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In this paper we establish inclusions and noninclusions 
between various Hardy type spaces on noncompact Rieman-
nian manifolds M with Ricci curvature bounded from below, 
positive injectivity radius and spectral gap.
Our first main result states that, if L is the positive Laplace–
Beltrami operator on M , then the Riesz–Hardy space H1

R(M)
is the isomorphic image of the Goldberg type space h1(M)
via the map L 1/2(I + L )−1/2, a fact that is false in 
Rn. Specifically, H1

R(M) agrees with the Hardy type space 
X1/2(M) recently introduced by the first three authors; as a 
consequence, we prove that H1

R(M) does not admit an atomic 
characterisation.
Noninclusions are mostly proved in the special case where the 
manifold is a Damek–Ricci space S. Our second main result 
states that H1

R(S), the heat Hardy space H1
H (S) and the 

Poisson–Hardy space H1
P(S) are mutually distinct spaces, a 
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Riesz transform fact which is in sharp contrast to the Euclidean case, where 
these three spaces agree.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

The purpose of this paper is to prove a number of results concerning Hardy type 
spaces on a certain class of nondoubling Riemannian manifolds. Our results illustrate 
that the scenario of Hardy spaces on such class of manifolds may differ considerably from 
that we are familiar with on Euclidean spaces.

Hardy spaces have become a landmark in the panorama of Euclidean Harmonic Anal-
ysis (in several variables) after the 1972 seminal paper of C. Fefferman and E. M. Stein 
[14]. It is virtually impossible in a research paper to give appropriate credit to all the 
mathematicians who have contributed to develop the theory of Hardy spaces in a variety 
of settings besides Rn. Some pointers to the existing literature may be found in the 
introduction of [22], to which we refer the interested reader.

One of the key features of H1(Rn) is its “flexibility”, which is a consequence of its many 
different characterisations: these include the atomic and the maximal characterisations 
and the characterisation via Riesz transforms. This makes it possible to choose the most 
useful characterisation of H1(Rn) in connection with a specific application one has in 
mind.

Suppose that M is a complete connected noncompact Riemannian manifold. Denote 
by L the (nonnegative) Laplace–Beltrami operator on M and by ∇ the covariant deriva-
tive. Consider the Riesz transform R := ∇L −1/2 and the following Hardy type spaces, 
endowed with their natural norms:

(i) the Riesz–Hardy space H1
R(M), defined by

H1
R(M) := {f ∈ L1(M) : |Rf | ∈ L1(M)}; (1.1)

(ii) the heat maximal Hardy space H1
H (M), associated to the heat semigroup {Ht :=

e−tL : t ≥ 0}, defined by

H1
H (M) :=

{
f ∈ L1(M) : H∗f ∈ L1(M)

}
, (1.2)

where H∗f := supt>0 |Htf |;
(iii) the Poisson maximal Hardy space H1

P(M), associated to the Poisson semigroup 
{Pt := e−tL 1/2 : t ≥ 0}, defined by

H1
P(M) :=

{
f ∈ L1(M) : P∗f ∈ L1(M)

}
, (1.3)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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where P∗f := supt>0 |Ptf |.

As mentioned above (see [14])

H1
R(Rn) = H1

H (Rn) = H1
P(Rn). (1.4)

It is natural to speculate whether a similar equality holds in wider generality. A discussion 
of this interesting problem may be found in the introduction of [22], to which the reader 
is referred for further information. Here we content ourselves to mention that, as a 
consequence of the efforts of various authors [4,12,18,33],

H1
R(M) ⊇ H1

H (M) = H1
P(M)

in the case where M is a doubling Riemannian manifold with Ricci curvature bounded 
from below and positive injectivity radius. The first inclusion is a trivial consequence 
of the boundedness of the Riesz transform R from, say, H1

H (M) to L1(M). To the 
best of our knowledge, it is unknown whether, under the assumptions above, H1

R(M) =
H1

H (M).
We emphasize the fact that there are only a few (very specific) examples in the litera-

ture, besides Rn, in which the Riesz–Hardy space H1
R(M) is characterised in whatsoever 

form. For more on this, see the introduction of [22] and the references therein.
In this paper we are interested exclusively in analogues of the space H1(Rn) on man-

ifolds in the class M of all complete noncompact connected Riemannian manifolds M
satisfying the following:

(i) the injectivity radius of M is positive;
(ii) the Ricci tensor of M is bounded from below;
(iii) M has spectral gap, i.e., the bottom b of the L2-spectrum of the Laplace–Beltrami 

operator L is strictly positive.

Riemannian manifolds in M are nondoubling metric measure spaces. Notice that M

includes all symmetric spaces of the noncompact type and Damek–Ricci spaces, as well as 
all the simply connected complete Riemannian manifolds with negative pinched sectional 
curvature such as, for instance, the universal coverings of compact manifolds of strictly 
negative curvature. Note that M is precisely the class of manifolds considered in [22]. 
We refer to [22, pp. 2064–2065] for some important analytic and geometric consequences 
of the assumptions above.

Many variants of Hardy type spaces have been considered on (subclasses of) the class 
M . Each of them is taylored to obtain endpoint estimates for certain classes of operators. 
Without any pretence of exhaustiveness, we mention [1,6,7,20–30,36], and refer the reader 
to the introductive sections of these papers for more on Hardy type spaces and their role 
in obtaining sharp estimates for a variety of operators, and for pointers to the vast 
literature on the subject.
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One of the main results of this paper, Corollary 4.9, is the perhaps surprising fact 
that in the class M the ideal chain of equalities (1.4) may fail. Specifically, it asserts 
that, if S is a Damek–Ricci space, then H1

R(S), H1
H (S) and H1

P(S) are pairwise distinct 
spaces. Notice that this is in sharp contrast with the Euclidean case discussed above. It 
is likely that a similar phenomenon happens on more general manifolds than Damek–
Ricci spaces. As a matter of fact, we can rule out that the spaces H1

R(M) and H1
P(M)

coincide when M is an arbitrary manifold in the class M (see Corollary 3.5).
In order to effectively compare H1

R(M), H1
H (M) and H1

P(M), we make use of two 
main ideas: the first is to consider certain variants of H1

H (M) and H1
P(M), the second 

is to characterise H1
R(M) as an isomorphic image of the local Hardy space h1(M) of 

Goldberg type on M (we emphasize that an analogous characterisation fails in Rn, see 
Proposition 2.2); see Section 2 for details on h1(M). We offer the following comments 
concerning the genesis of these two ideas.

The first is suggested by the reading of [1], where J.-Ph. Anker sharpened previous 
results of N. Lohoué [21] and proved that if M is a symmetric space of the noncompact 
type, then for every c in [0, 1) the following estimate holds:

‖Pc
∗f‖L1(M) ≤ C

(
‖f‖L1(M) +

∥∥|Rf |
∥∥
L1(M)

)
.

Here

Pc
∗f := sup

t>0
〈t〉c |Ptf |,

and 〈t〉 = max{1, t}. In other words, H1
R(M) ⊆ H1

P(M) (and, more generally, H1
R(M) ⊆

H1
P,c(M) for all c ∈ [0, 1) in the notation of Section 3). This surprising result strongly 

suggests that it may be advantageous to consider a finer scale of spaces H1
P,c(M), includ-

ing H1
P(M), defined in terms of the modified maximal function Pc

∗ above. By analogy, it 
seems natural to consider a similar scale of spaces H1

H ,c(M), including H1
H (M), defined 

in terms of the modified maximal function H c
∗ , defined as follows:

H c
∗ f := sup

t>0
〈t〉c |Htf |.

The scales of spaces 
{
H1

P,c(M) : c ∈ R
}

and 
{
H1

H ,c(M) : c ∈ R
}

will play a fundamental 
role in what follows (see Section 3).

The second idea was, in fact, one of the motivations behind the introduction and the 
study in [22] of the scale of Hardy type spaces {Xγ(M) : γ > 0} (see Definition 2.6), 
which, by definition, are isometric images of the Goldberg type space h1(M) via the 
fractional powers U γ of the operator U = L (I + L )−1. In [22] it was proved that for 
manifolds in the class M the space X1/2(M) agrees with {f ∈ h1(M) : |Rf | ∈ L1(M)}, 
which, in principle, may be strictly contained in H1

R(M). In this paper, armed with 
the Riesz transform characterisation of h1(M) recently obtained in [30], we improve 
this result and show that the Riesz–Hardy space H1

R(M) agrees with the Banach space 
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X1/2(M): see Theorem 2.10. We emphasize that this result justifies retrospectively the 
introduction of the space X1/2(M). Thus, for every M in the class M , the Riesz–Hardy 
space H1

R(M) turns out to be an isometric copy of h1(M) via the map U 1/2, a fact that 
fails in the Euclidean setting (see Proposition 2.2).

The fact that if S is a Damek–Ricci space, then H1
R(S), H1

H (S) and H1
P(S) are 

mutually distinct spaces is a consequence of fine estimates of the kernels of certain oper-
ators on Damek–Ricci spaces and of inclusions between the families of Hardy type spaces 
H1

H ,c(M) and H1
P,c(M) for arbitrary manifolds M in the class M . Our analysis shows 

that the containments amongst the spaces H1
H ,c(S) and H1

P,c(S) and the abovemen-
tioned family of spaces Xγ(S) are subtle and highly nontrivial. In particular, we show 
that X1/2(S) is very similar to but not quite the same as H1

P,1(S): see Corollary 3.5 and 
Theorem 4.8 below.

It is interesting to observe that X1/2(M) is the space of all functions of the form 
L 1/2(I + L )−1/2f , where f belongs to the Goldberg type space h1(M). Amongst the 
direct consequences of this fact, we mention the following. Proving that the spectral 
operator m(L ) maps H1

R(M) to L1(M) is equivalent to showing that the spectral op-
erator m(L )L 1/2(I + L )−1/2 maps h1(M) to L1(M). This does not involve estimates 
of gradients any more and can hopefully be done using spectral methods.

We mention that the results contained in this paper are versions in the continuous 
setting of similar results obtained in the discrete case of graphs and trees [8]. It is 
fair to observe that analysis at local scales, which turns out to be trivial on graphs, is 
highly nontrivial in our situation. Notice also that local and global analysis on manifolds 
cannot be neatly separated, and one influences the other. As a consequence, our methods 
turn out to be comparatively more involved than those in [8]. For instance, our first 
result (concerning the abovementioned characterisation of the Riesz–Hardy space), which 
hinges on the detailed analysis performed in [30] and on spectral methods, is rather trivial 
on graphs.

Our paper is organised as follows. Section 2 contains our first main result, Theo-
rem 2.10, together with an important improvement (Proposition 2.5) of the main result 
in [30]. In Section 3, we introduce the spaces H1

H ,c(M) and H1
P,c(M), defined in terms 

of certain weighted heat and Poisson maximal operators, respectively. We prove some 
inclusions amongst H1

H ,c(M), H1
P,c(M) and Xγ(M) on any manifold M in the class M . 

