78.4
Configuration 2 n = 250 n = 500 n = 750 n = 250 n = 500 n = 750

AG 0.119 0.123 0.120 62.4 77.7 72.9
AG exact-IPCW 0.020 0.010 0.002 61.2 80.3 92.2
AG exact-sIPCW 0.010 0.005 0.002 68.9 88.8 95.8
AG GLM-IPCW 0.020 0.010 0.000 62.1 81.4 92.8
AG GLM-sIPCW 0.011 0.005 -0.001 68.9 88.7 96.0
AG Cox-IPCW 0.023 0.013 0.003 61.0 81.2 92.0
AG Cox-sIPCW 0.013 0.007 0.000 69.0 88.8 95.9
Configuration 3 n = 250 n = 500 n = 750 n = 250 n = 500 n = 750

AG 0.038 0.042 0.035 73.9 90.2 94.3
AG exact-IPCW 0.002 0.004 -0.005 74.4 92.0 97.7
AG exact-sIPCW 0.001 0.004 -0.005 76.8 92.4 97.8
AG GLM-IPCW 0.001 0.003 -0.005 74.1 91.9 97.7
AG GLM-sIPCW 0.000 0.003 -0.005 76.7 92.5 97.9
AG Cox-IPCW 0.002 0.004 -0.005 73.7 91.9 97.8
AG Cox-sIPCW 0.001 0.003 -0.004 75.8 92.9 97.6
Configuration 4 n = 250 n = 500 n = 750 n = 250 n = 500 n = 750

AG 0.026 0.028 0.031 92.3 93.9 93.2
AG exact-IPCW 0.029 0.033 0.015 69.6 71.9 83.7
AG exact-sIPCW 0.006 0.013 0.015 88.7 90.3 95.3
AG GLM-IPCW 0.029 0.032 0.015 71.9 72.6 84.7
AG GLM-sIPCW 0.005 0.012 0.003 89.4 90.3 95.2
AG Cox-IPCW 0.028 0.033 0.015 69.7 72.4 84.5
AG Cox-sIPCW 0.005 0.013 0.004 88.1 89.0 94.8
Configuration 5 n = 250 n = 500 n = 750 n = 250 n = 500 n = 750

AG 0.113 0.116 0.114 75.7 75.5 69.7
AG exact-IPCW 0.080 0.073 0.047 53.2 66.0 79.4
AG exact-sIPCW 0.035 0.032 0.047 70.7 86.1 90.5
AG GLM-IPCW 0.084 0.077 0.049 55.3 67.7 80.4
AG GLM-sIPCW 0.037 0.033 0.019 71.4 86.4 90.8
AG Cox-IPCW 0.084 0.075 0.048 54.0 67.1 78.5
AG Cox-sIPCW 0.038 0.034 0.019 71.1 85.2 90.9
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6.5 A real case study: COPD trial

In this section, we repeat the randomized clinical trial analysis of Arora et al.
[Aro+22], but now accounting for outcome-dependent censoring. Only compliant
patients, namely those who received both vaccine doses, are considered. Patient
events are part of the analyses only if they happened during the efficacy period
(after day 90 and before the end of follow-up). Patients with no severe event in the
observation period were counted as patients without event. The dataset analyzed
is composed of 571 patients, 279 under treatment, and 292 assigned to placebo.
Further details can be found in Section 6.2. In [And+22], the authors performed
an analysis for the primary endpoint (moderate and severe events) and for the
secondary endpoint (only for severe exacerbation) using a negative binomial (NB)
model, without accounting for informative withdrawal. We repeat their analysis on
the secondary endpoint, but now performing the AG-IPCW analysis on the same
dataset, to account for information carried out by informative withdrawals.

The results obtained are reported in Table 6.4: point estimation of vaccine efficacy
V̂E and the corresponding confidence intervals are presented for AG, AG GLM-
sIPCW, AG Cox-sIPCW. Three different generalized linear models (GLM 1-2-3) and
Cox models (Cox 1-2-3) are used to describe the withdrawal mechanism, depending
on different subsets of baseline and time-varying covariates (in particular, the previ-
ous number of exacerbations). Models GLM 0 and Cox 0 refer to the case in which
correction is applied only for baseline covariates that were significantly associated
with withdrawal (level 95%), while other models correct for time-varying covariates.
A full description of GLM 0-1-2-3 and Cox 0-1-2-3 models, with details on implemen-
tation, can be found in Sub-section 6.7.2, in the paragraph Models to estimate vaccine
efficacy: AG and AG-IPCW. The recurrent event model only includes the treatment
covariate, while generalized linear models and Cox models used to compute IPCW
are selected with the AIC criterion and include both the main and interaction effects
of baseline covariates. Covariates included are treatment, age, country, history of
exacerbations, gold grade score, smoke indicator, and sex. The list of the covariates

TABLE 6.4: Vaccine efficacy estimation (V̂E) with 95% confidence in-
terval obtained with AG method without IPCW, AG-IPCW methods
with four GLM models for censoring, AG-IPCW methods with four
Cox models for censoring. Weigths interval contains the central 95%
of the estimated values (IŴ). The first line reports the estimate with

NB model from [Aro+22] analysis.

Method V̂E CIV̂E (95%) IŴ (95%)
NB [Aro+22] 0.365 [-0.469, 0.615] –

AG 0.337 [-0.116 , 0.607] –
AG-IPCW

GLM 0 0.363 [-0.075 , 0.622] [1.00 1.187]
GLM 1 0.353 [-0.097 , 0.619] [0.947 1.049]
GLM 2 0.316 [-0.154 , 0.595] [0.902 1.089]
GLM 3 0.350 [-0.099 , 0.615] [0.954 1.053]
Cox 0 0.359 [-0.081 , 0.619] [1.00 1.176]
Cox 1 0.349 [-0.105 , 0.617] [0.955 1.051]
Cox 2 0.330 [-0.129 , 0.603] [0.920 1.147]
Cox 3 0.351 [-0.101 , 0.617] [0.921 1.103]
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Vaccine Estimation with 95% CI obtained with AG and AG−IPCW
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FIGURE 6.2: Vaccine efficacy estimation with 95% confidence interval
obtained with AG and AG-IPCW combined with different models for
censoring (GLM and Cox). Red dotted line is the mean vaccine effi-
cacy estimated without IPCW correction, the black dotted line is level

zero.

included in the model with their full description can be found in Sub-section 6.7.2.
We can reasonably assume, due to the structure of the clinical trial and the in-

formation collected by the electronic daily survey, that patients withdraw from the
study if their health condition is worsening, which is strictly related both to their
previous clinical history (smoking status, history of exacerbations and gold grade),
both to the number of exacerbations they experiment. As such, we can think of the
censoring mechanism in accordance with the Coarsened at Random (CAR) assump-
tion.

