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Exploring Scalable, Distributed Real-Time Anomaly
Detection for Bridge Health Monitoring

Amirhossein Moallemi, Alessio Burrello, Graduate Student Member, IEEE,
Davide Brunelli, Senior Member, IEEE, and Luca Benini, Fellow, IEEE

Abstract—Modern real-time Structural Health Monitoring sys-
tems can generate a considerable amount of information that
must be processed and evaluated for detecting early anomalies
and generating prompt warnings and alarms about the civil
infrastructure conditions. The current cloud-based solutions
cannot scale if the raw data has to be collected from thousands
of buildings. This paper presents a full-stack deployment of
an efficient and scalable anomaly detection pipeline for SHM
systems which does not require sending raw data to the cloud
but relies on edge computation. First, we benchmark three
algorithmic approaches of anomaly detection, i.e., Principal
Component Analysis (PCA), Fully-Connected AutoEncoder (FC-
AE), and Convolutional AutoEncoder (C-AE). Then, we deploy
them on an edge-sensor, the STM32L4, with limited computing
capabilities. Our approach decreases network traffic by ≈ 8·105×
, from 780KB/hour to less than 10 Bytes/hour for a single
installation and minimize network and cloud resource utilization,
enabling the scaling of the monitoring infrastructure. A real-
life case study, a highway bridge in Italy, demonstrates that
combining near-sensor computation of anomaly detection algo-
rithms, smart pre-processing, and low-power wide-area network
protocols (LPWAN) we can greatly reduce data communication
and cloud computing costs, while anomaly detection accuracy is
not adversely affected.

Index Terms—Structural Health Monitoring, IoT, PCA, NB-
IoT, Sensors Network.

I. INTRODUCTION

The constant growth of large-scale civil infrastructures built
worldwide in recent years [1], [2] is sustained by increasing
investments of the top economies in the world for renewing
urban areas and roads. Furthermore, civil infrastructures are
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Fig. 1. IoT based SHM systems. In Panel A, the raw signal is gathered from
the sensors and sent to the cloud through a gateway to analyse the condition
of the structure. In Panel B, the safe/damage condition is directly computed
on the node.

becoming increasingly complex. For instance, nowadays, new
technologies permit the construction of long-span viaducts,
long-extension undersea tunnels, and large skyscraper districts.

On the other hand, although recent structural design
achievements assure robustness in these advanced buildings,
vulnerability to diverse threats such as extreme weather (e.g.,
wind, rain), massive vehicular load, and earthquakes remain a
major concern [3], [4]. The recent Polcevera viaduct’s collapse
in Genoa, Italy, with over 40 human lives lost, demonstrated
that the periodic or sporadic human-assisted assessment of
the structures is not enough. Therefore, a change of paradigm
towards the continuous observation of structural integrity and
automatic anomaly detection is becoming a key requirement
for civil infrastructure maintenance [5], [6].

As a consequence, the new field of automated Structural
Health Monitoring (SHM), which tracks the real-time online
state of structures using dense sensor networks, is gaining
prominence [7], [8]. Combined with the advancements in
the Internet of Things (IoT) [9], SHM enables monitoring
large structures at smaller costs than by deploying human
crews [10].

A modern SHM system is composed of a series of sensor-
nodes, which capture sensor data, e.g. the vibration of a
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viaduct, one or more data collection and processing gate-
ways, and centralized processing and storage resources in the
cloud [11]. Fig. 1A depicts a SHM installation on a viaduct.
The amount of information and data gathered by new gener-
ation SHM systems is exponentially growing, moving from a
few measurements every hour from few sensors to continuous
high-frequency data streams from dense sensors networks [12],
[13]. Therefore, data communication and storage capabilities
in the cloud have become major concerns in modern SHM
systems.

This paper focuses on two key challenges: automating
anomaly detection and doing so with a scalable approach
that does not require communication, processing and storing
raw sensor data in the cloud. For anomaly detection, different
techniques have been proposed, ranging from simple regres-
sive models [14] to deep neural networks [15]. However, they
are usually tested on simulated data, not taking into account
real-condition perturbations such as wind or climate fluctua-
tions [16], [17]. Besides that, these techniques are typically
deployed on cloud servers. Hence they imply comprehensive
data collection from the sensor network.

In this work, we address both challenges by proposing a new
pipeline for viaduct monitoring. We analyze a real highway
viaduct in Italy, which underwent a pre-scheduled maintenance
intervention. The viaduct has been monitored before and after
the intervention, and acceleration data from five sensors has
been collected. We use this real-life example of an exogenous
event changing the structural properties of the bridge as a
proxy for an abrupt unforeseen event such as an earthquake.
Specifically, we give the following contributions:

• We compare data-driven and model-driven unsupervised
anomaly detection approaches to monitor the behaviour
of the viaduct: namely a Principal Component Analysis
(PCA) model and two autoencoders. On our dataset, the
PCA shows the best performance with 98.8% accuracy
in detecting the structural changes after the interventions.
Further, we assessed in depth our anomaly detection
approach robustness by synthetically generating new
anomalies from the original real-life one.

• We find that the best accuracy (100%) on anomaly detec-
tion is obtained by computing PCA-based reconstruction
error on 5 seconds time windows and averaging errors
over 4 hours, i.e., 2880 windows. Noteworthy, this result
comes at the cost of a non-negligible delay in detecting
the damage (4 hours). This trade-off between accuracy
and delay can be tuned by the user by simply changing
the length of the averaging window.

• We study the impact of energy-threshold-based pre-
filtering of the raw accelerometer data, showing that this
preprocessing block is essential to achieve high anomaly
detection accuracy while decreasing computational effort
by 17%.

• We compare the performance of the algorithms when fed
with time-domain (raw) or frequency-domain (processed
with FFT) data. We observe a drop of 21.58% and
12.73% of anomaly detection accuracy, respectively, for
both the PCA and Fully Connected (FC) autoencoder,
when using frequency domain data.

• We present the implementation of our anomaly detection
pipeline on a low-power microcontroller for online in-
ference with ≈ 74 uJ energy consumption for each infer-
ence. We show the trade-off between accuracy and power
consumption by tuning the hyperparameters of our best
performing anomaly detector, the PCA. We show that by
increasing the Compression Factor (CF) of the PCA (i.e.,
by reducing the number of principal components utilized
during the reconstruction) from 16 to 24, we still achieve
92.97% accuracy in detecting structural changes (i.e.,
distinguishing anomalies from normal samples) while
consuming only 39 uJ per inference.

• We demonstrate our distributed approach using a node
equipped with a Narrowband IoT communication unit
[18], which exploits anomaly detection at the edge. We
show that by performing computation on the edge and
communicating only post-processed data (i.e., detected
anomalies), the energy consumption of a node can be
reduced by 5.0×.

The paper is organized as follows. Sec. II describes the
related work. Sec. III introduces the viaduct structure, the
SHM framework installed, and the background on the anomaly
detection methods proposed in this work. Sec. IV describes
our proposed pipeline, with different analyzed design and
deployment choices. Sec. V and Sec. VI provide results of
both the anomaly detector accuracy and the deployment-
related metrics, i.e., memory footprint, energy consumption,
and network data communication. Sec. VII concludes the
paper.

II. RELATED WORK

Structural Health Monitoring systems have become
widespread in the last decade. They are usually based on
networks of sensors to monitor the vibration of the structure
under test [29]. A key expected function of a modern SHM
system is the automated detection of structural anomalies. To
solve this problem, we can distinguish between three main
classes of approaches: i) statistical data modeling, ii) machine
learning, and iii) data reduction approaches.

