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Abstract

At �rst glance, the two topics addressed in each Part of the present PhD thesis may
seem orthogonal: indeed, generative models and linear response theory appear to have
little overlap. However, many interesting research topic are linked by common themes
after a deep analysis. In the present case, the central narrative thread revolves around
Nonequilibrium Statistical Physics. The �rst fundamental tool from that �eld that has
been used in the present work is Jarzynski identity (C. Jarzynski, 1997); it provides a
connection between microscale and macroscale, relating microscopic work along tra-
jectories and free energy, respectively. On the other hand, Onsager reciprocal relations
(ORR) represent a milestone in that area (L. Onsager, 1931): they serve as a bridge
between a microscopic property (time reversal symmetry) and a macroscopic one (re-
sponse tensors).
In the �rst Part, we show how recent theoretical results in Statistical Physics can
be very instrumental in state-of-the-art applications; generative model represent a
substantial research challenge since they are already used in everyday life, even if
we are far from having a complete theoretical picture about them. In a nutshell,
we propose a novel training algorithm for Energy-Based Models (EBMs), which is a
class of di�usion generative models strongly inspired by Statistical Physics, namely by
Boltzmann-Gibbs ensemble; in light of this relation, a key strength of EBMs compared
to other models is their interpretability. Standard procedures, such as those based on
Constrastive Divergence, heavily relies on approximations of the real loss objective al-
ready in an ideal setup. Because of that, the practical implementation of such methods
usually requires a lot of empirical tricks, often not theoretically justi�ed. In contrast,
our proposal is exact; furthermore, no extra bias is introduced by discretization in
time and the algorithm provides for free additional information on the trained EBM
(i.e. the normalization constant of the trained probabilistic model). Our contribution
is based on Jarzynski identity in continuous time and Annealed Importance Sampling
in discrete time.
To provide insights into the structure, this section is organized into four chapters.
The �rst chapter o�ers a historical introduction to generative models, focusing on
Energy-Based Models (EBMs) in relation to Statistical Physics and Data Science.
The second chapter covers essential technical preliminaries necessary for contextual-
izing our work. This includes de�ning EBMs and exploring their purpose, as well
as their relationship with other state-of-the-art generative models such as Variational
Auto-Encoders, Generative Adversarial Networks, Di�usion-Based Models, and Nor-
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malizing Flows. We aim for a unifying approach to highlight similarities and di�erences
between these unsupervised models. The third chapter delves into the relationship be-
tween EBMs and the sampling problem. Given that EBM training relies on the ability
to sample from a Boltzmann-Gibbs ensemble, we discuss key sampling routines such
as the Metropolis-Hastings Algorithm, Unadjusted Langevin Algorithms (ULA), and
Metropolis Adjusted Langevin Algorithms (MALA). In the �nal section, we empha-
size the connection between EBMs and Statistical Physics. This serves to justify the
adoption of the Boltzmann-Gibbs ensemble and provides important context for utiliz-
ing the Jarzynski identity in the main result of this thesis.
The third chapter contains the main novel theoretical result we propose about EBM
training. The core idea is the use of nonequilibrium sampling, that is sequential Monte
Carlo in discrete time, to e�ciently compute the gradient of cross-entropy. Such quan-
tity is necessary to perform KL divergence minimization, or equivalently maximization
of log-likelihood, which is the standard approach in statistical learning. We present
continuous and discrete time versions of our algorithm, as well as algorithmic aspects
having particular relevancy in practical applications. In the last chapter we present
experimental result to validate our theoretical �ndings; we investigate our training rou-
tine as opposed to standard procedures like Contrastive Divergence (CD) algorithm.
We show as already for Gaussian Mixture Model, our proposal evidently outperforms
CD. Similar results are obtained for real image datasets as MNIST and CIFAR-10.
In the second Part, we show that established theoretical �ndings in Statistical Physics
can be still object of re�nements. ORRs basically provide information on the structure
response tensors; the main request for such relations to hold is canonical time reversal
symmetry, i.e. the invariance of the equations of motion under the inversion of veloc-
ities. Our work demonstrates how we can relax this condition by expanding upon the
de�nition of time reversal symmetry. This expansion enables us to prove that the set
of symmetries leading to time reversal invariance is broader. The experimental validity
of ORRs has been proven in many contexts where canonical time reversal seems to
not hold. Thus, our result contributes to explain some of these examples. Regarding
the organization of the treatment, we present the two published papers on the topic,
being the second a substantial extension of the �rst preliminary work.
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Chapter 1

Introduction

1.1 Generative models

The problem of description of data through a mathematical model is very old, being
the basis of scienti�c method. The set of measurements use to ful�ll the role that
contemporary data scientists now refer to as a dataset. Presently, the model can take
the form of an exceedingly complex neural network, but the underlying extrapolation
remains akin to P.S. Laplace's famous deterministic statement1: "An intellect which
at a certain moment would know all forces [data] that set nature in motion [...] would
be uncertain and the future just like the past could be present before its eyes". One
can easily extend this reasoning, asserting that the more data one possesses, the more
robust and detailed the model that can be constructed atop them. This leads to en-
hanced predictions and greater stability concerning unforeseen behaviors.
This line of thought was boosted in the previous century with the advent of automatic
calculators, and the velocity of development becomes astounding. For instance, con-
sider the remarkable computational power di�erence between your smartphone and
the computer used for the Apollo program by NASA in the 1960s2. Hence, the quest
for data has become an indispensable aspect of contemporary science.
To delve deeper into this issue, let us construct a historical metaphor. One of the
early modern achievements in observational astronomy is Kepler's laws. The genesis
of such results is deeply rooted in a vast collection of observational data amassed by
T. Brahe3. Kepler's formulation was, in fact, motivated by the necessity to explain
these astronomical measurements. In a simpli�ed analogy, we observe the dichotomy
between the "model," embodied by Kepler, and the "dataset," represented in this
narrative by Brahe. Since the 17th century, these two actors have played equally fun-
damental roles in the advancement of science, taking turns on the stage with the same
importance. Consider, for instance, the pivotal role played by Faraday's experiments

1Pierre-Simon Laplace. A philosophical essay on probabilities. Courier Corporation, 2012.
2
url: https://www.linkedin.com/pulse/smartphone-today-has-more-computing-power-than-

nasas-1960-offermann
3
url: https://www.britannica.com/science/history-of-science/Tycho-Kepler-and-Galileo
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in understanding electromagnetism4, long before Maxwell's laws. Or, conversely, the
impact of theory of Relativity5 way before its experimental con�rmation.
In recent years, particularly during the 2000s, we have witnessed a profound paradigm
shift represented by the Big Data Era6. Thanks to the aforementioned technologi-
cal advancements in computer science, the volume of generated scienti�c (and not)
data has dramatically increased, resulting from advancements in simulation and stor-
age capabilities. Furthermore, there has been a growing collection of data on human
activities, including images, text, sounds, and more.
Returning to the historical analogy, it is akin to Brahe suddenly providing Kepler with
a thousand times the amount of data that the latter was accustomed to. This shift
posed a methodological problem in what we now refer to as data science, and this is
where the machine learning approach came into play7. The models required to process
Big Data had already been theoretically studied since the invention of the perceptron8.
Their application was constrained by computational power in the last century, but, as
a peculiar example of convergent development, they became the primary tools in the
toolbox of data scientists in the 2000s, simultaneously to the appearance of Big Data
on the stage.
There is indeed a discontinuity that deserves more attention: the increasing collection
of data generated by humans. The term Big Data is sometimes limited to images,
sounds, videos, text, and metadata resulting from human activities, not just on the
internet. Unlike scienti�c measurements, having access to an extensive quantity of
information produced by humans opened Pandora's box, prompting the natural ques-
tion: can we build arti�cial intelligence by leveraging Big Data? In other words, can
we construct a machine capable of generating data as humans do, by training it in
some smart way? Data here is to be understood in a broad sense, encompassing new
theorems, art pieces, images, videos, and even novels.
Generative models represent, in this sense, the most recent breakthrough in techno-
logical advancement towards intelligent-like machines. It is complicated to provide
a general de�nition, and there are already many available from di�erent sources9,10.
However, if we informally focus on those already known to the general public, such as
Generative Pre-Trained Transformers (GPT)11, the common traits of most de�nitions
are few. Firstly, generative models require a substantial amount of data for training, in

4Jim Al-Khalili. The birth of the electric machines: a commentary on Faraday (1832)`Experi-
mental researches in electricity'. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 373: 20140208, 2015.

5
url: https : / / www . britannica . com / science / relativity / Intellectual - and - cultural -

impact-of-relativity
6
url: https://medium.com/swlh/big-data-era-84b488491a8d

7Alexander L Fradkov. Early history of machine learning. IFAC-PapersOnLine, 53: 1385�1390,
2020.

8Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5: 115�133, 1943.

9
url: https://www.techtarget.com/searchenterpriseai/definition/generative-modeling#:

~ : text = Generative % 20modeling % 20is % 20the % 20use , can % 20be % 20calculated % 20from %

20observations.
10
url: https://www.nvidia.com/en-us/glossary/generative-ai/

11
url: https://www.nytimes.com/2022/12/10/technology/ai-chat-bot-chatgpt.html

https://www.britannica.com/science/relativity/Intellectual-and-cultural-impact-of-relativity
https://www.britannica.com/science/relativity/Intellectual-and-cultural-impact-of-relativity
https://medium.com/swlh/big-data-era-84b488491a8d
https://www.techtarget.com/searchenterpriseai/definition/generative-modeling#:~:text=Generative%20modeling%20is%20the%20use,can%20be%20calculated%20from%20observations.
https://www.techtarget.com/searchenterpriseai/definition/generative-modeling#:~:text=Generative%20modeling%20is%20the%20use,can%20be%20calculated%20from%20observations.
https://www.techtarget.com/searchenterpriseai/definition/generative-modeling#:~:text=Generative%20modeling%20is%20the%20use,can%20be%20calculated%20from%20observations.
https://www.nvidia.com/en-us/glossary/generative-ai/
https://www.nytimes.com/2022/12/10/technology/ai-chat-bot-chatgpt.html
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addition to the selection of a precise architecture, which goes far beyond the original
perceptron. Secondly, the training is probably not biologically inspired, i.e., we do
not learn through backpropagation12, which is the most commonly used training tech-
nique in machine learning. For completeness, it is worth noting that this thesis is still
debated in neuroscience13. Thirdly, a generative model is not necessarily informative
about the data distribution; for instance, ChatGPT could achieve astounding results
in text generation, but the training machine does not provide knowledge about some
general features of text generated by humans.
Returning to the historical metaphor: nowadays, we are able to build "BraheGPT,"
which can generate and gather new plausible measurements about the orbits of plan-
ets in unobserved planetary systems after training on observed data from the solar
system. However, it is not Kepler; deductive reasoning is not necessary to generate
new data instances, although it remains fundamental to understanding the world. Von
Neumann would certainly adapt his famous statement14 about over�tting to modern
data science, cautioning against the ability to generate examples without a general
picture.
Prominent data scientists, such as Yann LeCun, have recently emphasized that the
use of interpretable generative models is crucial for achieving a "uni�ed world model
for AI capable of planning"15. This thesis becomes imperative in the realm of compu-
tational sciences, where qualitative generation alone is insu�cient as a benchmark to
evaluate model performance. In sectors like Molecular Dynamics, Biochemistry, and
similar �elds, the model must convey substantial information about the dataset. The
generative models that excel in terms of interpretability, which form the main focus of
the present work, are precisely the Energy-Based Models (EBMs). These models o�er
a unique advantage in their ability to provide insights into the underlying mechanisms
of the data they generate. In areas such as Molecular Dynamics and Biochemistry,
where understanding the intricate relationships within the dataset is crucial, the in-
terpretability of EBMs stands out.
In adopting EBMs, researchers and practitioners gain not only the capacity to gen-
erate high-quality data but also a clearer understanding of the factors in�uencing
the generated outputs. This interpretability is indispensable in domains where the
model's ability to convey meaningful information about the dataset is paramount. As
the pursuit of a uni�ed world model for AI continues, the emphasis on interpretable
generative models, particularly EBMs, plays a pivotal role in bridging the gap between
data generation and comprehensive understanding.

12Stephen Grossberg. Competitive learning: From interactive activation to adaptive resonance.
Cognitive science, 11: 23�63, 1987.
13Timothy P Lillicrap et al. Backpropagation and the brain. Nature Reviews Neuroscience, 21:

335�346, 2020.
14Freeman Dyson et al. A meeting with Enrico Fermi. Nature, 427: 297�297, 2004.
15
url: https://www.zdnet.com/article/metas-ai-luminary-lecun-explores-deep-learnings-

energy-frontier/

https://www.zdnet.com/article/metas-ai-luminary-lecun-explores-deep-learnings-energy-frontier/
https://www.zdnet.com/article/metas-ai-luminary-lecun-explores-deep-learnings-energy-frontier/
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1.2 A long story: from Boltzmann-Gibbs ensemble

to the advent of EBMs

After providing a historical overview of generative models, this section is dedicated to
exploring the origin and development of Energy-Based Models (EBMs). As we delve
into this discussion, it becomes evident that the theoretical foundation of such genera-
tive models exists under di�erent names at the intersection of various �elds, including
statistical physics, probability theory, computer science, and sampling, among others.
In this section, we emphasize a historical perspective to shed light on the evolutionary
trajectory of EBMs. While we touch upon the overarching theories, more in-depth
theoretical discussions are reserved for subsequent chapters. We believe that this re-
view serves as a valuable resource for readers across diverse �elds enabling them to
construct a comprehensive understanding of what constitutes an Energy-Based Model
by tracing the genesis of this topic.
The �rst ingredient of the story is the Boltzmann-Gibbs measure, a fundamental con-
cept in statistical mechanics, and has its origins in the works of Ludwig Boltzmann and
Josiah Willard Gibbs during the late 19th century. These two in�uential physicists
independently contributed to the development of statistical mechanics, providing a
bridge between the microscopic behavior of particles and macroscopic thermodynamic
properties.
Ludwig Boltzmann made signi�cant strides in understanding the statistical nature of
gases, introducing what is now known as the Boltzmann distribution16. Boltzmann's
statistical approach, which related the statistical weight of di�erent microscopic con-
�gurations to their entropy, laid the groundwork for the probabilistic description of
thermodynamic systems.
Josiah Willard Gibbs, in parallel with Boltzmann, extended these ideas to develop the
canonical ensemble, introducing what is commonly referred to as the Gibbs measure17.
He provides a mathematical framework for calculating thermodynamic properties
based on the statistical distribution of particles in a given system. The Boltzmann-
Gibbs measure, which emerged from the synthesis of these ideas, describes the prob-
ability distribution of particles in di�erent energy states at thermal equilibrium at
temperature T . It has become a cornerstone of statistical mechanics, applicable to
diverse physical systems, including gases, liquids, and solids. We informally recall its
de�nition: given the state of the system x ∈ Ω, where Ω is the so-called phase space,
and an energy function U : Ω → R+, we can express the associated probability density
function

ρ(x) ∝ e−βU(x) (1.2.1)

where β = 1/kBT , kB being the Boltzmann constant. A detailed mathematical de-
scription will be provided in the next chapters.

16Ludwig Boltzmann. Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten
materiellen Punkten [Studies on the balance of living force between moving material points]. Wiener
Berichte, 58: 517�560, 1868.
17Josiah Willard Gibbs. Elementary principles in statistical mechanics: developed with especial

reference to the rational foundations of thermodynamics. C. Scribner's sons, 1902.
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The analysis of the impact of Boltzmann-Gibbs ensemble on physics would require a
full monography per se; for the sake of the present work, we directly advance to 1924,
when E. Ising presented his PhD thesis18. The so called Ising model is a fundamental
mathematical model in statistical mechanics. It serves as a simpli�ed yet powerful rep-
resentation of magnetic systems, particularly in understanding the behavior of spins
in a lattice Λ � for simplicity, we can imagine a graph with N nodes. In the Ising
model, each lattice site is associated with a magnetic spin, which can take two possible
values, usually denoted as "up" or "down", that is Ω = {−1, 1}N . The interactions
between spins are typically modeled using a simple energy function, namely

UIs(x) = −
∑
⟨ij⟩

Jijxixj − µ
∑
j

hjxj (1.2.2)

Let us brie�y clarify the notation: i, j ∈ Λ are indexes of sites in the lattice; ⟨ij⟩
indicates that the sum is restricted to �rst neighbours and Jij is the strength of the
interaction. The �eld hi instead individually acts on each site and µ is just a constant
that traditionally corresponds to magnetic moment. In laymen terms, each magnetic
spin interacts with its �rst neighbours and with an external �eld. The alignment of
spins is encouraged.
In considering (1.2.1) as associated to UIs, the primary focus is often on the behavior
of the system as a function of temperature. In a nutshell, at high temperatures,
thermal �uctuations dominate, and the system exhibits no long-range order. As the
temperature decreases, there is a critical point at which the system undergoes a phase
transition, leading to spontaneous magnetization and the emergence of long-range
order.
For some decades the interest for Ising model and its extensions was con�ned to
physics. The motivation for invoking such a model in the present work is the following:
in the 80s a fundamental connection between Ising model and data science manifested
through Hop�eld networks19 and Boltzmann machines20. Both can be viewed as an
Ising lattice where interactions are not con�ned to �rst neighbors. Apart from the
initial summation, which, for the former, extends to ∀i, j ∈ Λ rather than just ⟨ij⟩,
the energy function bears resemblance to (1.2.2). From a statistical physics standpoint,
the distinction between a Hop�eld network and Boltzmann machines lies solely in the
temperature value.
The purpose of the former is pattern recognition and associative memory tasks. A
distinctive feature of Hop�eld networks is their pro�ciency in storing and retrieving
patterns through symmetric connections between neurons, that is Ising sites, in the
network. In practice, when provided with a set of network con�gurations yλ ∈ Ω
representing patterns, denoted by λ = 1, . . . , n, one constructs the coupling J as

18
url: https://www.hs-augsburg.de/~harsch/anglica/Chronology/20thC/Ising/isi_fm00.html

19John J Hop�eld. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79: 2554�2558, 1982.
20David H Ackley, Geo�rey E Hinton, and Terrence J Sejnowski. A learning algorithm for Boltz-

mann machines. Cognitive science, 9: 147�169, 1985.

https://www.hs-augsburg.de/~harsch/anglica/Chronology/20thC/Ising/isi_fm00.html
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follows:

Jij =
1

n

n∑
λ=1

yλi y
λ
j (1.2.3)

This involves employing the Hebbian rule21 "neurons wire together if they �re together"22,
but further speci�cations23 are available. This phase is commonly referred to as the
training of the network. Subsequently, one can de�ne a retrieval iterative dynamics
starting from any con�guration xk=0 ∈ Ω, as exempli�ed by the equation:

xk+1 = sgn(Jxk + h) k ∈ N (1.2.4)

Here, J represents the coupling matrix de�ned element-wise in (1.2.3), and h is a bias
vector that in�uences the preferences for 'up' or 'down'. It is noteworthy that in a
Hop�eld network, there is no use of the Boltzmann-Gibbs ensemble; the objective is
to construct a dynamical system with prescribed attractors, which are the minima of
U(x) by design.
Boltzmann Machines share the same structure and energy function but the goal ex-
tends beyond the mere retrieval of patterns; it is to model their overall distribution.
To illustrate this concept, consider a �nite set of n natural images of cats and dogs. A
meticulously designed Hop�eld Network could perfectly retrieve any of these examples.
On the contrary, a trained Boltzmann Machine aspires to generate new instances of
cats and dogs, capturing, in a sense, the distribution of such images. The objective
appears to be on a di�erent level of di�culty: although possibly big, the cardinality
of the set of patterns is �nite; the number of possible variations of cats and dogs is
not. Thus, one can immediately guess why the training and generation phases (n.b.
it is no more just a retrieval) are completely di�erent w.r.t. Hop�eld Networks. The
take home message is the hypothesis that the distribution of the given patterns can
be described by a Boltzmann-Gibbs ensemble associated to the energy of the Hop�eld
Network at temperature T .
It is convenient to consider Boltzmann Machines as a speci�c instance of Energy-Based
Models, a term introduced by Hinton et al.24, to describe both training and genera-
tion phases. EBMs di�er from Boltzmann Machines in the use of a generic parametric
energy Uθ(x) instead of the usual choice made for the latter. Here, θ ∈ Θ needs to be
selected and trained so that the Boltzmann-Gibbs ensemble ρθ associated with Uθ(x)
"�ts well" the distribution of the given patterns, which we refer to as ρ∗. After training
the EBM, the generative phase involves sampling equilibrium con�gurations from ρθ.
Speci�cally, a Boltzmann Machine corresponds to an EBM with the choice of U(x) as
the energy of a Hop�eld Network and θ = J .
21Donald O Hebb. Organization of behavior. new york: Wiley. J. Clin. Psychol , 6: 335�307,

1949.
22Siegrid Löwel and Wolf Singer. Selection of intrinsic horizontal connections in the visual cortex

by correlated neuronal activity. Science, 255: 209�212, 1992.
23Amos Storkey. �Increasing the capacity of a hop�eld network without sacri�cing functionality�

in: Arti�cial Neural Networks�ICANN'97: 7th International Conference Lausanne, Switzerland,
October 8�10, 1997 Proceeedings 7. Springer 1997. 451�456
24Yee Whye Teh et al. Energy-based models for sparse overcomplete representations. Journal of

Machine Learning Research, 4: 1235�1260, 2003.
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Despite their conceptual simplicity, both training and generation represent fundamen-
tal open problems that intersect multiple research �elds. In essence, sampling from
a Boltzmann-Gibbs ensemble is a challenging task in general, and unfortunately, it
is necessary even during the training phase. For this reason, the use of Boltzmann
Machines was limited to toy models until the proposal of the Contrastive Divergence
algorithm by Hinton25.
This procedure, along with its generalizations, made it possible to apply EBMs to
practical problems. Moreover, thanks to the adoption of a deep neural network26

as Uθ, the interest towards this class of generative models critically increased and in
2010s the use of EBMs for state-of-the-art tasks became standard. However, all that
glitters is not gold. Despite its success in generating high-quality individual samples,
the use of Contrastive Divergence is known to be biased. For instance, it could happen
that individual images are correctly generated, but ensemble properties as the relative
proportion of the two species is incorrect. Although Hinton et al. originally claimed
that this bias is generally small27, numerous counterexamples have been shown in the
more than 20 years since their original paper. The absence of novel paradigm shifts,
coupled with the rise of alternative generative models (e.g., di�usion-based ones28),
has reduced attention on EBMs and consequently on Boltzmann Machines.
In order to put a tile in the opposite direction, we will present an alternative proposal
for EBM training. Our proposal is based on the interpretation of the training as the
evolution of a physical particle system out of equilibrium. The organization of the
work will be the following:

� Preliminaries. A section in which we present the general problem of EBM
training and its relation with other state-of-the-art generative models. Moreover,
we highlight the connection of EBM with Boltzmann-Gibbs ensemble, in relation
to the problem of sampling as well as to its foundational aspects in Statistical
Physics.

� E�cient Training of EBMs using Jarzynski equality. A section devoted
to the theoretical part of our novel proposal. Firstly, our training proposal in
continuous time is presented together with a physical interpretation. Then, the
subsequent discrete time version is de�ned. The chapter is concluded with the
notable theoretical example of Gaussian Mixture Model.

� Practical Implementation and Numerics. A section devoted to numerical
aspects and experimental simulations. Firstly, the needs for resampling is dis-
cussed and analyzed. Then, simulations are presented both on synthetic data
(Gaussian Mixture Model) and on real data (MNIST and CIFAR-10) dataset.

25Geo�rey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14: 1771�1800, 2002.
26Jianwen Xie et al. �A theory of generative convnet� in: International Conference on Machine

Learning. PMLR 2016. 2635�2644
27Miguel A Carreira-Perpinan and Geo�rey Hinton. �On contrastive divergence learning� in: In-

ternational workshop on arti�cial intelligence and statistics. PMLR 2005. 33�40
28Yang Song et al. �Score-Based Generative Modeling through Stochastic Di�erential Equations�

in: International Conference on Learning Representations. 2020.
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Chapter 2

Preliminaries

2.1 Basic de�nitions and assumptions

In this Section, we provide the basic formal de�nition of Energy-Based Model. We
will adopt the notation and the presented assumption throughout the present work.
First of all, the problem we consider can be formulated as follows: we assume that
we are given n ∈ N data points {x∗i }ni=1 in Rd drawn from an unknown probability
distribution that is absolutely continuous with respect to the Lebesgue measure on Rd,
with a positive probability density function (PDF) ρ∗(x) > 0 (also unknown). This
is a standard problem in statistical learning, where learning from data here refers to
the ability to �t the data distribution and to generate new examples. More precisely,
our aim is to estimate ρ∗(x) via an energy-based model (EBM), i.e. to �nd a suitable
energy function in a parametric class, Uθ : Rd → [0,∞) with parameters θ ∈ Θ, such
that the associated Boltzmann-Gibbs PDF

ρθ(x) = Z−1
θ e−Uθ(x); Zθ =

∫
Rd

e−Uθ(x)dx (2.1.1)

is an approximation of the target density ρ∗(x). Actually, any probability density
function can be written as a Boltzmann Gibbs ensemble for a particular choice of
U(x). The normalization factor Zθ is known as the partition function in statistical
physics1, see also Section 2.4, and as the evidence in Bayesian statistics2. This factor
is hard to estimate, especially in high dimension, see the following Box for further
details.