The mean vaccine efficacy estimates, with its 95% confidence interval in Table 6.4,
clearly show that IPCW correction does not change the final results, sustaining the
result reported in [Aro+22]. This means that informative censoring does not impact
the estimation of the treatment effect in the censored data. Even if the withdrawal
is significantly different between placebo and treatment, and strongly dependent on
the cumulative number of exacerbations, its impact on the treatment effect estimate
is not strong. In addition, to give an intuitive visual idea of the results, we report
the mean estimated VE with the 95% CI in Figure 6.2. The vaccine estimate, which
also accounts for censoring, in accordance with the result published in [Aro+22],
suggests a non-significant reduction in adverse events for the vaccinated group.
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6.6 Final remarks and conclusions

In this Chapter, we provide a user-friendly guideline on how to apply AG-IPCW
to make inference on recurrent event data affected by informative censoring. We
explain in details all the necessary steps to perform a comprehensive and accurate
analysis of the data, that can be summarized as:

• step (I): study the censoring mechanism with respect to covariates to test the
initial hypothesis of informative censoring;

• step (II): in case of a positive result, construct a good model for censoring and
use it within the AG-IPCW procedure;

• step (III): carefully examine the distribution of weights.

In Section 6.2 we presented how step (I) should be conducted by mean of the real
case study that motivates the work. We performed steps (II) and (III) on both simu-
lations and the real case study (Sections 6.4 and 6.5). Simulations were particularly
valuable for testing the AG-IPCW method in various scenarios and highlighting its
strengths and weaknesses. The method proved to be quite powerful but showed
strong dependence on weight numerical problems. The methodologies used to con-
struct the weights (e.g., GLM and Cox) yielded similar results, demonstrating that
the method is robust to the censoring model. However, it is crucial to stabilize the
weights to avoid high variations. The simulation study reveales that when the min-
max ratio is high, the results are no longer consistent, as the final estimates depend
mostly on a few patients with very high weights. Nevertheless, stabilization alone is
often insufficient to ensure good results. In the literature, some methods have been
studied for inverse probability weighting (IPW) to address numerical issues. One
of the most well-known techniques is the covariate balancing IPW, which ensures
bounded weights [IR13]. Some works extending it to IPCW are available [YS22], but
further studies may represent an interesting field for future research.

In the real case study, the obtained results did not show a significant improve-
ment when compared with standard AG performances. If the censoring mechanism
is informative but only results in minimal information loss, then the correction pro-
vided by IPCW may be small. Nevertheless, it is good practice to apply IPCW when-
ever there is evidence of informative censoring from step (I), as the contribution it
gives cannot be known in advance. We provide the code used to simulate and ana-
lyze the data (steps (I)-(II)-(III)).

The proposed method offers significant advantages over other available meth-
ods. Firstly, it maximizes the utilization of available information by relying on
the complete observed dataset, encompassing all events and their respective time
points. In contrast, some methods only consider the cumulative number of events
up to a specific time point. Additionally, while many other methods can address
recurrent event problems in the presence of informative censoring caused by base-
line covariates, the strength of the proposed method lies in its ability to correct bias
arising from time-dependent covariates. In our example, it can handle cumulative
numbers of adverse events over time. To illustrate, let’s consider the joint frailty
model (JFM), which is one of the most renowned models in the literature for manag-
ing recurrent event settings with informative censoring. It can be described by the
individual recurrent event intensity λi and individual hazard of censoring λi,C, both
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depending on some baseline measured covariates Ai and Li, as

RE: λi = Giλ f ,0 exp(α f ,λ Ai + β f ,λLi), (6.13)

C: λi,C = Gα
i λC,0 exp(αC Ai + βCLi), (6.14)

with θ = {λ f ,0, λC,0, α f ,λ, β f ,λ, αC, βC α} vector of parameters, and Gi
i.i.d.∼ q(·)

frailty random effect terms. The JFM model somehow incorporates the informa-
tive censoring mechanism by using the shared frailty term Gi, which can capture
the assumption that the more adverse events a patient experiences, the higher the
probability of study withdrawal. This frailty term establishes a connection between
the intensity of recurrent events and the hazard of censoring, with the correlation
between the processes becoming stronger as |α| increases. The performance of the
JFM is heavily reliant on the frailty distribution q(·). A significant drawback of the
JFM is the lack of interpretability of the baseline term Gi on which the model is built.
Moreover, it assumes censoring is only driven by time-fixed and not time-varying
processes. The AG-IPCW method overcomes this limitation by directly modeling
the censoring mechanism based on both baseline and time-dependent covariates.
This approach enhances interpretability and, in particular, it provides a more trans-
parent understanding of the censoring process, which is usually driven by things
happening during the study and not things occurring at baseline. A comprehen-
sive comparison between AG-IPCW and JFM was beyond the scope of this work but
would be an interesting future research direction.

6.7 Code, Plots and Detailed Results

In this section, we present the code used to simulate the dataset and report the full
detailed results (plots, tables, R outputs, ...) we refer to in the main part of this
Chapter. This section is composed of a first part (Sub-section 6.7.1) dedicated to
simulations and a second one dedicated to real data analyses (Sub-section 6.7.2).

6.7.1 Code and Simulations

In the following section, we provide our code to simulate a censored dataset, with
informative censoring strongly dependent on treatment allocation and the cumula-
tive number of events, that can be then used to test the AG-IPCW methods. To make
the code easily usable by other users, we first sum up the structure of the recurrent
events (RE) intensity function and the censoring (C) hazard, defined as

RE: λi = GiλF,0 exp(α f ,λ Ai + β f ,λLi), (6.15)

C: λi,C = λC,0 exp(αC Ai + βCLi + µC f (Ni(t−))), (6.16)

with θ = {λ f ,0, λC,0, α f ,λ, β f ,λ, αC, βC, µC, f (·)} vector of user-defined parameters,

and Gi
i.i.d.∼ Γ(a, 1/a) frailty Gamma-distributed random effects.

