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Abstract

Can the shape of a city promote physical activity? The question of why individuals
engage in physical activity has been widely researched, but that research has
predominantly focused on socio-demographic characteristics (e.g., age, gender,
economic status) and coarse-grained spatial characteristics (e.g., population density),
overlooking key urban characteristics of, say, whether a city is navigable or, as urban
theorist Kevin Lynch put it, whether it is ‘imageable’ (whether its spatial configuration
is economic of mental effort). That is mainly because, at scale, it is neither easy to
model imageability nor feasible to measure physical activity. We modeled urban
imageability with a single scalable metric of entropy, and then measured physical
activity from 233K wearable devices over three years, and did so across 19 major cities
in the developed world. We found that, after controlling for greenery, wealth,
walkability, presence of landmarks, and weather conditions, the legibility hypothesis
still holds: the more imageable a city, the more its dwellers engage in physical activity.
Interestingly, wealth (GDP per capita) has a positive association with physical activity
only in cities with inclement climate, effectively acting as a compensation mechanism
for bad weather.

Keywords: Physical activity; Smartwatches; Imageability

1 Introduction

Thenumber of individualswho engage in physical activity is far frombeing satisfactory [1],

emphasizing the urgent need of investigating and promoting it [2].

Traditionally, engagement in physical activity is mainly down to two types of character-

istics of an individual [3, 4]. The first type has to do with an individual’s socio-demographic

conditions (e.g., age, gender, weight, economic status). In the literature, activity has been

consistently found to be lower among female and older individuals [5], and those differ-

enceswere found to be further exacerbated inmore unequal countries (i.e., thosewith high

income inequality) [4]. The second type of characteristics has to do with the spatial char-

acteristics the individual is likely to experience. In relation to activity, population density

is one of the most widely studied spatial factor. Suburbs have been repeatedly associated

with low walking rates [1], while dense presence of and closeness to services (e.g., shops)

and to greenery (e.g., parks) have been associated with high rates [4]. More interestingly,

denser residential areas were found to encourage walking for day-to-day transportation
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needs, whereas lower density neighborhoods were positively associated with walking for

recreational reasons [6].

Overall, while previous work has focused on studying the impact of a wide variety of

socio-demographic conditions [7, 8] and spatial characteristics [1, 4], it is unclear whether

the way dwellers psychologically perceive the entire city has any association with physical

activity. In the urban theory literature, such a perception is often called urban legibility

or imageability. This is defined by Kevin Lynch in his seminal work “The Image of the

City” [9] as the property of the built environment that helps city dwellers to form recog-

nizable mental images of the environment, and to consequently navigate it with ease. To

partly fix this literature gap, we made two sets of contributions:

• We obtained the average number of steps (serving as a surrogate for people’s overall

physical activity levels) in 19 major cities in the developed world from commercial

smartwatches that 233K individuals wore between 2014 and 2017, and modeled

physical activity from such a data. We then mined OpenStreetMap (OSM) data for

these 19 cities, and modeled “city imageability” with a single yet principled metric

based on a recently found neurological basis for Kevin Lynch’s theory of urban

legibility [10]. This metric quantifies a city’s legibility using the entropy of the

distribution of its streets orientations (Sect. 3).

• We tested the legibility hypothesis, which states that the more ‘imageable’ a city is, the

more its dwellers engage in physical activity. To this end, we developed a variety of

linear regression models to test whether imageability is associated with physical

activity (Sect. 4), while accounting for traditional predictors of activity such as wealth,

presence of public greenery, weather clemency, walkability, and presence of

landmarks. We found that, even after controlling for these characteristics, physical

activity is higher in cities that are more “imageable” (Sect. 5), suggesting that people

who reside in cities with higher recognizable areas are more likely to engage in

physical activity than those who live in cities with low recognizable areas.

2 Background

2.1 Lynch’s legibility

The research history of operationalizing urban legibility is a history of designing experi-

ments that have consistently increased in experimental scale. The concept of legibility is

the central notion behind Kevin’s Lynch 1960 seminal book “The Image of the City” [9].

Lynch defined legibility as the extent to which it is easy for people to form mental images

of the city, which, in turn, helps them navigate it (i.e., whether the cityscape can be ‘read’).