1Evgenii Mikhailovich Lifshitz and Lev Petrovich Pitaevskii. Statistical physics: theory of the
condensed state. vol. 9 Elsevier, 2013.

2Farhan Feroz and Mike P Hobson. Multimodal nested sampling: an e�cient and robust alterna-
tive to Markov Chain Monte Carlo methods for astronomical data analyses. Monthly Notices of the
Royal Astronomical Society, 384: 449�463, 2008.
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Estimation of Partition Function

Even if Uθ is known, an explicit analytical computation of the partition function
is generally unfeasable. If the dimension d is big enough, the integral de�ning
Zθ cannot be computed using standard quadrature methods. The only possi-
bility is Monte-Carlo sampling3. To employ such method, one can express the
partition function as an expectation E0 with respect to a chosen probability
density function ρ0, i.e.

Zθ = E0

[
e−Uθ

ρ0

]
(2.1.2)

The selected density must be known pointwise in Rd, including the normal-
ization constant, and it should be easy to sample from. If these conditions
are met, one can compute the partition function by simply replacing the ex-
pectation in (2.1.2) with the corresponding empirical average computed using
samples drawn from ρ0. Unfortunately, �nding a probability density that sat-
is�es these properties is challenging. For a general choice that is not tailored
to e−Uθ , the estimator is likely to be very poor, characterized by a very large,
or even in�nite, coe�cient of variation.

3Jun S Liu. Monte Carlo strategies in scienti�c computing. vol. 75 Springer, 2001.

One advantage of EBMs is that they provide generative models that do not require
the explicit knowledge of Zθ. In Section 2.3 we will present some routines that can in
principle be used to sample ρθ knowing only Uθ � the design of such methods is an
integral part of the problem of building an EBM.
To proceed we need some assumptions on the parametric class of energy:

Assumption 2.1.1. For all θ ∈ Θ:

1. Uθ ∈ C2(Rd); ∃L ∈ R+ : ∥∇∇Uθ(x)∥ ≤ L ∀x ∈ Rd;

2. ∃a ∈ R+and a compact set C ∈ Rd : x · ∇Uθ(x) ≥ a|x|2 ∀x ∈ Rd \ C.

The need for the �rst assumption will be discussed in Section 2.3: it is related to well-
posedness and convergence properties of the dynamics used for sampling, i.e. Langevin
dynamics and its speci�cations. The second assumption guarantees that Zθ <∞ (i.e.
we can associate a PDF ρθ to Uθ via (2.1.1) for any θ ∈ Θ). We provide now two
important de�nitions:

De�nition 2.1.1 (Convexity). A function φ : Rd → (−∞,+∞] is convex if given
0 < λ < 1 and x1, x2 ∈ Rd such that x1 ̸= x2, the following is true

φ (tx1 + (1− t)x2) ≤ tφ (x1) + (1− t)φ (x2) (2.1.3)

De�nition 2.1.2 (Log-Concavity). A density function ρ with respect to Lebesgue
measure on (Rd,Bd) is log-concave if ρ = e−φ where φ is convex.
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Figure 2.1: Gaussian Mixture. Plot of PDF with sampled histogram and associated
energy Uθ.

A non-convex function could have more than one local but not global minima; con-
versely, a non-log-concave probability density could have more than local maxima,
which are called modes. It is important to stress that Assumption (2.1.1) does not
imply that Uθ is convex (i.e. that ρθ is log-concave): in fact, we will be most inter-
ested in situations where Uθ has multiple local minima so that ρθ is multimodal. We
will elaborate on the topic in Section 2.3. It is well known as for optimization prob-
lems, non-convex cases are the most complicated. Similarly, sampling from a non-log-
concave probability density function (PDF) can be extremely challenging. Another
assumption we will adopt is:

Assumption 2.1.2. Without loss of generality ∃θ∗ ∈ Θ : ρθ∗ = ρ∗, that is ρ∗ is in
the parametric class of ρθ.

Throughout this thesis, our aims are primarily to identify θ∗ and to sample ρθ∗ ; in the
process, we will also show how to estimate Zθ∗ .

Example 1. Let us present a simple example to visualize the relation between con-
vexity and log-concavity. In Figure 2.1 we plot side by side the PDF of a Gaussian
mixture in 1D and the associated potential

Uθ(x) = log

[
p exp

(
− (x− µ1)

2

σ2
1

)
+ (1− p) exp

(
− (x− µ2)

2

σ2
2

)]
(2.1.4)

where θ = {p, µ1,2, σ1,2}. The speci�c values are p = 0.7, µ1 = 0, µ2 = 5, σ1 = 1 and
σ2 = 0.5. It is clear the correspondence between minima of Uθ(x) and maxima, that
is modes, of ρ.

2.1.1 Cross-entropy minimization

Once we de�ned an EBM, we need to measure its quality with respect to the data
distribution. Possibly, this would provide a way to train its parameters. Hence, we
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de�ne some important quantities:

De�nition 2.1.3. Consider two probability densities on Rd and absolutely continuous
with respect to Lebesgue measure, namely ρ1 and ρ2. We de�ne

1. Cross Entropy

H(ρ1, ρ2) = −
∫
Rd

log ρ2(x)ρ1(x)dx (2.1.5)

2. Kullback-Leibler divergence4

DKL(ρ1 ∥ ρ2) =
∫
Rd

ρ1(x) log

(
ρ1(x)

ρ2(x)

)
dx (2.1.6)

3. Entropy

H(ρ1) = −
∫
Rd

log ρ1(x)ρ1(x)dx (2.1.7)

The KL divergence is a widely used estimator for the dissimilarity between probability
measures. It satis�es the non-negativity condition

DKL(ρ1 ∥ ρ2) ≥ 0, DKL(ρ1 ∥ ρ2) = 0 ⇐⇒ ρ1 = ρ2 a.e. (2.1.8)

However, it is not a proper distance since it is not symmetric and it does not satisfy
triangular inequality. The following trivial lemma relates the three quantities we
introduced in De�nition 2.1.3:

Lemma 2.1.1. The following equality holds for any choice of PDFs ρ1 and ρ2

H(ρ1, ρ2) = H(ρ2) +DKL(ρ2 ∥ ρ1) (2.1.9)

One can also use the cross-entropy of the model density ρθ relative to the target density
ρ∗ as an estimate of diversity between the two PDFs; in such case, 2.1.5 simpli�es
becoming

H(ρ∗, ρθ) = logZθ +

∫
Rd

Uθ(x)ρ∗(x)dx (2.1.10)

Because of 2.1.9, the di�erence between the cross-entropy and the KL divergence
is H(ρ∗), a term that depends just on the data distribution. Hence, the optimal
parameters θ∗ are solution of an optimization problem on Θ, namely

θ∗ = argmin
θ∈Θ

DKL(ρ∗||ρθ) = argmin
θ∈Θ

H(ρ∗, ρθ), (2.1.11)

meaning that the entropy of ρ∗ plays no active role in solving such minimization prob-
lem. There is a subtle issue in this reasoning: unlike KL divergence, the cross-entropy
is not bounded from below, and in particular H(ρ, ρ) := H(ρ) ̸= 0. That is, we should

4Solomon Kullback and Richard A Leibler. On information and su�ciency. The annals of math-
ematical statistics, 22: 79�86, 1951.
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compute H(ρ∗) to estimate the minimum value of cross-entropy. Unfortunately, most
of the empirical estimators to be used when ρ∗ is known through samples su�er in high
dimension5. Solving (2.1.11) is equivalent to maximum likelihood method, a widely
used practice in parametric statistics6.
The use of cross-entropy avoids the very problematic computation of H(ρ∗), but
in 2.1.10 the estimation of Zθ is also needed. However, the most common rou-
tines for cross-entropy minimization are gradient-based: they rely on the gradient
of ∂θH(ρ∗, ρθ) and not on the cross-entropy itself. The former can be computed using
the identity ∂θ logZθ = −

∫
Rd ∂θUθ(x)ρθ(x)dx, obtaining

∂θH(ρ∗, ρθ) =

∫
Rd

∂θUθ(x)ρ∗(x)dx−
∫
Rd

∂θUθ(x)ρθ(x)dx

:= E∗[∂θUθ]− Eθ[∂θUθ].
(2.1.12)

This is a crucial expression for the present work. In fact, we can highlight the core
theme of the whole thesis:

Remark 2.1.1 (Fundamental problem for EBM training). Estimating ∂θH(ρ∗, ρθ)
requires calculating the expectation Eθ[∂θUθ]. In contrast E∗[∂θUθ] can be readily esti-
mated on the data.

Typical training methods, e.g. based on the so-called Constrastive Divergence7 and its
speci�cations, resort to various approximations to calculate the expectation Eθ[∂θUθ]�
see Section 3.1 for more discussion about these methods. While these approaches have
proven successful in many situations, they are prone to training instabilities that
limit their applicability. The cross-entropy is more stringent, and therefore better,
than objectives like the Fisher divergence used to train other generative models: for
example, unlike the latter, it is sensitive to the relative probability weights of modes
on ρ∗ separated by low-density regions8 � we will elaborate in Section 2.2.

2.2 EBMs among generative models

In this section, our objective is to provide a brief overview of the other main generative
models available on the market, possibly in relation to Energy-Based Models. The aim
is to construct a convenient general framework for the reader, with detailed speci�-
cations not being the focus of this section. Let us establish a general classi�cation of
the methods we will discuss. As outlined in the introduction, creating a generative
model involves developing a computational tool capable of generating new instances
representative of a given dataset. Taking the example of image generation, starting

5Ziqiao Ao and Jinglai Li. Entropy estimation via uniformization. Arti�cial Intelligence, 103954,
2023.

6Stephen M Stigler. The epic story of maximum likelihood. Statistical Science, 598�620, 2007.
7Geo�rey E Hinton. Training products of experts by minimizing contrastive divergence. Neural

computation, 14: 1771�1800, 2002.
8Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv preprint

arXiv:2101.03288 , 2021.
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with a dataset of dogs, a generative model can produce new images of dogs. Even in
this simple example, determining whether a generated sample is "good" or not can
be far from obvious. A good generative model should possess two key properties: (1)
ease of training and (2) ease of generation. Unfortunately, demanding the best of all
possible worlds is often impractical, and a trade-o� is frequently necessary to balance
these two properties.
The concept of a generative model is relatively new and strictly related to the rise
of Big Data. Before the advent of modern computer science, generating data (for
inference, modeling) was identi�ed with collecting measures. The advent of computer
simulations laid the �rst stone towards generating data from a model. Let us mention
Fermi-Pasta-Ulam-Tsingou9, which is usually referred to as one of the �rst uses of
computers to simulate a physical model. In statistics, this concept of generating data
from a given model is called "sampling" (see Section 2.3). The change of paradigm to-
wards generating data from data became possible when su�cient computational power
and memory were available. Generative AI is following a path similar to the internet:
originally limited to academic purposes10, it now permeates everyday life. Thanks, for
instance, to Generative Pre-Trained Transformers (such as ChatGPT11), we seem to
be closer to creating a machine capable of generating data, text, sounds, and more,
as humans do. The debate about arti�cial general intelligence capable of surpassing
humans is already spreading12�14.
We will now review the technical details of state-of-the-art generative models. At the
end, we will also highlight the relation with Energy-Based Models if applicable.

2.2.1 Variational Autoencoders

As we can infer from the name, to present a variational autoencoder (VAE)15 we �rstly
need to summarize what an autoencoder (AE) is16. Let us focus on Figure 2.2: it is
a Deep Neural Network (DNN) designed to replicate an input vector x ∈ Rd, after
the application of two NN in sequence. The left segment of the AE, known as the
encoder e(x), generates a low-dimensional latent representation z ∈ RL, with L ≤ d,
at the bottleneck layer. The right segment, referred to as the decoder d(z), endeavors
to reconstruct x from z. During the training phase, the true output is compared with
d(e(x)) in order to perform backpropagation and train the nets. During the test phase,

9Enrico Fermi et al. Studies of the nonlinear problems tech. rep. Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 1955
10
url: https://www.livinginternet.com/i/ii_arpanet.htm

11
url: https://www.nytimes.com/2022/12/10/technology/ai-chat-bot-chatgpt.html

12Evgeny Morozov. The True Threat of Arti�cial Intelligence. International New York Times,
NA�NA, 2023.
13Ragnar Fjelland. Why general arti�cial intelligence will not be realized. Humanities and Social

Sciences Communications, 7: 1�9, 2020.
14Frederik Federspiel et al. Threats by arti�cial intelligence to human health and human existence.

BMJ global health, 8: e010435, 2023.
15Laurent Girin et al. Dynamical variational autoencoders: A comprehensive review. arXiv preprint

arXiv:2008.12595 , 2020.
16Geo�rey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural

networks. science, 313: 504�507, 2006.

https://www.livinginternet.com/i/ii_arpanet.htm
https://www.nytimes.com/2022/12/10/technology/ai-chat-bot-chatgpt.html
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Figure 2.2: Representation of an autoencoder17

x̂ is used as an estimated value of x, that is x̂ ≈ x. An AE can be seen as a trainable
compression protocol: once trained, encoder and decoder are separate parts that can
be used separately, for instance before and after a data transmission procedure. In
practice, their use is widely di�used in Machine Learning application: it is common
to put extra layers acting in the latent space, for instance for a supervised tasks18.
Up to this point, everything operates deterministically: during testing, when the AE
is provided with a speci�c input vector, it consistently produces the corresponding
output.
The subsequent speci�cation of AE are the Variational Autoencoders19. While in AE
we had two deterministic functions e(x) and d(z), in VAE encoder and decoder are
two probabilistic models: an inference model and a generative model. Despite this
classi�cation, VAE are usually referred to as generative models in toto. Let us clarify
in formulae the construction.
We consider the joint parametric probability density ρθ(x, z) on Rd × RL, where the
parameters θ ∈ Θ are the weights of a neural network (NN). Speci�cally, using the
de�nition of joint PDF, we write

ρθ(x, z) = ρθ(x|z)ρ(z) (2.2.1)

The prior distribution ρ(z) is usually assumed to be a multivariate gaussian distri-
bution N (z,0L, IL), with zero mean vector 0L and identity IL as covariance. The

18Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. Machine learning for data science
handbook: data mining and knowledge discovery handbook , 353�374, 2023.
19Diederik P. Kingma and Max Welling. �Auto-Encoding Variational Bayes� in: 2nd International

Conference on Learning Representations, ICLR 2014. 2014.
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parametric conditional PDF ρθ(x|z) is the decoder network and can be designed case
by case: the simplest and traditional choice is a gaussian

ρθ(x|z) = N (x,µθ(z),diag{σ2
θ(z)}) (2.2.2)

with parametric mean µθ(z) and diagonal covariance matrix diag{σ2
θ(z)} (for instance

modelled through appropriate NN). Other possibilities have been studied to tackle
di�erent kind of data, for instance audio20.
Following this formal de�nition, the marginal distribution of the data x will be

ρθ(x) =

∫
RL

ρθ(x|z)ρ(z)dz (2.2.3)

Similarly to EBM training, we need to select the optimal parameters θ∗ that minimize
a selected measure of discrepancy between the model and the true data distribution
ρ∗, as usual known just through samples. The procedure is analogous to (2.1.11): KL
divergence is used to evaluate this diversity,

θ∗ = argmin
θ∈Θ

DKL(ρ∗(x) ∥ ρθ(x)) = argmax
θ∈Θ

E∗[log ρθ(x)] (2.2.4)

Di�erently from EBMs, the right-hand side is traditionally written as an expectation:
it is the marginal log-likelihood of the model6. It is just a matter of notation � the
optimization objectives are the same. When having a dataset X = {xi ∈ Rd}Ni=1, one
could estimate the expectation via the empirical average

∑N
i=1 log ρθ(xi)/N . However,

the log-likelihood is de�ned via (2.2.3), and such an integral is often analytically
intractable. That is, one has no direct access to log ρθ(x) explicitly. The proposed
solution to overcome this issue is based on a variational approach. Let us present a
crucial de�nition and a lemma:

De�nition 2.2.1 (ELBO). Let F denote a variational family de�ned as a set of PDFs
over the latent variables z. For any q(z) ∈ F , the Evidence Lower Bound (ELBO)
(also known as variational free energy) L : Θ×F ×Rd → R is de�ned as

L(θ, q(z);x) = Eq(z)[log ρθ(x, z)− log q(z)] (2.2.5)

Lemma 2.2.1. The following properties hold true:

1. Decomposition of marginal log-likelihood21.

log ρθ = L(θ, q(z);x) +DKL(q(z) ∥ ρθ(z|x)) (2.2.6)

2. Bound on marginal log-likelihood.

L(θ, q(z);x) ≤ log ρθ(x)

L(θ, q(z);x) = log ρθ(x) ⇐⇒ q(z) = ρθ(z|x)
(2.2.7)

20Laurent Girin et al. �Notes on the use of variational autoencoders for speech and audio spec-
trogram modeling� in: DAFx 2019-22nd International Conference on Digital Audio E�ects. 2019.
1�8
21Radford M Neal and Geo�rey E Hinton. �A view of the EM algorithm that justi�es incremental,

sparse, and other variants� in: Learning in graphical models. Springer, 1998. 355�368
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Proof. The proof of (1) is trivial:

L(θ, q(z);x) +DKL(q(z) ∥ ρθ(z|x)) = Eq(z)[log ρθ(x, z)− log q(z)]

+ Eq(z)[log q(z)− log ρθ(z|x)] = Eq(z)
[
log

(
ρθ(x, z)

ρθ(z|x)

)]
= log ρθ(x)

(2.2.8)

where we used the de�nition of conditional probability and the fact that the expecta-
tion is computed in the latent space. (2) is a direct consequence of (2.2.6) since the
KL divergence is non-negative and identically zero just when q(z) = ρθ(z|x).

Thanks to such results, an estimate of the log-likelihood can be obtained using the
Expectation-Maximization (EM) algorithm22: (E) step corresponds to solve the un-
constrained variational problem at �xed θ

q∗(z) = argmax
q∈F

L(θ, q(z);x) (2.2.9)

while (M) step to maximization of ELBO w.r.t. θ at �xed q(z). To be precise,
the output of the (E) steps is conditioned on x, which is q(z) = q(z|x). It can be
theoretically proven that under suitable condition such an algorithm converges to the
optimum and satis�es the equality in (2.2.7).
For now there is no evident advantage: solving an explicit variational optimization
problem can be unfeasible as the computation of (2.2.3). But further simpli�cations
are possible: in so-called �xed-form variational inference23, the variational family F
is constrained to be any parametric family of PDFs qλ(z|x) dependent on λ ∈ Λ; e.g.
for the gaussian family qλ(z|x) = N (z;µ,Σ) we have λ = {µ,Σ}. The advantage is
that one can perform the (E) step as optimizing λ and not in a function class, and
possibly �nd

λ∗ = argmax
λ

L(θ, λ;x) (2.2.10)

Since we have to deal with a dataset of N data point, we rewrite

L(θ, λ;X ) =

N∑
i=1

L(θ, λi;xi) (2.2.11)

and ideally perform gradient-based optimization routines both in (E) and (M) step.
But we immediately notice that optimizing the "local" λi for each sample if N is big is
very impractical: for instance, for the gaussian class in dimension d we should update
N means and covariance matrices, that is Nd2(d+ 1)/2 scalars.
Thus, a last assumption is necessary to practically train the generative model, leading
to the so-called amortized variational inference. It corresponds to assume that there

22Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the royal statistical society: series B (methodological), 39:
1�22, 1977.
23Antti Honkela et al. Approximate Riemannian conjugate gradient learning for �xed-form varia-

tional Bayes. The Journal of Machine Learning Research, 11: 3235�3268, 2010.
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exists a parametric map fϕ such that λi = fϕ(xi). In this way, the de�nitive learning
objective for EM algorithm is

L(θ, λ;X ) =

N∑
i=1

L(θ, ϕ;xi) =
N∑
i=1

Eqϕ(zi|xi)[log ρθ(xi, zi)− log qϕ(zi|xi)] (2.2.12)

Summarizing this �rst part, we started from the problem of training the decoder
network ρθ(x|z) and we had to face the issue of computing the marginal log-likelihood.
Thanks to a reformulation of the problem, we could explicit an equivalent objective
(2.2.12). Given qϕ(z|x), that is the approximation of the intractable posterior ρθ(z|x),
L(θ, λ;x) can be attacked via EM algorithm, i.e. alternatively optimizing θ and ϕ.
VAE approach can be seen as a particular case of amortized variational inference in
which qϕ(z|x) is approximated via a neural network, which by analogy with AE is
denoted as encoder network. Similarly to the decoder network, a widely used choice is
a gaussian, i.e.

ρϕ(z|x) = N (z,µϕ(x),diag{σ2
ϕ(x)}) (2.2.13)

where mean and covariance are modelled by a NN. The proposal to train a VAE19

is to perform gradient-based optimization on the joint set of parameters {θ, ϕ} with
(2.2.12) as objective. Since the encoder and decoder are in cascade, the joint training
can be suboptimal24 with respect to the alternating routine in EM algorithm.
Despite this drawback, using the de�nition of KL divergence and conditional proba-
bility, we rewrite (2.2.12) as

L(θ, λ;X ) =

N∑
i=1

Eqϕ(zi|xi)[log ρθ(xi|zi)]−
N∑
i=1

DKL[qϕ(zi|xi) ∥ ρ(z)] (2.2.14)

The two summations can be easily interpreted: the �rst one is related to reconstruction
accuracy and measures the �delity of encoding and decoding chain; the second one is a
regularization term that forces the posterior (encoder) to be close to the prior, which
is a set of independent gaussians � ideally, each z entry should encode an independent
characteristic of the data.
Regarding the actual implementation of a gradient routine, the whole point of ELBO
reformulation was the intractability of the marginal likelihood. Thus, we have to ensure
to not have the same issue for L. The regularization term has an analytical expression
for the usual mentioned choices for qϕ(z|x) and ρ(z) (e.g. if it is the KL divergence
between gaussian densities). Thus, the computation of the gradient of that summation
w.r.t. to θ or ϕ is not a problem for backpropagation algorithm (n.b. we are dealing
with NN). On the other hand, the �rst summation in analytically intractable: the
only possibility is the use of a Monte Carlo estimate using samples {z(r)i}Rr=1 drawn
from qϕ(zi|xi). Sampling from a gaussian encoder is an easy task, but unfortunately it
is not a di�erentiable operation and it poses an obstacle to perform backpropagation
w.r.t. ϕ. The solution to this last issue is the following reparametrization trick:

z
(r)
i = µϕ(xi) + diag{σ2

ϕ(x)}
1
2 ϵ(r) ϵ(r) ∼ N (0L, IL) (2.2.15)

24Junxian He et al. �Lagging Inference Networks and Posterior Collapse in Variational Autoen-
coders� in: International Conference on Learning Representations. 2018.
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which allows to e�ectively compute the gradient w.r.t. ϕ. The resulting empirical
estimate of L(θ, λ;X ) is

L̂(θ, λ;X ) =

N∑
i=1

1

R

R∑
i=r

log ρθ(xi|z(r)i )−
N∑
i=1

DKL[qϕ(zi|xi) ∥ ρ(z)], (2.2.16)

which is the objective for the joint optimization of θ and ϕ.
After some manipulation, we conclude that VAEs can be trained on log-likelihood
objective. The main strength appears to be the ease of generation, since for common
choices of encoder and decoder such task reduces to sample from a gaussian distribu-
tion. In fact, the main drawbacks25�27 of VAEs lays in the training phase. First of all,
VAEs have several hyperparameters (e.g., the choice of prior, a possible imbalanced
weighting of the reconstruction and regularization terms) that can signi�cantly impact
their performance. Finding the optimal set of hyperparameters can be a challenging
task. The assumed simple structure of the latent space in VAEs might not capture the
complex dependencies present in the data, limiting the expressiveness of the learned
representations. Plus, achieving perfect disentanglement remains a challenge. The
latent variables might still be entangled, making it challenging to control speci�c fac-
tors independently. Empirically, it is observed that VAEs sometimes generate blurry
samples or su�er from mode collapse, where the model focuses on capturing only a
few modes of the data distribution, neglecting others. In general it seems to be an
issue related to their limited capacity: they might struggle with capturing complex
and high-dimensional data distributions e�ectively, especially when compared to other
generative models.