Our methods, based on functional calculus, are comparatively simple and direct. Among 
other things (see Corollary 3.5), we show that

H1
P,2γ+ε(M) ⊂ Xγ(M) ⊂ H1

P,2γ−ε(M)

for every ε > 0 and γ > 0. A special case of interest of this chain of inclusions is

H1
P,1+ε(M) ⊂ H1

R(M) ⊂ H1
P,1−ε(M)
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for every ε > 0, which implies in particular that H1
R(M) is properly contained in H1

P(M). 
Concerning the relationship between H1

H ,c(M) and Xγ(M) we are only able to show, 
for an arbitrary manifold M in the class M , that

H1
H ,γ+ε(M) ⊂ Xγ(M)

for every ε > 0. We can prove an inclusion in the opposite direction in the special case 
where the manifold is a Damek–Ricci space, where spherical Fourier analysis allows us 
to obtain precise estimates of the heat kernel; this is discussed in Section 4, which is 
mainly devoted to proving noninclusions amongst H1

R(S), H1
H (S) and H1

P(S), where S
is a Damek–Ricci space. As a consequence, we show that H1

R(S), H1
H (S) and H1

P(S)
are mutually distinct spaces (see Corollary 4.9).

In the course of the paper, the letter C is used to denote a finite positive constant, 
whose value may change from place to place. We also write A � B to indicate that 
A ≤ CB and B ≤ CA. The symbols ⊆ and ⊂ denote set inclusion and proper set 
inclusion respectively, while Sc denotes the complement of the set S. For a real number 
x, we write x� to denote the smallest integer greater than or equal to x.

2. A characterisation of the Riesz–Hardy space

In this section we prove our first main result, Theorem 2.10, about the characterisation 
of the Riesz–Hardy space on a manifold M of class M . As mentioned in the introduction, 
this result highlights a relationship between the local Hardy space h1(M) and the Riesz–
Hardy space H1

R(M) that has no counterpart in the Euclidean setting. In order to 
clearly illustrate this, we shall briefly discuss the Euclidean case (see Proposition 2.2
below) before moving to the case of manifolds. First of all, however, as the methods in 
this section are based on functional calculus techniques, some preliminary considerations 
on the matter are in order.

2.1. The extended Dunford class

If θ ∈ (0, π), by Sθ we denote the open sector in the complex plane C with aperture 
2θ symmetric about the positive real axis. We recall that the extended Dunford class
E (Sθ) is the space of all bounded holomorphic functions F : Sθ → C for which there 
exist w0, w∞ ∈ C and ε > 0 such that

|F (z) − w0| + |F (1/z) − w∞| = O(|z|ε) as z → 0 (2.1)

(see [16, Lemma 2.2.3]). We record here some elementary properties of E (Sθ) that will 
be of use in the sequel (cf. [16, Examples 2.2.4 and 2.2.5]).

Lemma 2.1. Let θ ∈ (0, π).
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(i) E (Sθ) is a unital algebra under pointwise addition and multiplication.
(ii) If F is in E (Sθ) and 1/F is a bounded holomorphic function on Sθ, then 1/F is in 

E (Sθ).
(iii) Any function of the form

z �→
(
a + bz

c + dz

)γ

, (2.2)

with γ, a, b ∈ [0, ∞) and c, d ∈ (0, ∞), is in E (Sθ).

Proof. Part (i) is discussed in [16, Section 2.2].
As for part (ii), if F ∈ E (Sθ) and 1/F is bounded, then the limits w0, w∞ ∈ C of F

at 0 and ∞ must be nonzero. Consequently∣∣∣∣ 1
F (z) − 1

w0

∣∣∣∣ +
∣∣∣∣ 1
F (1/z) − 1

w∞

∣∣∣∣ = |F (z) − w0|
|F (z)||w0|

+ |F (1/z) − w0|
|F (1/z)||w∞| = O(|z|ε)

as z → 0, for some ε > 0, where we used (2.1) and the boundedness of 1/F .
Finally, for part (iii), any function F of the form (2.2) is bounded and holomorphic on 

Sθ, and has finite limits w0 = (a/c)γ and w∞ = (b/d)γ as z → 0 and z → ∞ respectively. 
If w0 �= 0, then F extends to a holomorphic function in a neighbourhood of 0, thus clearly 
|F (z) − w0| = O(|z|) as z → 0. If instead w0 = 0, then a = 0 and |F (z)| = O(|z|γ) as 
z → 0. Similar considerations apply to F (1/z) and w∞ in place of F (z) and w0, thus 
showing that F is in E (Sθ). �

The relevance for our discussion of the extended Dunford class lies in its role in 
the functional calculus for sectorial operators, as described, e.g., in [16, Chapter 2]. 
Specifically:

• if T is a sectorial operator of angle ω ∈ [0, π) on a Banach space X (see, e.g., [16, 
Section 2.1]), then, for all θ ∈ (ω, π) and F ∈ E (Sθ), the operator F (T ) is bounded 
on X [16, Theorem 2.3.3];

• if T is the generator of a uniformly bounded semigroup of class C0 on X , then T
is sectorial of angle π/2 (see [16, Section 2.1.1, p. 24]).

These facts will be repeatedly used in what follows.

2.2. Hardy spaces in the Euclidean setting

The local Hardy space h1(Rn) was introduced in D. Goldberg’s paper [15]. Since 
then, h1(Rn) is commonly referred to as the Goldberg space. We start by establishing 
a result that relates the classical Hardy space H1(Rn) = H1

R(Rn) and the Goldberg 
space h1(Rn). Consider the operator L 1/2(I + L )−1/2, also denoted by U 1/2, where 
−L = Δ denotes the standard Laplacian.
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Proposition 2.2. The operator U 1/2 is bounded and injective, but not surjective, from 
h1(Rn) to H1(Rn). Thus, the space H1(Rn) contains U 1/2[h1(Rn)] properly.

Proof. First we show that if g is in h1(Rn), then U 1/2g is in H1(Rn). Since L generates 
a contractive semigroup of class C0 on L1(Rn) and the function

ϕ(z) :=
(

z

1 + z

)1/2

is in the extended Dunford class E (Sθ) for every θ in (π/2, π) (see Lemma 2.1), the 
operator U 1/2 = ϕ(L ) is bounded on L1(Rn) (see [16, Theorem 2.3.3]). Hence U 1/2g is 
in L1(Rn). In order to show that U 1/2g is in H1(Rn), it suffices to prove that |RU 1/2g|
is in L1(Rn). Notice that

|RU 1/2g| = |∇L −1/2U 1/2g| = |∇(I + L )−1/2g|,

which belongs to L1(Rn), because g belongs to h1(Rn), by assumption. A close exami-
nation of the argument above shows that there exists a constant C such that

‖U 1/2g‖H1(Rn) ≤ C
(
1 +

∣∣∣∣∣∣U 1/2∣∣∣∣∣∣
L1(Rn)

)
‖g‖h1(Rn) ∀g ∈ h1(Rn).

Note that U 1/2 is injective on h1(Rn). Indeed, if U 1/2g = 0, then

|ξ|√
1 + |ξ|2

ĝ(ξ) = 0 ∀ξ ∈ Rn.

Therefore ĝ(ξ) vanishes on Rn \ {0}, hence everywhere, for ĝ is continuous. Thus, g = 0, 
as required.

Finally, we show that U 1/2 [h1(Rn)
]

is properly contained in H1(Rn). We argue by 
contradiction. If U 1/2 were surjective, then U −1/2 would be bounded from H1(Rn) to 
h1(Rn), and in particular from H1(Rn) to L1(Rn). We prove that this fails. Indeed, 
(I +L )−1/2U −1/2 = L −1/2, and (I +L )−1/2 is bounded on L1(Rn). Thus, if U −1/2

were bounded from H1(Rn) to L1(Rn), the same would be true of L −1/2. However, 
the boundedness of L −1/2 from H1(Rn) to L1(Rn) is easily disproved by homogeneity 
considerations.

Indeed, for any R > 0, the formula TRf(x) = R−nf(x/R) defines an isometric au-
tomorphism TR of both L1(Rn) and H1(Rn). On the other hand, by homogeneity of 
L = −Δ on Rn, we deduce that L −1/2TRf = RTRL −1/2f ; thus, for any nonzero 
f ∈ H1(Rn),

‖L −1/2TRf‖L1(Rn) = R‖L −1/2f‖L1(Rn) → ∞ as R → ∞,

while
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‖TRf‖H1(Rn) = ‖f‖H1(Rn) ∀R > 0,

whence L −1/2 cannot be bounded from H1(Rn) to L1(Rn). �
2.3. Local Hardy spaces on manifolds with bounded geometry

We now move to the case of manifolds. The construction of a local Hardy space by 
Goldberg was extended to a certain class of Riemannian manifolds with strongly bounded 
geometry by M. Taylor [36], further generalised to the setting of metric measure spaces 
[31], and recently investigated in [23]. In the case where M is a complete Riemannian 
manifold with Ricci curvature bounded from below, the space h1(M) can be characterised 
in several ways. In particular, it admits an atomic and an ionic decomposition [31]. If we 
assume further that M has positive injectivity radius, then h1(M) can be equivalently 
defined in terms of either the local heat maximal operator or the local Poisson maximal 
operator [23].

For the reader’s convenience, we report below one of the several equivalent definitions 
of h1(M) given in [31] in terms of atomic decompositions. As in [23], here we specialise 
to the case where the manifold M belongs to the class M0 of Riemannian manifolds 
with bounded geometry, that is, complete connected Riemannian manifolds with positive 
injectivity radius and Ricci curvature bounded from below. We point out that the class 
M0 is strictly larger than the class M discussed in the Introduction, for M0 contains 
also doubling manifolds, such as Rn with the standard Euclidean structure, as well as 
compact manifolds. Here and in the sequel, we denote by μ the Riemannian measure on 
the manifold M .

Definition 2.3. Let M be a manifold in the class M0. A standard h1(M)-atom is a func-
tion a in L1(M) supported in a ball B of radius at most one, satisfying the following 
conditions:

(i) size condition: ‖a‖2 ≤ μ(B)−1/2;
(ii) cancellation condition: 

∫
B
a dμ = 0.

A global h1(M)-atom is a function a in L1(M) supported in a ball B of radius exactly 
one, satisfying the size condition above (but possibly not the cancellation condition). 
Standard and global h1(M)-atoms will be referred to simply as h1(M)-atoms.

Definition 2.4. Let M be a manifold in the class M0. The local atomic Hardy space h1(M)
is the space of all functions f in L1(M) that admit a decomposition of the form

f =
∞∑

λjaj , (2.3)

j=1
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where the aj ’s are h1(M)-atoms and 
∑∞

j=1 |λj | < ∞. The norm ‖f‖h1 of f is the infimum 
of 

∑∞
j=1 |λj | over all decompositions (2.3) of f .

We refer the reader to [31] and [23] for further details on h1(M), including other 
equivalent characterisations.

Given a Riemannian manifold M in the class M0 and a positive number τ , we consider 
the translated Laplacian τI + L and define the associated translated Riesz transform
Rτ := ∇(τI + L )−1/2, and the local Riesz–Hardy space

h1
Rτ

(M) :=
{
f ∈ L1(M) : |Rτf | ∈ L1(M)

}
. (2.4)

We equip h1
Rτ

(M) with the norm

‖f‖h1
Rτ

(M) := ‖f‖1 +
∥∥|Rτf |

∥∥
1 .