To clarify the stimulation mechanism of the censoring time from Cox propor-
tional hazards model with time-varying covariates, as explained in Chapter 4, we
need to specify the cumulative hazard function H and the inverse H−1. For clarity,
in the following formulas, we set ti,j to be the observed time Ti,j of event j for patient i
(simulated with simrec function accordingly to the model (6.15)) and Xi being equal
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to αC Ai + βCLi

Hi(t, Xi, Ni(t−)) =



λC,0 exp(Xi)t, if 0 ≤ t < ti,1,
λC,0 exp(Xi)ti,1 + exp(Xi+µC f (1))(t−ti,1), if ti,1 ≤ t < ti,2,

...

∑k
j=1 λC,0 exp(Xi+µC f (j−1))(ti,j−ti,j−1)

+ exp(Xi+µC f (k))(t−ti,k), if ti,k ≤ t < ti,k+1,
...

and its inverse function H−1

H−1
i (t, Xi, Ni(t−))=



t
λC,0 exp(Xi)

, if t∈R1,

t−λC,0 exp(Xi)ti,1

λC,0 exp(Xi + µC f (1))
+ ti,1, if t∈R2,

...

t−∑k
j=1 λC,0 exp(Xi+µC f (j−1))(ti,j−ti,j−1)

λC,0 exp(Xi+µC f (k))
+ti,k, if t∈Rk+1,

...

where

R1 = [0, λC,0 exp(Xi)ti,1],
R2 = [λC,0 exp(Xi)ti,1, λC,0(exp(Xi)ti,1 + exp(Xi)(ti,2 − ti,1))],

...

Rk+1 = [
K

∑
j=1

λC,0 exp(Xi + µC f (j − 1))(ti,j − ti,j−1)),

K+1

∑
j=1

λC,0 exp(Xi + µC f (j − 1))(ti,j − ti,j−1))],

...

(6.17)

The following code implements the functions to evaluate H, H−1 and its intervals
of definition Rk and samples the censoring time as H−1(− log u, Xi, Ni), with u ∼
U (0, 1).

1 ## FUNCTION TO CALCULATE INTERVALS INVERSE FUNCTION

2 ## OF CUMULATIVE HAZARD (Hinv)

3

4 # time=c(t1 ,...,tn,FUP) times of events {ti} and follow -up time (FUP)

5 # X covariates

6 # theta coefficients of X in censoring hazard

7 # gamma coefficient of number of events in censoring

8 # hazard

9 # lo lambda_C,0 baseline of censoring hazard

10 # u sampled uniform

11 # nexa total number of events

12 # fun_cum function of the number of event in censoring

13 # hazard
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14 Rinterval=function(time ,X,theta ,gamma ,lo,u,nexa ,fun_cum)

15 {

16 # construct time interval of definition for H

17 # check in which interval is the value -log(u)

18 # matrix with values on which is defined H

19 R=array(dim=c(2,nexa +1))

20

21 indexR =1

22 R[1 ,1]=0

23 R[2,1]=lo*exp(theta%*%X)*time [1]*exp(gamma*fun_cum(0))

24 for(j in 2:( nexa +1))

25 {

26 R[1,j]=R[2,j-1]

27 R[2,j]=R[1,j]+

28 lo*exp(theta%*%X)*(time[j]-time[j-1])*exp(gamma*fun_cum(j-1)

)

29 if(-log(u)>R[1,j] & -log(u)<R[2,j])

30 {

31 indexR=j

32 break

33 }

34 }

35

36 return(indexR)

37 }

38

39 ## FUNCTION TO CALCULATE INVERSE FUNCTION OF CUMULATIVE HAZARD (Hinv)

40 # time=c(t1 ,...,tn,FUP) times of events {ti} and follow -up time (FUP)

41 # X covariates

42 # theta coefficients of X in censoring hazard

43 # gamma coefficient of number of events in censoring

hazard

44 # lo lambda_C,0 baseline of censoring hazard

45 # u sampled uniform

46 # J interval selected

47 # fun_cum function of the number of event in censoring

hazard

48 Hinv=function(J,time ,X,theta ,gamma ,lo ,u,fun_cum)

49 {

50 # if I'm in jth , then I refer to the interval with j-1 events

51 ncrisi=J-1

52

53 y=-log(u)

54 if(ncrisi >1)

55 {difftime=time [1: ncrisi]-c(0,time [1:( ncrisi -1)])}

56 else

57 {difftime=time [1: ncrisi ]}

58

59

60 num1=y-lo*exp(theta%*%X)*(exp(gamma*fun_cum (0:( ncrisi -1)))%*%

difftime)

61 den1=lo*exp(theta%*%X+fun_cum(ncrisi)*gamma)

62 time2=(num1/den1)+time[ncrisi]

63

64 if(time2 <0) ## check to see if the result is feasible

65 {message('error - negative time')}

66 return(time2)

67 }

68

69 ## SIMULATE CENSORING TIME FOR ONE PATIENT

70 # hazard rate h(t)=lo*exp(theta*X+gamma*n.exa)

71 # time=c(t1 ,...,tn,FUP) times of events {ti} and follow -up time (FUP)
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72 # X covariates

73 # theta coefficients of X in censoring hazard

74 # gamma coefficient of number of events in censoring

hazard

75 # lo lambda_C,0 baseline of censoring hazard

76 # nexa total number of events

77 # fun_cum function of the number of event in censoring

hazard

78 SimulateTime=function(times ,X,theta ,gamma ,lo ,n.exa ,fun_cum)

79 {

80 u=runif (1)

81 if(n.exa >0)

82 {

83 # calculate R-interval

84 r=Rinterval(times ,X,theta ,gamma ,lo,u,n.exa ,fun_cum)

85

86 # evaluate Hinv(-log(u))

87 if(r>1)