2.2.2 Generative Adversarial Networks

Generative adversarial networks28 (GANs) are a class of generative models which
take inspiration from game theory. They consist of two neural networks (see Figure
2.3), namely a generator G and a discriminator D, trained simultaneously through
the so-called adversarial training. Given a dataset X sampled from the unknown
data distribution ρ∗, the generator is devoted to generate synthetic data that ideally
resembles the training data. On the other hand, the discriminator has to discern
between fake and true samples. In this sense, G and D are adversary: the generator
aims to produce realistic data to fool the discriminator, while the discriminator strives
to correctly classify real and fake data. Thus, the training ends when the discriminator
becomes unable to e�ectively distinguish between real and generated samples. Let us
present the mathematical formulation: �rstly we de�ne a prior ρz(z), which is a PDF

25Ruoqi Wei et al. Variations in variational autoencoders-a comparative evaluation. Ieee Access,
8: 153651�153670, 2020.
26Achraf Oussidi and Azeddine Elhassouny. �Deep generative models: Survey� in: 2018 Interna-

tional conference on intelligent systems and computer vision (ISCV). IEEE 2018. 1�8
27Saptarshi Sengupta et al. A review of deep learning with special emphasis on architectures,

applications and recent trends. Knowledge-Based Systems, 194: 105596, 2020.
28Ian Goodfellow et al. Generative adversarial nets. Advances in neural information processing

systems, 27: 2014.
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Figure 2.3: Scheme of the structure of GANs29.

easy to sample from that serve to inject noise into the generator. The latter is a
function Gθg (z) that is fed with noise and generate "fake" samples that should be
similar to samples from ρ∗. The discriminator is a parametric function Dθd(x) that
gives the probability that a sample x comes from the training set rather than have
been generated by G. Both θg and θd are parameters of a NN. The optimal weights
are solution of the following two-player minimax problem:

argmin
θg

argmax
θd

E∗[logDθd(x)]+Eρz [log(1−Dθd(Gθg (z)))] := argmin
θg

argmax
θd

V (G,D)

(2.2.17)
We refer in the following to ρg(x) as the distribution of "fake" samples induced by the
generator, that is such that

Eρz [log(1−Dθd(Gθg (z)))] = Eρg [log(1−Dθd(x))] (2.2.18)

The empirical idea to solve the minimax game is via an alternating algorithm:

Proposition 2.2.1. The optimization algorithm for a GAN is made by two alternating
steps:

� Update of the discriminator

1. Sample {z(i)}Ni=1 (noise) from ρz and {x(i)}Ni=1 (data) from ρ∗.

2. Compute ∇θdV (G,D) and perform gradient ascent to update θd.

� Update of the generator

1. Sample {z(i)}Ni=1 (noise) from ρz.

2. Compute ∇θgV (G,D) and perform gradient descent to update θg.

This proposal is driven by common sense, but a more careful analysis of the minimax
game is necessary to ensure convergence of such algorithm. In order to characterize
the solutions of this adversarial game, it is necessary to search for the optima. The
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method of proof is: (1) classify solutions of optimization of D at �xed G and viceversa
and then (2) present a convergence result of the alternating game. Let us start from
the update of the discriminator:

Theorem 2.2.1 (Existence of optimal discriminator28). For G �xed, the optimal
discriminator D is

D∗
G =

ρ∗(x)

ρ∗(x) + ρg(x)
(2.2.19)

Proof. Using (2.2.17) and (2.2.18), we have

V (G,D) =

∫
Ω

(ρ∗(x) logDθd(x) + ρg(x)(1−Dθd(x)))dx (2.2.20)

The function y → a log(y)+ b log(1− y) achieve its maximum in (0, 1) at a/(a+ b) for
(a, b) ̸= (0, 0). Applied to the case in study, the discriminator can be de�ned just in
Supp(ρ∗(x)) ∪ Supp(ρg(x)), hence concluding the proof.

This lemma ensure that the gradient ascending will eventually reach a maximum, that
is

C(G) = argmax
D

V (G,D) = E∗

[
ρ∗(x)

ρ∗(x) + ρg(x)

]
+ Eρg

[
ρg(x)

ρ∗(x) + ρg(x)

]
(2.2.21)

Now we need to characterize the solutions of the minimization problem argminG C(G)

Theorem 2.2.2 (Existence of optimal generator28). At �xed D = D∗
G, the optimal

generator G∗ induce a ρg such that ρg = ρ∗. At that point, C(G
∗) = − log 4.

Proof. Regarding the last point, for ρg = ρ∗ we obtain D∗
G = 1/2, that inserted in

C(G) gives exactly − log 4. We need to test whether this is a global optimum: we can
sum and subtract − log 4 to C(G) obtaining

C(G) = − log(4) +DKL

(
ρ∗

∥∥∥∥ ρ∗ + ρg
2

)
+DKL

(
ρg

∥∥∥∥ ρ∗ + ρg
2

)
= − log(4) + 2 · JSD(ρ∗ ∥ ρg)

(2.2.22)

where JSD is the Jensen-Shannon divergence30. Such quantity has the same non-
negativity property of KL divergence, i.e. JSD(ρ∗ ∥ ρg) ≥ 0 and JSD(ρ∗ ∥ ρg) = 0
i� ρg = ρ∗. This proves that ρg = ρ∗, or more precisely the corresponding generator
G∗, is the global minimum for C(G).

To summarize, we have showed separate theoretical guarantees about convergence of
gradient ascent and descent. However, we need to show that alternating those two
steps would eventually converge to the global Nash equilibrium of the minimax game,
i.e. ρ∗ = ρg. The result is summarized in the following Theorem28,31 of which omit
the proof for the sake of brevity.
30Christopher Manning and Hinrich Schutze. Foundations of statistical natural language processing.

MIT press, 1999.
31
url: https://granadata.art/gan-convergence-proof/#/

https://granadata.art/gan-convergence-proof/#/
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Theorem 2.2.3. If G and D have enough capacity, and at each step of the alternating
algorithm, the discriminator is allowed to reach its optimum given G, and ρg is updated
so as to improve the criterion

E∗[logD
∗
G(x)] + Eρg [log(1−D∗

G(x)] (2.2.23)

then ρg converges to ρ∗.

Ideally, the theoretical treatment of Generative Adversarial Networks (GANs) con-
cludes with the proof that the proposed minimax game has a unique Nash equilibrium.
This equilibrium corresponds to a generator capable of sampling from ρ∗, making it
indistinguishable from true samples by the discriminator, performing no better than
a random classi�er with a probability of 1/2.
We now discuss the main drawbacks31�34 of GANs. Firstly, practical application of
Theorem 2.2.3 reveals immediate limitations. In practice, optimization involving gra-
dients is executed in parameter space on θg rather than in functional space on ρg.
This deviation introduces challenges, as a convex problem in probability space may
become non-convex, especially when using deep neural networks to model G: in fact,
the induced loss function becomes inherently non-convex. Additionally, a numerical
issue arises when attempting to �nd the perfect discriminator D∗

G at a �xed G; back-
propagation to train the generator (speci�cally because the term D(Gθg (z))) may yield
gradients close to zero by de�nition at the beginning of training when the generator
is very poor.
Regarding practical aspects, GAN training is notorious for its instability. Achieving
the right balance between the generator and discriminator can be delicate, leading to
oscillations during the training process and making it di�cult to converge to a stable
solution. This instability often requires careful tuning of hyperparameters, adding an
extra layer of complexity to the training process. Additionally, GANs often require
large and diverse datasets for training to generalize well.
Also generating samples from a trained GAN poses signi�cant challenges. A critical
one is mode collapse, where the generator tends to produce a limited set of outputs,
neglecting the diversity present in the training data. This results in generated samples
lacking variety and richness. Furthermore, GANs can be computationally intensive,
especially when dealing with high-resolution images or complex datasets. This com-
putational demand can be a hindrance for researchers and practitioners with limited
resources, both in terms of time and hardware. Ultimately, evaluating the performance
of a GAN can be problematic. Common metrics like Inception Score and Frechet In-
ception Distance have limitations, and there is no universally accepted metric for
assessing the quality of generated samples. This lack of clear evaluation criteria makes
32Alec Radford, Luke Metz, and Soumith Chintala. �Unsupervised representation learning with

deep convolutional generative adversarial networks� in: Proceedings of the 5th International Confer-
ence on Learning Representations Workshop Track. 2016.
33Tim Salimans et al. �Improved techniques for training GANs� in: Advances in Neural Information

Processing Systems. 2016. 2226�2234
34Martin Arjovsky and Léon Bottou. �Towards principled methods for training generative ad-

versarial networks� in: Neural Information Processing Systems Conference Workshop: Adversarial
Training. 2016.
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it challenging to compare di�erent GAN models e�ectively.
Despite the mentioned issues, the adversarial paradigm represents an important con-
cept in unsupervised learning, in particular in relation with robustness of pre-trained
generative models35, and generally machine learning models.

2.2.3 Di�usion Models

Di�usion generative models36�38 typically refer to a class of generative models that
leverage the concept of di�usion processes. In the context of generative models, di�u-
sion processes involve the transformation of a simple distribution into a more complex
one over time. This transformation occurs through a series of steps, each representing
a di�usion process. The overarching idea is to initiate the process with a basic distri-
bution, such as Gaussian noise, and iteratively transform it to approximate the target
distribution, often representing real data like images. In recent years they have become
state of the art in many domains of application, partially substituting GANs39. In
this section we provide a summary of the main common features of di�usion models,
without entering too much in details about every single speci�cation currently avail-
able.
As for other generative models, the main ingredient is a dataset X = {xi}Ni=1 where
xi are sampled from an unknown target density ρ∗(x). We will assume X ⊂ Rd for
simplicity. Both for VAEs and GANs, the idea is to generate new samples from noise,
that is respectively decoding from a gaussian in latent space, or generate from noise
via G in GANs. In di�usion models, the objective is again to push samples extracted
from a simple distribution, like a gaussian, towards the data distribution.
Since the main content of the following will be strictly related to stochastic calculus40,
let us �x the notation. We will refer to Xt ∈ Rd as a stochastic process, that is a
sequence of random variables, where t ∈ R is the continuous time variable. Di�erently
from deterministic processes, the focus is on the distribution in law of Xt, namely
ρ(x, t), and not on the single trajectory. As deterministic trajectories can be solutions
of ordinary di�erential equations (ODEs), a stochastic process can be solution of a
stochastic di�erential equation (SDE).

Proposition 2.2.2 (SDE and Fokker-Plank PDE). Given the drift µ : Rd × R → Rd
and the di�usion matrix σ : Rd × R → Rd,d, let us consider the stochastic process Xt

35Aleksander Madry et al. �Towards Deep Learning Models Resistant to Adversarial Attacks� in:
International Conference on Learning Representations. 2018.
36Jascha Sohl-Dickstein et al. �Deep unsupervised learning using nonequilibrium thermodynamics�

in: International conference on machine learning. PMLR 2015. 2256�2265
37Ling Yang et al. Di�usion models: A comprehensive survey of methods and applications. ACM

Computing Surveys, 56: 1�39, 2023.
38Florinel-Alin Croitoru et al. Di�usion models in vision: A survey. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2023.
39Prafulla Dhariwal and Alexander Nichol. Di�usion models beat gans on image synthesis. Ad-

vances in neural information processing systems, 34: 8780�8794, 2021.
40L Chris G Rogers and David Williams. Di�usions, Markov processes and martingales: Volume

2, Itô calculus. vol. 2 Cambridge university press, 2000.



34

solution for t ∈ [0, T ] ⊂ [0,+∞] of the SDE

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt, X0 ∼ ρ0 (2.2.24)

where Wt is a Wiener process. Using Ito convention, the law of Xt, namely ρ(x, t),
satis�es the Fokker-Planck partial di�erential equation (PDE)

∂

∂t
ρ(x, t) = −∇ · [µ(x, t)ρ(x, t)] + ∆

[
σ(x, t)2

2
ρ(x, t)

]
, ρ(x, 0) = ρ0(x) (2.2.25)

This proposition is important to understand the relation between the single random
process Xt and its distribution in law. Let us present a simple example to clarify such
connection.

Example 2 (Wiener process). Let us consider the case µ(x, t) = 0 and σ(x, t) = 1 in
d = 1, that corresponds to the SDE

dXt = dWt (2.2.26)

The solution of the associated Fokker-Planck equation

∂ρ(x, t)

∂t
=

1

2

∂2ρ(x, t)

∂x2
, (2.2.27)

for a delta initial datum ρ(x, 0) = δ(x) is precisely

ρ(x, t) =
1√
2πt

e−x
2/2t (2.2.28)

This is a gaussian density with variance proportional to t. That is, the initial concen-
trated density spreads on the real line.

This brief summary about SDEs is su�cient to provide a consistent de�nition of gen-
erative di�usion model:

De�nition 2.2.2 (Generative di�usion model). Let us consider the data distribution
ρ∗ : Rd → R+ and a base distribution ρ̄(x) : Rd → R+. Given a time interval
[0, T ] ∈ [0,∞], a generative di�usion model is an SDE with �xed terminal condition

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt, X0 ∼ ρ̄, XT ∼ ρ∗ (2.2.29)

where Wt is a Wiener process.

This de�nition resembles concepts from stochastic optimal control41: in fact, the ter-
minal condition is not su�cient to uniquely �x µ(Xt, t) and σ(Xt, t). Under this point
of view, the speci�cation of a particular class of di�usion models reduces to a prescrip-
tion on how to determine the drift and the di�usion matrix. In the following we will
summarize two highlighted methods present in literature.
41Wendell H Fleming and Raymond W Rishel. Deterministic and stochastic optimal control. vol. 1

Springer Science & Business Media, 2012.
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Score-based di�usion42. To explain what is score-based di�usion we need the
following preliminaries:

De�nition 2.2.3. Given a PDF ρ(x), the score is the vector �eld

s(x) = ∇ log ρ(x) (2.2.30)

Proposition 2.2.3 (Naive score-based di�usion). For any ε > 0 and ρ0(x), the choice
µ(x, t) = εs∗(x) = ε∇ log ρ∗(x) and σ =

√
2ε in (2.2.29) satis�es the endpoint condi-

tion for T = ∞.

Proof. If we consider the Fokker-Planck PDE associated to (2.2.29) with the selected
drift and variance, we have

∂tρ(x, t) = ∇ · [−s∗(x)ρ(x, t) +∇ρ(x, t)] = ∇ ·
[
ρ(x, t)∇ log

(
ρ(x, t)

ρ∗(x)

)]
(2.2.31)

By direct substitution, the stationary probability density ρ∗(x) is a solution. For
uniqueness, we need to prove that any solution of the PDE would converge to this
solution. A formal argument is based on Jordan-Kinderlehrer-Otto (JKO) variational
formulation of Fokker-Planck equation43, interpreted as a gradient �ow in probability
space with respect to Wasserstein-2 distance. An alternative way is the following: for
any solution ρ(x, t), we can compute the time derivative of the KL divergence between
such solution and ρ∗(x). If we de�ne R = ρ/ρ∗:

d

dt
DKL(ρ ∥ ρ∗) =

d

dt

∫
Rd

ρ logRdx =

∫
Rd

∂tρ logRdx+

∫
Rd

ρ

R
∂tRdx (2.2.32)

We can use Fokker-Planck equation to substitute ∂tρ and integrate by parts:

d

dt
DKL(ρ ∥ ρ∗) =

d

dt

∫
Rd

ρ logRdx = −
∫
Rd

ρ|∇ logR|2 dx+

∫
Rd

ρ∗∂tRdx (2.2.33)

We notice that ρ∗∂tR = ∇ · (ρ logR), hence that the second addend is zero by inte-
gration by parts. The conclusion is that

d

dt
DKL(ρ ∥ ρ∗) = −

∫
Rd

ρ|∇ logR|2 dx ≤ 0, (2.2.34)

concluding the proof.

The result seems to say that we are able to build a di�usion generative models esti-
mating the score of the target. In a data driven context, ρ∗ is known just through
data points and one has to face the problem of estimating s∗. A possible approach44

is score matching.
42Yang Song et al. �Score-Based Generative Modeling through Stochastic Di�erential Equations�

in: International Conference on Learning Representations. 2020.
43Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the Fokker�

Planck equation. SIAM journal on mathematical analysis, 29: 1�17, 1998.
44Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score

matching. Journal of Machine Learning Research, 6: 2005.
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De�nition 2.2.4 (Fisher divergence). Given two PDFs ρ(x) and π(x), the Fisher
divergence is de�ned as

DF (ρ ∥ π) =
∫
Rd

ρ(x)∥∇ log ρ(x)−∇ log π(x)∥2 dx (2.2.35)

Even if in some sense DF seems to measure some distance between two PDFs, it is
very di�erent from the KL divergence, see following Box.

Fisher Divergence versus KL divergence

By de�nition, both KL and Fisher divergence between two PDFs satisfy the
non-negativity property, i.e. they are strictly positive, and zero only when the
densities are the same. DF does not depend on normalization constants of the
PDFs because of the gradients. This is a double-edged weapon: it is apparently
useful in high dimension, where the computation of normalization of a density
is impractical (as for instance the partition function for EBMs). But if the
distribution is multimodal, the local nature of DF is very insensible to global
characteristics of the densities, as for instance the relative mass in each mode.
Let us consider a key example: the distributions we would like to compare are:

ρ1(x) = 0.5N (x,−5, 1)(x) + 0.5N (x, 5, 1),

ρ2(x) = σ(z)N (x,−5, 1) + (1− σ(z))N (x, 5, 1)
(2.2.36)

where σ(z) = 1/(1 + e−z) is a sigmoid function. The two densities are bi-
modal gaussian mixture in 1D with same means and variances; the second
mixture is balanced with relative mass equal to 1/2. We would like to compare
DF (ρ1 ∥ ρ2) and DKL(ρ1 ∥ ρ2) as functions of z. In Figure 2.4 we plot the two
divergences in function of z. We estimate the expectations that de�ne the two
divergences using a Monte Carlo estimate, namely

DF (ρ1 ∥ ρ2) ≈
N∑
i=1

∥∇ log ρ1(xi)−∇ log ρ2(xi)∥2

DKL(ρ1 ∥ ρ2) ≈
N∑
i=1

log

[
ρ1(xi)

ρ2(xi)

] (2.2.37)

where xi ∼ ρ1(x). The minimum value is 0 and corresponds to z = 0, that
is ρ1 = ρ2. The �rst di�erence is that the values of DF are smaller of several
order of magnitude � in general, this could be a problem in practical imple-
mentations. Most importantly, the shape of the curve is very di�erent. In this
one dimensional example we need N = 10000 to appreciate a similar growth,
even if DF curve is more steep. For smaller N , DF is basically �at for z ̸= 0.
This is related to the absence of points in low density regions, that is where
the integrand in DF gives a non-zero contribution.
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Figure 2.4: Comparison between KL divergence and Fisher divergence for the two
bimodal gaussian mixtures in (2.2.36). The variable z ∈ (0,∞) is related to
the relative mass of the two modes via a sigmoid function σ(z) ∈ (0, 1); the
plots for z < 0 are analogous by symmetry. Notice the di�erent scales of the
y axes. The Monte Carlo estimation is performed using N = 100, 1000, 10000
samples.

In score matching, one propose a parametric score sθ, for instance a neural network,
and train such model to match the true score s∗. The loss on which the model is
trained, using for instance gradient routines, is

L(sθ, ρ∗) =
1

2

∫
Rd

ρ∗∥sθ −∇ log ρ∗∥2 dx = E∗[∥sθ∥2 + tr(Jxsθ)] + Cp (2.2.38)

where we integrated by parts, Cp = const does not depend on θ and Jx is the Jacobian
with respect to x. Denoting with ρθ one (n.b. not unique) PDF associated to sθ, the
loss is evidently DF (ρ∗ ∥ ρθ). The right hand side reformulation in (2.2.38) is crucial:
the expectation E∗ can be estimated using data points at our disposal, bypassing the
problematic term ∇ log ρ∗.
Unfortunately, the naive score-based approach is plagued by two fundamental issues
that make it impractical. The �rst regards the score estimation itself: usually, data
at our disposal comes from high density region of ρ∗, that is the estimation of E∗,
hence of the score, will be inaccurate outside such areas. The problem is that the
initial condition (e.g. noise) of the SDE is usually located far from data. An imprecise
drift will critically a�ect the generation process, leading to unpredictable outcomes.
The second regards the di�erence between the PDE and the practical implementation
through (2.2.29). The generation problem is convex in probability space, i.e. ρ∗ is
the unique asymptotic stationary solution, but the rate of convergence of the law of
Xt is critically related to the particular ρ∗ in study, in particular in relation with
multimodality and slow mixing. We will discuss in details about this issue in Section
2.3.
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The next step towards state-of-the-art score-based di�usion is the following lemma45:

Lemma 2.2.2. Any SDE in the form

dXt = f(Xt, t)dt+ g(t)dWt, X0 ∼ ρ1, XT ∼ ρ2 (2.2.39)

with solution Xt ∼ ρ(x, t) admits an associated reversed SDE

dXs = [f(Xs, s)− g(s)2∇ log ρ(x, s)]ds+ g(s)dWs, XT ∼ ρ2, X0 ∼ ρ1 (2.2.40)

where ds is a negative in�nitesimal time step and s �ows backward from T to 0. By
convention, (2.2.39) is also called forward SDE and (2.2.40) backward one.

Exploiting this result, we can de�ne a score-based di�usion model:

De�nition 2.2.5. A score-based generative model is the backward SDE (2.2.40),
where ρ1 = ρ∗ and ρ2 = ρ̄.

Apparently, the situation is even worse with respect to score matching: the score
in (2.2.40) is related to the law of Xt, i.e. it is time dependent and generally not
analytically known � score estimation was already an issue for s∗(x). The core idea
in score-based di�usion is to extract information about ∇ log ρ(x, s) from the forward
process since the solutions of (2.2.39) and (2.2.40) have the same law, see Figure 2.5.
By De�nition 2.2.5, the forward process brings data to noise and the model to be

Figure 2.5: Schematic representation of forward and backward process in score-based
di�usion. Image taken from Song et al., 202142.

learned is a time dependent parametric vector �eld sθ(x, t). The loss used during the
forward process to learn the score is:

LSM (sθ(x, t)) = Et∼U(0,T )Eρ(x,t)[λ(t)∥sθ(x, t)−∇ log ρ(x, t)∥2] (2.2.41)

where λ : [0, T ] → R+ is a positive scalar weight function and U(0, T ) is the uniform
distribution in (0, T ). After the same integration by parts used in (2.2.41), there is

45Brian DO Anderson. Reverse-time di�usion equation models. Stochastic Processes and their
Applications, 12: 313�326, 1982.
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still the problem that computing the hessian is expensive in high dimension, especially
if sθ is a neural network. Several proposal to solve this issue have been proposed and
successfully exploited, such as denoising score matching46 or sliced score matching47.
Another subtle issue is that generally the forward process would generate pure noise
for T = ∞ � one could be worried that the truncation at �nite time would provide
an imprecise estimate of the score at that time scale, that is close to noise, and induce
errors during the generative phase. This problem is attacked by practitioners via
several tricks but the theoretical results in this sense are not complete.
Let us provide a brief interpretation of why score-based di�usion works better than
naive score matching (Proposition 2.2.3). Let us consider the simple case f(x, t) = 0
and g(t) = et; the resulting forward process is perturbing data with gaussian noise at
increasing variance scale8. That is, time scale corresponds to amount of noise in this
setup. We recall that the problem of naive score matching was the lack of data in
low density region for the target density. In score-based di�usion one use perturbed
data to populate those region and compute the score at each time scale that serves as
bridge from ρ̄ and the target ρ∗.