1) Statistical data modeling: The first approaches in contin-
uous SHM systems were based on modeling data distribution
and extracting abnormal patterns. Ling et al. [19] exploit auto-
regressive (AR) and auto-regressive with extra input (ARX)
models to detect anomalies on a simulated steel frame structure
to localized damage pattern recognition problems in SHM.
The authors compute a set of statistical features on a cluster
of nodes where sensors communicate via Random Gossip
protocol to detect and localize the damage, implying that
an individual node cannot detect damages to the structure.
Although they report at most 1 False Negative (FN) and 1 False
Positive (FP) detections, they performed experiments with
four laboratory computed datasets. Similarly, auto-regressive
models are employed in e.g., [30]–[32] to extract features from
raw vibration data. One of the most recent works is Entezami,
et al. [14] that propose an anomaly detection framework
exploiting the recorded raw vibrations dataset of the Tianjin
Yonghe cable-stayed bridge in China. First, an auto-regressive
moving average (ARMA) extracts features to reduce data
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TABLE I
STRUCTURAL HEALTH MONITORING STUDIES OVER THE LAST YEARS. PERFORMANCE RESULTS REFER TO THE DISTINCTION OF DAMAGED FROM

NON-DAMAGED DATA SAMPLES. PERFORMANCE IS IN TERMS OF ACCURACY UNLESS IT IS MENTIONED. ABBREVIATIONS: FP: FALSE POSITIVES, FN:
FALSE NEGATIVE.

Structure Sensors Data Type Detection Model Train Device Test Device Performance
Statistical Data Modelling

Ling et al. [19]
Simulated Steel
Frame Structure

120 Acceleration
Autoregressive
model

Remote Server Remote Server [20] 1 FP, 1 FN

Santos et al. [21]
Simulated Five
Bay Structure

4×29 Acceleration
FFT +
Peak Detection

N.A. MICAz [22] 0 FN, 2 FP

Verma et al. [23]
Simulated Steel Beam
Bridge

2
14

Acceleration
Features +
Gaussian Model

N.A. N.A.
85-96%
96.3-100%

Deep Neural Networks
Acvi et al. [24] BM benchmark [25] 12 Acceleration 1D-CNN Intel core-i7 [26] Intel core-i7 [26] N.A.
Data reduction

Liu et al. [27]
Simulated Lab-Scale
Bridge

5 Acceleration Autoencoder N.A. N.A. N.A.

Nie et al. [28]
Simulated Lab-Scale
Bridge

9
24

Acceleration FMPCA Laptop Remote Server
100%
100%

Our Work Real Viaduct 1 Acceleration AE / PCA STM32L476 STM32L476 98.8%

occupation. Then, a k-Nearest Neighbours algorithm classifies
the samples, achieving as low as 1.56% of misclassification.
Despite the optimal results achieved, these work rely on a set
of hand-tuned parameters, which impair the generality of the
model over time. To retrain these parameters, these models
need the entire history of the data, which (i) is not always
available, and (ii) causes the system to necessitate of a single
cloud orchestrating unit.

The most recent study based on data modeling is [23],
which takes advantage of real-case vibration data of a bridge in
China and datasets from laboratory structures. They propose
an approach called ”in-network damage detection on edge”
to detect bridge structure damage. They collect statistical
features of the input data into an m-dimensional feature vector.
Then, they fit a Gaussian distribution model on the training
set and consider anomalies as the tail of this distribution.
Although the trained model’s accuracy on the recorded Yonghe
Bridge in China reaches 100%, it decreases to 96% for the
secondary simulated structure case. Furthermore, for all the
experiments in this work, accuracy varies between 85%-100%.
This high fluctuation in performance is due to the reduced
number of extracted features which impair the capability of
this approach to model the structure’s behavior in different
positions with several sensors. While the lack of adjustability
to the structure’s behavior over time is a limit of their work,
we propose a solution to update the model adaptively after a
change in behavior has been observed.

Santos et al. [21] is the only approach fully deployed on
the edge. It computes the Fast Fourier Transformation (FFT)
of input vibration data and the difference in peak frequency of
each consecutive 0.5 second time window at the node. Then,
computed natural frequencies are sent to sensors heads (i.e.,
Gateway) to estimate the structure’s status using a threshold-
based algorithm which results in a perfect damage detection
with only 2 False Positives (FP). Transmitting only natural
frequencies causes a network traffic of 6.720 KB/h. In a similar

vein, we further decrease network traffic to only 10B/h by
applying the Principal Component Analysis for data com-
pression and classification directly on the node. Noteworthy,
as demonstrated in section V, employing frequency features
strongly impairs anomaly detection performance on our struc-
ture, making this approach unsuitable for our problem. Similar
to Santos et al. [21], other works, e.g., [33]–[35], study the
pros and cons of cloud computing and edge computing in the
content of SHM systems.

To the best of our knowledge, all of the statistical data-
modeling approaches exploited expensive piezoelectric ac-
celerometer to collect data. In contrast, we replace such
sensors with a low-cost, low-power (but higher noise) MEMS
accelerometers.

2) Deep Neural Networks: In [24], [36], the authors present
two DNN-based approaches. A 1D-CNN is used in [36]
to estimate the Probability of Damage (PoD) on the BM
benchmark [25]. A PoD close to 0 points to the normal case,
whereas a PoD of 1 corresponds to the damaged condition.
Evaluating nine scenarios of increasing damage severity shows
that their 1D-CNN correctly ranks the scenarios from one to
nine by correctly predicting an increasing damage condition.
Compared to the conventional 3D CNNs, 1D CNNs require
less computational complexity, thus take less time to train the
model. However, this model still requires data generated by a
cluster of nodes, not a single node, to achieve high accuracy,
which is unsuitable for an online-training on edge-nodes.

On a totally different input data, images, Wu et al. [37]
present an approach for online inference. The authors exploit
two deep convolutional neural networks, namely VGG16 and
ResNet18, for crack and corrosion detection of structures from
image data. They apply aggressive pruning to reduce the
complexity while maintaining a high detection accuracy (they
reduce VGG16 memory footprint to 44 MB and ResNet18
to 2MB). Running the algorithms on a Jetson TX2 platform,
the authors achieve 94.6%-98.5% detection accuracy for crack
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detection on different nuclear power plant structures and
82.8% detection accuracy in corrosion images of different
metallic surfaces. Despite the performance, we do not employ
deep supervised neural networks since they require a large
training labeled dataset that is unavailable in our case, and,
more in general, labeled anomaly data is not available in
typical structural health monitoring installations.

3) Data Reduction: The last category of works exploits
compression algorithms for damage detection. These algo-
rithms first compress and reconstruct the input data and then
compute the difference between original and reconstructed
signals. The higher is the difference between the original
and the reconstructed signals, the higher is the probability of
damage. In this context, autoencoder (AE) neural networks are
among the most popular approaches. For example, [27] uses an
AE for damage diagnosis on a laboratory’s synthetic bridge for
indirect bridge monitoring scenarios, outperforming all other
anomaly detection algorithms with MSE ≈ 5 in computing
30 levels of damage severity. Given the promising perfor-
mance of the method, we also test autoencoder-based anomaly
detection in our work. Furthermore, linear processing-based
compression methods such as principal component analysis
(PCA) also achieve good performance in SHM for damage
detection (e.g., [28], [38]–[40]). For example, [28] describes
moving PCA on vibration data. They show the effectiveness of
compression by evaluating the model over a laboratory beam
bridge and recorded data of a bridge of Guangdong, China,
with 100% damage identification. Even though the works
mentioned above can reach perfect accuracy, training and
inferring are performances on unconstrained remote devices
(e.g., i7 intel processor) after data transmission and collection.