Put differently, as people move around and engage in way-finding, they should be able to

recognize and organize urban elements into a coherent pattern. Lynch posited that, for

any given city, five urban qualities contribute to a city’s legibility. These qualities relate to

the city’s paths (e.g., routes that allow people to move throughout the city), edges (e.g.,

boundaries), districts (e.g., areas characterized by common characteristics), nodes (e.g.,

squares or junctions that serve as focus points for orientation), and landmarks (e.g., ex-

ternal points of orientation). To test the role of those urban qualities, Lynch came up with

experiments to extract “psychological maps” from study participants’ minds. He did so by

asking each participant living in a city to draw themap of the city, and then collating all the

answers into a unique psychological map. A compelling case was the city of Boston, where

Lynch found that most parts of the city were unknown to its dwellers, while a handful of

central areas were known to all Bostonians.
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2.2 Milgram’s recognizability

A decade later, social psychologist StalneyMilgram operationalized the concept of legibil-

ity in a way that allowed for the inclusion of larger numbers of study participants. Unlike

Lynch who asked participants to draw maps by hand, Milgram showed them pictures of

their city, and asked them to recognize where each picture was taken. That led to the cre-

ation of recognizability maps [11, 12]. By assuming that the concept of “recognizability”

is a good proxy for the concept of “legibility”, Milgram aimed at developing a collective

mental map based on the places correctly recognized by the majority of the study partic-

ipants and, in so doing, identifying the urban elements that made the city intelligible and

recognizable.

2.3 Recognizability at scale

The advent of the Web then enabled researchers to reproduce Milgram’s recognizability

experiment at a larger scale, beyond the limited and costly interview-based experiments.

The ability to reach masses through web experiments showed quantitatively compelling

evidence that good imageability allows city dwellers to feel at home and increase their

community well-being. Using crowdsourced games, Quercia et al. [13] collected opinions

of London’s scenes from thousands of people, and developed a recognizability map of the

British capital. The researchers found that some of London’s boroughs have little cognitive

representation, and that low recognizability was associatedwith poor economic indicators

of income, education, and employment.

2.4 Street entropy as proxy for legibility

With the advancement of brain imaging tools (e.g., fMRI), researchers were recently able

to experimentally show that the human brain, when exposed to unknown parts of a city,

indexes the city using the structure of road connectivity [14]. It follows that city legibility

may be directly captured through the connectivity and orientation of a city’s road network.

Some researchers indeed were able to draw a concrete association between a person’s nav-

igation capability and the road network structure [10]. They quantified the road structure

using the entropy of the distribution of street orientations, and found that a city’s street

entropy was positively associated with the navigation abilities of its dwellers. The entropy

metric turns out to compactly capture street orientations, as Fig. 1 shows for London vs.

New York: a high-entropic city such as London exhibits a mix of densely packed roads

and isotropic road orientations, whereas New York exhibits preferential orientations to-

wards theNorth-South and East-West directions. Based on the scaling hypothesis of linear

perception [10], the urban form captured by the entropy metric is strongly related to im-

ageability: intuitively, the more entropic a space is, the more turns it has, the higher the

ability tomentally chunk it, themore economical ofmental effort its imageability. As such,

we set out to operationalize legibility with the entropy metric.

3 Datasets andmetrics

We now describe the data used to develop the metrics for our analyses.

3.1 Smartwatches logs

As consumer-grade wearables are now fully equipped with body sensors, it is possible

to measure people’s well-being (e.g., physical activity or emotional states) at an individ-
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Figure 1 Examples of street networks in London and New York, and the corresponding polar histograms.
Each city’s street network refers to the square of 1 km2 centered in the city’s geographic centroid. Upon that
square, the value of street entropy was computed. London’s street orientations have higher entropy (H = 3.56)
than those in New York (H = 1.98)

Figure 2 (a) Number of users of our smartwatches; and (b) Average number of daily steps per capita (which is
our physical activity metric) across the 19 cities (average computed across the whole period, from 2014 to
2017)

ual [15], or at a collective level [16]. We obtained activity data from commercial smart-

watches worn by 232,707 unique users (55% male with 42 years as the median age) be-

tween 2014 and 2017 across 19 major cities in the developed world (Fig. 2a). Physical

activity data was aggregated at the level of the entire city, thus neither individual nor geo-

referenced neighborhood data was available. The 19 cities belong to parts of the world

that have enjoyed high penetration rates of wearable devices over the recent years [17].