Stochastic Interpolants. Another more recent class of di�usion-based generative
models are the stochastic interpolants48. Let us immediately provide a de�nition of
such objects:

De�nition 2.2.6. Given two probability densities ρ1, ρ2 : Rd → R+, a stochastic
interpolant between them is a stochastic process Xt ∈ Rd such that

Xt = I(t,X0, X1) + γ(t)z t ∈ [0, 1] (2.2.42)

where:

� The function I is of class C2 on its domain and satisfy the following endpoint
conditions

I(i,X0, X1) = Xi i = 0, 1 (2.2.43)

as well as

∃C1 <∞ : |∂tI (t,X0, X1)| ≤ C1 |X0 −X1| ∀ (t,X0, X1) ∈ [0, 1]× Rd × Rd
(2.2.44)

� γ : [0, 1] → R is such that γ(0) = γ(1) = 0 and γ(t) > 0 for t ∈ (0, 1).

� The pair (X0, X1) is sampled from a measure ν that marginalizes on ρ0 and ρ1,
that is ν(dX0,Rd) = ρ0dX0 and ν(Rd, dX1) = ρ1dX1.

46Pascal Vincent. A connection between score matching and denoising autoencoders. Neural com-
putation, 23: 1661�1674, 2011.
47Yang Song et al. �Sliced score matching: A scalable approach to density and score estimation�

in: Uncertainty in Arti�cial Intelligence. PMLR 2020. 574�584
48Michael Samuel Albergo and Eric Vanden-Eijnden. �Building Normalizing Flows with Stochastic

Interpolants� in: The Eleventh International Conference on Learning Representations. 2022.
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� The variable z is a Gaussian random variable independent from (X0, X1), i.e.
z ∼ N (0d, Id) and z ⊥ (X0, X1)

Let us focus on the case in which ρ0 = ρ̄ to be a simple base distribution (e.g. a
Gaussian) and ρ1 = ρ∗, that is the data distribution. Equation (2.2.42) means that if
we sample a couple X0 ∼ ρ0 and X1 from the dataset, the interpolant is a stochastic
process that connects the two points. The objective is to build a generative model
that, in some sense, learns from the interpolants the way to map samples from ρ̄ to
ρ∗. The �rst important result in this sense is the following48:

Proposition 2.2.4. The interpolant Xt is distributed at any time t ∈ [0, 1] following
a time dependent density ρ(x, t) such that ρ(x, 0) = ρ0 and ρ(x, 1) = ρ1, and also
satis�es the following transport equation:

∂tρ+∇ · (bρ) = 0 (2.2.45)

where the vector �eld b(x, t) is de�ned by a conditional expectation:

b(x, t) = E
[
Ẋt | Xt = x

]
= E [∂tI (t,X0, X1) + γ̇(t)z | Xt = X] (2.2.46)

Proof. Let g(k, t) = Eeik·Xt the characteristic function of ρ(x, t), that is

g(k, t) = Eeik·(I(t,X0,X1)+γ(t)z) (2.2.47)

If we compute the time derivative of g, we obtain

∂tg(k, t) = ik ·m(k, t) (2.2.48)

where m(k, t) = E[(∂tI (t,X0, X1) + γ̇(t)z)eik·Xt ]. By de�nition of conditional expec-
tation,

m(k, t) =

∫
Rd

E[(∂tI (t,X0, X1) + γ̇(t)z)eik·Xt | Xt = x]ρ(x, t)dx

=

∫
Rd

eik·xb(x, t)ρ(x, t)dx

(2.2.49)

where we used the de�nition of b. If we insert m(k, t) in (2.2.48) and we compute the
Fourier anti-transform, we immediately obtain (2.2.45) in real space.

Other properties of b can be proven, but for the sake of the present summary we will
not delve into them. As usual we can identify ρ̄ and ρ∗ as base and data distributions.
Thanks to the previous Proposition we can already de�ne a di�usion-based generative
model:

Lemma 2.2.3 (ODE Generative Model). Given Proposition 2.2.4 and ρ(x, 0) = ρ̄, the
choice µ(Xt, t) = b(Xt, t) and σ(Xt, t) = 0 in (2.2.29) satis�es the endpoint condition
for T = 1.
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Di�erently from score-based di�usion models, such ODE-based formulation does not
involve stochasticity during generation. In fact, the ODE Ẋt = b(Xt, t) can be inter-
preted as a Normalizing Flow (see Section 2.6) where the pushforward is de�ned via a
transport PDE. Interestingly, the ODE formulation is formally equivalent to an SDE
formulation:

Lemma 2.2.4 (SDE Generative Model). For ε > 0, given Proposition 2.2.4, ρ(x, 0) =
ρ̄ and the score s(x, t) = ∇ log ρ(x, t), the choice µ(Xt, t) = b(Xt, t) + εs(Xt, t) and
σ(Xt, t) =

√
2ε in (2.2.29) satis�es the endpoint condition for T = 1.

Proof. Adding and subtracting the score to (2.2.45), we obtain for any ε > 0

∂tρ+∇ · ((b+ εs− εs)ρ) = 0 (2.2.50)

But sρ = ∇ρ, that is
∂tρ+∇ · ((b+ εs)ρ− ε∇ρ) = 0 (2.2.51)

Trivially, the solution of the PDE (2.2.51) is the law of a stochastic process solution
of an SDE as in (2.2.29).

We presented the proof as an example of the standard trick used to convert the di�usion
term into a transport term exploiting the score.
We de�ned the generative model, but similarly to score-based di�usion, we need to
clarify how b and s are learned in practice from data. For such purpose, we present
the following result:

Proposition 2.2.5. The vector �eld b(x, t) is the unique minimizer of the following
objective loss

Lb[b̂] =
∫ 1

0

E
(
1

2

∣∣∣b̂ (t,Xt)
∣∣∣2 − (∂tI (t,X0, X1) + γ̇(t)z) · b̂ (t,Xt)

)
dt (2.2.52)

Similarly, the the score s(x, t) the unique minimizer of the following objective loss

Ls[ŝ] =
∫ 1

0

E
(
1

2
|ŝ (t,Xt)|2 + γ−1(t)z · ŝ (t,Xt)

)
dt (2.2.53)

For the sake of the present summary, we will not present the proof48. The take home
message is that one can now propose two neural networks, namely bθ(x, t) and sθ′(x, t),
and train them through backpropagation using (2.2.52) and (2.2.53). The integrals
are estimated using random pairs (X0, X1) ∼ ν and times t ∼ U [0, 1]. As for score-
based di�usion, we avoid delving into practical details regarding the implementation
of the neural networks. We emphasize the main message: it is feasible to construct
a di�usion model de�ned in a �nite time interval that does not solely rely on the
score function. In fact, score-based di�usion can be viewed as a speci�c instance of
stochastic interpolation or similar methods (refer to Section 2.2.5 for more details).
Concerning practical aspects, the freedom in choosing the function I(t,X0, X1) as
well as γ(t) can be challenging due to the absence of a general guiding principle.
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Unfortunately, the structure of the interpolant and the implementation of bθ and sθ′
can signi�cantly impact the e�cient training of the model. Regarding the generative
phase, the SDE and ODE formulations are formally equivalent, but the practical choice
is not straightforward. From a numerical perspective, the primary issue lies in the
time discretization and integration of the di�erential equations. The ODE is preferred
since integration methods are more stable and precise compared to those for SDEs;
this allows for larger time steps and accelerated generation. This is also a signi�cant
advantage of stochastic interpolants over score-based di�usion, which is SDE-based.
However, the presence of noise appears to be necessary as regularization: in layman's
terms, since b is learned and possibly imperfect, any mismatch is "smoothed" in the
SDE setting by the presence of noise. The value of ε functions as a hyperparameter
in this context.
In conclusion, stochastic interpolants provide a general framework closely related to
other di�usion models, such as score-based di�usion, �ow matching49,50, or Schrödinger
bridge51. However, some common issues of di�usion-based generative models persist:
slow generation, dependence on hyperparameters and neural architectures, and data
dependence are the primary drawbacks.

2.2.4 Normalizing Flows

The fundamental idea underlying Normalizing Flows52,53 (NF) is very close to the
usual in generative modelling: to transform samples from a straightforward base dis-
tribution, often a Gaussian, to data distribution. The main feature of NF is that the
transformation is performed through a series of invertible and di�erentiable transfor-
mations.
The core concept revolves around constructing a model capable of learning a sequence
of invertible operations that can map samples from a simple distribution to the target
distribution. In particular, we recall the well-known lemma:

Lemma 2.2.5. Let us consider a random variable Z ∈ Rd and its associated probability
density function ρZ(z). Given an invertible function Y = ϕ(Z) on Rd, the probability
density function in the variable Y is de�ned through

ρY (y) = ρZ(g
−1(y))|det Jyφ−1(y)| = ρZ(ϕ

−1(y))|det Jyϕ(ϕ−1(y))|−1 (2.2.54)

where ϕ−1 is the inverse of ϕ and Jy is the Jacobian w.r.t. y. The density ρY is also
called pushforward of ρZ by the function ϕ and denoted by ϕ#ρZ .

49Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with recti�ed �ow. arXiv preprint arXiv:2209.03003 , 2022.
50Yaron Lipman et al. �Flow Matching for Generative Modeling� in: The Eleventh International

Conference on Learning Representations. 2022.
51Valentin De Bortoli et al. Di�usion Schrödinger bridge with applications to score-based generative

modeling. Advances in Neural Information Processing Systems, 34: 17695�17709, 2021.
52Esteban G. Tabak and Eric Vanden-Eijnden. Density estimation by dual ascent of the log-

likelihood. Communications in Mathematical Sciences, 8: 217�233, 2010.
53E. G. Tabak and Cristina V. Turner. A Family of Nonparametric Density Estimation Algorithms.

Communications on Pure and Applied Mathematics, 66: 145�164, 2013.
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In generative modelling, ρZ is identi�ed with the base distribution and its pushforward
as the target, i.e. data, distribution. The direction from noise to data is called
generative direction, while the other way is called normalizing direction � data are
normalized, gaussianized, by the inverse of ϕ. The name Normalizing Flow originates
from the latter. In fact, the mathematical foundation of NF is reduced to Lemma
2.2.5.
The whole problem reduces to design the pushforward in a data driven setup, that is
where we just have a dataset X of samples from the target and no access to the analytic
form of ρ∗. In order to link NF with other generative models, let us denote with ϕθ
with θ ∈ Θ the parametric map that characterizes the pushforward ρθ = (ϕθ)#ρZ . In
practice, this map is usually a neural network and ρθ will implicitly depend on it. The
optimal parameters θ∗ are chosen to be solution of the following optimization problem:

θ∗ = argmin
θ∈Θ

DKL(ρ∗(x) ∥ ρθ(x)) = argmax
θ∈Θ

E∗[log ρθ(x)] (2.2.55)

As already stressed, this formulation in term of maximum log-likelihood is equivalent
to cross-entropy minimization for EBMs. As for VAEs, the analytical form of ρθ is not
known: in NF it is implicitly de�ned through the pushforward. This issue is attacked
using Lemma 2.2.5 to rewrite the right hand side in (2.2.55) as

argmax
θ∈Θ

E∗[log ρθ(x)] = argmax
θ∈Θ

E∗[log ρZ(ϕ
−1
θ (y)) + log |det Jyϕ−1(y)|] (2.2.56)

The likelihood of a sample under the base measure is represented as the �rst term,
and the second term, often referred to as the log-determinant or volume correction,
accommodates the alteration in volume resulting from the transformation introduced
by the normalizing �ows. After this manipulation every addend inside the expectation
is calculable � the map ϕ and the noise distribution ρZ are given (e.g. a gaussian).
As usual, the expectation can estimated via Monte Carlo using the �nite dataset X at
our disposal. Any gradient based optimization routine can be then exploited to opti-
mize θ. During training, the model adjusts the parameters θ to bring the transformed
distribution in close alignment with the true data distribution.
The main limitation in NF is that the pushforward map must be bijective for any θ.

Figure 2.6: Schematic representation of Normalizing Flows, image taken from
https://flowtorch.ai/users/54.

Not only that: both forward and inverse operations are required to be computationally
feasible to perform generation and normalization. Furthermore, the Jacobian deter-
minant must be tractable to facilitate e�cient computation. These requests constrain

https://flowtorch.ai/users/
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the possible neural architectures that one can use to model ϕθ. The following lemma
provides a decisive tool in this sense.

Lemma 2.2.6. Let us consider a set of M bijective functions {fi}Mi=1. If we denote
with f = fM ◦ fM−1 ◦ · · · ◦ f1 their composition, one can prove that f is bijective and
its inverse is

f−1 = f−1
1 ◦ · · · ◦ f−1

M−1 ◦ f
−1
M (2.2.57)

Moreover, if we denote with xi = fi ◦ · · · ◦ f1(z) = f−1
i+1 ◦ · · · ◦ f−1

M and y = xM , we
have

det Jyf
−1(y) =

M∏
i=1

det Jyf
−1
i (xi) (2.2.58)

Exploiting this factorization result, the strategy is to compose invertible building
blocks (ϕθ)i to construct a function ϕθ that is su�ciently expressive. In general,
the architecture of Normalizing Flows encompasses various transformations (see Fig-
ure 2.6), including simple operations like a�ne transformations and permutations, as
well as more complex functions such as coupling layers. Common �ow architectures
include RealNVP, Glow, and Planar Flows, each introducing unique ways to parame-
terize and structure transformations55.
Regarding drawbacks of NF, one signi�cant limitation lies in the computational cost
associated with training NF, particularly as model complexity increases. The re-
quirement for invertibility and the computation of determinants of Jacobian matrices
contributes to the time-consuming nature of training, especially in deep architectures.
The architectural complexity of NF poses another challenge. Designing an optimal
structure and tuning parameters may prove challenging, necessitating experimentation
and careful consideration. Moreover, they may face challenges in scaling to extremely
high-dimensional spaces, limiting their applicability in certain scenarios. Despite their
expressiveness, NF may struggle to capture extremely complex distributions, requiring
an impractical number of transformations to model certain intricate data distributions
e�ectively.
Another degree of freedom is the choice of the base distribution ρZ , which can impact
NF performance. Using a base distribution that does not align well with the true data
distribution may hinder the model's ability to accurately capture underlying patterns.
Training NF is observed to be less stable compared to other generative models, requir-
ing careful tuning of hyperparameters and training strategies to achieve convergence
and avoid issues like mode collapse. Lastly, interpreting the learned representations
and transformations within NF can be challenging, which is an obstacle for a straight-
forward comprehension of how the model captures and represents information.

2.2.5 Comparison and EBMs

In this section, we present a summarized comparison of EBMs and the other generative
models. First of all, the main similarity is the objective: maximize the log-likelihood is
55Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing �ows: An introduction

and review of current methods. IEEE transactions on pattern analysis and machine intelligence, 43:
3964�3979, 2020.
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Implementation of Maximum Log-Likelihood

EBM
Cross-Entropy Minimization
argminθ∈Θ E∗[Uθ] + logZθ

VAE
Latent Space

argmaxθ,θ′
∑N

i=1
1
R

∑R
i=r log ρθ(xi|z(r)i )−

∑N
i=1 DKL[log qθ′(zi|xi) ∥ ρ(zi)]

GAN
Minimax Game

argminθ argmaxθ′ E∗[logDθ′(x)] + Eρz [log(1−Dθ′(Gθ(z)))]

SBD or SI
Implicit via Transport-Di�usion Equation

∂tρ(x, t) +∇ · ((bθ(x, t) + εsθ′(x, t))ρ(x, t)− ε∇ρ(x, t)) = 0

NF
Volume Correction Factor

argmaxθ∈Θ E∗[log ρZ(ϕ
−1
θ (y)) + log |det Jyϕ

−1
θ (y)|]

Table 2.1: Comparison of implementation of maximum log-likelihood for di�erent
generative models.

Generation Evaluation

EBM MCMC Energy function

VAE Sampling from gaussian Fidelity of encoding-decoding

GAN Generator Discriminator

SBD (or SI) SDE (or ODE) Score (or vector �eld)

NF pushforward map Fidelity of Normalizing Flow

Table 2.2: Generation and evaluation for Generative Models.

the general aim. In Table 2.1 we present how this task is instantiated case by case. In
generative models, there exists an inherent trade-o� between the model's ability to gen-
erate data and its alignment with real-world data. Essentially, the paradigm followed
in each optimization step involves two key stages: (1) the generation of data using
a �xed model, and (2) the evaluation of the model's performance by comparing the
generated ("fake") data with the actual dataset. This dual-step process is universally
applicable, albeit with variations in implementation. It represents an interpretation of
generative models as a balance between their discriminative and sampling capabilities.
For conciseness, Table 2.2 provides a summary of speci�c details for each generative
model. The primary distinction among the Generative Models under examination lies
in the manner in which they learn. In Normalizing Flows (NFs) and Generative Adver-
sarial Networks (GANs), the focus is on directly learning a deterministic mapping from
data to noise. Stochasticity enters the picture primarily through the selection of an
initial datum for generation. Conversely, in Variational Autoencoders (VAEs), di�u-
sion models, and Energy-Based Models (EBMs), generation is intrinsically linked to a
sampling routine (such as Stochastic Di�erential Equations for Score-Based Di�usion).
This disparity has its advantages and disadvantages: while deterministic generation
can be more e�cient, any inaccuracies in the learned generator, stemming from �nite
dataset sizes, tend to be ampli�ed. Empirically, this mirrors the rationale behind em-
ploying SDEs rather than ODEs in stochastic interpolants: a noisy evolution serves
as a regularizer. However, the magnitude of noise becomes a critical hyperparameter
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in di�usion models, as does the structure within latent space for VAEs. Currently,
there is no universally applicable recipe for determining the best generative model for
a speci�c problem.
The bidirectional nature of generative models (from noise or latent space to data,
and vice versa) is a noteworthy common characteristic, except in the case of GANs,
where the generation model lacks invertibility. Interestingly, it appears that more re-
cent generative models, such as Score-Based Di�usion, enhance �delity by leveraging
information acquired during the "noising" process�transforming data into noise. To
explore this perspective, the utilization of tools native to Mathematical Physics, par-
ticularly those related to stochastic processes, has proven necessary, suggesting that a
meticulous examination of Generative Models through the lens of physical processes
could be crucial for future advancements.
Now, let's delve into a more detailed mathematical comparison, with a focus on
Energy-Based Models (EBMs). Speci�cally, we demonstrate how, in certain cases,
other generative models can be interpreted as EBMs:

� For GANs, if the discriminator is Dθ′(x) ∝ e−Uθ′ (x), we immediately recover the
term E∗[Uθ]. The training of the generator correspond to learn a perfect sampler,
and resemble the use of machine learning to improve MCMC in computational
science56.

� For SBD and SI, if the score is modelled by sθ′(x, t) ∝ −∇Uθ′(x) the law of
the process solution of the SDE is a Boltzmann-Gibbs ensemble by construction.
Thus, the strong analogy is related to the constrained structure imposed to the
law of the bridging process between the noise and the data, forced to be a BG
ensemble. Regarding the loss, since the model is trained on Fisher divergence or
on the interpolants, there is no direct analogy between the losses.

� For NFs, if ϕθ is the map associated to a �ow that brings X0 ∼ ρZ(ϕ
−1
θ (x)) ∝

e−Uθ(x) to X1 ∼ ρ∗, then the term E∗[Uθ] present in EBMs is analogous to
E∗[log ρZ(ϕ

−1
θ (y)) for NFs. In practice, if the composition of ρZ with the nor-

malizing �ow can be written as an EBM, there is no di�erence between the
models. This is of course not true in general � it is not given that for any θ, a
composition of the inverse map ϕ−1

θ and ρZ can be always associated to an EBM
parameterized via Uθ.

� For VAEs the situation is a bit more intricate because of the ELBO reformulation.
A possible interpretation towards EBMs is to think about encoder and decoder
as a forward and backward processes from data to a latent space (possibly in-
dependent features, similarly to gaussian noise). One could imagine ρθ(xi|z(r)i )
and qθ′(zi|xi) as EBMs that have to match with some constraint on the z space.
In fact, the original EM steps represent an alternating optimization, where θ is
not related to θ′. In this sense, VAEs tries to match the forward and backward
processes, similarly to SBD where they are the same by construction of the score.

56Jiaming Song, Shengjia Zhao, and Stefano Ermon. A-nice-mc: Adversarial training for mcmc.
Advances in neural information processing systems, 30: 2017.
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A �tting metaphor for generative models is to liken them to bridges connecting a
"simple" source, such as noise, to real data. Just like constructing a physical bridge,
building a generative model requires understanding the abutments. In the realm of
data science, this translates to conducting statistical analysis of the dataset on one
side, and selecting the appropriate noise source on the other. Additionally, modifying
the docking con�guration where the bridge is anchored�equivalent to data prepro-
cessing�is often necessary. This step is crucial, akin to using the correct coordinates
to describe a physical system. For instance, molecular con�gurations may not be eas-
ily trainable in standard three-dimensional space due to numerous implicit structural
constraints.
Once the groundwork is laid, constructing the bridge begins. Just like real roads, di�er-
ent paths are tailored for di�erent canyons, and similarly, for di�erent data structures.
Whether the bridge is bidirectional or not depends on the speci�c requirements. The
key takeaway is always to maximize the log-likelihood between the model and the
data distribution, ensuring that the bridge e�ectively connects the source to the de-
sired destination.

2.3 EBMs and sampling

The challenge of sampling from the Boltzmann-Gibbs (BG) ensemble arises in statis-
tical mechanics, particularly when dealing with complex systems at equilibrium. This
ensemble encapsulates the probability distribution of states for a system with numer-
ous interacting particles at a given temperature. The primary obstacle in that context
lies in the exponential number of possible states and intricate dependencies among
particles, rendering brute-force methods impractical for large systems. A similar dif-
�culty is encountered during EBM training, since the computation of the expectation
Eθ requires the ability to sample from a Boltzmann-Gibbs density.
Let us restrict to the case in which the energy U(x) is de�ned on Rd, that corresponds
to continuous states in Statistical Physics. Any proposed techniques to e�ciently sam-
ple from ρBG(x) = exp(−U(x))/Z can rely just on U(x) or on its derivatives, even if
the computation of many iterated derivatives can be expensive in high dimension. The
estimation of the partition function or the shape of the energy landscape are in general
unknown � on the contrary, they are the unknowns. Methods as rejecting sampling57

cannot be used since one has usually access to U(x) and not to the normalized density
ρBG(x). Since the advent of computational science, sampling has been attacked with
many methods � a complete and exhaustive review of the existent methods would
lead us o�-topic. In this Section, we will highlight three common routines for sam-
pling from a BG enseble: Metropolis-Hastings and Unadjusted Langevin Algorithm,
and lastly Metropolis Adjusted Langevin Algorithm, a sort of fusion of the �rst two.
Let us better de�ne the mathematical setting. We consider a space Ω ⊆ Rd and a
discrete sequence (tk)k≥0 ⊂ N. Then, we consider Xtk := Xk to be a stochastic process
in Ω and discrete time. For the sake of simplicity we will always consider absolutely

57George Casella, Christian P Robert, and Martin T Wells. Generalized accept-reject sampling
schemes. Lecture Notes-Monograph Series, 342�347, 2004.
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continuous densities with respect to Lebesgue measure.

De�nition 2.3.1 (Informal). Sampling from a BG ensemble consists in de�ning the
process Xk such that ∃T > 0, not necessarily unique, for which XT ∼ exp(−U(x))/Z.

Once we manage to de�ne such a process, and implement it in practice, we have solved
the problem of sampling from a BG ensemble. A possible implicit way to de�ne such
stochastic process is via a transition kernel. Suppose we are interested in the law of
the process X at time k + 1, that we denote ρ(Xk+1) with an abuse of notation (n.b.
analogous of ρ(x, t) in the context of SDEs and Fokker-Planck equation). By de�nition
of conditional probability, there exists a function T : Ωn+1 → R+ such that

ρ(Xk+1) =

∫
Ωd

T (Xk+1|Xk, . . . , X0)ρ(Xk, . . . , X0)

n∏
i=0

dXi (2.3.1)

This equation asserts that any property, uniquely de�ned by the law ρ(Xk+1) of the
system at time k + 1, depends on the system's state at any k ≥ 0. Generally, this
strict constraint is relaxed by imposing Markovianity58, which is the property of the
transition kernel to depend solely on the present state Xk and not on previous states,
i.e.