In our work, we aim to tackle these models’ generalizability
and deployability by introducing a new lightweight pipeline.
Compared to other SHM works, we propose a method to
constantly update the anomaly detector, tackling the time
variability of the structure dynamic over time; also, our
approach entirely relies on unsupervised data, not necessitating
for labels as other DNN-based approaches. Finally, to the best
of our knowledge, we are the first to deploy and analyze
the performance of a complete anomaly detection pipeline
on an in-situ sensor network utilizing real-life SHM system
installation on a viaduct.

III. SHM INSTALLATION & BACKGROUND

A. Bridge Structure

The vibration data analyzed in this work comes from a
viaduct located in northern Italy on the ss335 state highway,
composed of 18 different sections. Last year, the viaduct un-
derwent a technical intervention to strengthen the structure of
a viaduct section, with a corresponding change in the vibration
signal produced by its structure. Before the intervention, this
section has been instrumented with five SHM nodes to monitor
viaduct vibration, as illustrated in Fig 2. For this reason, in
this work, we analyze the unique situation of accelerations
gathered before and after this strengthen intervention. We use
these data as a proxy for an abrupt change in the viaduct
structure caused, for example, by external factors such as an
earthquake. After the intervention, we consider the vibrations

Fig. 2. Overview of the installed monitoring system on the viaduct. Five
sensors are linked to a gateway for streaming data to the cloud. The grey box
showcases the main components of a sensor node.

raw data as the normal data produced by a ’sane’ viaduct.
Conversely, the accelerations measured before the intervention
are used as the ’anomaly’, given the high degradation of the
bridge’s structure.

B. SHM Network

The depicted installation is a vibration-based SHM system,
which exploits acceleration gathered from the sensors to detect
damages and monitor the viaduct health condition. Fig. 2
shows the installation composed of five nodes connected via
CAN-BUS to transmit data to a gateway: in the baseline
setting, no computation is performed neither on the nodes nor
the gateway. Nodes gather and transmit data to the gateway.
The gateway sends the sensor’s data to the cloud for storage
purposes. All the processing on the data is then carried out
daily on the cloud.

The gateway is a Raspberry Pi 3 module B (RPi3), an edge
computer actively employed in many fields such as robotics,
smart sensors, or SHM. It includes a Broadcom BCM2837
SoC, with 64 bits 4-core Cortex-A53 running at 1.2 GHz and
1 GB of DDR2 RAM. The gateway supports Linux operating
system, allowing for typical python applications deployment
for either communication (e.g., an MQTT broker [41]) and
in-field machine learning (e.g., Keras [42], scikit-learn [43]).

The sensor node is represented in the lower part of Fig. 2. It
is composed of the LIS344ALH analog tri-axial accelerometer
[44], the HTS221 temperature and humidity sensor [45],
and an STM32L476VGTx microcontroller as a computational
core. The core features a floating-point unit and a digital signal
processing (DSP) library, which has been used in our work to
optimize the algorithm deployment. The microcontroller unit
is an ARM 32-bit Cortex-M4 running at 80 MHz, with 96 KB
of SRAM and 1MB of Flash memory. This node samples the
acceleration with the internal ADC at a frequency of 25.6 kHz.
For increasing the bit-resolution, windows of 256 samples are
filtered with a 6-state FIR filter and reduced to a single value,
thus obtaining a final sampling rate of 100 Hz.

C. Anomaly detection approaches

1) Principal Component Analysis: Principal Component
Analysis (PCA) is a method to deal with high dimensional
correlated data by transforming them into minimally correlated
data [46]. Exploiting the covariance matrix of high dimen-
sional data, the PCA projects it into a new space where
the axes correspond to the eigenvectors of the covariance
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Fig. 3. The proposed framework to analyze the condition of a viaduct starting from raw acceleration data. In the top part of the figure, we show the
hyper-parameter tuning (in red) and the initial training steps done before the first time that the monitoring system is activated. In the middle, we show the
inference steps to be done continuously for safe/anomaly condition assessment. In the bottom part, we show the possibility of updating the signal reconstruction
algorithms after the pipeline detects an anomalous event to avoid the increase of false-positive alarms due to the bridge’s static deformation caused by wind
or ageing.

matrix, ordered by the value of their eigenvalues. PCA reduces
data size by preserving only directions that retain most of
the information [47] (the ones with the associated higher
eigenvalues). Considering a M ×N dimensional data matrix
x =

[
x1, x2, x3, ... , xN

]
where xk is a column vector

of M features representing a sample, its normalized covariance
matrix is

Σ =
1

N − 1

N∑
k=0

(xk − x̃)(xk − x̃)T (1)

where Σ is a square M × M matrix. Its diagonal holds
variance of each individual sample, and off-diagonal values
are covariances of sample combinations. Using eigenvalue
decomposition, we can write

Σ = V ΛV −1. (2)

where V columns represents the eigenvectors, and the princi-
pal diagonal of Λ contains corresponding eigenvalues. It can be
proven that Vk ∈ Rk is a basis of the sub-space of dimensions
Rk which retains the highest similarity with the original one.

Due to the usually high number of features, M , PCA
requires a high memory footprint to store and compute the
covariance M × M matrix and extract its eigenvalues. To
cope with this limitation on low-memory edge devices, the
authors of [48] introduced History PCA, a streaming algorithm
to train the PCA without storing data, which has been later
deployed on edge/nodes by [49]. Compared to other streaming
approaches, HPCA exploits the history of the data and new
samples to update the partial covariance matrix, allowing a
faster convergence and better accuracy [48], [49]. In our work,
we exploit HPCA to deploy our algorithm on the sensor nodes,
moving both training and detection from the gateway to the
leaf nodes of the SHM sensor network.

2) Autoencoders: Autoencoders are neural networks com-
posed of two or more layers used to compress data and
detect anomalies [50]. Autoencoders can be segmented into
two parts, Encoder and Decoder. The encoder, fE(x), projects
the input data x ∈ RM into a lower-dimensions hidden
space h ∈ Rk, exploiting one or multiple layers, either fully

connected, convolutional or recurrent [51]. An example of a
single-layer encoder is

h = fE(x) = Φ(WEx+ bE) (3)

where W is the weight matrix, and Φ is the activation
function of a single layer. The decoder fD(h) projects back
the compressed signal h to its original space, creating a new
signal x̄ ∈ RM as

x̄ = fD(h) = Φ(WDh+ bD). (4)

The model’s training favours the similarity of x and x̄
without employing data labels, teaching the encoder to find
the best-hidden space that mainly preserves the features of the
original one. During training, the loss function is represented
by a similarity metric between the original and the recon-
structed signal.

The same metrics are also exploited to employ the au-
toencoder as an anomaly detector. Reconstructed signals,
similar to those encountered during training, result in a low
reconstruction error. On the other hand, reconstructing signals
with different characteristics than those used for training
are badly reconstructed. To detect anomalies, only normal
signals are fed to the autoencoder for training. Therefore, new
anomalous signals encountered during the test phase are poorly
reconstructed, with a higher mean square error (MSE), and
thus identified as anomalies.