It is a classical result that h1
Rτ

(Rn) = h1(Rn) for all τ > 0. It was recently proved in 
[30, Theorem 7.9] that, if M is in the class M0 and τ is a large positive number, then 
h1

Rτ
(M) = h1(M) and their norms are equivalent. In fact, the requirement that τ be 

a large positive number is not needed for any manifold M with bounded geometry, as 
shown in the next proposition that improves [30, Theorem 7.9].

Proposition 2.5. Suppose that M is Riemannian manifold in the class M0, and let τ be 
a positive number. Then h1

Rτ
(M) = h1(M) and their norms are equivalent.

Proof. Consider positive numbers τ and τ ′, and the function

ϕτ ′

τ (z) =
(
τ ′ + z

τ + z

)1/2

.

By Lemma 2.1, the function ϕτ ′
τ belongs to the extended Dunford class E (Sθ) for any 

θ in (π/2, π). Since L is the generator of a uniformly bounded semigroup of class C0
on h1(M) (see [22, Theorem 3.1]), the operator ϕτ ′

τ (L ) is bounded on h1(M) by [16, 
Theorem 2.3.3] for every pair of positive numbers τ and τ ′. The same also applies with 
L1(M) in place of h1(M). As ϕτ

τ ′(L ) is the inverse of ϕτ ′
τ (L ), we conclude that ϕτ ′

τ (L )
is a topological vector space automorphism of L1(M) and also of h1(M), for any τ, τ ′ > 0. 
Additionally,

Rτ ′ = Rτ ϕ
τ ′

τ (L ),

so from (2.4) we readily deduce that ϕτ ′
τ (L ) : h1

Rτ′ (M) → h1
Rτ

(M) is bounded, and 
actually an isomorphism with inverse ϕτ

τ ′(L ).
Now, by [30, Theorem 7.9], we can find τ ′ large enough that h1(M) = h1

Rτ′ (M). Then, 
for any positive number τ ,
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h1
Rτ

(M) = ϕτ ′

τ (L )[h1
Rτ′ (M)] = ϕτ ′

τ (L )[h1(M)] = h1(M),

as required. �
2.4. A family of Hardy type spaces

We recall the definition of the Hardy type spaces Xγ(M), γ > 0, recently introduced in 
[22], where M is a manifold in the class M . Consider the family 

{
Uτ := L (τI +L )−1 :

τ > 0
}

of (spectrally defined) operators. We also write U instead of U1 for brevity. For 
any τ, γ > 0, the mapping U γ

τ is bounded on h1(M) [22, Section 3]. We emphasize that 
U γ

τ

[
h1(M)

]
is independent of τ and there exists a positive constant C such that

C−1 ‖U −γf‖h1(M) ≤ ‖U −γ
τ f‖h1(M) ≤ C ‖U −γf‖h1(M)

for every f in U γ
[
h1(M)

]
(see [22, Proposition 3.5]).

Definition 2.6. We denote by Xγ(M) the space U γ
[
h1(M)

]
, endowed with the norm that 

makes U γ an isometry, i.e.,

‖f‖Xγ(M) := ‖U −γf‖h1(M) ∀f ∈ U γ
[
h1(M)

]
.

See [22] for further information on Xγ(M), γ > 0. We record here a few useful prop-
erties of the spaces Xγ(M) that will be important in the sequel.

Proposition 2.7. Let M be a manifold in the class M and let γ > 0.

(i) Xγ(M) properly contains Xγ+ε(M) for all ε > 0.
(ii) f ∈ Xγ(M) if and only if f ∈ h1(M) and L −γf ∈ h1(M).
(iii) If ψ ∈ C∞

c (M), then L γψ ∈ Xγ(M).

Proof. Parts (i) and (ii) are proved in [22, Proposition 4.14 and Proposition 4.2]. As for 
part (iii), note that

U −γL γψ = (1 + L )γψ = (1 + L )γ−N (1 + L )Nψ

for all N ∈ N. Since ψ ∈ C∞
c (M), we deduce that (1 + L )Nψ ∈ C∞

c (M), and therefore 
(1 + L )Nψ ∈ h1(M); the conclusion follows by the h1 boundedness of (1 + L )γ−N for 
N > γ [22, Theorem 3.1]. �
2.5. Negative powers of the Laplacian and Riesz transform

As a consequence of the spectral gap assumption for manifolds M of the class M , 
the powers L −γ , γ > 0, are bounded on Lp(M) for any p ∈ (1, ∞), though this fails for 
p = 1. Nevertheless we can show that L −γ maps L1(M) into L1

loc(M).
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Proposition 2.8. Let M be a manifold in the class M and γ ∈ (0, ∞). Then, there exists 
a positive constant C such that, for all f ∈ L1(M) and o ∈ M ,

‖L −γf‖L1(BR(o)) ≤ CRγ‖f‖L1 ∀R ≥ 1.

Proof. Recall that Ht = e−tL denotes the heat semigroup. By functional calculus, we 
can write, at least formally,

L −γ = cγ

∫∞
0

tγHt
dt
t
,

where cγ := 1/Γ(γ). As a consequence, for all T > 0,

L −γf = cγ

∫T
0
tγHtf

dt
t

+ cγ

∫∞
T

tγHtf
dt
t

=: f0
T + f∞

T .

Now, as Ht is a contractive semigroup on L1(M),

‖f0
T ‖L1 ≤ cγ‖f‖L1

∫T
0
tγ

dt
t

≤ CT γ‖f‖L1 ,

since γ > 0. On the other hand, in light of the ultracontractive estimate

‖Ht‖1→2 ≤ Ce−bt ∀t ≥ 1,

where b > 0 is the bottom of the L2-spectrum of L (see, e.g., [22, eq. (2.4)]), we deduce 
that

‖f∞
T ‖L2 ≤ C‖f‖L1

∫∞
T

tγ−1e−bt dt ≤ CT γ−1e−bT ‖f‖L1

for all T ≥ 1. As M has exponential volume growth (see, e.g., [23, eq. (2.3)]), there exists 
β > 0 such that

μ(BR(o)) ≤ Ce2βR ∀R ≥ 1

and consequently, by the Cauchy–Schwarz inequality,

‖f∞
T ‖L1(BR(o)) ≤ CeβR‖f∞

T ‖L2 ≤ CT γ−1eβR−bT .

In conclusion,

‖L −γf‖L1(BR(o)) ≤ CT γ
[
1 + T−1eβR−bT

]
for all R, T ≥ 1, and the desired estimate follows by taking T = (1 + β/b)R. �
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On the basis of the previous estimate, the Riesz transform Rf = ∇L −1/2f of any 
function f ∈ L1(M) is well-defined at least in the sense of distributions. We can then 
define the Riesz–Hardy space H1

R(M) as described in (1.1) in the Introduction, and 
equip it with the norm ‖f‖L1(M) +

∥∥|Rf |
∥∥
L1(M) .

2.6. The Federer–Fleming inequality

As we shall see, H1
R(M) can be characterised as one of the spaces Xγ(M) introduced 

above. An important tool in this characterisation is the validity of the following L1

Sobolev inequality, also known as the Federer–Fleming inequality [5,9], which is again a 
consequence of the spectral gap assumption.

Proposition 2.9. Let M be a manifold in the class M . There exists a positive constant κ
such that, if h ∈ L1

loc(M) satisfies the estimate

‖h‖L1(BR(o)) ≤ CR ∀R ≥ 1 (2.5)

for some o ∈ M and C > 0, and moreover |∇h| ∈ L1(M), then h ∈ L1(M) and

‖h‖L1 ≤ κ
∥∥|∇h|

∥∥
L1 . (2.6)

Proof. As the manifold M is in the class M , the Cheeger isoperimetric constant of M is 
strictly positive (see [5] and [6, Theorem 9.5]), whence the Federer–Fleming inequality 
(2.6) is known to hold for all h ∈ C∞

c (M) (see [9, Theorem V.2.1, p. 131], and also 
[22, eq. (2.6)]). On the other hand, as M is complete, the space C∞

c (M) is dense in the 
Sobolev space

W 1,1(M) = {f ∈ L1(M) : |∇f | ∈ L1(M)}

(see, e.g., [17, Theorem 2.7] or [10, Proposition 5.5]), thus the inequality (2.6) holds for 
all h ∈ W 1,1(M). So it just remains to show that, if h ∈ L1

loc(M) is only assumed to 
satisfy the a-priori estimate (2.5) and |∇h| ∈ L1(M), then actually h ∈ L1(M).

To this purpose, let us consider, for all R ≥ 1, a compactly supported Lipschitz cutoff 
ψR : M → [0, 1] which is identically 1 on BR(o), vanishes outside B2R(o), and satisfies∥∥|∇ψR|

∥∥
∞ ≤ CR−1; (2.7)

the existence of such cutoffs is a consequence of the completeness of M (see, e.g., [35, 
Lemma 2.2]).

Let now h satisfy the assumptions of Proposition 2.9. As h ∈ L1
loc(M), we deduce that 

ψRh is in L1(M). Moreover, as |∇h| ∈ L1(M), by the Leibniz rule,

|∇(ψRh)| ≤ ψR|∇h| + |∇ψR||h|,
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so |∇(ψRh)| is in L1(M) too, with∥∥|∇(ψRh)|
∥∥

1 ≤
∥∥|∇h|

∥∥
1 + CR−1‖h‖L1(B2R(o))

≤
∥∥|∇h|

∥∥
1 + C;

(2.8)

in the first inequality we used (2.7) and information on the support of ψR, while the 
second inequality follows from (2.5).

As ψRh ∈ W 1,1(M), we can then apply (2.6) to ψRh and obtain that

‖ψRh‖1 ≤ κ
∥∥|∇(ψRh)|

∥∥
1 ≤ κ

∥∥|∇h|
∥∥

1 + C

for all R ≥ 1. If we take the limit as R → +∞, then by monotone convergence we deduce 
that h ∈ L1(M), as required. �
2.7. Characterisation of the Riesz–Hardy space

In view of Proposition 2.2, the following characterisation of H1
R(M) highlights an 

interesting noneuclidean phenomenon.

Theorem 2.10. Let M be a manifold in the class M . Then H1
R(M) = X1/2(M), with 

equivalence of norms.

This characterisation substantially refines the result in [22, Theorem 5.3], where 
X1/2(M) is identified with the space {f ∈ h1(M) : |Rf | ∈ L1(M)}. While a number 
of ideas from the proof of [22, Theorem 5.3] also apply here, for the reader’s convenience 
we opt to provide a self-contained proof of Theorem 2.10 below. Beside favouring the 
readability of the argument, this also gives us the opportunity to clarify why the Federer–
Fleming inequality is applicable in this context, a point that was somewhat skimmed 
over in the proof presented in [22].