T (Xk+1|Xk, . . . , X0) = T (Xk+1|Xk) := T (Xk, Xk+1) (2.3.2)

The sequence (Xk)n ≥ 0 is called a Markov chain if the associated transition kernel
is Markovian. The question now is how to design such a chain to solve the sampling
problem. Traditionally, it is simpler to identify a transition kernel for which ρBG(x) is
the unique stationary distribution, i.e., ρ(Xk) = ρBG(x) for any n > T in De�nition
2.3.1. Moreover, the integral de�nition (2.3.1) is not suitable for applications since one
usually evolves Xk and not its law. Typically, it is required that T is associated with
an explicit time evolution for the process, namely an explicit mapping Xk+1 = F (Xk).
For historical reasons, let us present the most famous procedure to build the required
sampling stochastic process, namely the Metropolis-Hastings algorithm59,60. Such
techniques stand out as a foundational Markov chain Monte Carlo (MCMC)61 method.
Here, we provide its de�nition and a sketch of the proof of its properties.

De�nition 2.3.2 (Metropolis-Hastings (MH) algorithm). Let us consider an initial
condition X0 ∼ ρ0(x), where ρ0(x) simple to sample from (e.g. Gaussian or uniform).
Let us consider a conditional probability distribution g(Xk+1|Xk), also called proposal
distribution, de�ned on the state space Ω and let ρBG(x) = exp(−U(x))/Z the BG
ensemble we would like to sample from. Starting at n = 0, we de�ne a Markov chain
Xk via the following repeated steps:

58Daniel W Stroock. An introduction to Markov processes. vol. 230 Springer Science & Business
Media, 2013.
59Nicholas Metropolis et al. Equation of state calculations by fast computing machines. The journal

of chemical physics, 21: 1087�1092, 1953.
60W Keith Hastings. Monte Carlo sampling methods using Markov chains and their applications.

1970.
61Christophe Andrieu et al. An introduction to MCMC for machine learning. Machine learning,

50: 5�43, 2003.
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1. Given Xk, generate a proposal X
(p)
k+1 using the time evolution prescribed by T .

2. Compute the acceptance ratio

A(X
(p)
k+1, Xk) = argmin

{
1,
ρBG(X

(p)
k+1)g(Xk|X(p)

k+1)

ρBG(Xk)g(X
(p)
k+1|Xk)

}
(2.3.3)

3. Sample a real number u ∼ U [0, 1]. If u < A(Xk, X
(p)
k+1), accept the proposal

and set Xk+1 = X
(p)
k+1; otherwise, refuse the move and set Xk+1 = Xk. Then,

increment n to n+ 1.

Proposition 2.3.1. The Markov chain Xk de�ned via MH algorithm has ρBG(x) as
unique stationary distribution, i.e.

ρBG(x) =

∫
Ωd

TMH(x|x′)ρBG(x′)dx′, ∀x, x′ ∈ Ω (2.3.4)

where TMH(x|x′) is the transition kernel of MH algorithm.

Proof. We have show that (1) ρBG(x) is a stationary distribution and (2) it is unique.
Regarding (2) we advocate to geometric ergodicity62. We present the proof of property
(1): �rstly, it is equivalent to detailed balance condition63

ρBG(x)TMH(x, x′) = ρBG(x
′)TMH(x′, x) ∀x, x′ ∈ Ω (2.3.5)

The transition kernel is by de�nition

TMH(x, x′) = g(x′|x)A(x′, x) + δ(x− x′)

(
1−

∫
Ω

A(x, s)g(s|x)ds
)

(2.3.6)

where the �rst addend takes into account the case of accepted move, while the second
of the rejected one. Actually, for x = x′ the detailed balance condition is trivially true.
Then, for x ̸= x′ we compute the left hand side of (2.3.5)

ρBG(x)TMH(x, x′) = ρBG(x)g(x
′|x)A(x′, x)

= ρBG(x)g(x
′|x) argmin

{
1,
ρBG(x

′)g(x|x′)
ρBG(x)g(x′|x)

}
= argmin {ρBG(x)g(x′|x), ρBG(x′)g(x|x′)}

(2.3.7)

The right hand side is symmetric with respect to swap of x with x′, hence concluding
the proof.

62Kerrie L Mengersen and Richard L Tweedie. Rates of convergence of the Hastings and Metropolis
algorithms. The annals of Statistics, 24: 101�121, 1996.
63Christian P Robert, George Casella, and George Casella. Monte Carlo statistical methods. vol. 2

Springer, 1999.
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In practice, convergence is considered achieved when the acceptance ratio is consis-
tently close to 1. In such cases, every newly generated proposal can be regarded as an
independent sample obtained from ρBG.
Despite its popularity, the Metropolis-Hastings algorithm has some limitations. It is
sensitive to the choice of the proposal distribution g and its parameters, and improper
tuning may result in ine�cient exploration. For instance, in the so-called random walk
setting, g is chosen to be a Gaussian transition kernel, and its variance is a critical
hyperparameter in this case. Moreover, the algorithm generates correlated samples,
impacting the independence of successive samples and hindering accurate estimation
even after convergence. Convergence may be slow in high-dimensional spaces, requiring
numerous iterations. In such setups, the algorithm's performance is in�uenced by the
initial state, and initial points far from the basin of the target may impede e�cient
exploration, leading to an acceptance rate close to zero. Another issue pertains to
multimodal distributions, especially those with widely separated modes. They pose a
signi�cant challenge for the Metropolis-Hastings algorithm because, depending on the
choice of g, jumps between modes can be very rare and may necessitate a very long
chain to practically observe convergence.
The second class of Markov chain we would like to review are the Langevin-based
algorithms. The basic idea is very close to the de�nition of naive score-based di�usion
in Proposition 2.2.3. For the sake of simplicity let us �x the state space Ω = Rd.

Proposition 2.3.2. Let us denote with dWt a Wiener process. Under Assumption
2.1.1, namely

∃a ∈ R+and a compact set C ∈ Rd : x · ∇U(x) ≥ a|x|2 ∀x ∈ Rd \ C, (2.3.8)

the Langevin SDE

dXt = −∇U(x)dt+
√
2dWt X0 ∼ ρ0 (2.3.9)

have a global solution in law and is ergodic64�66. For any initial condition ρ0(x) such
solution is ρBG(x).

Given this result, one can de�ne a Markov chain based on the time discretization of
such SDE and use it for sampling67. Such procedure is commonly named Unadjusted
Langevin Algorithm (ULA)68.

64Bernt Oksendal. Stochastic Di�erential Equations. 6th ed. Springer-Verlag Berlin Heidelberg,
2003.
65J. C. Mattingly, A. M. Stuart, and D. J. Higham. Ergodicity for SDEs and approximations:

locally Lipschitz vector �elds and degenerate noise. Stochastic Processes and their Applications,
101: 185�232, 2002.
66Denis Talay and Luciano Tubaro. Expansion of the global error for numerical schemes solving

stochastic di�erential equations. Stochastic Analysis and Applications, 8: 483�509, 1990.
67Giorgio Parisi. Correlation functions and computer simulations. Nuclear Physics B , 180: 378�

384, 1981.
68Gareth O Roberts and Richard L Tweedie. Exponential convergence of Langevin distributions

and their discrete approximations. Bernoulli , 341�363, 1996.
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De�nition 2.3.3 (ULA). Given a time step h > 0 and a set of i.i.d. gaussian
variables {ξk} ∼ N (0d, Id), the Unadjusted Langevin Algorithm (ULA) is the Markov
chain de�ned as

Xk+1 = Xk − h∇Uθk(Xk) +
√
2h ξk, X0 ∼ ρθ0 , (2.3.10)

for k ∈ N.

Under Assumption 2.1.1, the Unadjusted Langevin Algorithm (ULA) is ergodic and
possesses a unique global solution. An advantage over the Metropolis-Hastings (MH)
algorithm is that the chain is uniquely de�ned via U(x), and no proposal distribution
is necessary. However, it is well-known that ULA represents a biased implementation
of Langevin dynamics69. For a nonzero time step, the global solution is ρbias ̸= ρBG.
Let us illustrate this point with a simple example.

Example 3. Let U(x) = (x−µ)TΣ−1(x−µ)/2+log[det(2πΣ)]/2, that is BG ensemble
is a gaussian with mean µ and covariance matrix Σ. The associated Langevin SDE is
also known as Ornstein-Uhlenbeck (OU) process70, having a linear drift as peculiarity:

dXt = −Σ−1(Xt − µ)dt+
√
2dWt. (2.3.11)

It is possible to write an explicit solution using Ito integral, namely

Xt − µ ∼ e−tΣ
−1

(X0 − µ) + Σ
1
2

(
Id − e−2tΣ−1

) 1
2

Z (2.3.12)

for any t ≥ 0 and where Z ∼ N (0d, Id) indipendently from X0. It means that the law
of the process converges exponentially fast to N (µ,Σ). The associated ULA is

Xk+1 − µ =
(
Id − hΣ−1

)
(Xk − µ) +

√
2hξk. (2.3.13)

and the corresponding solution in law is

Xk − µ ∼ Akh (X0 − µ) +
√
2h
(
Id −A2

h

)− 1
2
(
Id −A2k

h

) 1
2 Z (2.3.14)

where Ah = Id − hΣ−1. Naming λmin(Σ) > 0 the minimum eigenvalue of the covari-
ance matrix, for 0 < h < λmin(Σ) we have limk→∞Akh = 0. Thus, for k → ∞

Xk
d−→ µ+

√
2h
(
Id −A2

h

)− 1
2 Z (2.3.15)

This means that the limiting measure for ULA is not ρBG, but

ρbias(x) = N

(
µ,Σ

(
Id −

h

2
Σ−1

)−1
)
(x) (2.3.16)

69Andre Wibisono. �Sampling as optimization in the space of measures: The Langevin dynamics
as a composite optimization problem� in: Conference on Learning Theory. PMLR 2018. 2093�3027
70George E Uhlenbeck and Leonard S Ornstein. On the theory of the Brownian motion. Physical

review , 36: 823, 1930.
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This example illustrates that the Unadjusted Langevin Algorithm (ULA) exhibits bias
even for a very simple target density. This phenomenon has been recently analyzed
mathematically69. The physical interpretation is that detailed balance is broken by
construction. Let us elaborate on this point: in Proposition 2.2.2, we demonstrated
how a Stochastic Di�erential Equation (SDE) can be associated with a Partial Di�eren-
tial Equation (PDE). The speci�c case studied in this section was previously analyzed
in Proposition 2.2.3. Speci�cally, the Boltzmann-Gibbs (BG) density is the unique
minimizer of the Kullback-Leibler (KL) divergence functional DKL(ρ ∥ ρGB). More-
over, the Fokker-Plank PDE corresponds to the gradient �ow in P(Rd) with respect
to the 2-Wasserstein distance W2

43. If we split (2.3.10) in two substeps

Xk+ 1
2
= Xk − h∇U(Xk)

Xk+1 = Xk+ 1
2
+
√
2εξk

(2.3.17)

we can associate each of them to a precise operation in probability space. In particular,
denoting with ρi the law of Xi, we obtain

ρk+ 1
2
= (Id − h∇U)#ρk

ρk+1 = N (0d, 2hId) ⋆ ρk+ 1
2

(2.3.18)

We recall the decomposition of the Kullback-Leibler (KL) divergence as DKL(ρ ∥
ρGB) = −H(ρ, ρGB)−H(ρ). In (2.3.18), the �rst step involves the forward discretiza-
tion of gradient descent on −H(ρ, ρGB) = Eρ[U ], while the second step represents the
exact gradient �ow for negative entropy in probability space. Therefore, ULA is also
referred to as the Forward-Flow method in probability space. The bias arises because
the forward gradient descent does not correspond, in probability space, to the adjoint
of the �ow at iteration k+1/2. One possible solution is to use forward-backward com-
binations, referring to proximal algorithms71. In particular, the Forward-Backward
(FB) implementation for Langevin dynamics would be

ρk+ 1
2
= (Id − h∇U)#ρk

ρk+1 = argmin
ρ∈P

{
−H(ρ) +

1

2ϵ
W2

(
ρ, ρk+ 1

2

)2} (2.3.19)

Similarly, the Backward-Forward (BF) version

ρk+ 1
2
=
(
(Id + h∇U)−1

)
#
ρk

ρk+1 = expρ
k+1

2

(
−h∇ log ρk+ 1

2

) (2.3.20)

where exp is the exponential map. Unfortunately, both FB and BF are not imple-
mentable in practice, except for the trivial case of gaussian initial data and target
ρBG. The heat �ow (the step k+ 1/2) is the most problematic since it concerns steps

71Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and trends® in Optimiza-
tion, 1: 127�239, 2014.
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in probability space. Neither forward (n.b. beyond one iteration) nor backward are
usable. As a side note, one could imagine to directly perform a single forward or back-
ward step on the KL divergence. Unfortunately, the encountered issues are the same
one has for the heat �ow, i.e. the hard task appears to be the actual implementation
of forward or backward routines in probability space. In conclusion, ULA appears to
be the simplest time discretization of Langevin dynamics, since it is practically imple-
mentable in general, hence very used for sampling from a BG ensemble. However, it
is known to be biased and other methods are studied to eliminate, or at least reduce,
such bias.
One possibility we would like to review is Metropolis Adjusted Langevin Algorithm72

(MALA), which represents a sort of hybrid between MH and ULA.

De�nition 2.3.4 (MALA). Metropolis Adjusted Langevin Algorithm is a particular
case of MH algorithm 2.3.2 where the proposal distribution is the transition kernel
associated to ULA (2.3.10), namely (for x ∈ Rd)

g(x′ | x) = 1

(2πh)
d
2

exp

(
− 1

4h
∥x′ − x+ hU(x)∥22

)
(2.3.21)

On the other hand, one can interpret MALA as a corrective measure for the break-
down of detailed balance in ULA. While the Metropolis-Hastings algorithm inherently
respects detailed balance, implying that MALA becomes asymptotically unbiased for
a large number of iterations as k → ∞, certain challenges persist. A primary concern
is the sensitivity to the choice of the step size h during the discretization of Langevin
dynamics, signi�cantly in�uencing the e�ciency of sampling. When h is too small,
it can lead to poor exploration and potentially a very low acceptance rate, while an
excessively large h can lead to instability of the chain. Determining an optimal h lacks
a general rule, contributing to MALA introducing bias in samples, particularly evident
when the target distribution features sharp peaks or multimodal structures. This bias
introduces potential inaccuracies in statistical estimates.
In practical applications, MALA may exhibit random walk behavior, especially when
step sizes are inadequately tuned, resulting in ine�cient exploration and sluggish con-
vergence. The algorithm's performance is further contingent on the choice of initial
conditions, and beginning far from high-probability regions may necessitate a con-
siderable number of iterations for meaningful exploration. Additionally, MALA may
struggle to adapt to changes in the geometry of the target distribution, particularly
when facing varying curvatures or strong anisotropy.
While various more advanced algorithms exist, they often build upon the foundational
concepts discussed in this section. Notable among them is Hamiltonian (or Hybrid)
Monte Carlo73 (HMC), an advanced MCMC method inspired by Hamiltonian mechan-
ics. HMC utilizes �ctitious Hamiltonian dynamics to propose new states, enhancing ex-
ploration, especially in high-dimensional systems. Gibbs sampling74, another MCMC
72Ulf Grenander and Michael I Miller. Representations of knowledge in complex systems. Journal

of the Royal Statistical Society: Series B (Methodological), 56: 549�581, 1994.
73Simon Duane et al. Hybrid monte carlo. Physics letters B , 195: 216�222, 1987.
74Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
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approach, iteratively samples from conditional distributions given current variable val-
ues on a single dimension, proving e�ective, particularly in high-dimensional spaces.
Parallel Tempering, or Replica Exchange75, involves running multiple chains at dif-
ferent temperatures concurrently, with periodic swaps between neighboring chains to
facilitate improved exploration.
In general, most methods aim to �nd a chain that produces independent samples from
a Boltzmann-Gibbs ensemble, particularly when run for extended periods. A critical
issue is measuring the e�ective bias due to the truncation at �nite time of the chain,
posing challenges for convergence towards the asymptotic ρBG. Unfortunately, few
general results are available, and they are often limited to speci�c BG ensembles, such
as Gaussian or log-concave densities. This becomes particularly problematic in the
context of Energy-Based Models (EBM), as outlined in Remark 2.1.1, where sampling
from a BG distribution is required at each step of parameter optimization. Further
discussion on this criticality in the context of state-of-the-art EBM training will be
provided in Section 3.1.

2.4 EBMs and physics

In this section, we provide a review of the Boltzmann-Gibbs ensemble in relation to
Statistical Physics, covering its derivation in equilibrium. The purpose of this treat-
ment is not only to motivate the speci�c structure of EBMs but also to provide a
context for the main topic of the present thesis, which explores the use of nonequilib-
rium results to train such generative models.
The �rst step involves the derivation of the Boltzmann-Gibbs ensemble. Here, we
present a derivation based on information theory76,77, o�ering a posteriori physical
interpretation of the quantities we will manipulate. Alternative methods of proof are
also available78. Consider a physical system whose state is uniquely determined by
a variable x ∈ Ω ⊆ Rd, where Ω is often referred to as phase space. The connection
with information theory is linked to the fundamental problem of Statistical Physics:
describing a system as a statistical ensemble, i.e., identifying an observation of x as
a sample from an underlying PDF ρ. Like classical statistics, ρ contains a wealth of
information about the system, particularly its global properties.
In Physics, this dichotomy translates into the microscopic versus macroscopic realms.
Let's envision a simple thought experiment: picture a large city where each of the
N inhabitants is given a fair coin, with the coin's state represented by our variable
x ∈ {−1, 1}N . Twice a day, everyone has to �ip their coin. If we were omniscient,

restoration of images. IEEE Transactions on pattern analysis and machine intelligence, 721�741,
1984.
75Robert H Swendsen and Jian-Sheng Wang. Replica Monte Carlo simulation of spin-glasses.

Physical review letters, 57: 2607, 1986.
76Edwin T Jaynes. Information theory and statistical mechanics. Physical review , 106: 620, 1957.
77Edwin T Jaynes. Information theory and statistical mechanics. II. Physical review , 108: 171,

1957.
78Giovanni Gallavotti. Statistical mechanics: A short treatise. Springer Science & Business Media,

1999.
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there would be a way to predict the state x with no error (i.e., the microscopic state)
and derive any global (macroscopic) property, such as the sum or product of the state
values at each �ipping event, with no error. However, in reality, nobody could achieve
this; we rely on statistics, the central limit theorem, and so forth. In other words,
we know the probability density ρ(x) from which the process is a sampled event. For
instance, if N is large enough, we expect the average of the state vector to be 0 for
any �ipping event, and we can deduce so directly from ρ.
In Statistical Physics, each coin represents a component of a system, such as a par-
ticle in a gas, for which a direct measurement of x is unattainable. The goal is to
determine ρ so that standard statistical tools can be used to analyze global properties.
The challenge that makes Statistical Physics more complex than the simple example
above is that the dynamics of individual components can be unknown and inaccessi-
ble. Additionally, interactions between components can make the identi�cation of ρ
challenging, even if the underlying microscopic dynamics are known.
To address this issue, we recognize that, before formulating any physical model, we
need some motivated assumptions�constraints or information�regarding how the
system should behave, at least on a macroscopic level. This is the bare minimum;
without any information about a system, it is impossible to provide any meaningful
analysis. Thus, adopting a claim of epistemic modesty, one can state that we aim to
select the model compatible with such constraints that maximizes our ignorance about
the system. The mathematical translation of such idea is the Principle of Maximum
Entropy.

Assumption 2.4.1 (Principle of Maximum Entropy). Let us consider the unknown
ρ : Ω → R+ that describes the probability distribution of the states. We assume ρ to
be absolutely continuous w.r.t. Lebesgue measure without loss of generality. Given a
vector �eld F : Ω → Rd, Λ ∈ Rd and a PDF π, a set of constraints is any component-
wise (in)equality

Ik[π] :=

∫
Ω

Fk(x)π(x)dx ≤k Λk k = 1, . . . , d (2.4.1)

where the symbol ≤k can be an equality or inequality. The Principle of Maximum
Entropy is

ρ = argmax
π∈P(Ω)
Ik[π]≤kΛk

H(π) (2.4.2)

where H(ρ) is the usual di�erential entropy, cfr. (2.1.7).

This variational formulation identify the "ignorance" about the system with the en-
tropy associated to ρ. It has been proven that the entropy can be characterized in
an axiomatic way79, so that the de�nition of di�erential entropy is unique with re-
spect to certain properties. For the sake of the present treatment, let us motivate the
Maximum Principle with a simple example.

79János Aczél, Bruno Forte, and Che Tat Ng. Why the Shannon and Hartley entropies are `natural'.
Advances in applied probability, 6: 131�146, 1974.
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Example 4 (Maximum principle on an interval). Let us consider an interval Ω =

[a, b] ⊂ R, with Vol(Ω) =
∫ b
a
dx. Moreover, the only constraint is that ρ can be

normalized and is positive. Thus, we have I0[π] =
∫ b
a
ρ(x)dx = 1 and

ρ = argmax
π∈P(Ω)

I0[π]=1, π>0

H(π) (2.4.3)

We can use Lagrange multipliers to solve a constrained optimization problem, solving
the unconstrained optimization of the Lagrangian

J(π) := H(π) + λ0

(∫ b

a

π(x)dx− 1

)
(2.4.4)

To �nd stationary points we can compute the �rst variational derivative with respect
to π and �nding its roots, namely solutions of

δJ(π)

δπ
= − log π − 1 + λ0 = 0 (2.4.5)

that is ρ(x, λ0) = exp(λ0−1). To �nd λ0 we can substitute ρ(x, λ0) into the constraint,
yielding λ0 = 1 − log(b − a). In conclusion, ρ(x) = 1/(b − a), which also satis�es the
positivity request. We have just to check that such stationary point is a maximum.
The second variation of J(π) evaluated in the stationary point is

δ2J(π)

δπ2

∣∣∣
π=ρ

= − 1

ρ(x)
< 0 (2.4.6)

Hence, we conclude that ρ(x) is a maximum. If Ω is discrete such derivation can be
easily generalized. The interpretation is straightforward: imagine that Ω is the event
space for some random process. Without any knowledge, the simplest possible model
is the one that associates the same probability to all the possible outcomes.

At this point we have all the ingredients to present the derivation of Boltzmann-Gibbs
ensemble.

Proposition 2.4.1 (Boltzmann-Gibbs ensemble from Maximum Entropy principle).
Given U(x) that satis�es Assumption 2.1.1 and a constant Ū , the Boltzmann-Gibbs
ρBG = eλ1U(x)/Z, where λ1 > 0, is the unique solution of the variational maximization
problem (2.4.2) where the set of constraints is

I0[π] :=

∫
Ω

π(x)dx = 1

I1[π] :=

∫
Ω

U(x)π(x)dx = Ū

(2.4.7)

Proof. The proof proceeds similarly to Example 4. The constrained optimization
problem (2.4.2) is associated to the unconstrained one

ρ = argmax
π∈P(Ω)

J(π) := argmax
π∈P(Ω)

H(π)+λ0

(∫
Ω

π(x)dx− 1

)
+λ1

(∫
Ω

U(x)π(x)dx− Ū

)
.

(2.4.8)
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where λ0, λ1 are Lagrange multiplier. We compute the �rst variational derivative and
�nd its roots

δJ(π)

δπ
= − log π(x)− 1 + λ0 + λ1U(x) = 0 (2.4.9)

That is, ρ(x) = exp(λ0 + λ1U(x) − 1). This means that λ0 can be incorporated
in the normalization factor, namely the partition function Z−1 = exp(λ0 − 1), and
determined via the constraint I0[ρ] = 1. While λ1 is implicitly determined by I1. To
check that such solution is a maximum, we compute the second variation obtaining a
result analogous to (2.4.6).

The remaining issue is the identi�cation of λ1 with β = 1/kBT , related to temperature
T and Boltzmann dimensional constant kB = 1.23 × 10−28 J · K−1. The reason is
that if we interpret the Boltzmann-Gibbs ensemble with an equilibrium ensemble, the
derivation via Maximum Entropy principle must be coherent with Thermodynamics80.
A complete survey on such �eld would lead the present treatment o�-topic. The take
home message is related to a di�erent interpretation of the unconstrained optimization
problem (2.4.8), namely

δ

δπ

(
H(π) + λ0

∫
Ω

π(x)dx+ λ1

∫
Ω

U(x)π(x)dx

)
= 0 (2.4.10)

In particular, the following lemma holds true:

Lemma 2.4.1. Maximum Entropy principle and its variational formulation are equiv-
alent to

� Constrained minimization of energy functional Ū =
∫
Ω
U(x)π(x)dx.

� Constrained minimization of Helmholtz Free Energy functional F = Ū −TH(π),
where T > 0 is the usual thermodynamic temperature.