88 {cens=Hinv(r,times ,X,theta ,gamma ,lo,u,fun_cum)}

89 else

90 {cens=-log(u)/(lo*exp(theta%*%X+gamma*fun_cum(0)))}

91 }

92 else

93 {

94 cens=-log(u)/(lo*exp(theta%*%X+gamma*fun_cum (0)))

95 }

96

97 return(cens)

98 }

99

100 ## FUNCTION TO SIMULATE RECURRENT EVENTS DATA WITHOUT CENSORING

101 simulate_Data <-function(N,

102 fu.min ,

103 fu.max ,

104 cens.prob ,

105 dist.x,

106 par.x,

107 beta.x,

108 dist.z,

109 par.z,

110 dist.rec ,

111 par.rec)

112 {

113 simdata <- simrec(N,

114 fu.min ,

115 fu.max ,

116 cens.prob ,

117 dist.x,

118 par.x,

119 beta.x,

120 dist.z,

121 par.z,

122 dist.rec ,

123 par.rec)

124 # add the cumulative number of events to the dataset at ending time

125 simdata$csum <- ave(simdata$status , simdata$id, FUN=cumsum)

126 return(simdata)

127 }

128

129 ## FUNCTION TO SIMULATE THE CENSORED DATA

130 simulate_Censored_Data <-function(simdata ,

131 thetaexact ,
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132 gammaexact ,

133 loexact ,

134 FUP ,

135 fun_cum)

136 {

137 #generate censor time using the user -defined function

138 id=unique(simdata$id)

139 t=array(NA ,dim=c(length(id) ,1))

140 for(bb in 1: length(id)){

141 dd=simdata[simdata$id==id[bb],]

142 t[bb]= SimulateTime(times=dd$stop[],

143 X=as.numeric(dd[1, c("x.V1","x.V2")]),

144 theta=thetaexact ,

145 gamma=gammaexact ,

146 lo=loexact ,

147 n.exa=max(dd$csum),

148 fun_cum)

149 }

150 cens.time=t

151 t[t>=FUP]=FUP

152

153 #censoring the data

154 bb=1

155 dd=simdata[simdata$id==id[bb],]

156 dd1 <- survSplit(Surv(start ,stop ,status) ~ .,data=dd, cut=t[bb])

157 dd1=dd1[dd1$stop <=t[bb],]

158 dd1$cens=0

159 if(t[bb]<FUP) dd1$cens=ifelse(dd1$status ==1,0,1)

160 simdata.cens=dd1

161 for(bb in 2: length(id)){

162 dd=simdata[simdata$id==id[bb],]

163 dd1 <- survSplit(Surv(start ,stop ,status) ~ .,data=dd, cut=t[bb])

164 dd1=dd1[dd1$stop <=t[bb],]

165 dd1$cens=0

166 if(t[bb]<FUP) dd1$cens=ifelse(dd1$status ==1,0,1)

167 simdata.cens=rbind(simdata.cens ,dd1)

168 }

169 simdata.cens$event=simdata.cens$status

170 return(list(simdata.cens=simdata.cens ,cens.time=cens.time))

171 }

The user-defined functions (lines 1–171) of the code above can be exploited to simu-
late uncensored and censored data, as reported by 1–67 lines of the code below.

1 ## MAIN CODE TO SIMULATE THE DATA

2 # number of patients in each dataset

3 N=250

4 # Minimum and Maximum length of follow -up.

5 # If fu.min=fu.max , then all individuals have a common follow -up.

6 fu.min =2000

7 fu.max =2000

8 # the censoring provided by the package is not used

9 cens.prob = 0

10

11 # distributions of covariates

12 dist.x <- c("binomial", "normal")

13 # parameteres of binomial distribution and gaussian distribution

14 par.x <- list (0.5, c(-6.75, 1/4))

15 # coefficients of covariates in RE process

16 beta.x <- c( -0.4 ,0.5)

17 # frailty distribution
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18 dist.z <- "gamma"

19 # variance of frailty

20 par.z <-0.1

21

22 # lambda_f,0(t) shape of baseline intensity function

23 dist.rec <- "weibull"

24 # if the second parameter is 1 it is a constant baseline hazard

25 par.rec <- c(exp(-3), 1)

26

27 # coefficients of covariates in censoring hazard

28 thetaexact=c( -0.75 ,+0.4)

29 # coefficients of cumulative number of events in CE process

30 gammaexact =3

31 # baseline effect in CE process

32 loexact=exp(-6)

33

34 # select the relationship between censoring and cumulative number of

events:

35 # h(t)=ho*exp(theta*X+gamma*f(N(t-)))

36 fun_cum=function(j){return(atan(sqrt(j)))}

37

38 # simulate data without censoring

39 simdata <- simulate_Data(N,

40 fu.min ,

41 fu.max ,

42 cens.prob ,

43 dist.x,

44 par.x,

45 beta.x,

46 dist.z,

47 par.z,

48 dist.rec ,

49 par.rec)

50

51 # censor data

52 censoredresult <- simulate_Censored_Data(simdata ,

53 thetaexact ,

54 ammaexact ,

55 loexact ,

56 fu.max ,

57 fun_cum)

58 simdata.cens=censoredresult$simdata.cens

59 cens.time=censoredresult$cens.time

60

61 # add the comulative number of events to the dataset at starting time

62 simdata.cens$csum_start <-ave(simdata.cens$event ,

63 simdata.cens$id ,

64 FUN=function(x){cumsum(c(0,x[-length(x)])

)})

65 simdata$csum_start <-ave(simdata$status ,

66 simdata$id,

67 FUN=function(x){cumsum(c(0,x[-length(x)]))})

Once the dataset for the analysis is simulated, it can be analyzed with the AG
and AG-IPCW functions. We report the code to perform the analysis, summarized
by the main steps presented in Section 6.3. First of all, before applying the estima-
tion procedure, the dataset needs to be set in the time-person format (lines 10–28),
where the interesting times we want to split over are determined by COPD events
and withdrawals. Then, the estimation procedure can be applied: model 0 (lines
30–33) implements AG without correction, model 1 and 2 (lines 35–50 and 53–65,
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respectively) implement AG with exact weights without stabilization and with it,
model 3 and 3a (lines 68–83) implement AG with GLM-fitted-weights without sta-
bilization and with it, and finally model 4 and 4a (lines 86–118) implement AG with
Cox-fitted-weights without and with stabilization. Boxplots summing up the results,
already discussed in Section 6.3, are shown in Figures 6.3 and 6.4.