Yet, there are still differences in adoption rates across these cities. That is why we chose



Constantinides et al. EPJ Data Science           ( 2021)  10:56 Page 5 of 12

to measure the number of steps per capita to capture actual physical activity rather than

device adoption. We have to stress, however, that our data does not represent a stratified

sample of a city’s inhabitants. Our users represent high-end consumers who are likely to

enjoy specific lifestyles and to live in specific (central) parts of a city. Specifically, we ob-

tained the average number of daily steps per capita in each city (Fig. 2b) over the course

of three years (min = 5376.44, max = 7099.73, µ = 6446.96, σ = 425.27). For example, the

average step counts shows that, in our users’ sample, our users in Londonweremore phys-

ically active, on average, than those inHouston. The 19 cities span across three continents,

and include the likes of Tokyo (TYO), New York (NYC), Los Angeles (LAX), Paris (PAR),

London (LON), Chicago (CHI), Madrid (MAD), Houston (HOU), Toronto (YTO), Berlin

(BER), San Francisco (SFO), Vienna (VIE), Hamburg (HAM), Munich (MUC), Stockholm

(STO), Helsinki (HEL), Frankfurt (FRA), Dusseldorf (DUS), and Zurich (ZRH).

3.2 Data ethics of smartwatches logs

The data processing in this study is compliant with the smartwatch company’s terms

and conditions. Additionally, in accordance with the General Data Protection Regulation

(GDPR), no researcher involved in the study could have tracked the identity of any user

by any means, and all readings were obtained and analyzed at an aggregated level.

3.3 Urban characteristics

Next, we describe the predictors of physical activity we included in our analyses.

• lnGDP: The gross domestic product (GDP) is a common socio-economic factor that

reflects an area’s wealth. For each city, we collected the GDP per capita from the

Organization for Economic Co-operation and Development (OECD) regional

statistics, and log-transformed it using the natural logarithm ( ) due to its skewed

distribution (min = 11.31, max = 14.37, µ = 12.73, σ = 0.94).

• Clemency:We collected each city’s daily temperature from the National Climatic Data

Center. We averaged the daily values for the period between 2014 and 2017, and

obtained the average temperature temp for each city. To account for how humans

experience ambient temperature, in line with previous work [18], we adjusted temp by

computing a ‘clemency temperature variable’ ( ) as: –|temp – 22C◦| (min = –15.57,

max = –0.53, µ = –9.72, σ = 3.64). The clemency temperature variable captures the

extent to which a city’s ambient temperature is close to the psycho-physiological

comfort optimum of 22C°. The closer a city’s temperature to the optimum is, the

more clement its climate is.

• Greenery: From data taken from two online portals - the World Cities Culture Forum,

and the EU’s regional and urban development - we computed the percentage of public

green areas (including those on the streets) over the city’s total area (min = 7.5,

max = 50, µ = 26.08, σ = 13.39). The higher its value, the more public greenery the

city has ( ), the healthier the city’s population is expected to be [19].

• Street entropy: Using the OSMnx toolbox [20], we downloaded the street network

topology of the 19 cities from OSM, and computed a metric that has been shown to

capture city imageability [10]. We first created a street network graph for each city

from the 1 km2 square centered in the city’s geographical centroid. We chose this

sampling to make our results comparable with previous work on street entropy [10],

and kept the very same sampling across all cities to make our results comparable. We
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then computed a 36-bin edge bearings distribution (1 bin every 10 degrees) by taking

one value per street segment. We initially took twice as many bins as desired, then

merged them in pairs to prevent bin-edge effects around common values like 0 and 90

degrees. We also moved the last bin to the front; i.e., 0.01 degree and 359.99 degrees

were binned together. We calculated the Shannon entropy of the city’s orientations’

distribution:

H = –

36
∑

i=1

P(oi) log
(

P(oi)
)

, (1)

where i indexes the bins, and P(oi) represents the proportion of orientations that fall

into the ith bin [21]. Figure 3 depicts the street network orientation (min = 1.98,

max = 3.57, µ = 3.21, σ = 0.46) of high-entropic cities (e.g., Helsinki, London) and

low-entropic ones (e.g., Hamburg, New York).