IV. METHODS: ANOMALY DETECTION IN AN SHM
FRAMEWORK

This section describes the main contribution of this work.
We discuss our novel SHM pipeline and its deployment
to augment the SHM installations to raise integrity alarms
automatically. We first show our complete pipeline, comprising
a step of initial training, the in-field estimation, and the pos-
sibility for an online update of the models. Then, we describe
our proposed solutions to efficiently embed our pipeline inside
the existing system, reducing the energy consumption and
network traffic while maximizing the system’s scalability for
large SHM installations.
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A. Anomaly detection pipeline

As shown in Fig. 3, our pipeline is composed of three
main blocks (from left to right in the figure). First, a series
of transformations such as windowing, data filtering, and
feature extraction is applied. Then, the signal compression-
decompression algorithm for anomaly detection is applied.
We tested three algorithms: i) PCA, ii) a Fully-connected
autoencoder, and iii) a convolutional autoencoder. Finally, the
MSE between decompressed and original signal is computed
to detect the structural integrity of the viaduct. An average over
time is calculated to smooth the damage detection, reducing
false alarms.

1) Pre-processing: This step covers the windowing of raw
signal, the energy extraction, and eventually the application of
the FFT, if needed. We used a single acceleration axis for our
analysis, namely the z-axis (i.e., vertical axis) of the sensor
installed in the middle of the section since it contains the most
critical information about the bridge.

As Fig. 3 shows, data processing starts by dividing acceler-
ation raw data into non-overlapping windows, similar to [49].
We explore window dimensions of 1 to 10 seconds to balance
accuracy with algorithm complexity. Noteworthy, given the
hardware-related constraints such as limited memory and hard
time constraints, different window dimensions can fit different
use-cases.

After, we check the energy of the windowed signal. In our
case, the analyzed bridge does not experience heavy traffic,
hence it is often resulting in low vibration windows, containing
only the white noise of the sensor. Therefore, we designed an
energy-based window cleaning to eliminate non-informative
windows. To this end, the energy of each window is extracted
and compared to a trained energy threshold. Windows with
an energy lower than the trained threshold are removed from
further analysis. Energy of each window is computed as
follows:

E =

Wd∑
i=1

X2
i (5)

where Wd is the width of each window. The search of energy
threshold is done exploiting the iterative steps of Alg. 1. At
each step, an increase in the threshold leads to removing
a higher percentage of the windows. Alg. 1 stops when
the reconstructed signal of not filtered-out windows drops
below a predetermined Quality of Service (QoS), namely the
average reconstructed signal-to-noise ratio (RSNR), computed
as RSNR = 20 log10

(
‖x‖2
‖x−x̂‖2

)
, with x, the original signal,

and x̂, the reconstructed one. Based on [49] and considering
a compression factor of 15× as in [49], we set this lower
bound average RSNR to 16 dB. Fig. 4 shows acceleration
data and highlights the portion of the signals selected by the
tuned energy threshold with green background. Fig.4-B and
Fig.4-C show a zoom of peak 2 in the time and frequency
domain. As detailed in Sec. V, applying this energy filtering
improves the accuracy of all our analyses.

2) Signal Reconstruction: We process the non-discarded
windows with different compression-decompression models.
The similarity of the original with the reconstructed signal is
then used to detect anomalies.

Algorithm 1 Energy Filtering
1: Input: Xtrain,Xval

2: th = 10−10

3: do
4: th+ = 2−8

5: Xtrain,Xval ← filter (Xtrain,Xval, th)
6: W ← pca(Xtrain)
7: Xr ← XvalWWᵀ

8: S ← RSNR(X,Xr)
9: while S < 16 dB

10: Output: th

This phase is split into two steps: i) compression and ii)
reconstruction of input pre-processed signals. We test one
model-driven method, namely the PCA, and two data-driven
approaches, a fully connected autoencoder and a convolutional
autoencoder, as anomaly detectors. We impose a compression
factor of the input signal of 16×, before reconstruction.
In PCA, we keep the top 16 principal components. In the
fully connected autoencoder, we employed 16 neurons in the
hidden layer. In the convolutional autoencoder, we utilized
a stride over convolutional layers of the encoder part of 32,
reducing from 500 to 16 the dimension of the signal before
the transposed convolutions. The PCA and fully connected
autoencoder perform the same number and type of operations
(two matrix multiplications, A × B, and B × C, with
dimensions A 1×500, B 500×16 and C 16×500 ) and only
differ in the training approaches: the first one is model-based,
while the second is trained via a data-driven back-propagation.
The convolution autoencoder is composed of 8 hidden layers
followed by ReLU activations. Adam optimizer, along with 80
epochs, is used to train this model.

3) Anomaly Detection: We use the difference between the
original and reconstructed signals as an anomaly detection
score. A higher difference implies a worse reconstruction. In
particular, we compute the mean square error (MSE) as:

MSE = ||xi − x̄i||L2 =
1

n

n−1∑
i=0

(xi − x̄i)2 (6)

where x is the original signal, x̄ is the reconstructed signal,
and n is the number of samples in a window.

Our reconstruction algorithms are trained solely with normal
data using an unsupervised process. Therefore, the algorithms
should reconstruct normal data with low MSE, while they
cannot reconstruct anomalies that show a different signal
dynamic not seen during the training, leading to a higher
MSE. A threshold to distinguish the two data classes can
be thus statistically derived solely by normal validation data.
To compute it, in our case, we compress a validation set of
normal data using the different compression algorithms. Then,
we select the threshold as the mean of the MSE over all
the data compressed plus three times its standard deviation
(th = µ + 3 × σ). Noteworthy, we set this threshold to have
only 0.01% of statistical false positive errors. The results of
this procedure are shown in Fig 5, where PCA is used to
compute MSE over normal and abnormal data.
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Fig. 4. Top panel. Twelve minutes of mean-centered raw acceleration data of the z− axis of the middle sensor installed on a pier of the bridge. Peaks are
associated with vehicle passages. Left panel. Zoom of a 5-second window containing the oscillation associated with the passage of a vehicle. Right panel.
Frequency response of the window of signal highlighted with the dashed rectangle.

Fig. 5. PCA output mean square error (MSE) on the test dataset. Input
window dimension is set to 5 seconds. Solid line is obtained by applying the
post-processing with window dimension = 1 hour.

To further reduce the false alarms, we propose an average
over time of the soft-predictions (MSE values). We explore
windows between 15 minutes to 4 hours, showing that a
larger window is positively correlated with better accuracy,
increasing the gap between reconstructed normal data and
reconstructed anomalies but causes larger delays in prediction.

B. Algorithm Phases: Train, Detect, Re-Train

Our pipeline is characterized by three main phases (Fig. 3,
top-down), namely i) an initial algorithm selection, parameter
tuning, and model training, ii) the continuous bridge monitor-
ing, and iii) a re-training phase to adapt the model to slow
modifications of the bridge dynamic.

The first phase, training, begins with an ablation study over
the possible hyper-parameters: the input window dimension,
the tuning of the energy filtering step, the anomaly detection
models parameters, and the post-processing. After the defini-
tion of the parameters, the chosen model is trained with the
normal data of the viaduct.

The second phase, continuous monitoring, exploits the best
solution found during the training to perform a long-term
online detection of the viaduct damages.

The last phase, re-training, involves the update of the
model parameters over time to adapt to the temporal-changing
dynamic of the signal. This step is primary for this kind of
analysis since modal analysis shows that light stresses such
as wind or traffic load cause slow structural modifications,
resulting in slightly different signal dynamics. Further, in SHM
scenarios, false alarms can not be tolerated since they can trig-
ger critical alarms causing a bridge maintenance intervention
with a consequently high cost.