Proof. The proof is just related to a rede�nition of the Lagrange multipliers. For the
minimization of energy, one de�ne λ′1 = −1/λ1 and λ′0 = −λ0/λ1, where the sign is
just a convention, obtaining

δ

δπ

(
λ′1H(π) + λ′0

∫
Ω

π(x)dx+

∫
Ω

U(x)π(x)dx

)
= 0 (2.4.11)

While for the Helmholtz Free Energy, we have just to impose the thermodynamics
constraint81 ∂F/∂S = −T , that is λ1 = −1/T .

Remark 2.4.1 (Free Energy in EBM training). In Section 2.1.1 we presented the
training procedure for an EBM as the KL divergence minimization. If ρθ is in the
same class of ρ∗, the global minimum in probability space corresponds to ρθ = ρ∗, i.e.

80Clement John Adkins. Equilibrium thermodynamics. Cambridge University Press, 1983.
81Enrico Fermi. Thermodynamics. Courier Corporation, 2012.
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KL divergence equal to zero since by de�nition DKL(ρθ ∥ ρθ) = 0. However, if we
expand the such identity, we have

logZθ + β

∫
Rd

Uθ(x)ρθ(x)dx−H(ρθ) = 0 (2.4.12)

where we used (2.1.10), and restored β in front of Uθ (n.b. we put kB = 1 and T = 1
in Section 2.1.1). If we identify Fθ = − logZθ, we immediately notice that (2.4.12)
is the de�nition of Helmholtz Free Energy. In fact, the convergence of the training
corresponds to have reached the equilibrium. The equality F = Ū − TH(π) is not true
out of equilibrium � the KL divergence DKL(ρθ ∥ ρ∗) is zero i� ρθ = ρ∗. Moreover,
it is even more clear the statement of Lemma 2.4.1: since

logZθ + min
π∈P(Ω)

I0[π]=1, ρθ>0

[β

∫
Rd

Uθ(x)pi(x)dx−H(π)] = 0 (2.4.13)

and F = Ū − TH(π), at equilibrium F is necessarily minimized in correspondence of
F [ρθ] = − logZθ.

The requested compatibility between Thermodynamics and the Maximum Entropy
principle in Lemma 2.4.1 represents the �nal ingredient needed to de�ne the Boltzmann-
Gibbs probability density associated with a system at equilibrium with a thermal
reservoir at temperature T . For the purpose of this thesis, it would be bene�cial to
elaborate on the physical signi�cance of EBM. Assuming we are dealing with an equi-
librium ensemble, we presume that the parameters θ in the energy Uθ have already
been determined. Similar to a physical gas where particles move within an energy
landscape, di�erent datasets or even individual data points can be envisioned as snap-
shots of an evolving physical system. The crucial aspect is that from a statistical
perspective, the average energy Ū associated with the EBM must remain constant,
with �uctuations suppressed as the number of components increases. An example of
dynamics consistent with such a constraint is Langevin dynamics. The connection
with sampling and Physics becomes evident: sampling is the process of relaxation82

towards equilibrium. Utilizing our understanding of nature entails designing sampling
routines capable of facilitating such relaxation.
We introduced the concept of free energy as a thermodynamic quantity minimized at
equilibrium by the Boltzmann-Gibbs ensemble. It serves as the natural link to the
Jarzynski equality, a fundamental result in nonequilibrium Statistical Physics central
to this thesis. Generally, computing free energy is a extensively studied problem
in Chemistry83, spanning from organic Chemistry to protein folding84. However, the
concept of free energy appears ubiquitous, extending into seemingly disparate contexts

82Denis J Evans, Debra J Searles, and Stephen R Williams. Dissipation and the relaxation to
equilibrium. Journal of Statistical Mechanics: Theory and Experiment , 2009: P07029, 2009.
83William L Jorgensen. Free energy calculations: a breakthrough for modeling organic chemistry

in solution. Accounts of Chemical Research, 22: 184�189, 1989.
84Aaron R Dinner et al. Understanding protein folding via free-energy surfaces from theory and

experiment. Trends in biochemical sciences, 25: 331�339, 2000.
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far from computational chemistry, such as autoencoders85, lattice �eld theory86, and
neuroscience87. Invariably, it is associated with some equilibrium principle, often
directly linked to the use of a generalization of the Boltzmann-Gibbs ensemble.
The importance of free energy can be readily understood: the expected value of any
observable at equilibrium can be computed if we have access to the normalization
constant of the Boltzmann-Gibbs ensemble, which is the partition function Z = e−F .
However, as demonstrated in Section 2.1.1, computing the partition function, and con-
sequently the free energy, is exceedingly complex using standard Monte Carlo methods
for systems with many degrees of freedom, roughly corresponding to dimension d for
EBM training. Among the various proposed advanced methods88, the utilization of
the Jarzynski identity89 stands out as a highlighted result that will be fundamental for
this thesis. In Section 3.2, we will present a proof within the speci�c context of EBM
training. The approach of Jarzynski is related to nonequilibrium Statistical Physics
and an extended interpretation will be provided in such Section.

85Geo�rey E Hinton and Richard Zemel. Autoencoders, minimum description length and Helmholtz
free energy. Advances in neural information processing systems, 6: 1993.
86Kim A Nicoli et al. Estimation of thermodynamic observables in lattice �eld theories with deep

generative models. Physical review letters, 126: 032001, 2021.
87Karl Friston. The free-energy principle: a rough guide to the brain? Trends in cognitive sciences,

13: 293�301, 2009.
88Gabriel Stoltz, Mathias Rousset, et al. Free energy computations: A mathematical perspective.

World Scienti�c, 2010.
89C Jarzynski. Nonequilibrium equality for free energy di�erences. Physical Review Letters, 78:

2690, 1997.
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Chapter 3

E�cient Training of EBMs

using Jarzynski equality

3.1 State of the art: Contrastive Divergence

In this section we summarize the most common algorithm used for EBM training,
namely Contrastive Divergence. For readers convenience, we �x the notation: in
the following, ρθ(x) = ρθ(t)(x) = exp(−Uθ(t)(x))/Zθ is the EBM we aim to train.
As we showed in Section 2.1, training an EBM reduces to perform gradient-based
optimization on cross-entropy. After some manipulation, the gradient of H(ρ∗, ρθ)
reduces to

∂θH(ρ∗, ρθ) = E∗[∂θUθ]− Eθ[∂θUθ] := −D. (3.1.1)

As we stressed in Remark 2.1.1, the main issue is the estimation of Eθ[∂θUθ]. An
analytical computation is outreach for a generic Uθ, as well as the use of numerical
spline methods which are impractical in high dimension. The only possibility is to
generate a set of N samples {Xi}Ni=1 distributed as ρθ(t) and exploit a Monte Carlo
integration, namely

Eθ[∂θUθ] ≈
1

N

N∑
i=1

∂θUθ(X
i) Xi ∼ ρθ (3.1.2)

We stress that such generation is required at each optimization step of θ. Following
the treatment in Section 2.3, the basic idea is to couple a gradient-based routine with
a Markov Chain devoted to the generation of the needed samples. Without loss of
generality, we present the state-of-the-art algorithm using ULA as the sampler.
As mentioned, a problem encountered by standard sampling routines (such as ULA) is
related to multimodality; that is, for �xed θ and a general initial condition X̄ ∼ π̄ for
the Markov Chain, there are no general results on the convergence rate towards the
desired equilibrium X ∼ ρθ. However, if one were to choose a smart initial condition,
such an issue is alleviated. For instance, in the ideal case where we could sample from
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an initial distribution ρ̄ very close to ρθ. In this sense, the naive approach in which
the sampling routine restarts from the same "simple" distribution, like a Gaussian,
for every optimization step, is not well adapted to EBM training. The question then
arises: how to select an appropriate initial condition?
The idea of Contrastive Divergence1 (CD) and Persistent Contrastive Divergence2

(PCD) in their original formulation is to use the unknown data distribution ρ∗ as
the initial condition for Markov Chain sampler. This is feasible since we have the
dataset; that is, we could simply extract some data points from it and use them as
the initial condition of the sampler at every optimization step. To better analyze the
two routines, we present CD and PCD in Algorithms 1 and 2, where ULA is chosen
as the sampling routine.

Algorithm 1 Contrastive divergence (CD) algorithm

1: Inputs: data points X = {xi∗}ni=1 in Rd; energy model Uθ; optimizer step opt(θ,D)
using θ and the empirical gradient D; initial parameters θ0; number of walkers
N ∈ N0 with N < n; total duration K ∈ N; ULA time step h; P ∈ N.

2: for k = 1, . . . ,K − 1 do
3: for i = 1, ..., N do
4: Xi

0 = RandomSample(X )
5: for p = 0, ..., P − 1 do
6: Xi

p+1 = Xi
p − h∇Uθk(Xi

p) +
√
2h ξip, ξip ∼ N (0d, Id) ▷ ULA

7: end for
8: end for
9: D̃k = N−1

∑N
i=1 ∂θUθk(X

i
P )− n−1

∑n
i=1 ∂θUθk(x

i
∗) ▷ empirical gradient

10: θk+1 = opt(θk, D̃k) ▷ optimization step
11: end for
12: Outputs: Optimized energy UθK ; set of walkers {Xi

P }Ni=1

Let us clarify the notation. Each X used for the estimation of the gradient of cross-
entropy is named a "walker". Each walker is indexed by a superscript, and the function
RandomSample(X ) performs a random extraction of N points from X . In CD, the
chain for sampling is reinitialized at data at every cycle; in PCD, as for the name,
the chain is "persistent", meaning it starts from the data just at the �rst iteration
� after each optimization step, the sampling routine restarts from the samples found
at the previous iteration. Traditionally, x∗ is referred to as "positive" samples, while
the samples from ρθ are termed "negative", especially in the community of Boltzmann
Machines. The adjective "Contrastive" originates from the minus sign between expec-
tations in (3.1.1): the contribution of negative and positive samples to the variation
of cross-entropy is indeed opposite. In fact, the ODE associated to gradient descent

1Geo�rey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14: 1771�1800, 2002.

2Tijmen Tieleman. �Training restricted Boltzmann machines using approximations to the likeli-
hood gradient� in: International conference on Machine learning. 2008. 1064�1071
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Algorithm 2 Persistent contrastive divergence (PCD) algorithm

1: Inputs: data points X = {x∗i }ni=1 in Rd; energy model Uθ; optimizer step opt(θ,D)
using θ and the empirical CE gradient D; initial parameters θ0; number of walkers
N ∈ N0 with N < n; total duration K ∈ N; ULA time step h.

2: Xi
0 = RandomSample(X ) for i = 1, . . . , N .

3: for k = 1, . . . ,K − 1 do
4: D̃k = N−1

∑N
i=1 ∂θUθk(X

i
k)− n−1

∑n
i=1 ∂θUθk(x

i
∗) ▷ empirical gradient

5: θk+1 = opt(θk, D̃k) ▷ optimization step
6: for i = 1, ..., N do
7: Xi

k+1 = Xi
k − h∇Uθk(Xi

k) +
√
2h ξik, ξik ∼ N (0d, Id) ▷ ULA

8: end for
9: end for
10: Outputs: Optimized energy UθK ; set of walkers {Xi

K}Ni=1.

on cross-entropy minimization is

θ̇ = Eθ[∂θUθ]− E∗[∂θUθ] (3.1.3)

This equation can be interpreted as gradient descent on the energy per positive sample
and gradient ascent for the energy per negative sample. It corresponds to increasing
the probability of data points in the dataset and decreasing it for the samples obtained
from the chain. Stationarity is reached when ρ∗ = ρθ, so that generated points belong
to the same distribution as true data points.
The natural question that arises concerns the convergence of the algorithms. To sim-
plify the treatment, we do not analyze the algorithms for a �nite set of walkers, but we
study the time evolution of the probability distribution of the walkers ρ̌(t, x). Ideally,
this should remove any possible spurious bias from the analysis and permit an easier
analytical study. We can write down an equation that mimics the evolution of the
PDF of the walkers in the CD algorithm in the continuous-time limit. This equation
reads:

∂tρ̌ = α∇ ·
(
∇Uθ(t)(x)ρ̌+∇ρ̌

)
− ν(ρ̌− ρ∗), ρ̌(t = 0) = ρ∗ (3.1.4)

with �xed α > 0 and where the parameter ν > 0 controls the rate at which the
walkers are reinitialized at the data points: the last term in (3.1.4) is a birth-death
term that captures the e�ect of these reinitializations. The solution to this equation
is not available in closed from (and ρ̌(t, x) ̸= ρθ(t)(x) in general), but in the limit of
large ν (i.e. with very frequent reinitializations), we can show3 that

ρ̌(t, x) = ρ∗(x) + ν−1α∇ ·
(
∇Uθ(t)(x)ρ∗(x) +∇ρ∗(x)

)
+O(ν−2). (3.1.5)

3Carles Domingo-Enrich et al. Dual Training of Energy-Based Models with Overparametrized
Shallow Neural Networks. arXiv preprint arXiv:2107.05134 , 2021.
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As a result, the gradient of cross-entropy (3.1.1) is∫
Rd

∂θUθ(t)(x)(ρ∗(x)− ρ̌(t, x))dx

= −ν−1

∫
Rd

∂θUθ(t)(x)∇ ·
(
Uθ(t)(x)ρ∗(x) +∇ρ∗(x)

)
dx+O(ν−2)

= ν−1

∫
Rd

(
∂θ∇Uθ(t)(x) · ∇Uθ(t)(x)− ∂θ∆Uθ(t)(x)

)
ρ∗(x)dx+O(ν−2)

(3.1.6)

The leading order term at the right hand side is precisely ν−1 times the gradient with
respect to θ of the Fisher divergence

1

2

∫
Rd

|∇Uθ(x) +∇ log ρ∗(x)|2ρ∗(x)dx

=
1

2

∫
Rd

[
|∇Uθ(x)|2 − 2∆Uθ(x) + |∇ log ρ∗(x)|2

]
ρ∗(x)dx

(3.1.7)

where ∆ denotes the Laplacian and we used∫
Rd

∇Uθ(x) · ∇ log ρ∗(x)ρ∗(x)dx =

∫
Rd

∇Uθ(x) · ∇ρ∗(x)dx = −
∫
Rd

∆Uθ(x)ρ∗(x)dx

(3.1.8)
This con�rms the known fact that the CD algorithm e�ectively performs GD on the
Fisher divergence rather than the cross-entropy4, similarly to score matching.
Regarding PCD, the associated PDE is (3.1.4) with ν = 0. Again, the solution ρ̌(t, x) ̸=
ρθ(t)(x) in general, thus for any �nite α, we have Eρ̌[∂θUθ] ̸= Eθ[∂θUθ]. In other words,
one cannot be sure to perform true gradient descent on cross-entropy � if we were
able to estimate the loss, we could observe non-monotonic behavior. Extensions of
standard PCD exploit an initial condition di�erent from ρ∗ for the persistent chain,
but such approach is plagued by the same issue regarding the convergence rate towards
equilibrium.
The takeaway message is that from an analytical standpoint, neither CD nor PCD
actually perform a gradient-based optimization of cross-entropy. One important issue
is that the presence of bias is related to time scales, in PCD regarding the length
of the Markov Chain for sampling, and in CD also for the reinitialization frequency.
Even if they are widely adopted in practice, the presence of such criticality even in
an ideal setup is far from optimal and critically links the applicability of EBMs to
the particular situation under study. We will show in the following some analytical
and numerical examples, even very simple ones, in which PCD and CD break down.
The overall objective of the next chapters is to present an alternative method that is
not biased in the continuous-time limit and for in�nitely many particles. Hopefully, a
practical implementation of such a method would be more e�cient in situations where
PCD and CD encounter problems.

4Aapo Hyvarinen. Connections between score matching, contrastive divergence, and pseudolikeli-
hood for continuous-valued variables. IEEE Transactions on neural networks, 18: 1529�1531, 2007.
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3.2 Continuous time: use of Jarzynski equality

In this section we start the presentation of the novel result object of the present thesis.
We use tools from nonequilibrium statistical mechanics5,6 to write exact expressions
for both Eθ[∂θUθ] and Zθ that are amenable to empirical estimation via sequential
Monte-Carlo methods7, thereby enabling gradient descent-type algorithms for the op-
timization of EBMs (Section 3.4). The �rst theoretical result is in continuous time:

Proposition 3.2.1. Assume that the parameters θ are evolved according to some
time-di�erentiable protocol θ(t) such that θ(0) = θ0. Given any α > 0, let Xt ∈ Rd
and At ∈ R be the solutions of{

dXt = −α∇Uθ(t)(Xt)dt+
√
2αdWt, X0 ∼ ρθ0 ,

Ȧt = −∂θUθ(t)(Xt) · θ̇(t), A0 = 0.
(3.2.1)

where Uθ(x) is the model energy and Wt ∈ Rd is a standard Wiener process. Then,
for any t ≥ 0,

Eθ(t)[∂θUθ(t)] =
E[∂θUθ(t)(Xt)e

At ]

E[eAt ]
, Zθ(t) = Zθ0E[eAt ], (3.2.2)

where the expectations on the right-hand side are over the law of the joint process
(Xt, At).

The second equation in (3.2.2) can also be written in term of the free energy Fθ =
− logZθ as Fθ(t) = Fθ0 − logE[eAt ]: this is Jarzynski's equality5. We stress that it is
key to include the weights in (3.2.2) and, in particular, E[∂θUθ(t)(Xt)] ̸= Eθ(t)[∂θUθ(t)].
This is because the PDF of Xt alone lags behind the model PDF ρθ(t): the larger α,
the smaller this lag, but it is always there if α < ∞, see next Subsection 3.2.1. The
inclusion of the weights in (3.2.2) corrects exactly for the bias induced by this lag.
An immediate consequence of Proposition 3.2.1 is that we can evolve θ(t) by the
gradient descent �ow over the cross-entropy by solving (3.2.1) concurrently with

θ̇(t) =
E[∂θUθ(t)(Xt)e

At ]

E[eAt ]
− E∗[∂θUθ(t)], θ(0) = θ0 (3.2.3)

since by (3.2.2) the right hand side of (3.2.3) is precisely what is needed, which is
the identity −∂θH(ρθ(t), ρ∗) = Eθ(t)[∂θUθ(t)] − E∗[∂θUθ(t)]. This is notable di�erence
with respect to Contrastive Divergence. Another important consequence is that if
we assume to know Zθ0 we can also track the evolution of partition function, hence
cross-entropy (2.1.5) via

H(ρθ(t), ρ∗) = logE[eAt ] + logZθ0 + E∗[Uθ(t)]. (3.2.4)

Let us present the proof of Proposition 3.2.1.
5C Jarzynski. Nonequilibrium equality for free energy di�erences. Physical Review Letters, 78:

2690, 1997.
6Radford M Neal. Annealed importance sampling. Statistics and computing, 11: 125�139, 2001.
7Arnaud Doucet, Nando De Freitas, Neil James Gordon, et al. Sequential Monte Carlo methods

in practice. vol. 1 Springer, 2001.
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Proof. The joint PDF f(t, x, a) of the process (Xt, At) satisfying (3.2.1) solves the
Fokker-Planck equation (FPE)

∂tf = α∇x · (∇xUθ(t)f +∇xf) + ∂θUθ(t) · θ̇(t)∂af, f(0, x, a) = Z−1
θ0
e−Uθ0

(x)δ(a).
(3.2.5)

Let us derive an equation for

ρ̂(t, x) =

∫ ∞

−∞
eaf(t, x, a)da (3.2.6)

To this end, multiply (3.2.5) by ea, integrate the result over a ∈ (−∞,∞), and use
integration by parts for the last term at the right-hand side to obtain:

∂tρ̂ = α∇x · (∇xUθ(t)ρ̂+∇xρ̂)− ∂θUθ(t) · θ̇(t)ρ̂, ρ̂(0, x) = Z−1
θ0
e−Uθ0

(x) (3.2.7)

By general results for the solutions of parabolic PDEs8 such as (3.2.7), we know that
the solution to this equation is unique, and we can check by direct substitution that
it is given by

ρ̂(t, x) = Z−1
θ0
e−Uθ(t)(x). (3.2.8)

This implies that ∫
Rd

ρ̂(t, x)dx = Z−1
θ0
Zθ(t). (3.2.9)

Since by de�nition E[eAt ] =
∫
Rd

∫∞
−∞ eaf(t, x, a)dadx =

∫
Rd ρ̂(t, x)dx this establishes

the second equation in (3.2.2) . To establish the �rst notice that

E[∂θUθ(t)(Xt)e
At ]

E[eAt ]
=

∫
Rd

∫∞
−∞ ∂θUθ(t)(x)e

af(t, x, a)dadx∫
Rd

∫∞
−∞ eaf(t, x, a)dadx

=

∫
Rd ∂θUθ(t)(x)ρ̂(t, x)dx∫

Rd ρ̂(t, x)dx

=
Z−1
θ0

∫
Rd ∂θUθ(t)(x)e

−Uθ(t)(x)dx

Z−1
θ0
Zθ(t)

= Eθ(t)[∂θUθ(t)]

(3.2.10)

3.2.1 Details of Jarzynski correction and physical interpreta-

tion

Suppose that the walkers satisfy the Langevin equation (�rst equation in (3.2.1)):

dXt = −α∇Uθ(t)(Xt)dt+
√
2αdWt, X0 ∼ ρθ0 , (3.2.11)

where θ(t) is evolving according to some protocol. The probability density function
ρ(t, x) of Xt then satis�es the Fokker-Planck equation

∂tρ = α∇ ·
(
∇Uθ(t)(x)ρ+∇ρ

)
, ρ(t = 0) = ρθ0 (3.2.12)

8Lawrence C Evans. Partial di�erential equations. vol. 19 American Mathematical Society, 2022.
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Similarly to what we discussed about PCD, the solution to this equation is not available
in closed form, and in particular ρ(t, x) ̸= ρθ(t)(x); ρ(t, x) is only close to ρθ(t)(x) if we
let α → ∞, so that the walkers Xt move much faster than the parameters θ(t), but
this limit is not easily achievable in practice (as convergence of the FPE solution to its
equilibrium is very slow in general if the potential Uθ(t) is complicated). As a result
E[∂θUθ(t)(Xt)] ̸= Eθ(t)[∂θUθ(t)], implying the necessity to include the weights in the
expectation (3.2.2). Speci�cally, we showed in the proof of Proposition 3.2.1 that the
PDF of the walker Xt in (3.2.1), satis�es an equation like (3.2.12) with an additional
birth-death contribution added to it:

∂tρ = α∇·
(
∇Uθ(t)(x)ρ+∇ρ

)
−∂θUθ(t)(x) · θ̇(t)ρ+λ(t)ρ, ρ(t = 0) = ρθ0 (3.2.13)

where λ(t) =
∫
Rd ∂θUθ(t)(x) · θ̇(t)ρdx is a Lagrange multiplier enforcing normalization

of ρ.
Let us provide a physical intuition of the Jarzynski correction. Seeting α = 1 in
the SDE (3.2.11) for simplicity, we can compute the total di�erential of the energy
Uθ(t)(Xt) using Ito's lemma:

dUθ(t)(Xt) = ∂θUθ(t)(Xt) · θ̇(t)dt︸ ︷︷ ︸
dWprot(t)

−|∇Uθ(t)(Xt)|2dt︸ ︷︷ ︸
dQdiss(t)

+

+∆Uθ(t)(Xt)dt+
√
2∇Uθ(t)(Xt) · dWt︸ ︷︷ ︸

dQtherm(t)

(3.2.14)

In the context of stochastic thermodynamics9 this di�erential can be interpreted as the
instantaneous variation of the total energy along a single realization of the SDE; thus,
we expect the validity of a �rst-law-like relation, and we split the di�erent contribution
in work W and heat Q in the second line of (3.2.14). Let us analyze each term to
motivate the notation: the �rst

dWprot(t) = ∂θUθ(t)(Xt) · θ̇(t)dt (3.2.15)

is due to the change of the potential caused by a deliberate modi�cation of the control
parameter θ(t); it is then natural to interpret this contribution as the external work
performed on the system, in analogy to experimental setups where θ(t) is a physical
actor that modi�es the potential, for instance the intensity of the laser in an optical
trap10. The second term

dQdiss(t) = −|∇Uθ(t)(Xt)|2dt (3.2.16)

is the energy dissipated due to the deterministic part of the dynamic; mathematically,
it is a consequence of the fact that Ẋt = −∇Uθ(t)(Xt), for �xed θ(t), is a gradient

9Udo Seifert. Stochastic thermodynamics, �uctuation theorems and molecular machines. Reports
on progress in physics, 75: 126001, 2012.
10Johannes Berner et al. Oscillating modes of driven colloids in overdamped systems. Nature

communications, 9: 999, 2018.
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dynamical system11; for such ODE the energy Uθ is not a conserved quantity. Physi-
cally, (3.2.16) represents the instantaneously dissipated heat along the trajectory due
to the interaction with the external potential; in real experiments, this potential can
be for instance due to some external �eld applied to the system. Let us stress that
this is an example in which a conservative force, i.e. the gradient of a scalar potential,
leads to energy dissipation. Usually, one thinks about friction as prototype of energy
dissipation phenomenon, but in the overdamped setup one can have also a �conserva-
tive source of dissipation."
Without the stochastic contribution to the dynamics, we can visualize the system as a
particle moving downhill in a landscape: it follows the steepest descent, but the land-
scape itself is changing. Let us stress that Ẋt = −∇Uθ(t)(Xt) is a �rst order ODE:
in this sense we should imagine a particle subject to a peculiar time dependent and
conservative friction. Without the external work, the particle would eventually stop
(Ẋt = 0); with the change of the potential, there exists a time dependent asymptotic
solution:

Lemma 3.2.1. Let us consider Uθ(t)(x) to be convex for any t. Given any two distinct

solutions X1(t) and X2(t) of the ODE Ẋt = −∇Uθ(t)(Xt) (i.e. solutions for di�erent
initial data), we have

1

2

d

dt
(X1 −X2)

2 ≤ 0 (3.2.17)

Hence, by contraction arguments there exists a unique asymptotic solution (X̄(t) =
argminx Uθ(t)(x) is not a solution).