• Walkability and Landmarks: Specific urban elements (e.g., small streets, absence of

cars) have been shown to contribute to physical activity [22–24]. To capture the

presence of these elements, we processed street scenes from the crowd-sourced

mapping platform of Mapillary. Its users automatically upload street scenes they

previously captured with personal cameras, typically GoPros or mobile phone

cameras. We selected all the scenes within the square of 1 km2 centered in the city’s

geographical center and, to avoid repetitions, we selected one scene per location by

taking the most recent one based on the timestamps. We then classified the collected

800,000 Mapillary scenes with an algorithm called PlacesNet [25]. This classifies a

scene into 205 outdoor scene types. We arranged these types into two categories

based on a previously developed taxonomy [24] grounded on the urban design

literature [9, 26, 27]. The first category is the walkability category, and contains types

contributing to physical activity (e.g., pavilion, plaza, boardwalk, alley). The second is

the landmarks category, and contains types that reflect the presence of landmarks

(e.g., bridge, arch, church), which has also been found to contribute to physical

activity. We finally computed the fraction of scenes containing elements in the

walkability category (over all the scenes), and the fraction of scenes containing

elements in the landmarks category. We have to stress that these two categories are

not orthogonal, but their combination is what matters: if they are both present in a

space, then that space is likely to be conducive to physical activity. Plazas are classified

under the category ‘walkability’ because, in the literature, they are typically seen as

urban elements that foster pedestrian activity [26]. Yet, landmarks contribute to

physical activity too simply by being spatial markers essential for wayfinding.

4 Analysis

To test the legibility hypothesis [9] and, specifically, whether the street entropy is a good

predictor of physical activity, we developed four main linear regression models (Table 3),

which controlled for traditional proxies for physical activity.

Before developing our regression models, we examined the cross-correlation matrix

(Table 2) between our independent variables (i.e., lnGDP, clemency, greenery, street en-

tropy, walkability, and landmarks), and the dependent variable (i.e., physical activity). We

found that lnGDP and clemency were highly correlated (r = 0.60, p < .001), and so were
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Figure 3 Polar histograms reflecting street orientations in high-entropic cities (top), and in low-entropic ones
(bottom). Each histogram comes with the corresponding value of street entropy computed with equation (1)

Table 1 Examples of urban scenes that are: high in the landmark category (the London Big Ben at
the top, and the Arc de Triumph in Paris at the bottom); low in the landmark category (a highway in
San Fransisco at the top, and a residential street in Hamburg at the bottom); high in the walkability
category (a waterway in Helsinki at the top, and a square in Vienna at the bottom); and low in the
walkability category (a main road in Stockholm at the top, and downtown Houston at the bottom)

lnGDP and greenery (r = –0.50, p < .005), thus we introduced their interaction terms as

the product of each pair. The remaining correlations were weak, thus no additional inter-

action effect had to be accounted for. To produce comparable results, using a z-score trans-

formation ( x–µx
σx

), we standardized our dependent variable of physical activity, the street

entropy metric, and the greenery metric. On the other hand, we kept the original units for

lnGDP, clemency, and the fractions of scenes being classified as walkability/landmarks as

their values were normally distributed.

5 Results

Table 3 reports the four linear regressions, which predicted physical activity (i.e., average

number of daily steps per capita) from our predictors, in various combinations. As seen

in Fig. 5, our best performing model MIG+E+W+L—the model with lnGDP (lG), Street En-

tropy (E), Walkability (W), and Landmarks (L)—explains 52% of the variance in the data.

A model with lnGDP and Clemency as predictors performs less well (AdjR2 = 0.12), while

MIG+C ’s improved only slightly when also taking into account the interaction between
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Figure 4 Bubble chart showing the presence of walkable elements and landmarks in our cities. Cities are
ordered by decreasing population size (bubble size). The shades of the bubbles capture the fraction of scenes
containing urban elements that contribute to walkability, and the fraction of scenes that contain landmarks.
Tokyo and London have the highest fraction of scenes in the walkability category, while Paris and Stockholm
have the highest fraction of scenes in the landmarks category. Both categories - especially when seen in
combination - have been found to foster physical activity

Table 2 Pairwise rank correlation analysis between our dependent variable and the set of predictors.
The correlations that are statistically significant are in bold and are marked with a number of *’s based
on their significance levels (i.e., ***p< 0.01; **p< 0.05; *p< 0.1)