C. Deployment: Sensor Vs. Cloud

Deploying our proposed anomaly detection pipeline (Fig.
3) is not trivial due to problems such as the scalability in
the number of nodes or the lifetime of the nodes. Data
communication costs become critical when multiple streams
must be transmitted to the cloud. At the same time, the limited
memory footprint of tiny edge devices is a major constraint
for on-sensor computing. Therefore, we here discuss three
deployment scenarios of our anomaly detection pipeline on
our SHM system composed of the sensor network installed on
the viaduct and the cloud that augments the system with data
storage and computation capabilities. Specifically, we discuss
the trade-offs of performing the three different phases (i.e.,
training, anomaly detection, and re-training) of our algorithm
either on the cloud or on the nodes, or as a mix of them.
Noteworthy, these reasonings also hold for much bigger SHM
installation of hundreds of nodes, where the scalability issues
and the data storage can be the real bottleneck of the system.

1) Cloud Computing: As shown in Fig. 6-1, transmitting
all the data to the cloud while having no processing in the
sensor network causes i) a high data communication cost,
ii) the necessity of cloud data storage, and iii) a daily cloud
computation of anomalies, alarms, and, less frequently, the iv)
re-training of the model.

The transmission of data to the cloud is the first issue in
this scenario. Although several cost minimization techniques
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Fig. 6. Three deployment scenarios of our anomaly detection pipeline. Green
arrows highlights the inference steps, while red ones the re-training and
updating of the model over time.

such as new communication paradigms [52], [53] or edge
data-reduction [49] have been introduced recently, data com-
munication still represents the highest installation cost over
months in terms of energy. Using one of the most efficient
standard protocol stacks available today, the Narrow Band
Internet of Things (NB-IoT) [54], which has demonstrated
optimal performance in the SHM field, the system consumes
up to 0.94 J for a typical transmission of 500 bytes in the
open space, decreasing the maximum lifetime of the SHM
nodes and thus needing solutions such as energy harvesting
[55] or a wired sensor. Furthermore, the different cloud service
providers such as Amazon, Microsoft, and Google account for
data computation costs as pay-to-go, with the client paying
for the computational time exploited [56], also making the
money invested in this service not negligible. Therefore, a
complete cloud paradigm for anomaly detection causes a
higher maintenance cost and shortens the lifetime of the
SHM nodes, demanding more frequent interventions on the
installation.

2) Sensor Interface with Cloud: Involving sensors in the
computation reduces the anomaly detection pipeline’s costs.
The anomaly detection model is exported to the sensor to
predict the viaduct behaviour, while the model re-training
is still performed in the cloud. Fig 6-2 shows the overall
functionality of this approach. In green, we highlight the
anomaly detection pipeline, while in red, the update of the
model over time. Note that while we can reduce both the traffic

(streaming only data when we decide to start a re-training)
and the cloud computation (only the re-training function is
executed on the cloud), cloud storage and processing cost still
remain an issue for this kind of scenario, making the scalability
an open problem in this kind of approaches.

In our use case, we deploy the anomaly detection pipeline
on the node for this scenario; while keeping the data streaming
to the cloud for algorithm re-training. After the on-cloud
algorithm re-training, the new model is deployed on the nodes.

3) Sensor Computing: To also eliminate the communication
costs for re-training, we propose to move both the computation
of the online anomaly detection and the update of the node’s
model on the sensor. Using this approach, after the initial
training, done one time per SHM installation, no further
computation is required from the cloud. Each SHM installation
can be considered a standalone unit without the need for cloud
communication unless an anomaly is detected. In this scenario,
the scalability is not more a problem since the cloud is only
used to monitor the sensors’ status and initialize them. Fig.
6-3 highlights the steps of this approach.

For our use case, while the porting of the anomaly detector
is trivial, training PCA on a memory-constrained device entails
many challenges, such as storing the covariance matrix in a
memory constraint microcontroller. Further, storing many data
on local nodes is impossible, given the low FLASH memory.
Thus, we employ streaming PCA, previously deployed on a
sensor node in [49], which aims at finding a compression
matrix sequentially to avoid i) storing lots of data at edge and
ii) compute the entire covariance matrix [48]. Compared to
[49], instead of employing the PCA only for data compression,
we use it also to perform anomaly detection at the edge of the
sensor network.

V. EXPERIMENTAL RESULTS: ALGORITHM EXPLORATION

In this section, we mainly focus on analyzing the proposed
framework in Fig. 3. Using grid search over different hyperpa-
rameters and framework elements, we explore the performance
of our pipeline while changing both its blocks (e.g., anomaly
detection techniques) and the block’s parameters (e.g., by
presence or absence of the energy filtering while tuning its
threshold). After, we examine our best detector’s robustness,
artificially changing the severity of the anomaly in the dataset
and correlating severity with algorithm performance. Finally,
we compare the proposed anomaly detectors with state-of-
the-art ones. To be fair, we reproduced the state-of-the-art
algorithms and we applied them to our data using the same
input window dimension and post-processing.

A. Notations & Benchmark
First, we introduce the notations and metrics that we use

to evaluate the different methods and hyperparameters in this
work. We use three metrics for performance assessment:
i) accuracy, the total correctly classified windows

Acc. =
TP + TN

TP + FP + TN + FN

ii) sensitivity, the percentage of correctly detected anomalies

Sens. =
TP

P
=

TP

TP + FN
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TABLE II
PERFORMANCE OF OUR PIPELINE CHANGING ANOMALY DETECTION

ALGORITHM WITH DISCRETE WAVELET TRANSFORM, FREQUENCY AND
TIME DATA AS INPUT SPACE DOMAIN.

Algorithm Domain Acc. Spec. Sens.

PCA Raw 98.8 % 100 % 97.33%
FFT 77.22 % 99.20 % 50.63 %
DWT 84.36 % 96.79 % 74.44 %

FC Autoencoder Raw 68.75 % 99.73 % 44.04 %
FFT 56.02 % 96.54 % 23.61 %
DWT 69.99 % 97.87 % 47.66 %

Conv. Autoencoder Raw 50.6 % 67.2 % 37.1 %
FFT 56.30 % 85.28 % 32.66%
DWT 52.12 % 100 % 13.83 %

iii) specificity, the percentage of correctly classified normal
windows

Spec. =
TN

N
=

TN

FP + TN

Where P are the positives, N the negatives, TP are the
true positives, TN are the true negatives, FP are the false
positives, and FN are the false negatives. Furthermore, we
use Area Under Curve (AUC) to assess the performance of
our models. For our purpose, we consider the ”anomalies”
as positives prior to the intervention, while the negatives
are windows of ”normal” data after the intervention. With
Compression Factor (CF), we point to the ratio between high-
dimensional original space and algorithms reduced data space,
i.e., the projected PCA data and the latent autoencoders data.
Finally, we define input dimension, the length of each non-
overlapping window in the data processing step, and output
dimension, the total time considered after averaging multiple
windows before final classification.

Our test dataset comprises 25 days of continuous monitoring
of the viaduct with 5 sensors described in Sec. III-A. For our
analysis, we consider the central sensor of the chain, which
is most influenced by the viaduct vibration. Note that using a
higher number of sensors does not improve the accuracy in this
case, but it is still feasible. The data are composed of 5 days
before the maintenance intervention, labeled as anomalies, and
20 days after, labeled as normal data. We select as the test
set all the 5 days of anomalies and 5 days of normal data
to have a balanced test dataset. We divided the remaining 15
days of normal data into a validation set (5 days) and the
training set (10 days). Note that anomalies are used neither
in training nor validation datasets, given that all analyses are
unsupervised. The anomalies are used in our results only to
assess the classification accuracy of our approaches.