Proof. If we expand (3.2.17), we obtain

1

2

d

dt
(X1 −X2)

2 = (X1 −X2) · (Ẋ1 − Ẋ2) = −(X1 −X2) · (∇Uθ(t)(X1)−∇Uθ(t)(X2)),

(3.2.18)
where we used the ODE. Now, we can exploit convexity to conclude the proof

−(X1 −X2)(∇Uθ(t)(X1)−∇Uθ(t)(X2)) ≤ −(X1 −X2)
T∇∇Uθ(t)(X1)(X1 −X2) ≤ 0

(3.2.19)

Finally, we can consider the stochastic contribution, that is the term

dQtherm(t) = ∆Uθ(t)(Xt)dt+
√
2∇Uθ(t)(Xt) · dWt (3.2.20)

Such part would be zero in absence of the stochastic term in the SDE and it represents
the energy pumped into the system by a thermostat at temperature T . In computa-
tional experiments, this temperature has no other meaning than an hyperparameter
that we set to T = 1 in the present context. On the other hand, in real experiments the
temperature is associated to some physical property of the thermostat, e.g. the kinetic
energy of particles in it. Whatever is the source of this energy pumping, its physical

11Stephen Smale. On gradient dynamical systems. Annals of Mathematics, 199�206, 1961.
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e�ect is to contrast the dissipation due to the gradient nature of the deterministic part
of the dynamics, so that the system remains at equilibrium.
To better understand this balance, let us consider the case when there is no external
drive, i.e. θ(t) = θ = cst, and let us look at the average energy

U(t) := E[Uθ(Xt)]. (3.2.21)

In absence of drive, we can establish convergence towards equililibrium, meaning that
the probability density function ρ(t, x) of Xt converges towards the stationary solution
ρθ(x) = exp(−Uθ(x))/Zθ. This also means that limt→∞ dU/dt = 0, which also implies,
after taking the time derivative of (3.2.21) and using (3.2.14) with dWprot = 0 (since
θ(t) = θ = cst)

0 = lim
t→∞

E [dQdiss(t) + dQtherm(t)] (3.2.22)

To close the circle, the Jarzynski equality Fθ(t) = Fθ0 − logE[eAt ] provides an alterna-
tive way to measure the free energy, that is the partition function, for BG ensemble.
It exploits a nonequilibrium process, in the sense that the potential in the Langevin
SDE is time dependent. The ensemble is driven out of equilibrium since the law of the
process Xt solution of the SDE in (3.2.1) is not ρθ(t) expect that for t = 0. However,
if we reweight the particle distribution using the exponential of minus the cumulative
work obtained from (3.2.15), then the "reweighted ensemble" is always in equilibrium
with ρθ(t). Moreover, the weights can be used to calculate the free energy di�erence,
and so the target free energy if we know Fθ0 . In Figure 3.1 we present a schematic
simpli�ed comparison: we consider the translation of a single well potential Uθ, and
we plot how reweighting is supposed to correct the mismatch between the evolved
ensemble and the desired ρθ.

3.3 Discrete time

A discrete time version of Proposition 3.2.1 is necessary in order to practically im-
plement an algorithm. The derivation is closely related to methods of Annealing
Importance Sampling6. The main result is the following:

Proposition 3.3.1. Assume that the parameters θ are evolved by some time-discrete
protocol {θk}k∈N0 and that (2.1.1) hold. Given any h ∈ (0, L), let Xk ∈ Rd and Ak ∈ R
be given by the iteration rule{

Xk+1 = Xk − h∇Uθk(Xk) +
√
2h ξk, X0 ∼ ρθ0 ,

Ak+1 = Ak − αk+1(Xk+1, Xk) + αk(Xk, Xk+1), A0 = 0,
(3.3.1)

where Uθ(x) is the model energy, {ξk}k∈N0
are independent N(0d, Id), and we de�ned

αk(x, y) = Uθk(x) +
1
2 (y − x) · ∇Uθk(x) + 1

4h|∇Uθk(x)|
2 (3.3.2)

Then, for all k ∈ N0,

Eθk [∂θUθk ] =
E[∂θUθk(Xk)e

Ak ]

E[eAk ]
, Zθk = Zθ0E

[
eAk
]

(3.3.3)
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Jarzynski reweighting

LAG

No reweighting

NO LAG

Figure 3.1: Schematic comparison of standard ULA and Jarzynski corrected algorithm
for a translation of a single well potential. The blue one are the unweighted
samples evolved via ULA, while the orange one are the reweighted ones.



71

where the expectations on the right-hand side are over the law of the joint process
(Xk, Ak).

As in continuous time, we stress that the inclusion of the weights in (3.3.3) is the key,
as E[∂θUθk(Xk)] ̸̸= Eθk [∂θUθk ] in general. We also stress that (3.3.3) holds exactly
despite the fact that for h > 0 the iteration step for Xk in (3.3.1) is that of the
unadjusted Langevin algorithm (ULA) with no Metropolis correction. That is, the
inclusion of the weights Ak exactly corrects for the biases induced by both the slow
mixing and the time-discretization errors in ULA.
Proposition 3.3.1 shows that we can evolve the parameters by gradient descent over
the cross-entropy by solving (3.3.1) concurrently with

θk+1 = θk + γkDk, Dk = −∂θH(ρθk , ρ∗) =
E[∂θUθk(Xk)e

Ak ]

E[eAk ]
− E∗[∂θUθk ],

(3.3.4)
where γk > 0 is the learning rate and k ∈ N0 with θ0 given. We can also replace
the gradient step for θk in (3.3.4) by any update optimization step (via AdaGrad,
ADAM, etc.) that uses as input the gradient Dk of the cross-entropy evaluated at
θk to get θk+1. Again, assuming that we know Zθ0 we can track the evolution of the
cross-entropy via

H(ρθk , ρ∗) = logE[eAk ] + logZθ0 + E∗[Uθk ]. (3.3.5)

Let us present the proof of Proposition 3.3.1.

Proof. The iteration rule for Ak in (3.3.1) implies that

Ak =

k∑
q=1

(αq−1(Xq−1, Xq)− αq(Xq, Xq−1)) , k ∈ N. (3.3.6)

For k ∈ N0, let

βk(x, y) = (2πh)−d/2 exp
(
− 1

4h
|y − x+ h∇Uθk(x)|

2
)

(3.3.7)

be the transition probability density of the ULA update in (3.3.1), i.e. βk(Xk, Xk+1)
is the probability density of Xk+1 conditionally on Xk. By the de�nition of Ak, we
have

exp(Ak) =

k∏
q=1

exp (αq−1(Xq−1, Xq)− αq(Xq, Xq−1))

= e−Uθk
(Xk)+Uθ0

(X0)
k∏
q=1

βq(Xq, Xq−1)

βq−1(Xq−1, Xq)

(3.3.8)

where in the second line we added and subtracted |Xq − Xq−1|2/4h and used the
de�nition of αk(x, y) given in (3.3.2). Since the joint probability density function of
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the path (X0, X1, . . . , Xk) at any k ∈ N is

ϱ(x0, x1, . . . , xk) = Z−1
θ0
e−Uθ0

(x0)
k∏
q=1

βq−1(xq−1, xq) (3.3.9)

we deduce from (3.3.8) and (3.3.9) that, given an f : Rd → R, we can express the
expectation E[f(Xk)e

Ak ] as the integral

E[f(Xk)e
Ak ]

=

∫
Rdk

f(xk)e
−Uθk

(xk)+Uθ0
(x0)

k∏
q=1

βq(xq, xq−1)

βq−1(xq−1, xq)
ϱ(x0, x1, . . . , xk)dx0 · · · dxk

= Z−1
θ0

∫
Rdk

f(xk)e
−Uθk

(xk)
k∏
q=1

βq(xq, xq−1)dx0 · · · dxk

(3.3.10)
Since

∫
Rd βk(x, y)dy = 1 for all k ∈ N0 and all x ∈ Rd, we can perform the integrals

over x0, then x1, etc. in this expression to be left with

E[f(Xk)e
Ak ] = Z−1

θ0

∫
Rd

f(xk)e
−Uθk

(xk)dxk (3.3.11)

Setting f(x) = 1 in this expression gives

E[eAk ] = Z−1
θ0

∫
Rd

e−Uθk
(xk)dxk = Z−1

θ0
Zθk (3.3.12)

which implies the second equation in (3.3.3); setting f(xk) = ∂θUθk(xk) in (3.3.11)
gives

E[∂θUθk(Xk)e
Ak ] = Z−1

θ0

∫
Rd

∂θUθk(xk)e
−Uθk

(xk)dxk = Z−1
θ0
ZθkEθk [∂θUθk ] (3.3.13)

which can be combined with (3.3.12) to arrive at the �rst equation in (3.3.3).

Since the proofs of the main propositions 3.2.1 and 3.3.1 exploit di�erent mathematical
tools, a natural question is whether the continuous limit h → 0 of (3.3.1) is (3.2.1).
For the SDE, this sanity check is trivial by de�nition of Langevin equation. On the
other hand, the limit of the second equation in (3.3.1) is less obvious. Here we present
the derivation of the consistency result. For the sake of simplicity, we use the compact
notation Uθk := Uk and ∇∇Uk to denote the jacobian of the gradient. Then, we
expand Ak+1 −Ak in power series of h, that is

Ak+1 −Ak = Uk(Xk)− Uk+1(Xk+1) + (Xk+1 −Xk) · ∇Uk(Xk)+

+
1

2
(Xk+1 −Xk)

T∇∇Uk(Xk)(Xk+1 −Xk) +O(h3/2)
(3.3.14)
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where

Uk(Xk)− Uk+1(Xk+1) = −∂tUt(Xt)|t=kh− (Xk+1 −Xk) · ∇Uk(Xk)+

− 1

2
(Xk+1 −Xk)

T∇∇Uk(Xk)(Xk+1 −Xk) +O(h3/2)

(3.3.15)
and for which we used the de�nition Ak+1 given in (3.3.1). After simpli�cations, we
obtain

Ak+1 −Ak = −∂tUt(Xt)|t=hkh+O(h3/2) (3.3.16)

As we expected, the only term of O(h) is −∂tUt(Xt)|t=hkh, that is for h → 0 we
recover the ODE in (3.2.1). Moreover, we can interpret the de�nition of Ak+1 from
a di�erent angle as a �rst order approximation of the integral solution of the ODE in
(3.2.1), namely

A(t+ h) = A(t)−
∫ t+h

t

∂θUθs(Xs) · θ̇(s)ds (3.3.17)

3.4 Algorithmic aspects

In spite of a practical implementation of the proposed routine, we introduce N in-
dependent pairs of walkers and weights, {Xi

k, A
i
k}Ni=1, which we evolve independently

using (3.3.1) for each pair. To evolve θk from some prescribed θ0 we can then use the
empirical version of (3.3.4):

θk+1 = θk + γkD̃k, (3.4.1)

where D̃k is the estimator for the gradient in θ of the cross-entropy:

D̃k =

∑N
i=1 ∂θUθk(X

i
k) exp(A

i
k)∑N

i=1 exp(A
i
k)

− 1

n

n∑
j=1

∂θUθk(x
j
∗), (3.4.2)

These steps are summarized in Algorithm 3, which is a speci�c instance of a sequential
Monte-Carlo algorithm12. During the calculation, we can monitor the evolution of the
partition function and the cross-entropy using as estimators

Z̃θk = Zθ0
1

N

N∑
i=1

exp(Aik), H̃k = log Z̃θk +
1

n

n∑
j=1

UθK (xj∗) (3.4.3)

We can also use mini-batches of {Xi
k, A

i
k}Ni=1 and the data set {xj∗}nj=1 at every itera-

tion, and switch to any optimizer step that uses θk and Dk as input to get the updated
θk+1. In Algorithm 4 we present such mini-batched version of Algorithm 3, where we
do not update the positions of every walker at every iteration. Instead, we evolve
only a small portion of the walkers, while keeping the other walkers frozen and only
updating their weights using the information from the model update (which uses only
the model energy and does not require back-propagation). This mini-batched version

12Jun S Liu. Monte Carlo strategies in scienti�c computing. vol. 75 Springer, 2001.
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Algorithm 3 Sequential Monte-Carlo training with Jarzynski correction

1: Inputs: data points {xi∗}ni=1; energy model Uθ; optimizer step opt(θ,D) using θ
and the empirical CE gradient D; initial parameters θ0; number of walkers N ∈ N0;
set of walkers {Xi

0}Ni=1 sampled from ρθ0 ; total duration K ∈ N; ULA time step
h; set of positive constants {ck}k∈N.

2: Ai0 = 0 for i = 1, . . . , N .
3: for k = 0, . . . ,K − 1 do
4: pik = exp(Aik)/

∑N
j=1 exp(A

j
k) ▷ normalized weights

5: D̃k =
∑N
i=1 p

i
k∂θUθk(X

i
k)− n−1

∑n
j=1 ∂θUθk(x

j
∗) ▷ empirical CE gradient

6: θk+1 = opt(θk, D̃k) ▷ optimization step
7: for i = 1, ..., N do
8: Xi

k+1 = Xi
k − h∇Uθk(Xi

k) +
√
2h ξik, ξik ∼ N (0d, Id) ▷ ULA

9: Aik+1 = Aik − αk+1(X
i
k+1, X

i
k) + αk(X

i
k, X

i
k+1) ▷ weight update

10: end for
11: Resample the walkers and reset the weights if ESSk+1 < ck+1, see (3.4.4). ▷

resampling step
12: end for
13: Outputs: Optimized energy UθK ; set of weighted walkers {Xi

K , A
i
K}Ni=1 sam-

pling ρθK ; partition function estimate Z̃θK = Zθ0N
−1
∑N
i=1 exp(A

i
K); CE estimate

log Z̃θK + n−1
∑n
j=1 UθK (xj∗)

is more computationally e�cient and leads to convergence in training with much fewer
steps of ULA (see Chapter 4 for experiments). More importantly, the mini-batched
version of the algorithm, as compared to the full-batched version, enlarges the total
sample size and therefore improves the sample variety with even less computational
cost. The only sources of error in these algorithms come from the �nite sample sizes,
N < ∞ and n < ∞. Regarding n, we may need to add a regularization term in the
loss to avoid over�tting: this is standard in machine learning applications. Regarding
N and the presence of a weighted average, we need to make sure that the e�ective
sample size13 of the walkers remains su�cient during the evolution. This is nontrivial
since the Aik's will spread away from zero during the optimization, implying that the
weights exp(Aik) will become non-uniform, thereby reducing the e�ective sample size.
This is a known issue with sequential Monte-Carlo algorithms that can be alleviated
by resampling as discussed next.
A standard quantity to monitor the e�ective sample size is the ratio between the square
of the empirical mean of the weights and their empirical variance, i.e.

ESSk =

(
N−1

∑N
i=1 exp(A

i
k)
)2

N−1
∑N
i=1 exp(2A

i
k)

∈ (0, 1] (3.4.4)

13James Berger, MJ Bayarri, and LR Pericchi. The e�ective sample size. Econometric Reviews,
33: 197�217, 2014.
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Algorithm 4Mini-batched Sequential Monte-Carlo training with Jarzynski correction

1: Inputs: data points {x∗i }ni=1; energy model Uθ; optimizer step opt(θ,D) using θ
and the empirical CE gradient D; initial parameters θ0; number of walkers N ∈ N0;
batch size N ′ ∈ N0 with N ′ < N , set of walkers {Xi

0}Ni=1 sampled from ρθ0 ; total
duration K ∈ N; ULA time step h; set of positive constants {ck}k∈N.

2: Ai0 = 0 for i = 1, . . . , N .
3: for k = 1 : K − 1 do
4: pik = exp(Aik)/

∑N
j=1 exp(A

j
k) ▷ normalized weights

5: D̃k =
∑N
i=1 p

i
k∂θUθk(X

i
k)− n−1

∑n
j=1 ∂θUθk(x

j
∗) ▷ empirical CE gradient

6: θk+1 = opt(θk, D̃k) ▷ optimization step
7: Randomly select a mini-batch {Xj

k}j∈B with #B = N ′ from the set of walkers
{Xi

k}Ni=1

8: for j ∈ B do
9: Xj

k+1 = Xj
k − h∇Uθk(X

j
k) +

√
2h ξjk, ξjk ∼ N (0d, Id) ▷ ULA

10: Ajk+1 = Ajk − αk+1(X
j
k+1, X

j
k) + αk(X

j
k, X

j
k+1) ▷ weight update

11: end for
12: for j ̸∈ B do
13: Xj

k+1 = Xj
k ▷ no update of the walkers

14: Ajk+1 = Ajk − Uθk+1
(Xj

k) + Uθk(X
j
k) ▷ weight update

15: end for
16: Resample the walkers and reset the weights if ESSk+1 < ck+1, see (3.4.4). ▷

resampling step
17: end for
18: Outputs: Optimized energy UθK ; set of weighted walkers {Xi

K , A
i
K}Ni=1 sam-

pling ρθK ; partition function estimate Z̃θK = Zθ0N
−1
∑N
i=1 exp(A

i
K); CE estimate

log Z̃θK + n−1
∑n
j=1 UθK (xj∗)

The e�ective sample size of the N walkers is ESSkN . Initially, since Ai0 = 0, ESS0 = 1,
but it decreases with k. At each iteration kr such that ESSkr < ckr , where {ck}k∈N is
a set of prede�ned positive constants in (0, 1), we then:

1. Resample the walkers Xi
kr

using pikr = eA
i
kr /
∑N
j=1 e

Aj
kr as probability to pick

walker i;

2. Reset Aikr = 0;

3. Use the update Zθk = Zθkr
N−1

∑N
i=1 exp(A

i
k) for k ≥ kr until the next resam-

pling step.

Resampling schemes are necessary to tackle the decay of e�ective sample size (3.4.4).
For the sake of completeness, here we recall three of the most widely used routines:
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multinomial14, strati�ed15, and systematic resampling16, and refer the reader to the
review17 for more details.
Given a set of normalized scalar weights {pi}Ni=1 ∈ [0, 1] with

∑N
i=1 pi = 1 associated

to the N walkers, we de�ne the cumulative sum

Pn =

n∑
i=1

pi, n = 1, . . . , N (3.4.5)

All three methods prescribe a way to choose a set {un}Nn=1 ∈ (0, 1] used to perform
the resampling in the following way: for every n,m ∈ {1, . . . , N}, the m-th particle is
chosen during the n-th extraction if

Pm−1 < un < Pm (3.4.6)

Let us now specify how the set of un is selected in the cases in study. We denote by
U(a, b] as usual the uniform probability distribution on the interval (a, b].

� Multinomial resampling. Sample umult
n ∼ U(0, 1], independently for every

n ∈ {1, . . . , N}. This approach leads to a large number of possible resampled
con�gurations, which is not desirable in practice as it increases the variance of
the estimator.

� Strati�ed resampling. Partition the interval (0, 1] into N sub-intervals, or
strata, of size 1/N ; then, sample ustrn ∼ U((n − 1)/N, n/N ] independently for
each n = {1, . . . , N}. This approach picks a single un in each stratus, thereby
reducing the number of possible resampled con�gurations.

� Systematic resampling. Partition the interval (0, 1] into N sub-intervals, or
strata, of size 1/N ; then, sample usys1 ∼ U(0, 1/N ], and usysn = usys1 + (n −
1)/N for n > 1. This method also reduces the number of possible resampled
con�gurations.

Note that there are various modi�cations of these three methods17, all of them meeting
the so-called unbiasedness condition, that is, the i-particle is expected to be sampled
in average Npi times. However, these extensions do not lead to a critical lowering of
the number of possible resampled con�gurations compared to systematic resampling.
For this reason in our numerical experiments we only tested the three methods above.
Note also that, regardless of the resampling routine one uses, a fundamental role is
played by the variance of the weights: if the cumulative sum is dominated by one or
14Neil J Gordon, David J Salmond, and Adrian FM Smith. �Novel approach to nonlinear/non-

Gaussian Bayesian state estimation� in: IEE proceedings F (radar and signal processing). vol. 140
IET 1993. 107�113
15Genshiro Kitagawa. Monte Carlo �lter and smoother for non-Gaussian nonlinear state space

models. Journal of computational and graphical statistics, 5: 1�25, 1996.
16James Carpenter, Peter Cli�ord, and Paul Fearnhead. Improved particle �lter for nonlinear

problems. IEE Proceedings-Radar, Sonar and Navigation, 146: 2�7, 1999.
17Tiancheng Li, Miodrag Bolic, and Petar M Djuric. Resampling methods for particle �ltering:

classi�cation, implementation, and strategies. IEEE Signal processing magazine, 32: 70�86, 2015.
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very few weights, i.e. resampling is triggered too late, it does not remedy the suppres-
sion of population variability. Other criteria, based e.g. on the entropy of the weights,
are also possible18.
As a side remark, the application of the proposed algorithm could be in principle ex-
tended in the context of Restricted Boltzmann Machines19. As we brie�y mentioned in
the Introduction, Boltzmann Machines are physics inspired generative neural network
used in unsupervised learning which can be interpreted as EBMs. In fact, their energy
function in the notation of the present work is

Uθ(v,h) = −
D∑
i=1

J∑
j=1

viWijhj −
J∑
j=1

bjhj −
D∑
i=1

civi, (3.4.7)

where v = {vi}Di=1 are the so-called visible units, h = {hi}Ji=1 are the hidden units and
θ = {W, b, c} are the learnable parameters. The layers of visible and hidden units have
with connections between them but not within the same layer (see Figure 3.2). RBMs

Figure 3.2: Schematic representation of Restricted Boltzmann Machines.

are trained to learn the underlying patterns in the data by adjusting the weights
of connections to reconstruct input data. They are pro�cient in modeling complex
probability distributions and are used in various applications such as collaborative
�ltering, feature learning, and dimensionality reduction. The model one is interested

18Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. On adaptive resampling strategies for sequen-
tial Monte Carlo methods. Bernoulli , 18: 252�278, 2012.
19Nan Zhang et al. An overview on restricted Boltzmann machines. Neurocomputing, 275: 1186�

1199, 2018.
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to is actually the density marginalized on the hidden layers

ρθ(v) =
1

Zθ

∑
h

e−Uθ(v,h) (3.4.8)

Due to the distinct roles of hidden and visible layers, and the challenge of marginal-
ization, RBMs utilize a variational approach similar to Variational Autoencoders for
training, as the marginal density is analytically intractable. Subsequently, the con-
trastive divergence algorithm is employed for e�cient gradient-based optimization. We
will not delve into further technical details here; however, it is noteworthy that, for
the convenience of the RBMs community, Contrastive Divergence could potentially be
replaced by our proposed method.