Variable 1 2 3 4 5 6 7

1. Physical activity —
2. ln-GDP 0.121 —
3. Clemency –0.292 0.601*** —
4. Greenery 0.009 –0.519∗∗ –0.263 —
5. Street entropy 0.309 –0.322 –0.088 0.279 —
6. Walkability 0.550** –0.004 –0.287 –0.042 0.008 —
7. Landmark –0.359 –0.216 0.051 0.221 0.146 –0.400 —

these two predictors (AdjR2 = 0.14). To test whether the structural differences between

European cities and non-EU cities impacted physical activity, we considered a dummy

variable EU (which is 1, if the city is in EU; or is 0 otherwise), added it to baseline model

MIG+C , and indeed observed that its AdjR2 increased from 0.14 to 0.26. This suggested

that these structrual differences did play a role. When adding Street Entropy, the variance

explained was as high as AdjR2 = 0.37 (MIG+C+E+G). However, Greenery did not show any

explanatory power, suggesting that the city’s public greenery taken in its entirety was not

associated with physical activity. After removing public greenery from our final MIG+C+E

model, we obtained a better fit for our data (i.e., AdjR2 = 0.46). Finally, when adding the

Walkability and Landmark metrics to that model, and running stepAIC [28], which se-

lected the least number of predictors having an overall best fit, we obtained an AdjR2 of

0.52. By then adding dummy variable EU to our best performing model MIG+E+W+L, its

AdjR2 did not change, suggesting that EU was partly capturing Street Entropy in MIG+C

but ceased to be of importance once Street Entropy was added as a predictor. In other

words, Street Entropy not only fully captured the structural differences between Euro-

pean cities and non-EU cities but, compared to the dichotomous variable EU, it was a bet-

ter predictor of physical activity. By inspecting MIG+E+W+L ’s predictors, we observed that

Street Entropy (p = .009) and the interaction term between lnGDP and Clemency (p = .02)

were still significant, and that physical activity was: (i) positively associated with Street

Entropy (βStreet Entropy = 0.57); and (ii) negatively associated with the interaction between

lnGDP and Clemency (β(lnGDPxClemency) = –0.97). The former result translates into saying

that there is higher physical activity in cities whose streets orientations are highly entropic:

a change of 1 standard deviation in street entropy leads to a 0.6 standard deviation increase
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Table 3 Linear regressions that predict physical activity from traditional proxies for physicial activity
(lnGDP, clemency, greenery, walkability, and landmarks), and from our street entropy metric. Z-scored
transformed predictors are noted with ‘z’, and significant predictors with p values < 0.05 are marked
in bold. The best predictive model (MIG+E+W+L) suggests that both street entropy and the interaction
between lnGDP and clemency are good predictors of physical activity

Predictor β std. error p-value

MlG+C : AdjR2 = 0.14, Durbin-Watson = 0.77, AIC = 54.51
Intercept 4.86 11.87 0.68
lnGDP –0.41 0.85 0.63
Clemency –0.04 0.12 0.7
lnGDPxClemency –0.74 0.65 0.27

MlG+C+EU : AdjR2 = 0.26, Durbin-Watson = 0.88, AIC = 52.29
Intercept –2.47 11.68 0.83
lnGDP 0.11 0.83 0.89
Clemency –0.04 0.11 0.72
lnGDPxClemency –0.57 0.61 0.36
EU 1.09 0.58 0.08

MlG+C+E+G : AdjR2 = 0.37, Durbin-Watson = 2.33, AIC = 50.24
Intercept 12.05 11.37 0.31
lnGDP –0.93 0.81 0.27
Clemency 0.01 0.11 0.89
lnGDPxClemency –1.33 0.62 0.05

z-street Entropy 0.64 0.22 0.01

z-Greenery –1.20 3.11 0.7
lnGDPxz-Greenery 0.09 0.24 0.71

MlG+C+E : AdjR2 = 0.46, Durbin-Watson = 1.32, AIC = 46.55
Intercept 10.17 9.61 0.31
lnGDP –0.79 0.68 0.26
Clemency 0.004 0.09 0.96
lnGDP×Clemency –1.26 0.54 0.03