1 ## FUNCTION TO FIT AG AND AG-IPCW

2 # dd dataset

3 # fun_cum function of the number of event in censoring hazard

4 # thetaexact coefficients of X in censoring hazard

5 # gammaexact coefficient of number of events in censoring hazard

6 # loexact lambda0 baseline of censoring hazard

7 FunctionAG <-function(dd,fun_cum ,loexact ,thetaexact ,gammaexact)

8 {

9 # define times to split dataset: when an event or a censoring happen

10 time=unique(dd$start[dd$event ==1 | dd$cens ==1])

11

12 # split data over event -times and order the data first by id,

13 # then by time interval

14 dataset.long <- survSplit(Surv(start ,stop ,event) ~ .,data=dd , cut=

time)

15 dataset.long <- dataset.long[order(dataset.long$id,dataset.long$start

),]

16

17 # repeat for censoring -times

18 dataset.long.cens <- survSplit(Surv(start ,stop ,cens) ~ .,data=dd, cut

=time)

19 dataset.long.cens <- dataset.long.cens[order(dataset.long.cens$id,

20 dataset.long.cens$start),]

21

22 # merge the long dataset and adding cumulative number of events

23 dataset.long$censored <- dataset.long.cens$cens

24 # cumulative exacerbations at ending time

25 dataset.long$csum <- ave(dataset.long$event , dataset.long$id , FUN=

cumsum)

26 # cumulative exacerbations at starting time

27 dataset.long$csum_start <-ave(dataset.long$event , dataset.long$id,

28 FUN=function(x){cumsum(c(0,x[-length(x)]))

})

29

30 ## MODEL 0 - Unweighted AG model on long dataset

31 MODEL0 <-coxph(Surv(start ,stop ,event)~x.V1+x.V2+cluster(id),dataset.

long , timefix = FALSE)

32 coxAG_IPCW_long <-MODEL0$coef [1]

33

34 ## MODEL 1 - AG -IPCW with exact weights

35 # hazard censoring rate h on each time interval

36 dataset.long$lambda=loexact*exp(thetaexact [1]*dataset.long$x.V1+

37 thetaexact [2]*dataset.long$x.V2+

38 gammaexact*fun_cum(dataset.long$csum_

start))

39 # integral of h in [start ,end]

40 dataset.long$exactS=dataset.long$lambda*(dataset.long$stop -dataset.

long$start)

41 # H=sum of integrals

42 dataset.long=dataset.long %>% group_by(id) %>% mutate(cumExactS =

cumsum(exactS))

43 # Surv=exp(-H)

44 dataset.long$ExactSurv=exp(-dataset.long$cumExactS)

45 # W(t)=1/Surv(t): Unstabilized weights

46 dataset.long$exactw =1/exp(-dataset.long$cumExactS)
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47 MODEL1 <-coxph(Surv(start ,stop ,event)~x.V1+x.V2+cluster(id),dataset.

long , weights = exactw ,timefix = FALSE)

48 coxAG_IPCW_exactw <-MODEL1$coef [1]

49

50

51 ## MODEL 2 - AG -IPCW with exact stabilized weights

52 dataset.long= dataset.long[ dataset.long$stop >dataset.long$start ,]

53 dataset.long=dataset.long[complete.cases(dataset.long) ,]

54 dataset.long$startsq=dataset.long$start^2

55 # numerator model 1

56 hazards.model <- glm(censored ~ start+startsq+x.V1+x.V2 ,

57 family=binomial (), data=dataset.long)

58 dataset.long$p.noevent=1-predict(hazards.model , type="response")

59 dataset.long=dataset.long %>% group_by(id) %>% mutate(surv0 = cumprod

(p.noevent))

60 # Stabilized weights

61 dataset.long$sw=dataset.long$surv0*dataset.long$exactw

62 MODEL2 <-coxph(Surv(start ,stop ,event)~x.V1+x.V2+cluster(id),dataset.

long , weights = sw,timefix = FALSE)

63 coxAG_IPCW_exactsw <-MODEL2$coef [1]

64

65

66 ## MODEL 3 - AG -IPCW with logistic model for weigths

67 hazards.model.den <- glm(censored ~ start+startsq+x.V1+x.V2+

68 fun_cum(dataset.long$csum_start),

69 family=binomial (), data=dataset.long)

70 dataset.long$p.noevent.den=1-predict(hazards.model.den , type="

response")

71 dataset.long=dataset.long%>%group_by(id)%>%mutate(surv1=cumprod(p.

noevent.den))

72 # Stabilized weights

73 dataset.long$fit.sw=dataset.long$surv0/dataset.long$surv1

74 # Unstabilized weights

75 dataset.long$fit.w=1/dataset.long$surv1

76 MODEL3 <-coxph(Surv(start ,stop ,event)~x.V1+x.V2+cluster(id),dataset.

long ,weights = fit.sw,timefix = FALSE)

77 coxAG_IPCW_fitsw <-MODEL3$coef [1]

78

79 MODEL3a <-coxph(Surv(start ,stop ,event)~x.V1+x.V2+cluster(id),

80 dataset.long , weights = fit.w,

81 timefix = FALSE)

82 coxAG_IPCW_fitw <-MODEL3a$coef [1]

83

84

85 ## MODEL 4 - AG -IPCW with Cox model for weigths

86 cens_mod_den <-coxph(Surv(start ,stop ,censored)~x.V1+x.V2+

87 fun_cum(csum_start),

88 dataset.long ,

89 timefix = FALSE)

90 cens_mod_num <-coxph(Surv(start ,stop ,censored)~x.V1+x.V2,

91 dataset.long ,timefix =

FALSE)

92

93 id=unique(dataset.long$id)

94 dataset.long$fit.sw.cox=NA

95 dataset.long$fit.w.cox=NA

96 for( i in id){

97 current_data_at_cens_times <-dataset.long[dataset.long$id==i,]

98 km=survfit(cens_mod_den ,newdata=current_data_at_cens_times ,

99 id=id,timefix=FALSE)