Proof. The proof of the inclusion X1/2(M) ⊆ H1
R(M) is analogous to that of the inclusion 

U 1/2[h1(Rn)] ⊆ H1
R(Rn) given in Proposition 2.2. Indeed, if f is in X1/2(M), then f is 

in h1(M), thus in L1(M), and moreover f = U 1/2g for some g ∈ h1(M). In addition,

Rf = ∇L −1/2f = ∇(I + L )−1/2U −1/2f = R1g. (2.9)

So from Proposition 2.5 and the fact that g ∈ h1(M) we deduce that |Rf | ∈ L1(M), 
and in conclusion f ∈ H1

R(M).
As for the opposite inclusion, if f is in H1

R(M), then f and |Rf | are in L1(M). If 
h := L −1/2f , then, from Proposition 2.8, we know that h ∈ L1

loc(M) and ‖h‖L1(BR(o)) ≤
CR1/2 for all R ≥ 1. Moreover ∇h = Rf , thus |∇h| ∈ L1(M). We can then apply 
Proposition 2.9 to h and deduce that h = L −1/2f is in L1(M).
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Notice now that

U −1/2 = (I + L )1/2L −1/2 = ϕ(L )(I + L −1/2), (2.10)

where

ϕ(z) := (1 + z)1/2

1 + z1/2 .

It is easily seen that ϕ is in E (Sθ) for all θ ∈ (π/2, π): indeed, by parts (i) and (iii) of 
Lemma 2.1, the reciprocal function

1
ϕ(z) = 1

(1 + z)1/2
+ z1/2

(1 + z)1/2

is in E (Sθ), thus ϕ is too by part (ii) of the same Lemma. So ϕ(L ) is bounded on L1(M)
by [16, Theorem 2.3.3]. From (2.10) we then deduce that the function

g := U −1/2f = ϕ(L )(f + L −1/2f)

is in L1(M), as f and L −1/2f are. Moreover, as in (2.9), Rf = R1g. Therefore both 
g and |R1g| are in L1(M), that is, g ∈ h1

R1
(M). However, by Proposition 2.5, this is 

equivalent to saying that g ∈ h1(M), and consequently f = U 1/2g ∈ X1/2(M), by 
definition. �

As a consequence of the above characterisation, in stark contrast to the Euclidean case, 
we can rule out that H1

R(M) can be characterised in terms of atomic decompositions, 
at least for a subclass of the manifolds of class M .

Corollary 2.11. Suppose that M is a rank one symmetric space of the noncompact type. 
Then the Riesz–Hardy space H1

R(M) does not admit an atomic characterisation. More 
precisely, the set of the compactly supported elements of H1

R(M) is not dense in H1
R(M).

Proof. According to [22, Theorem 4.15], the space X1/2(M) does not admit an atomic 
decomposition. Since, by Theorem 2.10, H1

R(M) agrees with X1/2(M), the conclusion 
follows. �
3. Maximal operators and function spaces for the class M

In this section we consider various maximal operators and function spaces associated 
thereto on any manifold M in the class M . We collect here their definitions and some 
of their elementary properties.
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3.1. Maximal operators and associated Hardy type spaces

Recall that Ht = e−tL and that Pt = e−tL 1/2 : thus, {Ht} and {Pt} denote the heat 
and the Poisson semigroups on M , respectively. For every c ∈ R we denote by H c

∗ the 
weighted heat maximal operator, defined by

H c
∗ f = sup

t>0
〈t〉c |Htf | ,

where 〈t〉 = max{1, t}. When c = 0 we simply denote by H∗ the maximal operator H 0
∗ . 

We denote by H1
H ,c the space

H1
H ,c = {f ∈ L1(M) : H c

∗ f ∈ L1(M)} ,

endowed with the norm

‖f‖H1
H ,c

= ‖f‖L1 + ‖H c
∗ f‖L1 .

Clearly {H1
H ,c(M) : c ∈ R} is a decreasing family of spaces. We denote by H loc

∗ the 
local heat maximal operator, defined by

H loc
∗ f = sup

0<t≤1
|Htf | .

We define the local heat Hardy space as

h1
H (M) = {f ∈ L1(M) : H loc

∗ f ∈ L1(M)} ,

endowed with the norm

‖f‖h1
H

= ‖f‖L1 + ‖H loc
∗ f‖L1 .

Much in the same vein, for any real number c in R we consider the Poisson maximal 
operator Pc

∗ with parameter c, which acts on a function f on M by

Pc
∗f = sup

t>0
〈t〉c |Ptf |.

We shall write P∗ instead of P0
∗ . We then define H1

P,c(M) by

H1
P,c(M) = {f ∈ L1(M) : Pc

∗f ∈ L1(M)}.

We equip H1
P,c(S) with the norm

‖f‖H1 = ‖f‖L1 + ‖Pc
∗f‖L1 .
P,c
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We denote by P loc
∗ the local Poisson maximal operator, defined by

P loc
∗ f = sup

0<t≤1
|Ptf | .

We define the local Poisson Hardy space as

h1
P(M) = {f ∈ L1(M) : P loc

∗ f ∈ L1(M)} ,

endowed with the norm

‖f‖h1
P

= ‖f‖L1 + ‖P loc
∗ f‖L1 .

We shall need the following result, which relates h1
H (M) and h1

P(M) with the Goldberg 
type space h1(M), and is valid more generally for any manifold M in the class M0.

Proposition 3.1. The spaces h1(M), h1
H (M) and h1

P(M) coincide and their norms are 
mutually equivalent.

Proof. See [23, Corollary 5.4]. �
3.2. Relationships between H1

H ,c(M), H1
P,c(M) and Xγ(M)

In this subsection we establish some inclusions between H1
H ,c(M), H1

P,c(M) and 
Xγ(M), whenever M belongs to the class M defined in the Introduction.

It is well known that the Poisson semigroup Pt can be subordinated to the heat 
semigroup Ht via the formula

Pt = t

∫∞
0

e−t2/(4s)
√

4πs
Hs

ds
s

(3.1)

(see, for instance, [38, formula (2), p. 260] or [34, formula (*), p. 47]).
One of the results we want to prove in this generality is that X1/2(M) ⊆ H1

P,c(M)
for all c < 1. This will generalise a result of Anker [1], who proved, in the case where 
M is a Riemannian symmetric space of the noncompact type, that for every c < 1 there 
exists a constant C such that

‖Pc
∗f‖L1 ≤ C

(
‖f‖L1 +

∥∥|Rf |
∥∥
L1

)
, (3.2)

where R denotes the Riemannian Riesz transform.
From Proposition 2.7 (ii) we know that a function f belongs to Xγ(M) if and only if 

both f and L −γf belong to h1(M). In order to prove the inclusion X1/2(M) ⊆ H1
P,c(M)

for c < 1, and more generally that Xγ(M) ⊆ H1
P,c(M) for c < 2γ it is natural to write 

Ptf as L γPtL −γf , and to look for estimates for the operator L γPt. We can obtain 
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subordination formulae for the operators L γPt in terms of the heat semigroup similar 
to formula (3.1) for Pt, as shown by taking α = 1/2 in the following technical lemma.

Lemma 3.2. For α ∈ (0, 1) and γ ≥ 0, let Fα,γ : (0, ∞) → C be defined by contour 
integration as follows:

Fα,γ(s) = 1
2πi

∫σ+i∞

σ−i∞
s esz−zα

zγ dz (3.3)

for any σ > 0.

(i) There exist constants C, ρ > 0 (possibly depending on α and γ) such that

|Fα,γ(s)| ≤ Cs−γ e−2ρs−α/(1−α)
. (3.4)

Moreover

zγe−zα

=
∫∞
0

Fα,γ(s) e−sz ds
s

(3.5)

for every complex number z with Re z > 0.
(ii) For all real numbers c < γ/α,

∫∞
0

sup
t≥1

tc
∣∣∣t−γ/αFα,γ(s/t1/α)

∣∣∣ ds
s

< ∞.

We point out that, in the case γ = 0, a more precise estimate of Fα,γ(s) for s → ∞
can be proved than the one in (3.4), as shown in [23, Lemma 5.2]. However we will not 
need this here.

Proof. We first prove part (i). The construction of the function Fα,γ satisfying (3.5)
through the contour integration (3.3) is a small modification of that in [38, Section 
IX.11], and can be justified through the theory of the Laplace transform.

Let a := cos(απ/2)/3. Since Re(zα) ≥ 3a|z|α whenever Re z > 0, from the represen-
tation (3.3) we obtain that, for any σ ≥ (aα)1/(1−α),

|Fα,γ(s)| ≤ 1
2πse

sσσγ+1
∫
R
(1 + t2)γ/2e−3aσα(1+t2)α/2

dt

≤ Cse2sσe−2aσα

,

where the constant C may depend on α and γ but not on σ; by choosing σ =
(aα/s)1/(1−α) and observing that

s(aα/s)1/(1−α) − a(aα/s)α/(1−α) = −(1 − α)αα/(1−α)a1/(1−α)s−α/(1−α),
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we obtain the estimate in (3.4) in the case s ≤ 1. As for the remaining case, by changing 
the contour of integration in (3.3) to the concatenation of the two half-lines z = re−iθ

(−∞ < −r < 0) and z = reiθ (0 < r < ∞) for any θ ∈ (π/2, π), we obtain, much as in 
[38, p. 263], the representation

Fα,γ(s) = 1
π

∫∞
0

srγesr cos θ−rα cos(αθ) sin (sr sin θ − rα sin(αθ) + θ(1 + γ)) dr;

if we take θ = π/(1 + α), then αθ = π − θ, thus k := cos(αθ) = − cos(θ) > 0 and

|Fα,γ(s)| ≤ C

∫∞
0

srγe−k(sr+rα) dr ≤ Cs−γ

for s ≥ 1. This completes the proof of part (i).
Next we prove part (ii). Note that, by (3.4),

sup
t≥1

tc
∣∣∣t−γ/αFα,γ(s/t1/α)

∣∣∣ ≤ Csαc−γ sup
t≥1

(t/sα)ce−2ρ(t/sα)1/(1−α)

≤ Csαc−γe−ρs−α/(1−α)
,

and the latter is integrable with respect to ds/s provided c < γ/α. �
In view of the equality X1/2(M) = H1

R(M) proved in Section 2, the estimate (3.2)
corresponds to the case γ = 1/2 of Theorem 3.3 (iii) below.

Theorem 3.3. Suppose that γ is a positive number. The following hold:

(i) H1
H ,c(M) ⊆ h1(M) for all c ∈ R and H1

H ,c(M) ⊆ Xγ(M) for all c > γ;
(ii) H1

P,c(M) ⊆ h1(M) for all c ∈ R and H1
P,c(M) ⊆ Xγ(M) for all c > 2γ;

(iii) H1
P,c(M) = h1(M) for all c < 0 and Xγ(M) ⊆ H1

P,c(M) for all c < 2γ;
(iv) H1

H ,c(M) ⊆ H1
P,2c(M) for all c ∈ R.

Proof. First we prove part (i). Suppose that f is in H1
H ,c(M), i.e. H c

∗ f is in L1(M). 
Then H loc

∗ f is in L1(M), whence f is in h1(M), by Proposition 3.1, and

‖f‖h1 ≤ C ‖H c
∗ f‖L1 .

Now suppose that c > γ and assume that f is in H1
H ,c(M). We have already proved 

that f is in h1(M). By Proposition 2.7 (ii), in order to conclude f is in Xγ(M), it suffices 
to prove that g := L −γf is in h1(M), and there exists a constant C such that

‖H loc
∗ (L −γf)‖L1 ≤ C ‖H c

∗ f‖L1 ∀f ∈ H1
H ,c(M).