z-street Entropy 0.61 0.19 0.00

MlG+E+W+L : AdjR2 = 0.52, Durbin-Watson = 1.19, AIC = 44.69
Intercept 10.17 9.61 0.31
lnGDP –0.58 0.36 0.13
lnGDP×Clemency –0.97 0.37 0.02

z-street Entropy 0.57 0.18 0.00

Walkability 1.60 1.87 0.40
Landmarks –5.72 5.36 0.30

in physical activity; a finding that confirms the legibility hypothesis—physical activity is

higher in cities that are more “imageable”. To interpret the latter result instead, we shall

take into account that lnGDP and Clemency interact with each other resulting in the extra

impact of wealth on activity to the following extent: β(lnGDPxClemency) = –0.97. So for a city

whose Clemency is –5 (e.g., five degrees below/above the optimum temperature of 22 C°),

the extra positive impact of wealth is 4.85xlnGDP for every unit increase in lnGDP; by con-

trast, for a city whose Clemency is –10 (e.g., ten degrees below/above the optimum), the

extra positive impact of wealth is as high as 9.7xlnGDP for every unit increase in lnGDP. In

plain English, thismeans that, themore inclement theweather, themore positive the effect

of increasing wealth on physical activity. Put differently, to attain the same levels of physi-

cal activity in one citywith far worse temperature than another city’s, the former city needs

to compensate its worst weather with higher levels of wealth. Therefore, GDP matters for

physical activity not so much for cities with good climate (βlnGDP = –0.58, for Clemency =

0), but more for cities with inclement weather, having a compensatory effect.WhileWalk-

ability and Landmarks explain an additional 6% of variance in the data (MIG+E+W+L), their
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Figure 5 Adjusted R2 values of the four regressions with different predictors: IG: lnGDP; C: Clemency; E: street
Entropy; G: Greenery; W: Walkability; and L: Landmark

coefficients were not statistically significant, likely because of the limited number of cities.

However, these two metrics were highly correlated with our dependent variable (Table 2),

suggesting sufficient explanatory power even if considered individually. By fitting an ad-

ditional regression model that adds these two metrics to our MIG+C baseline model, we

indeed observed an additional 4% of explained variance.

6 Discussion

We have shown that street entropy is strongly associated with physical activity. Even after

controlling for a city’s wealth and climate, street entropy hasmore explanatory power than

greenery’s. One might speculate that presence of greenery does not necessarily translate

into its use [29] (e.g., private green areas are present but not accessible), while street en-

tropy is a concept closer to actual walkability. Interestingly, our findings suggest that a

city’s wealth has little explanatory power in general, yet, wherever needed, it compensates

for the detrimental impact of inclement weather.

Ourwork has both theoretical and practical implications. From a theoretical standpoint,

the results confirm previous findings in the neurology of legibility, that is, in the ways our

brains arewired to perceive spatial layouts [10, 14]. Furthermore, our street entropymetric

offers an alternative way of capturing city’s imageability, which may be adopted by future

urban computing studies to investigate the relationship between rich representations of

the spatial layout - beyond the typical analyses of POIs - and societal outcomes (e.g., eco-

nomic activity, dwellers’ sleep behavior), expanding the current literature that has already

linked regular physical activity to improved creativity [30] and mental health [31]. From

a practical standpoint, our findings might well serve as a “call for action” in public health:

campaigns or intervention programs could target parts of a city that are less naturally con-

ducive to physical activity.

Our work has limitations that call for future research. First, our findings hold for our

19 cities in developed countries, and may not be generalized to more socio-economically

deprived countries. In a similar vein, our results hold for individuals who wear high-end

tracking devices and, as such, are likely to be tech-savvy and health-conscious. That is why

our samplingmethod of street scenes focused on city centers where our user demographic

is likely to live. Yet, despite the homogeneous set of individuals across the cities, it is in-

teresting to observe stark differences in physical activity, which the legibility hypothesis

explained to a great extent. As commercial wearables will be widely adopted, analyses sim-

ilar to ours could be repeated for a larger number of cities, or even for the entire globe, both
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boosting the statistical significance of our existing results and allowing for cross-cultural

comparisons. Secondly, with sets of datamore fine-grained than ours (e.g., data at the level

of individuals, data geo-referenced at the level of neighborhoods), researchers could focus

on important within-city and within-subject similarities and differences, which could not

be explored with our aggregate data.
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