100 survest <- stepfun(km$time , c(1, km$surv))

101 w=survest(current_data_at_cens_times$stop)
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102

103

104 km0=survfit(cens_mod_num ,newdata=current_data_at_cens_times ,

105 id=id,timefix=FALSE)

106 survest <- stepfun(km0$time , c(1, km0$surv))

107 w0=survest(current_data_at_cens_times$stop)

108

109 # Stabilized weights

110 dataset.long$fit.sw.cox[dataset.long$id==i]<-w0/w

111 # Unstabilized weights

112 dataset.long$fit.w.cox[dataset.long$id==i]<-1/w

113 }

114

115 MODEL4 <-coxph(Surv(start ,stop ,event)~x.V1+x.V2+cluster(id),dataset.

long , weights = fit.sw.cox ,timefix = FALSE)

116 coxAG_IPCW_fitsw.cox <-MODEL4$coef [1]

117 MODEL4a <-coxph(Surv(start ,stop ,event)~x.V1+x.V2+cluster(id),dataset.

long , weights = fit.w.cox ,timefix = FALSE)

118 coxAG_IPCW_fitw.cox <-MODEL4a$coef [1]

119

120

121 return(list(coxAG_IPCW_long=coxAG_IPCW_long ,

122 coxAG_IPCW_exactw=coxAG_IPCW_exactw ,

123 coxAG_IPCW_exactsw=coxAG_IPCW_exactsw ,

124 coxAG_IPCW_fitsw=coxAG_IPCW_fitsw ,

125 coxAG_IPCW_fitw=coxAG_IPCW_fitw ,

126 coxAG_IPCW_fitw.cox=coxAG_IPCW_fitw.cox))

127 }
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FIGURE 6.3: Boxplot of treatment effect estimates for 1000 datasets
obtained with eight estimation procedures. Box shows 25% and
75% quantile, whiskers are 95% and 5%. The solid horizontal line
is the mean, while dotted horizontal line is the true vaccine efficacy
Methods applied are AG on uncensored data, then AG, AG with ex-
act IPCW (AG exact-IPCW), with exact-stabilized IPCW (AG exact-
sIPCW), with GLM-fitted IPCW, with GLM-fitted-stabilized IPCW
(AG GLM-IPCW), with Cox-fitted IPCW (AG Cox-sIPCW), with Cox-

fitted-stabilized IPCW (AG Cox-sIPCW), on censored data.
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FIGURE 6.4: Boxplot of min-max-weigths-ratio for 1000 datasets ob-
tained with eight estimation procedures. Box shows 25% and 75%
quantile, whiskers are 95% and 5%. Solid horizontal line is the mean.
Methods applied are AG with exact IPCW (AG exact-IPCW), with
exact-stabilized IPCW (AG exact-sIPCW), with GLM-fitted IPCW,
with GLM-fitted-stabilized IPCW (AG GLM-IPCW ), with Cox-fitted
IPCW (AG Cox-sIPCW), with Cox-fitted-stabilized IPCW (AG Cox-

sIPCW).
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6.7.2 Real data analysis

In this section, we collect the detailed analyses described in the main text about real
data provided by GSK. For clarity, we now report and describe in detail the list of
baseline covariates that characterized the COPD dataset and that we refer to in the
analysis.

• trt: dichotomic covariate indicating if the patient is randomized to treatment
or placebo;

• AAGE: continuous variable indicating exact age;

• AAGEGR2: categorical variable indicating the class of age of patients (40-59 or
60-80 years old);

• ACOUNTRY: categorical variable indicating the patient nationality (Belgium,
Canada, France, Germany, Italy, Spain, United Kingdom, and the United
States)

• country: dichotomic covariate indicating if the patient is from America or Eu-
rope;

• HISTEXA: dichotomic covariate indicating if, before enrolment, the patient had
more than 2 events or not;

• GOLDGRD: degree of airflow limitation. According to the Global Initiative for
Chronic Obstructive Lung Disease (levels are 2, 3, or 4).

• SMOKE: dichotomic covariate indicating if the patient is currently a smoker or if
they were a smoker.

• SEX: indicating patient biological sex.

Censoring model

Section 6.2 presents the motivational example and all the analyses performed on
the dataset. In particular, the censoring mechanism behind withdrawal is deeply
analyzed. We report here the details of the model described and presented in Section
6.2. The ANOVA model used to compare GAMs with different covariates gives the
output in Table 6.5 and 6.6, where models tested are:

Model 1: censored ∼ s(start) + AGE + HISTEXA + country + GOLDGRD +

SEX + SMOKE

Model 2: censored ∼ s(start) + AGE + HISTEXA + country + GOLDGRD +

SEX + SMOKE + trt

Model 3: censored ∼ s(start) + AAGE + HISTEXA + country + GOLDGRD +

SEX + SMOKE + trt +log.
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FIGURE 6.5: Kaplan-Meier estimators of survival probability given
baseline covariates (COUNTRY, GOLDRD, SEX, TREATMENT, HIS-

TEXA, SMOKE STATUS).

TABLE 6.5: Anova output for GAMs 1 and 2 comparison.

Resid. Df Resid. Dev Df Deviance p.value
1 20565 599.01
2 20564 589.28 1 9.73 0.0018

TABLE 6.6: Anova output for GAMs 2 and 3 comparison.

Resid. Df Resid. Dev Df Deviance p.value
2 20564 598.28
3 20563 589.57 1 12.71 0.0004
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To also give a full description of the censoring mechanism we analyze the effect of
each baseline covariate in the survival plot in Figure 6.5.
The best Cox model to describe the censoring mechanism, with main effects and in-
teraction terms, was selected using AIC (some covariates were forced to be included
in it by the scope parameter of the step function), by the following code:

1 cox=coxph(Surv(start ,stop ,censored) ~ (trt + AGE+ HISTEXA + country +

GOLDGRD + SEX + SMOKE + log)^2 ,data = dataset.long)

2 bestmodel=step(cox , scope = list(lower = ~ (trt + AGE+ HISTEXA +

country + GOLDGRD + SEX + SMOKE + trt:log+log)))

The best model turned out to have the structure reported in Table 6.7.