By spectral theory,
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I = cγ

∫∞
0

(tL )γ e−tL dt
t
, (3.6)

where cγ := 1/Γ(γ). Thus, for each s in (0, 1],

Hsg = cγ

∫∞
0

tγ Ht+sf
dt
t

= cγ

∫∞
0

tγ

〈t + s〉c 〈t + s〉c Ht+sf
dt
t
.

By taking the supremum with respect to s in (0, 1], we see that

‖H loc
∗ g‖L1 ≤ C ‖H c

∗ f‖L1

∫∞
0

tγ−1〈t〉−c dt.

The integral on the right hand side is convergent, because c > γ > 0, and therefore g is 
in h1(M), by Proposition 3.1, as required.

The proof of part (ii) is entirely analogous to that of part (i). One simply needs to 
replace γ with 2γ, H with P, as well as L with L 1/2 in the reproducing formula (3.6). 
We omit the details.

Next, we prove part (iii). Due to the inclusion already established in part (ii), we only 
need to prove that h1(M) ⊆ H1

P,c(M) for all c < 0, and Xγ(M) ⊆ H1
P,c(M) for all 

γ > 0 and c < 2γ. In light of the characterisation of Xγ(M) in Proposition 2.7 (ii), we 
are effectively reduced to proving that, for all γ ≥ 0 and c < 2γ,

if f ∈ h1(M) and L −γf ∈ h1(M), then f ∈ H1
P,c(M).

Let then γ ≥ 0, and assume that both f and L −γf are in h1(M). As f is in h1(M), 
we deduce that P loc

∗ f is in L1(M), by Proposition 3.1, and

‖P loc
∗ f‖L1 ≤ C ‖f‖h1 . (3.7)

Let c < 2γ; in order to prove that f is in H1
P,c(M), it remains to show that 

supt>1 tc|Ptf | is in L1(M). We write Ptf = L γPtL −γf , and set g := L −γf . Formula 
(3.5), applied with α = 1/2, and spectral theory yield the subordination formula

L γPtg = t−2γ
∫∞
0

F1/2,γ(s)Hst2g
ds
s

=
∫∞
0

[
t−2γF1/2,γ(s/t2)

]
Hsg

ds
s
. (3.8)

Then∥∥∥∥sup
t>1

tc|Ptf |
∥∥∥∥
L1

≤
∫∞
0

sup
t>1

tc
∣∣t−2γF1/2,γ(s/t2)

∣∣ ‖Hsg‖L1
ds
s

≤ C ‖g‖L1 ; (3.9)

the last inequality follows from the contractivity of Hs on L1(M) and Lemma 3.2 (ii) 
(which applies for c < 2γ). Combining this inequality with (3.7) finally yields

‖Pc
∗f‖L1 ≤ C

[
‖f‖h1 + ‖L −γf‖h1

]
,
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as required.
Finally, we prove part (iv). If c < 0, then H1

H ,c(M) ⊆ h1(M) = H1
P,2c(M) by parts 

(i) and (iii). Assume instead that c ≥ 0. By changing variables in the subordination 
formula (3.1), we see that

Pt = 1√
π

∫∞
0

v−1/2 e−v Ht2/4v dv,

and consequently, since c ≥ 0,

t2c|Ptf | ≤
4c√
π

∫∞
0

vc−1/2 e−v 〈t2/4v〉c|Ht2/4vf |dv.

Since 
∫∞
0 vc−1/2 e−v dv < ∞, this implies the pointwise estimate

sup
t>0

t2c|Ptf | ≤ CH c
∗ f,

and therefore

P2c
∗ f ≤ sup

0<t≤1
|Ptf | + sup

t≥1
t2c|Ptf | ≤ C(H∗f + H c

∗ f) ≤ CH c
∗ f,

as desired. �
Remark 3.4. The estimate (3.9), namely, the fact that∥∥∥∥sup

t>1
tc|Ptf |

∥∥∥∥
L1

≤ C ‖L −γf‖L1 (3.10)

for c < 2γ, could also be proved without using the subordination formula (3.8) and the 
estimate (3.4), but as a consequence of a more general estimate for generators of analytic 
semigroups. Specifically, if T is a sectorial operator of angle ω ∈ [0, π/2) on a Banach 
space X (i.e., −T generates an analytic semigroup of angle π/2 − ω on X , cf. [16, 
Section 3.4]), then, for all β > 0 and c < β, the estimate∥∥∥∥sup

t>1
tc|e−tT f |

∥∥∥∥
X

≤ C ‖T −βf‖X (3.11)

holds for all f in the domain of T −β . As L is sectorial on L1(M) of angle π/2 [22, The-
orem 3.1], the fractional power L 1/2 is sectorial on L1(M) of angle π/4 [16, Proposition 
3.1.2], thus (3.10) follows by applying (3.11) with T = L 1/2, X = L1(M) and β = 2γ. 
More generally, (3.11) could be applied with T = L α for α ∈ (0, 1) (cf. Remark 4.10
below).
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In order to prove (3.11), one can write T βe−tT as a contour integral, namely,

T βe−tT = 1
2πi

∫
Γθ

zβe−tz(z − T )−1 dz,

where Γθ = {reiθ : r > 0} ∪ {re−iθ : r > 0} and θ ∈ (ω, π/2) [16, eq. (2.5)] and observe 
that, as T is sectorial of angle ω,∣∣∣∣∣∣(z − T )−1∣∣∣∣∣∣

X
≤ C|z|−1 ∀z ∈ Γθ

[16, Section 2.1]; thus, if f is in the domain of T −β and g = T −βf , then∥∥∥∥sup
t>1

tc|e−tT f |
∥∥∥∥

X

=
∥∥∥∥sup
t>1

tc|T βe−tT g|
∥∥∥∥

X

≤ C‖g‖X

∫∞
0

[
sup
t>1

tce−tr cos θ
]
rβ

dr
r

≤ C‖T −βf‖X

∫∞
0

e−(r cos θ)/2rβ−c dr
r

and the estimate (3.11) follows as cos θ > 0 and c < β, so the last integral is finite.
The above approach does not work when T is sectorial of angle ω ≥ π/2; as a matter 

of fact, Proposition 4.3 and Theorem 4.5 below show that, if M is a Damek–Ricci space, 
then the estimate (3.11) with T = L and X = L1(M) does not hold in the whole range 
c < β, but only for c < (β − 1)/2.

We thank the referee for suggesting that the validity of (3.10) may be related to the 
analyticity of the Poisson semigroup.

From Theorem 3.3 we deduce the following strict inclusions, which imply among other 
things that the Riesz Hardy space and the Poisson–Hardy space on M cannot coincide.

Corollary 3.5. For each γ, ε > 0 the following proper inclusions hold:

H1
P,2γ+ε(M) ⊂ Xγ(M) ⊂ H1

P,2γ−ε(M).

In particular,

H1
P,1+ε(M) ⊂ H1

R(M) ⊂ H1
P,1−ε(M)

and therefore

H1
R(M) ⊂ H1

P(M).

Proof. Up to the fact that the inclusions are strict, the first chain of inclusions fol-
lows by combining parts (ii) and (iii) of Theorem 3.3. Moreover, in light of the equality 
X1/2(M) = H1

R(M) proved in Theorem 2.10, the second chain of inclusions is a re-
statement of the first one in the case where γ = 1/2, and the last inclusion follows by 
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further specialising to ε = 1. So we only need to check the strictness of the first chain of 
inclusions.

To prove that H1
P,2γ+ε(M) is properly contained in H1

R(M), we argue as follows. 
Choose δ so that 2γ + ε > δ > 2γ. Note that H1

P,2γ+ε(M) ⊆ Xδ/2(M), by Theo-
rem 3.3 (ii). Since the family of spaces {Xγ(M) : γ > 0} is strictly decreasing (see 
Proposition 2.7 (i)) and δ > 2γ, Xγ(M) contains Xδ/2(M) properly, whence Xγ(M)
contains H1

P,2γ+ε(M) properly, as required.
The proof that Xγ(M) is properly contained in H1

P,2γ−ε(M) is similar, and is omit-
ted. �

In light of Corollary 3.5, a natural question is whether H1
P,1(M) agrees with H1

R(M). 
We shall see in Section 4 that the answer is in the negative when M is a Damek–Ricci 
space. In fact, a similar remark applies to H1

P,2γ(M) and Xγ(M) for any γ > 0, as shown 
in Theorem 4.8 below.

4. Noninclusions on Damek–Ricci spaces

The results in this section state that certain inclusions between various type of Hardy 
spaces introduced in the previous sections fail in the case where the Riemannian manifold 
M is a Damek–Ricci space, which we shall henceforth denote by S. The main reason for 
restricting to Damek–Ricci spaces is that we need rather precise estimates for the heat 
semigroup that we obtain via spherical Fourier analysis. The noninclusions we prove on 
Damek–Ricci spaces are likely to hold on all symmetric spaces of the noncompact type. 
However, this would add little knowledge at the expense of a presumably long analysis 
based on quite intricated and technical proofs. Altogether, we believe this is not worth 
doing here.

4.1. Damek–Ricci spaces

We refer to [2,3,11,13] for more details on the analysis on Damek–Ricci spaces. We just 
recall here that a Damek–Ricci space S is the one-dimensional harmonic extension of an 
Heisenberg-type group N obtained by making R+ act on N by automorphic dilations. In 
particular, S is a connected Lie group, with a Riemannian structure which is invariant 
by left translations, and the Riemannian measure μ is a left Haar measure. We denote by 
Q the homogeneous dimension of N and by n the dimension of S. It is known that in this 
case the bottom of the L2-spectrum of the Laplace–Beltrami operator L is b = Q2/4.

A radial function on S is a function that depends only on the distance from the base 
point o. If f is radial, then we may write f(r) in place of f(x) when d(x, o) = r; moreover

∫
S

f(x) dμ(x) =
∫∞
0

f(r)A(r) dr , where A(r) �
{
rn−1 r < 1
eQr r ≥ 1 .

(4.1)
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A radial function is called spherical if it is an eigenfunction of L and if it takes value 
1 at o. For λ ∈ C we denote by φλ the spherical function such that

L φλ = (λ2 + Q2/4)φλ. (4.2)

The spherical transform of an integrable radial function is defined as

f̃(λ) =
∫
S

f(x)φλ(x) dμ(x) .

Note that f̃ is an even function, as φλ = φ−λ; moreover, for “nice” radial functions f
the following inversion formula holds:

f(x) = C

∫∞
0

f̃(λ)φλ(x) |c(λ)|−2 dλ ,

where the density |c(λ)|−2 is expressed in terms of the Harish-Chandra function

c(λ) = 2Q−2iλΓ(2iλ)
Γ(Q/2 + iλ)

Γ(n/2)
Γ((n−Q)/2 + iλ) = c(−λ) (4.3)

(see [3, p. 151]).
In the following statement we collect a few well-known properties of the function c

and the spherical functions φλ, that will be of use in the sequel.

Lemma 4.1. The following hold.