To the best of our knowledge, considering the viaduct’s
unique condition, this is the first anomaly labeled data from a
real-life viaduct.

B. Model selection & Data domain

Modal analysis is the gold standard used to analyze the
dynamic characteristics of large-scale buildings [57]. On the
other hand, previous studies have demonstrated the feasibility
of using raw time series for anomaly detection [49]. Hence,
both time and frequency domains are promising directions
to analyze. Therefore, we test three anomaly detectors fed

Fig. 7. ROC curve for different input signal domains, i.e., time, frequency,
and time-frequency.

with both frequency and time inputs. We selected PCA and
Autoencoders as detectors given their already demonstrated
success in anomaly detection and, more precisely, on SHM
tasks [58]. We fix the input window dimension to 5 seconds
of accelerometer output samples and the output dimension
to 60 minutes for this comparison. The compression factor
is fixed to 16; therefore, we select the most significant 16
principal components for PCA, while ensuring the innermost
latent dimension of both fully connected and convolutional
autoencoders to have a dimension of 16.

Table II and Fig. 7 report the evaluation results on the three
models using the 10 days of the test set, using both the input
data domains. As previously described, to report accuracy,
sensibility, and specificity, we use a threshold on the output
MSE of µ+ 3×σ. On the other hand, the Receiver Operating
Characteristics (ROC) curve are threshold independents. Using
time-domain input, PCA outperforms both the other two mod-
els reaching 98.8%, 100% and 97.33% of accuracy, specificity,
and sensitivity, respectively, and an approximate 1.00 AUC.
Notice that PCA is the only method to remove all the false
alarms in the system, preventing sending false alarms to bridge
maintainers.

Although the fully connected autoencoder mimics the PCA
model (i.e., with the same matrix multiplications of the PCA
algorithm), it shows a lower performance (' 30% drop of
accuracy) than PCA due to two factors. First, given the small
size of our training set, which negatively affects the data-
driven model’s performance, it reaches an AUC of only 0.970.
Further, the threshold chosen while analyzing only normal data
does not permit high accuracy by favoring the specificity. MSE
achieved by both anomalies and normal data is very near the
test set using frequency domain input data. Therefore, also a
small modification in the threshold can impair the accuracy,
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Fig. 8. The energy filtering step impacts on the PCA output MSE. In the
top panel, we show the MSE when the energy filtering is not applied. In the
bottom panel, we show the improved result with its application.

leading to low sensitivity. Note that we choose this threshold
with statistical consideration on the validation dataset, ensur-
ing a specificity > 99.9% on the validation set, but without
any assumptions on the sensibility. On the other hand, the
convolutional autoencoder does not show promising results,
with a very low sensitivity of 37.1%. This low sensitivity is
probably due to the high number of parameters that overfit the
training dataset, not allowing it to reach the performance of
the other methods.

Comparing frequency and time domains, we first visually
analyze the input data. We notice a slightly different waveform
between anomalies and normal data in the time domain, given
by higher variations in amplitude and lower frequencies in
anomalies. These changes also noticeable in the power spec-
trum, with a slight deviation in the first natural component of
the viaduct. Therefore, we feed our algorithm with either raw
data or FFT of each input window. Since the viaduct’s natural
frequency is relatively low, we cut the frequency spectrum
between 0-25 Hz. Although with the FFT pre-processing, we
can reach high AUCs of 0.925 and 0.889 for our best models,
we see an improvement using time-domain data. Moreover,
our unsupervised threshold training does not allow us to reach
a satisfactory accuracy on frequency data. Even though FFT
shows a slight difference, it is prone to spectrum leakage due
to the measured signal’s non-stationary or non-linearity [59].
To avoid possible spectrum loss, we also evaluate Discrete
Wavelet Transform (DWT) approximation coefficients to rep-
resent different time and frequency resolutions simultaneously.
Thus, we use the DWT coefficients of each 5s window as one
other possible input to our anomaly detectors. DWT results
reveal that we can reach as high AUC as FFT with 0.922
and 0.939 for the superior models in the pipeline. Similarly
to FFT, due to unsupervised threshold training, DWT does
not reach an adequate accuracy, with only 84% and 69.99%
for the former algorithms Table II and Fig. 7 summarize the
time (Raw data), frequency (FFT), and time-frequency (DWT)
results. At the end of this exploration, we select the PCA and
the time domain as best competitors, and we, therefore, use
them in subsequent analysis and in deployment on edge nodes.

C. Hyperparameters exploration

Fig. 9. Effect of input-output dimensions sweep on the performance of the
best detector (PCA).

1) Energy Filtering: In Sec IV, we propose filtering non-
informative windows to train models with only the most
energetic windows, thus removing windows where the viaduct
does not vibrate under the passage of vehicles. Our hypothesis
is that including all the windows leads to higher reconstruction
errors of normal and abnormal data, while the gap between
the two errors is reduced. Fig 8 quantifies this claim, showing
classification with and without the energy filtering block. We
can observe that the PCA is strongly affected if we omit this
filtering step, with a severe drop of specificity/sensitivity (up
to ' 41%). Notably, the PCA’s poor performance is due to the
aforementioned increase of MSE of normal windows, whose
average move from 0.31 to 0.70. This experiment confirms
our initial idea, given that non-energetic windows only contain
white noise, which is not autocorrelated. Thus it is impossible
to compress and reconstruct with PCA, leading to high recon-
struction errors, similar to anomalies. Therefore, adding this
block allows improving the detector performance strongly. The
energy filtering is not only beneficial for accuracy but also for
computation, reducing the total number of processed windows
by ∼ 17% on average, thus reducing the total consumed
energy.

2) Input & Output Dimension Exploration: Fig. 9 shows
the tuning of input and output dimensions, with twenty
different combinations of four input dimensions with five
output dimensions. Input dimension variation is not posi-
tively/negatively correlated with algorithm performance. We
can notice that using 5 seconds (grid search between 1,2,5
and 10 seconds) outperforms the other input dimensions values
from Fig. 9. On the other hand, using smaller windows reduces
the computation and thus the energy consumption of the
algorithm execution, leading to a trade-off between energy
consumption vs. accuracy. We will better study this trade-off
in the following sections.

Contrary to the input dimension, an increase in the output
dimension positively correlates with the framework’s perfor-
mance, resulting in a trade-off in delay vs accuracy. However,
since viaduct structure modifications are slow, having very low
delays is not required. Therefore, we decided to use 60 minutes
of output dimension, which almost saturates performance for
5 seconds windows while having a reasonable delay. Impres-
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Fig. 10. MSE distribution while changing CF parameter

sively, increasing the output dimension to 120 and 240 minutes
provides further better accuracy. However, the choice of the
output dimension, which strongly affects the delay in detecting
the status of an anomaly in the viaduct, is related to the specific
use-case or necessity of the system. For instance, choosing
240 minutes as a dimension leads to the perfect distinction of
anomalies and safe time slots (100% accuracy) but causes a
delay of 4 hours in the notification of the damage alarm.

3) Compression factor: We also explore different compres-
sion factors for PCA to analyze its effect on framework overall
performance. Intuitively, preserving more high-dimensional
space elements does not guarantee enhancement in overall
performance since they can improve the reconstruction of both
normal and abnormal data. For this reason, starting from our
initial value of 16, we further explore CFs = 4, 8, 24, and 32.