TABLE 6.7: Best Cox model output

term estimate std.error statistic p.value
1 trt1 -0.31 0.72 -0.43 0.67
2 AGE 0.02 0.05 0.38 0.70
3 HISTEXA>=2 -11.02 3.60 -3.06 0.00
4 country1 1.14 0.38 2.97 0.00
5 GOLDGRDGOLD3 -0.19 0.81 -0.24 0.81
6 GOLDGRDGOLD4 0.19 1.19 0.16 0.88
7 SEXM 4.86 3.40 1.43 0.15
8 SMOKEFormer -0.46 0.84 -0.55 0.58
9 log 3.18 0.70 4.55 0.00

10 trt1:HISTEXA>=2 1.62 0.83 1.95 0.05
11 trt1:SEXM -2.46 0.79 -3.13 0.00
12 trt1:log -1.70 1.03 -1.64 0.10
13 AGE:HISTEXA>=2 0.12 0.05 2.38 0.02
14 AGE:SEXM -0.10 0.05 -1.93 0.05
15 HISTEXA>=2:GOLDGRDGOLD3 2.22 1.02 2.17 0.03
16 HISTEXA>=2:GOLDGRDGOLD4 3.62 1.24 2.93 0.00
17 HISTEXA>=2:SMOKEFormer 1.36 0.88 1.55 0.12
18 country1:log -2.49 0.84 -2.96 0.00
19 GOLDGRDGOLD3:SEXM 2.27 0.96 2.37 0.02
20 GOLDGRDGOLD4:SEXM 0.71 0.95 0.74 0.46
21 GOLDGRDGOLD3:SMOKEFormer -2.45 1.15 -2.13 0.03
22 GOLDGRDGOLD4:SMOKEFormer -2.38 1.26 -1.89 0.06
23 SEXM:SMOKEFormer 2.08 0.85 2.44 0.01

To evaluate the reliability of the best Cox model selected, we analyze the residual
through residual plots in Figures 6.6 and 6.7. The pvalues associated with those
residual plots are reported in Table 6.8.
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FIGURE 6.6: Schoenfeld’s Residual plot for main effects in the Cox
model for withdrawal time.
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FIGURE 6.7: Schoenfeld’s Residual plot for interaction effects in the
Cox model for withdrawal time.
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TABLE 6.8: Schoenfeld’s Residual plot for interaction effects.

term chisq df.error p.value
trt 6.25e-01 1 0.429

AGE 2.01e-01 1 0.654
HISTEXA 1.25e-01 1 0.723

country 4.07e-02 1 0.840
GOLDGRD 2.02e-02 2 0.990

SEX 1.83e+00 1 0.176
SMOKE 5.06e-01 1 0.477

log 8.77e-02 1 0.767
trt:HISTEXA 2.24e-02 1 0.881

trt:SEX 1.37e-01 1 0.711
trt:log 2.70e-03 1 0.959

AGE:HISTEXA 2.11e-03 1 0.963
AGE:SEX 1.26e+00 1 0.262

HISTEXA:GOLDGRD 1.03e-01 2 0.950
HISTEXA:SMOKE 2.03e+00 1 0.154

country:log 6.91e-05 1 0.993
GOLDGRD:SEX 2.79e+00 2 0.248

GOLDGRD:SMOKE 4.92e+00 2 0.085
SEX:SMOKE 2.66e-01 1 0.606

GLOBAL 2.94e+01 23 0.166

Models to estimate vaccine efficacy: AG and AG-IPCW

The code to construct the censoring models (GLM 0-1-2-3 and Cox 0-1-2-3) used to
perform the final analyses (see Table 6.4), reported in Section 6.5 are listed here. The
models GLM 0-1-2-3 share the structure glm(formula,family=binomial(),data),
but differ for the covariates included in the right hand side of the formula term.
The Cox models 0-1-2-3 share the structure coxph(formula,data), but differ for the
covariates included in the right-hand side of the formula term. Moreover, each GLM
and Cox model is chosen by a search function step, based on AIC index.

1

2 # create a new dataset without the events associated to level "Spain"

of ACOUNTRY covariate

3 dataset.long.spain=dataset.long[dataset.long$ACOUNTRY!="Spain",]

4

5 # GLM model 0

6 hazards.model .0 <- glm(censored ~ start + startsq + ( trt + AAGE+

HISTEXA + country + GOLDGRD +SEX+SMOKE )^2 , family=binomial (),

data=test.long)

7 best.step.0 <- step(hazards.model.0,scope = list(lower = ~ start+

startsq+trt+AAGE+country+SEX+SMOKE))

8

9

10 # GLM model 1

11 hazards.model.num <- glm(censored ~ start + startsq + trt + AAGE+

HISTEXA + ACOUNTRY + GOLDGRD +SEX+SMOKE , family=binomial (), data=

dataset.long.spain)

12 best.step.num1 <- step(hazards.model.num ,scope = list(lower = ~ start+

startsq+trt+AAGE+ACOUNTRY+SEX+SMOKE))

13
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14 hazards.model.den <- glm(censored ~ start + startsq + trt + AAGE +

HISTEXA + ACOUNTRY + log +GOLDGRD+SEX+SMOKE , family=binomial (),

data=dataset.long.spain)

15 best.step.den1 <- step(hazards.model.den ,scope = list(lower = ~ start+

startsq+trt+AAGE+ACOUNTRY+log+SEX+SMOKE))

16

17 # GLM model 2

18 hazards.model.num <- glm(censored ~ start + startsq + ( trt + AAGE+

HISTEXA + ACOUNTRY + GOLDGRD +SEX+SMOKE)^2 , family=binomial (),

data=dataset.long.spain)

19 best.step.num2 <- step(hazards.model.num ,scope = list(lower = ~ start+

startsq+trt+AAGE+ACOUNTRY+SEX+SMOKE))

20

21 hazards.model.den <- glm(censored ~ start + startsq + ( trt + AAGE+

HISTEXA + ACOUNTRY + GOLDGRD +SEX+SMOKE+log)^2 , family=binomial (),

data=dataset.long.spain)

22 best.step.den2 <- step(hazards.model.den ,scope = list(lower = ~ start+

startsq+trt+AAGE+ACOUNTRY+SEX+SMOKE+log))