(i) The function c−1 is holomorphic in the half-plane {λ : Imλ < Q/2}.
(ii) For all k ∈ N and all σ > 0, there exists a constant C such that

|∂k
λ

(
λ−1c(−λ)−1)| ≤ C (1 + |Reλ|)(n−3)/2−k

for all λ ∈ C with 0 ≤ Imλ ≤ σ.
(iii) φλ is bounded if and only if |Imλ| ≤ Q/2, and in that case ‖φλ‖∞ ≤ 1.
(iv) φ±iQ/2 ≡ 1.
(v) For every λ ∈ C \ 1

2 iZ and r > 0,

φλ(r) = c(λ)Φλ(r) + c(−λ)Φ−λ(r),

where

Φλ(r) =
∞∑
�=0

Γ�(λ) e(iλ−Q/2−�)r;

here Γ0 ≡ 1, and moreover there exist d, C > 0 such that
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|Γ�(λ)| ≤ C(1 + �)d

for every � ∈ N and every λ in

{λ ∈ C : Imλ ≥ 0} ∪ {λ ∈ C : |Im λ| ≤ |Reλ|}.

Proof. Parts (i) and (ii) follow from (4.3); in particular, for part (ii), see the proof of 
[19, Proposition A1(b)]. Part (iii) is in [11, Theorem 5.12], while part (iv) is clear from 
(4.2). As for part (v), see [3, formula (5) and Theorem 3.2]. �

It is useful to recall that on the group S the convolution of two functions is defined 
by

f ∗ g(x) =
∫
S

f(y) g(y−1x) dμ(y) .

Since the Laplace–Beltrami operator L on S is left-invariant, its heat and Poisson semi-
groups Ht and Pt can be realised by the right convolution with the heat and Poisson 
kernels ht and pt, i.e.

Htf = f ∗ ht, Ptf = f ∗ pt.

As we shall see, spherical analysis on S allows us to obtain precise estimates for the heat 
and Poisson kernels, which will provide a sharper picture with respect to inclusions and 
noninclusions of various Hardy type spaces.

4.2. Estimates for the heat maximal operator on S

We start with a technical lemma, which will be useful in our estimates for the heat 
kernel on S.

Lemma 4.2. Let a ∈ (0, ∞).

(i) If ε, k ∈ [0, ∞), then

sup
t≥1

t−ε(1 + t−1/2|r − at|)−k � r−min{ε,k},

for all r ∈ [1, ∞). The implicit constants may depend on ε, a and k, but not on r.
(ii) If k > 1, then

∫∞
(1 + t−1/2|r − at|)−k dr ≤ C

√
t.
1
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Proof. We first prove part (i). Note that, if r ≤ a + 1, then, trivially,

sup
t≥1

t−ε(1 + t−1/2|r − at|)−k � 1 � r−min{ε,k}.

So we only need to consider the range where r ≥ a + 1.
Assuming that r ≥ a + 1, we first observe that

sup
t≥r/(a+1)

t−ε(1 + t−1/2|r − at|)−k � r−ε.

Indeed, the lower bound is immediately obtained by taking t = r/a, while the upper 
bound simply follows by the majorisation (1 + t−1/2|r − at|)−k ≤ 1.

Let us now consider the range 1 ≤ t ≤ r/(a +1). Here |r−at| � r, and r/t1/2 ≥ r/t ≥ 1, 
so

t−ε(1 + t−1/2|r − at|)−k � t−ε+k/2r−k

and therefore

sup
1≤t≤r/(a+1)

t−ε(1 + t−1/2|r − at|)−k �
{
r−k/2−ε if k ≥ 2ε,
r−k if k ≤ 2ε.

The desired estimate follows by combining the ones above, and the proof of part (i) 
is complete.

As for part (ii), we simply have

∫∞
1

(1 + t−1/2|r − at|)−k dr =
∫
|r−at|<

√
t

+
∫
|r−at|≥

√
t

≤ 2
√
t + tk/2

∫
|r|≥

√
t

|r|−k dr

≤ C
√
t,

provided k > 1. �
Using spherical Fourier analysis, we can now deduce a number of precise estimates 

for the heat kernel ht. Related results on any symmetric space of the noncompact type 
may be found in [1].

Proposition 4.3. Suppose that γ and c are real numbers and γ ≥ 0.

(i) For each radial compactly supported distribution ψ on S such that ψ̃(iQ/2) �= 0
there exists r̄ ≥ 1 such that, for all c ∈ R,
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sup
t≥1

tc|L γ(Htψ)(x)| ≥ C
e−Q|x|

|x|(γ+1)/2−c
∀x ∈ Br̄(o)c. (4.4)

In particular, supt≥1 t
c|L γ(Htψ)| /∈ L1(S) whenever c ≥ (γ − 1)/2.

(ii) If c ≤ (γ + 1)/2, then the bound

sup
t≥1

tc|L γht(x)| ≤ C
e−Q|x|

(1 + |x|)(γ+1)/2−c
∀x ∈ S (4.5)

holds whenever γ ∈ N or c > −(γ + 1)/2.
(iii) If c < (γ − 1)/2, then supt≥1 t

c|L γht| ∈ L1(S).
(iv) For all t > 0,

‖L γht‖L1 �
{
t−γ if t ≤ 1,
t−γ/2 if t > 1.

Remark 4.4. If ψ ∈ L1(S) is radial, then ψ̃(iQ/2) =
∫
S
ψ dμ (see Lemma 4.1 (iv)), so the 

assumption ψ̃(iQ/2) �= 0 in part (i) above has a clear “geometric” meaning. On the other 
hand, the pointwise lower bound in part (i) applies not only to (compactly supported) 
radial functions ψ ∈ L1(S), but also more generally to radial distributions, such as the 
Dirac delta δo. Indeed, in the case where ψ = δo, the upper bound in part (ii) shows (for 
certain ranges of the parameters γ and c) the optimality of the lower bound in part (i).

Proof. We first prove part (i). Let us immediately observe that the nonintegrability of 
supt≥1 t

c|L γ(Htψ)| when c ≥ (γ − 1)/2 follows from the pointwise estimate (4.4) and 
the integration formula (4.1) for radial functions. Thus, we are reduced to proving (4.4)
for any c ∈ R.

Up to replacing ψ with ψ/ψ̃(iQ/2), we may and shall assume that ψ̃(iQ/2) = 1. 
Observe that, by spherical Fourier analysis, for all r ≥ 0,

L γ(Htψ)(r) =
∫
R
ψ̃(λ) (λ2 + Q2/4)γ e−t(λ2+Q2/4) φλ(r) |c(λ)|−2 dλ (4.6)

and, if r > 0, by Lemma 4.1 (v),

L γ(Htψ)(r) = 2
∫
R
ψ̃(λ) (λ2 + Q2/4)γ e−t(λ2+Q2/4) Φλ(r) c(−λ)−1 dλ , (4.7)

where we have used the fact that ψ̃ is even.
Assume that r ≥ 1 and t ≥ 1. By the Paley–Wiener theorem for the spherical Fourier 

transform [32, Theorem 3.6], since ψ is a compactly supported distribution, ψ̃ extends 
to an entire function of exponential type. In particular, there exist m, R > 0 such that∣∣ψ̃(λ)

∣∣ ≤ C (1 + |λ|)m eR |Imλ| ∀λ ∈ C . (4.8)
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Additionally, we can write

(λ2 + Q2/4)γ = (Q/2 + iλ)γ(Q/2 − iλ)γ

for all λ ∈ C with |Im λ| ≤ Q/2 and λ �= ±iQ/2; here we choose the branch of w �→ wγ

on the complex plane slit along the half-line (−∞, 0] that agrees with the arithmetic γ
power on (0, ∞). By Cauchy’s theorem, we may shift the contour of integration in (4.7)
from the real line to R + iQ/2, and obtain that

L γ(Htψ)(r) = 2
∫
R
ψ̃(λ + iQ/2) (iλ)γ p(λ) e−t(λ2+iλQ) Φλ+iQ/2(r) dλ , (4.9)

where p(λ) = (Q − iλ)γ c(−λ − iQ/2)−1. In particular, from Lemma 4.1 (ii) we deduce 
that the function p, thought of as a function of a real variable, belongs to a Hörmander 
symbol class, namely,

p ∈ SM , where M = γ + (n− 1)/2. (4.10)

By Lemma 4.1 (v), we can write

eQrΦλ+iQ/2(r) = eiλr + Rλ(r) ,

where

|Rλ(r)| ≤ Cδ e−δr (4.11)

for all r ≥ 1, δ ∈ (0, 1) and λ ∈ R. Hence

1
2eQrL γ(Htψ)(r) =

∫
R
ψ̃(λ + iQ/2) (iλ)γ p(λ) e−tλ2

eiλ(r−tQ) dλ

+
∫
R
ψ̃(λ + iQ/2) (iλ)γ p(λ) e−t(λ2+iλQ) Rλ(r) dλ

= I(t, r) + J(t, r) .

(4.12)

Now, from (4.8), (4.10) and (4.11) we deduce that

|J(t, r)| ≤ Cδ e−δr

∫
R
|λ|γ(1 + |λ|)M+m e−t λ2

dλ ≤ Cδ t
−(1+γ)/2e−δr , (4.13)

for every t ≥ 1 and δ ∈ (0, 1).
Next, we show that the main contribution in I(t, r) comes from integration in a 

neighbourhood of the origin. Indeed, denote by η a smooth even function on R with 
support contained in [−2, 2] such that 0 ≤ η ≤ 1 and η is equal to 1 in [−1, 1]. Then, we 
may write I(t, r) as Iη(t, r) + I1−η(t, r), where
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Iη(t, r) =
∫
R
η(λ) ψ̃(λ + iQ/2) (iλ)γ p(λ) e−tλ2

eiλ(r−tQ) dλ ,

I1−η(t, r) =
∫
R
(1 − η(λ)) ψ̃(λ + iQ/2) (iλ)γ p(λ) e−tλ2

eiλ(r−tQ) dλ .

Now, by (4.8) and (4.10),

|I1−η(t, r)| ≤ C

∫
|λ|≥1

e−tλ2
(1 + |λ|)M+m+γ dλ

≤ C e−t/2 .

(4.14)

Next, we estimate Iη(t, r). Since λ �→ ψ̃(λ + iQ/2)p(λ) is smooth near λ = 0 and 
ψ̃(iQ/2) = 1, we deduce that

ψ̃(λ + iQ/2)p(λ) = p(0) + O(|λ|)

for |λ| ≤ 2. Therefore

Iη(t, r) = p(0)
∫
R
η(λ) (iλ)γ e−tλ2

eiλ(r−tQ) dλ +
∫2

−2
e−tλ2

O(|λ|1+γ) dλ

= p(0) I0
η(t, r) + I1

η(t, r),

and clearly

|I1
η(t, r)| ≤ C

∫2

−2
|λ|1+γ e−tλ2

dλ ≤ C t−(2+γ)/2 . (4.15)

Since p(0) = Qγ c(−iQ/2)−1 �= 0 by (4.3), it remains to consider I0
η(t, r).