Fig. 10 shows the distribution of MSE values of anomalies
and normal data with four values. As expected, a lower
compression factor leads to an overall better reconstruction
of all the data (0.05 - 0.30 MSE with CF = 4), while using
a higher CF (CF = 24) causes a higher reconstruction error
(0.4-0.9 MSE). On the other hand, none of these conditions
implies higher accuracy, given that the critical metric that leads
to high classification accuracy is the gap between the two data
distribution. Exploring the different values, we find that the
original CF value, and similar CF = 16, is the sweet spot in
this trade-off, leading to a reasonable reconstruction of normal
data (0.1-0.4 MSE) and a poor reconstruction of anomalies
(0.4-0.8 MSE). As can be visually noted, the distance between
the means of the two distributions is maximized for CF = 16,
with a value of 0.30. Simultaneously, other CFs, 4, 8, and
24, only present 0.05, 0.09, and 0.21 distances, respectively.
Similar to input data dimension, this parameter affects both
the computation and memory footprint of the algorithm and
will be further explored in the following sections.

D. Synthetic Experiments
Lastly, we artificially generated degradations to monitor

the robustness of the best-trained detector,i.e., PCA. To inject

Fig. 11. Performance of the PCA classifier while sweeping over several
severities of anomalies w.r.t real case scenario of the bridge.

TABLE III
COMPARISON OF OUR PROPOSED SOLUTION WITH STATE-OF-THE-ART

METHODS APPLIED TO OUR DATASET. THE 60 MINUTES POST-PROCESSING
IS IDENTICALLY APPLIED TO ALL METHODS.

Method Acc. Spec. Sens.
State-of-the-art algorithms
FFT + peaks detection [21] 67.79 % 99.2% 43.09 %
MGD [23] 59.48 % 95.66% 10.25 %
AR features + MSD [60] 58.43 % 85.90% 36.82%
AR features + L1 81.11 % 88.49% 71.80%
Our Work
Raw + PCA 98.80% 100% 97.33%
DWT + FC Autoencoders 69.99% 97.87 % 47.66%
FFT + 1D-CNN Autoencoders 56.30% 85.28% 32.66%

different sets of anomalies, we modified the distance between
the two peaks of normal and anomaly in spectrum density and
transformed them back to the time domain. We take each 15
minutes of the dataset, process with FFT, and gradually close
the two peaks of first natural frequency between anomalies
and normal data between 0 to 200% of the actual distance in
the dataset. Note that 100% corresponds to the original real-
life anomaly. Finally, we transform back the data to the time
domain prior and use these new data to test the algorithm.
Reducing the gap between the two peaks allows producing
data more similar to normal data, implying a harder task
for the detector. Fig 11 shows the result of this experiment.
Reducing the distance to lower than 75% of the original
distance causes the detector to reduce its sensitivity, starting
to classify anomalies as normal cases. Note that specificity is
constant since the anomaly threshold does not change, given
that it is computed only with unmodified normal data.

E. Model Comparison

In this section, we compare our anomaly detectors with
methods presented in Sec II. To do this, we reproduce the
pipeline shown in Fig.3, substituting the anomaly detection
algorithm with the state-of-the-art ones but keeping unchanged
the pre-processing and post-processing steps. We compare the
PCA with four other statistical-based approaches based on fre-
quency peak detection [21], Multivariate Gaussian Distribution
[23], and AutoRegressive models [60]. We do not add to the
comparison any supervised deep learning methods since they
require labels for normal and anomaly cases which are not
available at training time in normal SHM use-cases. Table III
showcases the comparison in terms of accuracy, specificity,
and sensitivity.
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The literature about anomaly detection in SHM shows that
autoregressive moving average (ARMA) residuals are damage-
sensitive features of structures [60], [61]. Entezami et al. [14]
propose a novel approach to extract these features for big data
(GBs). We reproduced their approach on our data, training two
different statistical distances, L1 distance and Mahalanobis
Square Distance (MSD), to distinguish the normal and anoma-
lous data. Table III shows that L1 achieves an overall better ac-
curacy (+22.78%) than Mahalanobis Square Distance (MSD).
Santos et al. [21] propose to extract frequency information
from the signal and perform the classification based on the
position of the main peak of the spectrum. However, in our
use case, this method achieves an accuracy of only 67.79%.
This result further proves that frequency features are not
suitable to distinguish safe and anomalous time windows on
our dataset. Finally, we investigated a recent study that targets
edge computing [23], exploiting seven statistical features, (i.e.,
mean, mean square, variance, standard deviation skewness,
kurtosis, and crest factor) together with a multivariate Gaussian
model to predict anomalies in vibrating systems. However, also
this method fails in our use-case, with a drop in accuracy to
≈ 60%.

In a nutshell, the results in Table III show that correlation
and autocorrelation of 1-D vibrations are promising solutions
(exploited by both PCA and AR models) to detect anomalies
in viaducts.

VI. EXPERIMENTAL RESULTS: PIPELINE DEPLOYMENT

This section will analyze several deployments of the best
algorithm found in the performance analysis, namely, the
PCA, on the processing unit introduced in Sec. III-B, the
STM32L476VGTx. All pipeline steps, including data process-
ing, signal reconstruction, and anomaly detection, have been
deployed using optimized C code and FreeRTOS operating
system. Initially, we tuned the CF of PCA with multiple input
dimensions against memory constraints to realize the utmost
limit of PCA deployment with a floating-point compression
matrix. We further address each case’s energy consumption
and execution time to report each case’s pros and cons. We
then fix CF for the best performance and perform interference
with MCU to compare its performance with the offline version.
Finally, we present a comparison of the best solutions to show
the pros and cons of the three scenarios discussed in Sec IV.

A. CF tuning Vs. Metric Figures

Starting from the accuracy results shown in Sec. V, we
extensively explore the trade-off between accuracy, memory,
and energy consumption by modifying both the CF and the
input dimension, with a fixed output dimension of 60 minutes.
We show the results of our exploration in Fig.12. As previously
mentioned, CF = 16 results in the best accuracy, with 67.34%,
76.29% , 98.82% and 97.33% for input dimensions of 1, 2
,5 and 10 seconds, respectively. Despite the higher accuracy
of CF = 16, increasing the CF allows reducing both the
memory footprint and energy consumption. For instance, from
the first graph of Fig.12, we can notice that using CF =
24 with a window of 5 seconds still allows us to reach an

TABLE IV
DEPLOYMENT METRICS OF PCA ALGORITHM WITH CF = 16, OUTPUT

DIMENSION = 60 MINUTES, AND VARIABLE INPUT DIMENSION. TIME AND
ENERGY ARE ONLY FOR ONE INFERENCE.

Input dim. FLASH [kB] RAM [kB] Time [ms] Energy [uJ]
1 32.82 11.12 0.754 3.35
2 40.63 19.95 1.568 12.9295
5 91.04 77.55 6.428 73.96
10 276.54 Overflow - -

acceptable accuracy of 92.97%. Contrary, using a lower CF
causes i) higher energy, ii) higher memory consumption, and
iii) lower accuracy, totally excluding these CF values from
the trade-off choice. Therefore, We fix the search space to CF
∈ [16, 32]. We also remove the 10 seconds input dimension
since its compression matrix does not fit the small 96 kB RAM
(dotted line in the second graph of Fig.12). In this region, we
found that the only points that reach an accuracy > 80% are
achieved for CF = 16 or CF = 24 and input dimension =
5 seconds. Target application and deployment scenarios can
choose the best trade-off between former parameters. Given
our pipeline, we found that the largest model that fits the MCU
memory is the one with CF = 16 and an input dimension of
5 seconds, achieving 98.82% accuracy with a 73.96uJ energy
consumption per inference.