23

24 # GLM model 3

25 hazards.model.num <- glm(censored ~ start + startsq + ( trt + AAGE+

HISTEXA + country + GOLDGRD +SEX+SMOKE )^2 , family=binomial (),

data=dataset.long)

26 best.step.num3 <- step(hazards.model.num ,scope = list(lower = ~ start+

startsq+trt+AAGE+country+SEX+SMOKE))

27

28 hazards.model.den <- glm(censored ~ start + startsq + (start + startsq

+ trt + AAGE+ HISTEXA + country + GOLDGRD +SEX+SMOKE+log )^2 ,

family=binomial (), data=dataset.long)

29 best.step.den3 <- step(hazards.model.den ,scope = list(lower = ~ start+

startsq+trt+AAGE+country+SEX+SMOKE+log))

30

31 # Cox 0

32 cox=coxph(Surv(start ,stop ,censored) ~(trt + AAGE+ HISTEXA + country +

GOLDGRD +SEX+SMOKE)^2 ,data = test.long)

33 cox0=step(cox)

34

35 # Cox numerator

36 cox=coxph(Surv(start ,stop ,censored) ~ trt + AAGE+ HISTEXA + ACOUNTRY +

GOLDGRD +SEX+SMOKE ,data = dataset.long)

37 cox0=step(cox)

38

39 # Cox denominator 1

40 cox=coxph(Surv(start ,stop ,censored) ~ trt + AAGE+ HISTEXA + ACOUNTRY +

GOLDGRD +SEX+SMOKE + log ,data = dataset.long.spain)

41 cox1=step(cox ,scope = list(lower = ~ trt+AAGE+ACOUNTRY+log+SEX+SMOKE))

42

43 # Cox denominator 2

44 cox=coxph(Surv(start ,stop ,censored) ~ (trt + AAGE+ HISTEXA + ACOUNTRY +

GOLDGRD +SEX+SMOKE+log)^2,data = dataset.long.spain)

45 cox2=step(cox ,scope = list(lower = ~ trt+AAGE+ACOUNTRY+log+SEX+SMOKE))

46

47 # Cox denominator 3

48 cox=coxph(Surv(start ,stop ,censored) ~ (trt + AAGE+ HISTEXA + country +

GOLDGRD +SEX+SMOKE+log)^2 , data = dataset.long)

49 cox3=step(cox ,scope = list(lower = ~ trt+AAGE+country+log+SEX+SMOKE))
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Chapter 7

Discussion

This thesis comprises three real-data problems that exemplify the challenges encoun-
tered when analyzing longitudinal data. It also presents methodologies that can be
utilized to model and infer the relevant quantities of interest.

After giving in Chapter 1 some basic knowledge of Bayesian statistic and in-
ference procedures, in Chapter 2 we propose a new compartmental model called
SIPRO, which extends the well-known SIR, to analyze the COVID-19 pandemic in
Italy, focusing on the estimation of the Not Notified Infected part of the popula-
tion and its impact on the effective reproductive number. The aim is to construct
a realistic model to describe the pandemic mechanism, but simple enough to allow
the identifiability of the model parameters. We combine the SIPRO dynamics, in a
mixed-effect structure, to describe the heterogeneity of the Italian regions. We infer
the model with a Metropolis-within-Gibbs update, combined with Parallel Temper-
ing. We validate the statistical model and the algorithm on simulations and apply
it to the data collected by the Italian Protezione Civile during the first phase of the
pandemic. We show the improvement gained with our model with respect to the
SIR model, with WAIC criterion and comparing short-term predictions. However,
we also point out some low-identifiability issues that arise. Future work could in-
clude a better study of model identifiability, through methodologies presented in
[Cho17; RC19]. Moreover, as new data referring to the pandemic are now available
[ISSa], it would be of high interest to first validate the estimates obtained and then
incorporate these data into the model to improve its reliability.

In Chapter 3, we analyze data from an observational study involving prostate-
ctomized patients. The study’s goal is to identify valuable biomarkers associated
with resurgences and enhance the prediction of resurgence timing while optimizing
examination timing. To assess tumor recurrence, an expensive PET-PSMA exam is
exploited. Given its cost and the importance of minimizing the patient’s risk, this
exam should be recommended only when strong evidence of tumor recurrence ex-
ists. We develop a hierarchical Bayesian model that jointly describes the PSA growth
curve and the probability of a positive PET-PSMA; we apply the Gompert model to
describe the PSA evolution, accounting for individual patient characteristics with
random effects. Since our focus is to estimate the optimal timing for the PET-PSMA
exam, we define a statistical procedure to compute the posterior distribution of the
optimal time with user-prespecified confidence. The model’s performance is evalu-
ated on a simulated dataset and, then, applied to the real dataset. Future work will
be devoted to better scheduling the time to collect PSA measurments in order to im-
prove the estimation of the optimal time. Moreover, it would be of high interest to
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extend the developed methodology to estimate the time-to-examination in different
medical areas.

After a literature review in Chapters 4 and 5, in Chapter 6 we present a study on
a recurrent event setting with informative censoring, using the motivating example
of COPD provided by GSK. In this context, a new vaccine aims to reduce adverse
respiratory events in COPD patients, requiring the estimation of event intensity over
time in both the vaccine and placebo arms. However, informative censoring may oc-
cur when patients with more events are more likely to withdraw from the study. We
demonstrate that parameter estimates in the recurrent event setting can be biased
if informative censoring is not taken into account. Our work focuses on analyzing
the Inverse Probability of Censoring Weighting (IPCW) technique to address this
issue and clarify its practical application in the recurrent event setting. To do this,
we combine the IPCW approach with the AG model, building upon the work pre-
sented in [Mil+04]. We provide a step-by-step procedure for applying AG-IPCW and
highlight potential numerical challenges that may arise, using a simulated dataset.
Subsequently, we apply this method to the real dataset provided by GSK. As part of
our future work, we aim to further investigate the weight estimation procedure to
overcome the numerical challenges encountered in our study, with the ultimate goal
of improving the method. Finally, it would be of high interest to make a comparison
between the joint frailty model, which is one of the most used techniques in these
settings, and the AG-IPCW.
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