Set t̄(r) = r−A
√
r

Q , where A ∈ R is a constant to be determined. Clearly, for all r
sufficiently large, we have that t̄(r) ≥ 1, and moreover

I0
η(t̄(r), r) =

∫
R
η(λ) (iλ)γ e−t̄(r)λ2

eiAλ
√
r dλ

= r−(1+γ)/2
∫
R
η(v/

√
r) e−t̄(r)v2/r eiAv(iv)γ dv ,

where we used the change of variables λ
√
r = v. Notice that

t̄(r)
r

= 1
Q

− A

Q
√
r
,

which tends to 1/Q as r tends to infinity. An application of the dominated convergence 
theorem shows that
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lim
r→∞

∫
R
η(v/

√
r) e−t̄(r)v2/r eiAv(iv)γ dv =

∫
R

eiAv e−v2/Q (iv)γ dv,

as η(0) = 1; the last integral is the value at −A of the Fourier transform of v �→
e−v2/Q(iv)γ , so we can choose A such that the integral does not vanish. With this choice 
of A, there exist C, r0 ≥ 1 such that, for all r ≥ r0, we have t̄(r) ≥ 1 and

|I0
η(t̄(r), r)| ≥ Cr−(1+γ)/2.

Note, on the other hand, that, by the previous estimates (4.13), (4.14) and (4.15),

|I1
η(t̄(r), r)|, |J(t̄(r), r)|, |I1−η(t̄(r), r)| ≤ Cr−(2+γ)/2,

since t̄(r) � r for r large. By combining the above estimates, we conclude that, for r
sufficiently large,

sup
t>1

tc|L γ(Htψ)(r)| ≥ t̄(r)c|L γ(Ht̄(r)ψ)(r)| ≥ Crc−(γ+1)/2 e−Qr,

which proves (4.4) and thus part (i).
We now prove part (ii), that is, the pointwise upper bound (4.5). Note that L γht =

L γ(Htδo), hence all the above computations can be applied with ψ = δo. In particular, 
by (4.6) and Lemma 4.1 (ii)-(iii), for every t ≥ 1,

|L γht(r)| ≤ C e−tQ2/4 , (4.16)

where C does not depend on t. This proves (4.5) for x ∈ B1(o), irrespective of the values 
of γ and c.

Take now r ≥ 1. Then, by (4.12),

1
2eQrL γht(r) =

∫
R
(iλ)γ p(λ) e−tλ2

eiλ(r−tQ) dλ

+
∫
R
(iλ)γ p(λ) e−t(λ2+iλQ) Rλ(r) dλ

= I(t, r) + J(t, r) ,

(4.17)

where, as before, by (4.13),

|J(t, r)| ≤ Cδ t
−(1+γ)/2e−δr, (4.18)

for every t ≥ 1 and δ ∈ (0, 1). Moreover, as p ∈ SM (see (4.10)), an estimate for I(t, r)
is immediately obtained by taking absolute values inside the integral:

|I(t, r)| ≤ C

∫
|λ|γ(1 + |λ|)Me−tλ2

dλ ≤ C t−(1+γ)/2 (4.19)

R
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for every r, t ≥ 1. The above estimates are enough to conclude the proof of (4.5) when 
c = (γ + 1)/2. However, when c < (γ + 1)/2, the estimate for I(t, r) in (4.19) is not 
enough, as it does not give any decay in r. To improve on this, we will use integration 
by parts in order to take advantage of the oscillatory term eiλ(r−tQ).

Let us first assume that γ ∈ N. If we integrate by parts k times in the expression for 
I(t, r), we obtain

I(t, r) = ik

(r −Qt)k

∫
R
∂k
λ[(iλ)γp(λ) e−tλ2

] eiλ(r−tQ) dλ. (4.20)

Recall from (4.10) that p ∈ SM . Hence, by arguing inductively, one readily shows that, 
for every nonnegative integer k, the kth derivative ∂k

λ[(iλ)γ p(λ) e−tλ2 ] is a finite sum of 
terms of the form ta (iλ)b q(λ) e−tλ2 , where

a, b, � ∈ N, q ∈ SM−� and b− 2a− � = γ − k;

in particular a − b/2 ≤ (k − γ)/2 and
∫
R

∣∣ta (iλ)b q(λ) e−tλ2∣∣ dλ ≤ Cta−b/2
∫
R
(tλ2)b/2(1 + |λ|)M−�e−tλ2

dλ

≤ Ct(k−γ−1)/2
(4.21)

for all t ≥ 1. Therefore, from (4.20), we deduce that

|I(t, r)| ≤ Ck |r − tQ|−k t(k−γ−1)/2. (4.22)

By combining the previous estimates (4.18), (4.19) and (4.22), we conclude that, for all 
k ∈ N and δ ∈ (0, 1) there exists a positive constant C such that

|L γht(r)| ≤ C e−Qr t−(γ+1)/2
[
e−δr +

(
1 + t−1/2|r −Qt|

)−k
]

(4.23)

for all t, r ≥ 1. Consequently, from Lemma 4.2 (i) we deduce that, for all c ≤ (γ + 1)/2
and r ≥ 1,

sup
t≥1

tc |L γht(r)| ≤ Ce−Qrr−min{k,(1+γ)/2−c}. (4.24)

As in this case we can pick any k ∈ N, the above estimate completes the proof of the 
upper bound (4.5) and of part (ii) in the case where γ ∈ N.

Suppose instead that γ is not an integer. In this case, we cannot integrate by parts in 
(4.20) arbitrarily many times, as repeated differentiation of the term (iλ)γ may produce 
a non-integrable singularity at 0. Nevertheless, we can integrate by parts at least γ�
times (note that |λ|γ−	γ
 is locally integrable at 0, as γ − γ� > −1), and the previous 
argument can still be run (indeed, the estimate (4.21) remains true even for noninteger 
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b > −1), thus (4.23) and (4.24) are valid for k = γ�. As a consequence, we may still 
deduce the upper bound (4.5) whenever γ� ≥ (γ+1)/2 − c, that is, c ≥ (γ+1)/2 −γ�.

To further extend the range of validity of (4.5) and complete the proof of part (ii), 
we make use of complex interpolation. Namely, the above argument leading to (4.23)
can be applied, mutatis mutandis, when the real exponent γ is replaced by the complex 
exponent z = γ+ iθ, with γ ∈ (−1, ∞) and θ ∈ R. In this case, we can integrate by parts 
γ� times and, instead of (4.23), we obtain, for any δ ∈ (0, 1), the estimate

|L zht(r)| ≤ C(1 + |θ|)	γ
 e−Qr t−(γ+1)/2
[
e−δr +

(
1 + t−1/2|r −Qt|

)−	γ
] (4.25)

for all t, r ≥ 1, where the constant C does not depend on θ. Consequently, for any 
ε, δ ∈ (0, 1), we deduce the estimate∣∣∣ez2

L zht(r)
∣∣∣ ≤ C e−Qr t−(γ+1)/2

[
e−δr +

(
1 + t−1/2|r −Qt|

)ε−γ−1
]

(4.26)

whenever γ > −1 and γ� − γ ≥ 1 − ε; again, the constant C may depend on γ, ε, δ but 
not on θ. As L zht(x) is, for fixed x and t, a holomorphic function of z on the half-plane 
where Re z = γ > −1 (cf. (4.6)), an application of Hadamard’s three-line theorem allows 
us to dispense with the constraint γ� − γ ≥ 1 − ε and extend the validity of (4.26) to 
all γ > −1: more precisely, for all γ > −1 and ε ∈ (0, 1), there exists δ > 0 such that 
(4.26) holds with z = γ + iθ for all θ ∈ R and r, t ≥ 1.

If we now apply (4.26) with θ = 0 and γ ≥ 0, then Lemma 4.2 (i) yields, for all 
ε ∈ (0, 1) and c ≤ (γ + 1)/2,

sup
t≥1

tc |L γht(r)| ≤ Ce−Qrr−min{1+γ−ε,(1+γ)/2−c}. (4.27)

On the other hand, if c > −(1 + γ)/2, then (1 + γ)/2 − c < 1 + γ, so we can pick ε > 0
sufficiently small that 1 +γ−ε ≥ (1 +γ)/2 −c, and (4.27) gives the desired upper bound 
(4.5) in full generality. This completes the proof of part (ii).

We now prove part (iii). Let us first note that the integrability of supt≥1 t
c|L γht| for 

c < (γ − 1)/2 immediately follows from (4.1) and the pointwise bound (4.5), provided 
the latter applies. Thus, in light of part (ii), the aforementioned integrability does hold 
true whenever γ is an integer or c ∈ (−(γ + 1)/2, (γ − 1)/2). On the other hand, when 
γ is not an integer, necessarily γ > 0, thus the interval (−(γ + 1)/2, (γ − 1)/2) is not 
empty; as supt≥1 t

c|L γht| is increasing in c, we conclude that the latter is integrable 
whenever c < (γ − 1)/2, as required.

Finally, let us prove part (iv). We first prove upper estimates. Since L is a sectorial 
operator on L1, by the moment inequality [16, Proposition 6.6.4] it is enough to consider 
the case where γ ∈ N. In this case, the estimate for t ≤ 1 is known in greater generality 
(see, e.g., [37, Theorem IX.1.3 (ii)], and note that L γht = (−∂t)γht). If instead t ≥ 1, 
then we can use the estimates from the proof of part (ii). Namely, (4.16) shows that
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∫
B1(o)

|L γht(x)|dμ(x) ≤ C e−tQ2/4,

thus the main contribution comes from integration over B1(o)c. From (4.23) and (4.1), 
instead, we deduce that, for all k ∈ N with k > 1,

∫
B1(o)c

|L γht(x)|dμ(x) ≤ C

t(1+γ)/2

[
1 +

∫∞
1

(
1 + t−1/2|r −Qt|

)−k

dr
]
≤ Ct−γ/2,

where we applied Lemma 4.2 (ii) in the last inequality, and the required upper estimate 
follows.

It remains to prove matching lower estimates. From Lemma 4.1 (iii) it follows that, 
if f is in L1(S), then

sup
λ∈T1

∣∣f̃(λ)
∣∣ ≤ ‖f‖L1(S) ,

where T1 :=
{
λ ∈ C :

∣∣Imλ
∣∣ ≤ Q/2}. As

(
L γht

)˜(λ) = (λ2 + Q2/4)γ e−t(λ2+Q2/4),

we easily deduce that

‖L γht‖L1 ≥
∣∣(L γht

)˜(t−1/2 + iQ/2)
∣∣ � t−γ/2

for t ≥ 1, and

‖L γht‖L1 ≥
∣∣(L γht

)˜(t−1/2)
∣∣ � t−γ

for 0 < t ≤ 1. This concludes the proof of part (iv) and of the proposition. �
The above estimates imply a number of inclusions and noninclusions between the 

spaces Xγ(S) and H1
H ,c(S), complementing those in Theorem 3.3.

Theorem 4.5. Let γ ∈ (0, ∞) and c ∈ R.

(i) The space X2c+1(S) is not included in H1
H ,c(S) whenever 2c + 1 > 0.

(ii) The space Xγ(S) is included in H1
H ,c(S) whenever γ > 2c + 1.

(iii) h1(S) = H1
H ,c(S) for all c < −1/2, but h1(S) � H1

H ,−1/2(S).

Proof. Let us prove part (i). Let δ = 2c +1 > 0. Take any radial nonnegative ψ ∈ C∞
c (S), 

which is not identically zero; in particular ψ̃(iQ/2) =
∫
S
ψ dμ > 0 (see Lemma 4.1 (iv)), 

and moreover L δψ ∈ Xδ(S) by Proposition 2.7 (iii). On the other hand, by Proposi-
tion 4.3 (i), H c

∗ (L δψ) is not in L1(S), whence L δψ /∈ H1
H ,c(S).
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Let us now prove part (ii). If f ∈ Xγ(S), then, by Proposition 2.7 (ii), f ∈ h1(S) and 
L −γf ∈ h1(S), with

‖f‖h1 + ‖L −γf‖h1 ≤ C‖f‖Xγ .