Table IV underlines memory footprint, latency, and energy
consumption with a fixed CF of 16 and different input dimen-
sions. Since increasing input dimension corresponds to a more
extensive PCA compression matrix, a higher input dimension
requires more FLASH space (e.g., 91.04 kB for 5 seconds). Al-
though the compression matrix is not a problem (roughly 10%
of total FLASH for 5 seconds), the reconstruction procedures
occupy up to 77.55 kB (81 %) of RAM for 5 seconds. Such a
high usage area puts a solid constraint for embedding the PCA
for larger input dimensions, given the option to run other tasks
for data gathering. Despite the optimal solution obtained with
5 seconds, reducing the input dimension to 1 second allows us
to maintain accuracy of 67.34%, with a reduction of latency of
8.5× and 9.5× lower energy consumption. While the former
factor brings no obstacle to the system due to the sampling
rate (100 Hz), the latter causes a shorter node lifetime, creating
a trade-off between accuracy vs. energy consumption.

B. Cloud vs. Node costs
Narrowband IoT (NB-IoT) is a recent protocol standardized

by 3GPP for Low Power Wide Area, an extension of LTE (4G
Long Term Evolution) designed for long battery and low-cost
applications where it can virtually work everywhere [62].

NB-IoT consumes more energy per payload packet than
other similar technologies. However, since it has no limitation
on the number of bytes sent in a single connection to the cell,
it is a prominent transmission protocol in the LPWAN category
[62]. NB-IoT deployment of nationally-licensed connectivity
(e.g., LTE bands) implies no band usage limitation and no
latency for streaming acquired data to the cloud. Since in the
SHM field, the streaming of data need not to be continuous,
and data can be grouped in big batches and sent with a single
connection to the cloud, NB-IoT can be an ideal communi-
cation option for SHM systems. Therefore, we use NB-IoT
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Fig. 12. CF tuning versus accuracy, memory, and energy. Horizontal red line points to the limit of MCU memory. Dotted lines represent not deployable
solutions.

TABLE V
NB-IOT DEPLOYMENT COST FOR THE SCENARIOS OF OUR PIPELINE

Esleep = 390 (MJ) IS THE ENERGY CONSUMPTION OF THE NODE IN PSM.
Eacq = 52.596 (MJ) IS THE ENERGY CONSUMPTION TO ACQUIRE 1 SECOND OF DATA

Scenario Network Traffic (B/H) NB-IoT E. [J] (1h) Node Comp. E. [J] (1h) Gathering E. [J] (1h)
Inference
Cloud Computation 780 kB 248.85 + Esleep 1.208 62.4
Sens. Inference + Cloud Train 3 B 0.7130 + Esleep 0.005 62.4
Sensor Computation 3B 0.7130 + Esleep 0.005 62.4
Train
Cloud Computation 780 kB 248.85 + Esleep 1.208 62.4
Sens. Inference + Cloud Train 780 kB 248.85 + Esleep 1.208 62.4
Sensor Computation 0 B Esleep 0.00162 62.4

to gauge the benefits of the different scenarios introduced in
[52].

Fig. 6 shows all the options for training and inference. The
cloud-based method continuously streamlines the data to the
cloud for both the training and detection phases. In contrast,
sensor computation only reports the structure’s status to the
cloud on an hourly basis. We want to quantify each of these
scenarios regarding energy consumption and transition costs
to develop a scalable solution for SHM applications.

Tab. IV reports the deployment results of model inference at
the node. The best solution in terms of accuracy, i.e., the PCA
with 5 seconds input window dimension, consumes 73.96 uJ.
Exploiting a smaller input window dimension, i.e., 1 second,
only consumes 3.35 uJ. Although smaller input windows are
3× more energy efficient, the degradation in terms of accuracy
compared to bigger ones is too critical. Furthermore, compared
to the cloud paradigm analysis presented in table V, the energy
consumption of the processing unit is negligible. With this in
mind, energy consumption is the only counter effect of larger
input dimensions, while other factors like memory footprint
and execution time are satisfied. Hence, we keep 5 seconds
input dimensions to preserve the performance.

The node installed on the viaduct works with an output
sampling rate of 100 Hz; thus, it generates 100 16-bits samples
per second. Therefore, the node generates 200 Bytes per
second, leading to 720KB per hour. To estimate this node’s
energy consumption with the NB-IoT protocol, we use the
estimations provided in [52], where diversity in the payload
for each packet affects the power consumption of the node.
We decided to use a payload of 1300 B for this experiment.
This selection of payload can send 650 (1300/2) samples per
packet. Hence, we need 554 packets to transmit 720Kb of
hourly data. Notice that we send one hour of acquired data
all at the same time to leave NB-IoT in the power sleep

mode (PSM) for most of the time, reducing the total power
consumption. However, storing an hour of data further adds
a cost of storage (≈ 1J/h) to an off-chip memory (e.g., a
micro SD card). Table V summarizes the energy consumption
regarding different sections of both the training and inference
part. It shows that exploiting the full deployment of the cloud
computing approach consumes 312.848 J/h where it reduces to
63.508 J/h for the localized sensor deployment of our pipeline.
An approximate 5× drop of energy consumption for the latter
case is due to the low traffic load transmitted to the cloud.

On the other hand, if we bring all the computation to the
node where the node only sends structure’s status to the cloud,
we can reduce the traffic of the system to only 3B (i.e.,
”OK” or ”NOK”). Given the small number of generated data
by the node, for this case, we can tune the payload of the
NB-IoT module to only 10 Bytes (smallest possible number)
for each packet. Then, we only transmit one packet to the
cloud leading to less than 1 J energy consumption. Although
our solution reduces transmission cost to the cloud, allowing
scalable solutions for large-scale structures, it consumes a
high energy rate at the node. Table V also reports different
sides of transmission vs. node energy consumption trade-
off for both training and inference phases. The high traffic
rate during inference (∼ 780 kB/hour) for a complete cloud-
based approach prohibits its utilization for large-scale SHM
scenarios. Contrary, our solution reduces the traffic of only
10B/h to the cloud is extendable to large-scale systems. On the
other hand the node computation energy is always negligible
compared to the energy required to gather the acceleration
data, thanks to i) the initial energy-filtering of the windows
and ii) the lightweight algorithm employed (PCA).
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VII. CONCLUSION

This work proposes an efficient damage detection solution
at the edge, simultaneously reducing network traffic and
energy consumption, while anomaly detection accuracy is
not adversely altered compared to cloud-based systems. First,
we propose a new damage detection pipeline, comprising
a pre-processing step, an anomaly detection algorithm, and
a postprocessing step. Comparing PCA, and two different
autoencoders, we show that PCA outperforms the other two
methods by approximately 30% and 48%, on our SHM dataset
collected on a real-standing Italian bridge. We show that by
tuning hyperparameters of our pipeline, we further improve
the accuracy in the detection of anomalies by 20%.

Additionally, we demonstrate the embedding of our tuned
pipeline on a tiny low power device, moving the damage de-
tection to the edge of the network. By doing so, we reduce the
data traffic by a factor of ≈ 8 ·105×, from 780 KBytes/hour to
10 Bytes/hour, compared to a cloud-based anomaly detection
solution. Further, we reduce the power computation for the
node by 5×.
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