In particular, by Proposition 3.1,

‖f‖L1 + ‖H loc
∗ f‖L1 ≤ C‖f‖h1 ≤ C‖f‖Xγ .

On the other hand,

Htf = (L −γf) ∗ (L γht),

whence

sup
t≥1

tc|Htf | ≤ |L −γf | ∗ sup
t≥1

tc|L γht|.

By Proposition 4.3 (iii), the latter supremum is integrable whenever c < (γ − 1)/2; so, 
by Young’s inequality,∥∥∥∥sup

t≥1
tc|Htf |

∥∥∥∥
L1

≤ C‖L −γf‖L1 ≤ C‖L −γf‖h1 ≤ C‖f‖Xγ ,

as required.
As for part (iii), the inclusion H1

H ,c(S) ⊆ h1(S) follows from Theorem 3.3 (i); the 
remaining inclusion and noninclusion results are proved as in parts (i) and (ii), by taking 
δ = γ = 0. �
Remark 4.6. Theorems 3.3 (i) and 4.5 (ii) imply that, for all γ, ε > 0,

H1
H ,γ+ε(S) ⊂ Xγ(S) ⊂ H1

H ,(γ−1)/2−ε(S).

It would be interesting to know whether these inclusion ranges are sharp (this is the 
case for the second inclusion in the series, but we do not know about the first). If this 
were the case, we would have a substantially different situation compared to the case 
of the Poisson maximal operator discussed in Corollary 3.5 above (note that the gap 
between (γ− 1)/2 and γ increases with γ). On the other hand, in the “limit case” γ = 0
(with Xγ(S) replaced by h1(S)), the first inclusion is certainly not sharp, given that 
h1(S) = H1

H ,−1/2−ε(S) for all ε > 0.

4.3. Estimates of the Poisson maximal operator on S

The following result is the analogue for the semigroups {e−tL α : t ≥ 0} of Propo-
sition 4.3 (i): the needed estimates for the Poisson semigroups correspond to the case 
where α = 1/2.
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Proposition 4.7. Let α, c and γ be real numbers such that 0 < α < 1 and γ ≥ 0. Let ψ
be a radial distribution with compact support such that ψ̃(iQ/2) �= 0. Then there exists 
a positive constant C and r̄ ≥ 1 such that

sup
t≥1

tc
∣∣e−tL α(

L γψ
)
(x)

∣∣ ≥ C
e−Q|x|

|x|1+γ−cα
∀x ∈ Br̄(o)c. (4.28)

In particular, supt≥1 tc
∣∣e−tL α(

L γψ
)∣∣ /∈ L1(S) whenever c ≥ γ/α.

Proof. We first observe that the nonintegrability of supt≥1 t
c|L γ(e−tL α

ψ)| when c ≥
γ/α follows from the pointwise estimate (4.28) and the integration formula (4.1). Thus, 
we are reduced to proving the lower bound (4.28).

The proof of the latter closely follows that of part (i) of Proposition 4.3. Indeed, much 
as in that proof, we may assume that ψ̃(iQ/2) = 1 and write, for all r > 0,

1
2L γ

(
e−tL α

ψ
)
(r) =

∫
R
ψ̃(λ) (λ2 + Q2/4)γ e−t(λ2+Q2/4)α Φλ(r) c(−λ)−1 dλ

=
∫
R
ψ̃(λ + iQ/2) (iλ)γp(λ) e−t(λ2+iQλ)α Φλ+iQ/2(r) dλ

(the only difference being the exponent α in place of 1); as before, we are using the 
branches of w �→ wα and w �→ wγ on the complex plane slit along the half-line (−∞, 0]
that coincide with the arithmetic α and γ powers on (0, ∞). Still following the proof of 
Proposition 4.3 (i), we then proceed to split

1
2e

QrL γ
(
e−tL α

ψ
)
(r) = I(r, t) + J(r, t),

I(r, t) = Iη(r, t) + I1−η(r, t),

Iη(r, t) = p(0) I0
η(r, t) + I1

η(r, t),

where again p(0) = Qγ c(−iQ/2)−1 �= 0.
A substantial difference between the case α ∈ (0, 1) considered here and the case 

α = 1 discussed in Proposition 4.3 is that, when α ∈ (0, 1),

Re
[
(λ2 + iλQ)α

]
= |λ|α(λ2 + Q2)α/2 cos(α arctan(Q/λ)) � |λ|α(1 + |λ|)α

for all λ ∈ R (the implicit constants may depend on α), and in particular∣∣e−t(λ2+iQλ)α∣∣ ≤ e−κt|λ|α (4.29)

for some κ > 0. (In the case α = 1, we have 
∣∣e−t(λ2+iQλ)

∣∣ = e−t|λ|2 instead, with an 
exponent 2 in place of 1.) Armed with the estimate (4.29), we can follow the arguments 
in the proof of Proposition 4.3 (i) to obtain that, for all δ ∈ (0, 1),
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|J(r, t)| ≤ Cδ t
−(1+γ)/αe−δr,

|I1−η(r, t)| ≤ C e−κt/2,

|I1
η (r, t)| ≤ C t−(2+γ)/α

(4.30)

for all r, t ≥ 1 (cf. (4.13), (4.14) and (4.15)).
We are then left with estimating the main term

I0
η(r, t) =

∫
R
η(λ) (iλ)γ e−t(λ2+iQλ)α eiλr dλ ,

where η ∈ C∞
c (R) is even and supported in [−2, 2], with 0 ≤ η ≤ 1 and η|[−1,1] ≡ 1. Let 

σ > 0 be a parameter to be fixed later, and notice that

I0
η(r, (r/σ)α) =

∫
R
η(λ) (iλ)γ e−[r(λ2+iQλ)/σ]α eiλr dλ

= (σ/r)γ+1
∫
R
η(σv/r) (iv)γ e−(σv2/r+iQv)α eiσv dv.

(4.31)

By dominated convergence, and since η(0) = 1, one can show that, as r → +∞, the 
latter integral tends to

∫
R
(iv)γ e−(iQv)α eiσv dv, (4.32)

that is, the value F̂ (−σ) of the Fourier transform of F : v �→ (iv)γ e−(iQv)α .
We now observe that, due to our choices of the branches of w �→ wγ and w �→ wα, 

F admits a holomorphic extension to the lower half-plane Ω− = {z ∈ C : Im z < 0}; 
moreover, if z = v + is, s < 0, then

|F (z)| = |iv − s|γ e−Qα Re[(iv−s)α] ≤ |v|γ e−κQα|v|α ,

and the latter expression is in L2(R) and independent of s. Consequently, F is in the 
holomorphic Hardy space H2(Ω−) and, by the Paley–Wiener theorem, F̂ |(0,∞) ≡ 0. It 
follows that there must exist a σ > 0 such that F̂ (−σ) �= 0, for otherwise F̂ and F would 
vanish identically.

Thus, with this choice of σ, the integral (4.32) does not vanish, and therefore from 
(4.31) we deduce that there exists r0 ≥ max{1, σ} sufficiently large that

|I0
η(r, (r/σ)α)| ≥ C r−(γ+1),

for all r ≥ r0. On the other hand, the previous estimates (4.30) give

|J(r, (r/σ)α)|, |I1−η(r, (r/σ)α)|, |I1
η(r, (r/σ)α)| ≤ C r−(2+γ).
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So we can conclude that, for r ≥ r0 sufficiently large,

sup
t≥1

tc|L γ(e−tL α

ψ)(r)| ≥ (r/σ)αc|L γ(e−(r/σ)αL α

ψ)(r)| ≥ Ce−Qrrcα−γ−1,

as required. �
Thanks to the above estimate, we can now complement the inclusions of Corollary 3.5

with the following result, ruling out that the spaces Xγ(S) and H1
R(S) can be charac-

terised in terms of the weighted Poisson maximal function.

Theorem 4.8. Let γ > 0 and c ∈ R.

(i) Xγ(S) is not included in H1
P,2γ(S).

(ii) Xγ(S) and H1
P,c(S) are different spaces.

(iii) H1
R(S) and H1

P,c(S) are different spaces.

Proof. Part (i) is proved in the same way as Theorem 4.5 (i). Indeed, take a nontrivial, 
compactly supported, nonnegative smooth radial function ψ on S. Then, by Proposi-
tion 2.7 (iii), L γψ ∈ Xγ(S). On the other hand, ψ̃(iQ/2) =

∫
S
ψ dμ �= 0. Therefore, by 

Proposition 4.7, we conclude that P2γ
∗ (L γψ) /∈ L1(S), that is, L γψ /∈ H1

P,2γ(S).
We now prove part (ii). By Corollary 3.5, we already know that Xγ(S) �= H1

P,c(S)
whenever c �= 2γ. On the other hand, when c = 2γ, part (i) rules out that Xγ(S) can 
coincide with H1

P,2γ(S).
Finally, as H1

R(S) = X1/2(S) by Theorem 2.10, part (iii) follows from part (ii). �
Drawing on the theory developed above, we can finally conclude that the Riesz, Pois-

son and heat Hardy spaces on a Damek–Ricci space S are pairwise different.

Corollary 4.9. The following hold.

(i) H1
R(S) is properly contained in H1

P(S).
(ii) H1

H (S) is properly contained in H1
P(S).

(iii) H1
R(S) is not contained in H1

H (S).

Proof. The proper containment in part (i) is among those proved in Corollary 3.5 for 
any manifold of class M .

We now prove part (ii). Observe that the containment is the case c = 0 of The-
orem 3.3 (iv). Now X1(S) ⊂ H1

P(S), by Corollary 3.5, and X1(S) � H1
H (S), by 

Theorem 4.5 (i). Therefore H1
H (S) cannot possibly coincide with H1

P(S). This proves 
part (ii).

Finally we prove part (iii). We already know that X1(S) ⊂ X1/2(S) = H1
R(S) by 

Theorem 2.10, and that X1(S) � H1
H (S). Thus, H1

R(S) and H1
H (S) cannot possibly 

agree. �
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Remark 4.10. Entirely analogous results to those in Theorem 3.3, Corollary 3.5 and 
Theorem 4.8 hold when the weighted Poisson–Hardy spaces H1

P,c(M) are replaced by 
the spaces H1

Pα,c(M) similarly defined in terms of the subordinated semigroup {e−tLα}
for any α ∈ (0, 1); the case of the Poisson semigroup corresponds to the choice α = 1/2. 
For example, for any manifold M in the class M , one can prove the proper inclusions

H1
Pα,γ/α+ε(M) ⊂ Xγ(M) ⊂ H1

Pα,γ/α−ε(M)

for all γ, ε > 0, and also show that H1
Pα,γ/α(S) �= Xγ(S) when S is a Damek–Ricci space. 

Indeed, the analogue of Proposition 3.1 holds for an arbitrary subordinated semigroup 
(see [23, Corollary 5.4]), while the estimates in Lemma 3.2 and Proposition 4.7 apply to 
any α ∈ (0, 1). We leave the remaining easy details to the interested reader.
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