Chapter 4

Applications and Numerics

4.1 Theoretical Application: generative phase of dif-

fusion models

In this section we present a theoretical application of Jarzynski reweighting in a more
general context. Let us consider the following SDE for ε > 0

dXt = [b(t,Xt) + εs(t,Xt)]dt+
√
2ε dWt (4.1.1)

where b(t, x) and s(t, x) are respectively the drift and the score as de�ned in stochastic
interpolation. That is

s(t, x) = −∇Uθ(t)(x) := −∇ϕ(t, x) (4.1.2)

and Xt ∼ ρ(x, t) = exp(−ϕ(t, x))/Zt where ∇ · (bρ) = ∂tρ. In the light of the de�-
nition of Jarzynski correction, notice how the role of b(t, x) in stochastic interpolant
framework1 is, in some sense, to substitute the Jarzynski correction � as Jarzynski
himself suggested2 before the advent of generative models, the estimation of free en-
ergy di�erences would be perfect if one knew the exact b. The meaning of such �eld is
to keep the ensemble in equilibrium with Boltzmann-Gibbs density associated to the
time dependent potential. In fact, we recall as the Fokker-Planck PDE associated to
(4.1.1) is

∂tρ+∇ · ((b+ εs)ρ− ε∇ρ) = 0 (4.1.3)

meaning that ρ(x, t) = exp(−ϕ(t, x))/Zt is a solution for the initial datum ρ(x, 0) =
exp(−ϕ(0, x))/Zt. There is no need for Jarzynski correction in presence of b.
The Euler-Maruyama time discretization of (4.1.2) yields

Xk+1 = Xk + [b(tk, Xt) + εs(tk, Xt)]h+
√
2hε ξk, X0 ∼ ρ0, (4.1.4)

1Michael S Albergo, Nicholas M Bo�, and Eric Vanden-Eijnden. Stochastic interpolants: A
unifying framework for �ows and di�usions. arXiv preprint arXiv:2303.08797 , 2023.

2Suriyanarayanan Vaikuntanathan and Christopher Jarzynski. Escorted free energy simulations:
Improving convergence by reducing dissipation. Physical Review Letters, 100: 190601, 2008.
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For simplicity, given any function f(tk, x) we will use the shorthand fk(x) := f(tk, x)
w.r.t. dependence in time. As we mentioned in Section 2.2.3, one critical issue in
di�usion-based generative models is that generation corresponds to integration of an
SDE (or ODE). The trade-o� between a smaller discretization error and an higher
computational cost is critical in the choice of the integrator. In spite of Chapter 3,
we now show how is possible to correct the error induced by Euler-Maruyama of the
exact SDE (4.1.4) using Jarzynski weights.

Proposition 4.1.1. Assume that the parameters θ are evolved by some time-discrete
protocol {θk}k∈N0

and that (2.1.1) hold. Given any h ∈ (0, L), let Xk ∈ Rd and Ak ∈ R
be given by the iteration rule{

Xk+1 = Xk + [b(tk, Xt) + εs(tk, Xt)]h+
√
2hε ξk, X0 ∼ ρ0,

Ak+1 = Ak + ζk(Xk, Xk+1) A0 = 0,
(4.1.5)

where {ξk}k∈N0
are independent N(0d, Id) and ∇ · (bρ) = ∂tρ, and we de�ned

ζk(x, y) = ϕk(x)− ϕk+1(y) +
1

2
(x− y) ·

(
[bk(x)− bk+1(y)]

ε
+ [sk(x) + sk+1(y)]

)
+
h

4

(
|bk(x)|2 − |bk+1(y)|2

ε
+ ε[|sk(x)|2 − |sk+1(y)|2]

)
+

+
h

2
(bk(x) · sk(x) + bk+1(y) · sk+1(y))

(4.1.6)
Then, for all k ∈ N0,

Eθk [∂θUθk ] =
E[∂θUθk(Xk)e

Ak ]

E[eAk ]
, Zθk = Zθ0E

[
eAk
]

(4.1.7)

where the expectations on the right-hand side are over the law of the joint process
(Xk, Ak).

Proof. The proof is a generalization of the one of Proposition 3.3.1. The iteration rule
for Ak in (4.1.5) implies that

Ak :=

k∑
q=1

(αq−1(Xq−1, Xq)− λq(Xq, Xq−1)) , k ∈ N. (4.1.8)

where

αk(x, y) = ϕ(tk, x)−
1

2ε
(y − x) · [bk(x) + εsk(x)] +

h

4ε
|bk(x) + εsk(x)|2 (4.1.9)

and

λk(x, y) = ϕ(tk, x)−
1

2ε
(y − x) · [−bk(x) + εsk(x)] +

h

4ε
| − bk(x) + εsk(x)|2 (4.1.10)
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For k ∈ N0, let

βforwk (x, y) = (2πhε)−d/2 exp
(
− 1

4hε
|y − x− h[bk(x) + εsk(x)]|2

)
(4.1.11)

be the transition probability density of the ULA update in (4.1.5), i.e. βforwk (Xk, Xk+1)
is the probability density of Xk+1 conditionally on Xk. Similarly,

βbackk (x, y) = (2πhε)−d/2 exp
(
− 1

4hε
|y − x− h[−bk(x) + εsk(x)]|2

)
(4.1.12)

Notice the minus sign before b in the backward transition kernel. By the de�nition of
Ak, we have

exp(Ak) =

k∏
q=1

exp (αq−1(Xq−1, Xq)− λq(Xq, Xq−1))

= e−Uθk
(Xk)+Uθ0

(X0)
k∏
q=1

βbackq (Xq, Xq−1)

βforwq−1 (Xq−1, Xq)

(4.1.13)

where in the second line we added and subtracted |Xq−Xq−1|2/4hε and used the de�-
nition of αk(x, y) and λk(x, y) given in (4.1.9) and (4.1.10). Since the joint probability
density function of the path (X0, X1, . . . , Xk) at any k ∈ N is

ϱ(x0, x1, . . . , xk) = Z−1
θ0
e−Uθ0

(x0)
k∏
q=1

βforwq−1 (xq−1, xq) (4.1.14)

we deduce from (4.1.13) and (4.1.14) that, given an f : Rd → R, we can express the
expectation E[f(Xk)e

Ak ] as the integral

E[f(Xk)e
Ak ]

=

∫
Rdk

f(xk)e
−Uθk

(xk)+Uθ0
(x0)

k∏
q=1

βbackq (xq, xq−1)

βforwq−1 (xq−1, xq)
ϱ(x0, x1, . . . , xk)dx0 · · · dxk

= Z−1
θ0

∫
Rdk

f(xk)e
−Uθk

(xk)
k∏
q=1

βbackq (xq, xq−1)dx0 · · · dxk

(4.1.15)
Since

∫
Rd βk(x, y)dy = 1 for all k ∈ N0 and all x ∈ Rd, we can perform the integrals

over x0, then x1, etc. in this expression to be left with

E[f(Xk)e
Ak ] = Z−1

θ0

∫
Rd

f(xk)e
−Uθk

(xk)dxk (4.1.16)

Setting f(x) = 1 in this expression gives

E[eAk ] = Z−1
θ0

∫
Rd

e−Uθk
(xk)dxk = Z−1

θ0
Zθk (4.1.17)
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which implies Jarzynski identity; combining (4.1.16) and (4.1.17) we obtain the fun-
damental relation

Etk [f ] =
E[f(Xk)e

Ak ]

E[eAk ]
(4.1.18)

To get an insight of the role of b we can expand Ak+1 − Ak in series of h. We notice
as O(h1/2) vanishes since

Ak+1 −Ak = −∂tϕk(Xk)h+(Xk+1 −Xk) · sk(Xk)+
1

2
(Xk+1 −Xk)

TJsk(Xk)(Xk+1 −Xk)︸ ︷︷ ︸
ϕk(Xk)−ϕk+1(Xk+1)

−(Xk+1 −Xk) · sk(Xk) +
1

2ε
(Xk+1 −Xk)

TJbk(Xk)(Xk+1 −Xk)

−1

2
(Xk+1 −Xk)

TJsk(Xk)(Xk+1 −Xk) + hbk(Xk) · sk(Xk) +O(h3/2)

(4.1.19)
where Jb and Js are the Jacobian of b and s. The blue and the red terms simplify and
we get

Ak+1 −Ak = −∂tϕk(Xk)h+
1

2ε
(Xk+1 −Xk)

TJbk(Xk)(Xk+1 −Xk)+

+ hbk(Xk) · sk(Xk) +O(h3/2)
(4.1.20)

We can use (4.1.4) and ξTk J
b
k(Xk)ξk

d
= ∇ · bk(Xk) (in law) to further manipulate the

expression

Ak+1 −Ak = −∂tϕk(Xk)h+ hbk(Xk) · sk(Xk) + h∇ · bk(Xk) +O(h3/2) (4.1.21)

In conclusion, we notice how ∂tρt(x) +∇ · (b(t, x)ρt(x)) = 0 implies

−∂tϕk(Xk) + bk(Xk) · sk(Xk) +∇ · bk(Xk) = 0 (4.1.22)

that yields to the expected Ak+1 − Ak = O(h3/2). This computation shows that we
have no Jarzynski correction in the continuous limit. On the contrary, for any �nite
time step h, the weights have a non trivial evolution, meaning that their presence is
necessary to correct time discretization error.

Remark 4.1.1. Given an SDE, any su�ciently smooth drift can be always be decom-
posed in a gradient �eld and a divergence-free �eld thanks to Helmholtz decomposition3.
Hence, the treatment of the present section can be also interpreted per se as a corrector
for Euler-Maruyama integrator.

3Erhard Glötzl and Oliver Richters. Helmholtz decomposition and potential functions for n-
dimensional analytic vector �elds. Journal of Mathematical Analysis and Applications, 525: 127138,
2023.
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Remark 4.1.2. The derivation we presented can be generalized to any transition ker-
nel, even containing dissipative contributions, as far as it transforms the BG ensembles
associated to ϕk at time k with the one at time k+1. In this sense a further investiga-
tion of di�erent dynamics in place of basic Langevin Algorithm (e.g. Kinetic Langevin
Di�usion, etc.) could represent a notable follow-up for the present results.

4.2 Highlighted example: Gaussian Mixture

In this section we propose the analytical study of an exemplary toy model. Despite its
apparent simplicity, notable di�erences between CD, PCD and our Jarzynski corrected
algorithm will already arise. As target density we take the so-called Gaussian Mixture
Model (GMM) in one dimension

ρ∗(x) =
e−

1
2 |x−a|

2

+ e−z∗−
1
2 |x−b|

2

√
2π(1 + e−z∗)

, (4.2.1)

which is a superposition of two gaussians. Here z∗ ∈ R parameterizes the mass of the
second mode relative to the �rst and is the sole parameter of interest. The proportion
of samples in both modes is indeed

p∗ :=
1

1 + e−z∗
, q∗ := 1− p∗ =

e−z∗

1 + e−z∗
. (4.2.2)

Our point is that when both modes are separated by very low-density regions, learning
z∗ without weight correction leads to an incorrect estimation of the mode probabilities
("no-learning") or to mode collapse depending on the initialization of the learning
procedure, whereas using the Jarzynski correction does not. The possible interest of
such situation is evident: in real applications multimodality is in fact very common.
From now on, we will suppose that the modes are separated in the following sense:

|a− b| = 10, (4.2.3)

which will be enough for our needs. The more separated they are, the stronger our
quantitative bounds will be. This request mimics a common di�cult situation for
sampling, hence for EBM training.
The parametrization for our model potential Uz is consistent with (4.2.1):

Uz(x) = − log
(
e−

1
2 |x−a|

2

+ e−z−
1
2 |x−b|

2
)

(4.2.4)

and the associated partition function and free energy are

Zz =
√
2π
(
1 + e−z

)
, Fz = − logZz = − log(1 + e−z)− 1

2
log(2π). (4.2.5)

The normalized probability density associated with Uz(x) is thus ρz(x) = e−Uz(x)+Fz .
Gradient descent on the cross entropy leads to the following continuous-time dynamics:

ż(t) = Ez(t)[∂zUz(t)]− E∗[∂zUz(t)]. (4.2.6)
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For simplicity, we will start this ODE at z(0) = 0. It corresponds to a proportion of
1
2 for both modes.
The gradient descent (4.2.6) is an ideal situation where the expectations Ez(t),E∗ can
be exactly analyzed. In practice however, the two terms of (4.2.6) are estimated; the
second term using a �nite number of training data {xi∗}ni=1, and the �rst one using a
�nite number of walkers {Xi

t}Ni=1, with associated weights {eAi
t}Ni=1. For simplicity we

set N = n and the empirical GD dynamics is thus

ż(t) =

∑n
i=1 e

Ai
t∂zUz(t)(X

i
t)∑n

i=1 e
Ai

t

−
∑n
i=1 ∂zUz(t)(x

i
∗)

n
(4.2.7)

and the walkers evolve under the Langevin dynamic

dXi
t = −α∇Uz(t)(Xi

t)dt+
√
2αdW i

t (4.2.8)

for some �xed α > 0. Now the nature of the algorithm varies depending on how the
walkers are initialized and the Jarzynski weights are evolved.

1. The standard PCD algorithm sets Xi
0 = xi∗, that is, the walkers are initialized

at the data points, and the weights are not evolved, that is Ait = 0 at any time.

2. Alternatively, the walkers could be initialized at samples of the initial model:
Xi

0 ∼ ρz(0), with the weights not evolved. We refer to this algorithm as the
umweighted procedure. The Markov chain is still persistent.

3. Algorithm 4 corresponds to initializing the walkers at samples of the initial
model, Xi

0 ∼ ρz(0), and uses the Jarzynski rule (3.2.1) for the weights updates.

For simplicity we analyze the outcome of these algorithms in the continuous-time set-
up, i.e. using (4.2.7). This is an idealization of the actual algorithms, but it makes
the analysis more transparent.

Highlights of Perturbative analysis

We now show that in the three cases above, the dynamics (4.2.7) can be seen as a
perturbation of a simpler di�erential system whose qualitative behaviour �ts with our
numerical simulations. These systems depend on the initialization of the walkers and
are thus prone to small stochastic �uctuations. We introduce:

� q̂∗ the proportion of training data {xi∗} that are close to mode b (a more precise
de�nition is given in Subsection 4.2.1), and we de�ne ẑ∗ as satisfying q̂∗ =
e−ẑ∗/(1 + e−ẑ∗);

� q̂(0) the proportion of walkers at initialization that are close to b, and p̂(0) =
1− q̂(0).

Practically, q̂∗ is a random variable centered at q∗ and with �uctuations of order n−1/2,
and q̂(0) is centered at e−z(0)/(1 + e−z(0)) = 1

2 with �uctuations of the same order.
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In the limit where n is large, they can be neglected, but in more realistic training
settings, the use of mini-batches leads to small but non-negligible �uctuations, as will
be clear in Equation (4.2.12).
The arguments in Subsection 4.2.1 lead to the following approximations:

� In the model-initialized algorithm without Jarzynski correction (`unweighted`),
(4.2.7) is a perturbation of

żunw(t) = q̂(0)− q̂∗. (4.2.9)

This system has no stable �xed point since the RHS no longer depends on zunw(t),
leading to a linear drift zunw(t) = (q̂(0)− q̂∗)t and thus to a divergence of zunw(t).
Consequently, the mass of the second mode, q(t) = e−zunw(t)/(1 + e−zunw(t)),
converges to 0 or 1. However, on longer time scales, this drift leads to a sudden
transfer of all walkers in one the modes, then to a complete reversal of the drift
of zunw which then diverges in the opposite direction, leading to a succession of
alternating mode-collapses; see also Figure 4.4 and Remark 4.2.3 below.

� In the continuous-time version of the standard PCD algorithm, (4.2.7) is a per-
turbation of the same ODE as (4.2.9). However, in this context, since the initial
data {Xi

0} and the training data {xi∗} are identical, we have q̂(0) = q̂∗, and

żpcd(t) = 0. (4.2.10)

The parameters do not evolve and the system is stuck at zpcd(0) (`no-learning').
Note however that in this version of PCD, the walkers are initialized at the full
training data. In practice, the number of walkers is smaller than the number of
training data so that one often uses a small batch of training data to initialize
them; in this case we can still have q̂(0) ̸= q̂∗, falling back to the �rst case above.

� The continuous-version of Contrastive-Divergence is equivalent to the well-known
Score-Matching technique. In this context, (4.2.7) is a perturbation of

żcd(t) = 0, (4.2.11)

leading to the same "no-learning" phenomenon.

� In the model-initialized algorithm using the Jarzynski correction, (4.2.7) is a
perturbation of

żjar(t) =
q̂(0)e−zjar(t)

p̂(0) + q̂(0)e−zjar(t)
− e−ẑ∗

1 + e−ẑ∗
(4.2.12)

This system has a unique stable point z̃∗ satisfying e−z̃∗ = p̂(0)e−ẑ∗/q̂(0), hence

z̃∗ = ẑ∗ + log

(
q̂(0)

p̂(0)

)
. (4.2.13)

Note that the second term at the right hand side is a small correction of order
O(n−1/2) since q̂(0)/p̂(0) = 1 +O(n−1/2).
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In continuous time, the Jarzynski correction described in Proposition 3.2.1 exactly
realizes (4.2.6). However, even for simple mixtures of Gaussian densities, the expecta-
tions in (4.2.1) do not have a simple closed-form that would allow for an exact solution.
That being said, when a and b are su�ciently well-separated, the system can be seen
as a perturbation of a simpler system whose solution can be analyzed.
First, we note that

∂zUz(x) =
e−ze−

|x−b|2
2

e−Uz(x)
. (4.2.14)

The main idea of the approximations to come is that ∂zUz(x) is almost zero when x
is far from b (and in particular, close to a), and is almost 1 if x is close to b. The next
lemma quanti�es this; from now on we will adopt the notation

Ia = [a− 4, a+ 4] and Ib = [b− 4, b+ 4]. (4.2.15)

Lemma 4.2.1. Under Assumption (4.2.3), for any v ∈ R,

� if x ∈ Ia, then ∂zUv(x) ≤ e−v−10;

� if x ∈ Ib, then |∂zUv(x)− 1| ≤ ev−10.

Proof. From (4.2.14), we see that if x ∈ Ia then |x − b| > 6 and consequently
e−(x−b)2/2 ≤ e−18. But the denominator of (4.2.14) is itself greater than e−(x−a)2/2

which is itself greater than e−42/2 = e−8 since |x− a| < 4. This gives the �rst bound
and the second is proved similarly.

We recall that if ξ ∼ N (0, 1), then P(|ξ| > t) ≤ e−t
2/2/t, hence

P(|ξ| > 4) ≤ e−42/2/4 ≤ 0.0001. (4.2.16)

Lemma 4.2.2. Let u, v ∈ R. Under Assumption (4.2.3), we have∣∣∣∣Eu[∂zUz|z=v]− e−u

1 + e−u

∣∣∣∣ ≤ ε (4.2.17)

where |ε| ≤ 0.0002 + 2e−10e|v|.

Proof. The integral is exactly given by

1

1 + e−u
E

[
e−v−(ξa−b)2/2

e−Uv(ξa)

]
+

e−u

1 + e−u
E

[
e−v−(ξb−b)2/2

e−Uv(ξb)

]
(4.2.18)

where ξa, ξb denote two Gaussian random variables with respective means a, b. By
(4.2.16), ξa and ξb are respectively contained in Ia = [a−4, a+4] and Ib = [b−4, b+4]
with probability greater than 0.999. Let us examine the �rst term of (4.2.18). The
fraction inside the expectation is always smaller than 1, hence by Lemma 4.2.1,

∂zUz(ξa)|z=v ≤ 1ξa /∈Ia + 1ξa∈Ia ∂zUz(ξa)|z=v ≤ 1ξa /∈Ia + e−v−10.
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Consequently, by (4.2.16), the expectation is smaller than 0.0001+e−v−10. The second
expectation in (4.2.18) is equal to

1− E

[
e−(Xb−a)2/2

e−Uv(ξb)

]

and by the same kind of analysis, the expectation here is smaller than 0.0001+ ev−10.
Gathering the bounds yields the result.

In particular, the right hand side of (4.2.6) can be approximated by e−z(t)

1+e−z(t) − e−z∗

1+e−z∗

up to an error term smaller than 0.0004+2e−10(e|z(t)|+e|z∗|). If z(t), z∗ are contained
in a small interval [−C,C] with, say, C < 5, this error term is uniformly small in time,
and one might see (4.2.6) as a perturbation of the following system:

ż(t) =
e−z(t)

1 + e−z(t)
− e−z∗

1 + e−z∗
, (4.2.19)

a system with only one �xed point at z(t) = z∗, the ground-truth solution.

4.2.1 Mode collapse in absence of Jarzynski correction

Now let us analyze in a similar fashion the dynamics without reweighting. Here, (4.2.6)
is replaced by

ż(t) = Ez(t)[∂zUz(t)(Xt)]− E∗[∂zUz(t)], (4.2.20)

where the process Xt solves

dXt = −α∇Uz(t)(Xt)dt+
√
2αdWt, X0 ∼ ρz(0)

The probability density function ρ(t, x) of Xt satis�es a Fokker-Planck equation

∂tρ = α∇ ·
(
∇Uz(t)(x)ρ+∇ρ

)
, ρ(t = 0) = ρz(0)

which, in full generality, is hard to solve exactly, and thus exact expressions for the
�rst term of (4.2.20) are intractable. However, depending on whether X0 is close to
a or b, the process Xt can be well approximated by an Ornstein-Uhlenbeck process,
hence ρ(t, x) can itself be approximated by a Gaussian mixture.

Proposition 4.2.1. Suppose that (4.2.3) holds and that

∃T,C ∈ R+ such that for all t ∈ [0, α−1T ], z(t) ∈ [−C,C]. (4.2.21)

Then one has DKL(ρ(0)|ρ(t)) ≤ δt where δ = 0.000025 + 100e−20e2C .

In other words, ρ(t) is approximately constant, up to reasonnable time scales t =
O(1/δ).
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Proof. X0 is drawn from ρz(0), a Gaussian mixture; the probability of it being sampled
from a Gaussian with mean a is e−z(0)/(1+ e−z(0)) = 1/2. We will work conditionally
on this event Ea and we will note ρa(t) the density of X0 conditional on Ea; thus,
ρa(0) = N (a, 1). We set V (x) = 1

2 |x − a|2 so that ∇V (x) = (x − a) and we consider
the following Ornstein-Uhlenbeck process:

dYt = −α∇V (Yt)dt+
√
2αdWt, Y0 = X0

whose density will be denoted ρ̃a(t). We use classical bounds on the divergence between
ρa(t) and ρ̃a(t). For example, the bounds in [Lemma 2.20]1 directly apply and yield

DKL(ρ̃
a(t)|ρa(t)) ≤ 1

4

∫ t

0

E
[
|∇Uz(s)(Ys)−∇V (Ys)|2

]
ds.

Since Yt is nothing but an Ornstein-Uhlenbeck at equilibrium, Yt ∼ N (a, 1) for all
t ≥ 0. The term inside the integral is a Gaussian expectation and will be shown to be
small:

E
[
|∇Uz(s)(Ys)−∇V (Ys)|2

]
≤ 0.0001 + 400e−2z(t)−20. (4.2.22)

Consequently,

DKL(ρ̃
a(t)|ρa(t)) ≤ t

0.0001

4
+ 100e−20

∫ t

0

e−2z(s)ds.

Under (4.2.21), the overall bound remains smaller than t times 0.000025+100e−20e2C

as requested, thus proving that ρ̃a(t) = N (a, 1) and ρa(t) are close with the same
quantitative bound
Similarly, ρb(t), the density of Xt conditional on X0 being sampled from a Gaussian
with mean b, is close to N (b, 1) with the same quantitative bounds.
Overall, using the chain rule for KL divergences,

DKL(ρ̃(t)|ρ(t)) ≤ P(Ea)DKL(ρ̃
a(t)|ρa(t)) + P(Ea)DKL(ρ̃

b(t)|ρb(t)) ≤ δt.

In other words, ρ(t) is close to a mixture of two Gaussians with modes centered at a, b,
and the probability of belonging to the �rst mode is the probability of X0 belonging
to the �rst mode, that is, e−z(0)/(1 + e−z(0)) = 1/2.

Proof of (4.2.22). We have

∇Uz(x) =
(x− a)e−|x−a|2/2 + (x− b)e−|x−b|2/2−z

Uz(x)
. (4.2.23)

Using Lemma 4.2.1 and the fact that if x ∈ Ia then |x − b| < 16 and |x − a| < 4, we
get |∇Uv(x)− (x− a)| ≤ 20ε with ε ≤ e−v−10. Consequently,

E
[
|∇Uz(s)(Ys)−∇V (Ys)|2

]
≤ P(Yt /∈ Ia) + (20e−v−10)2

≤ 0.0001 + 400e−2v−20.
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As a consequence of the Proposition 4.2.1, the �rst term of (4.2.20) can be approxi-
mated by Ez(0)[∂zUz(t)(Xt)] = Ez(0)[∂zUz(t)], which in turn can be approximated by
e−z(0)/(1 + e−z(0)) thanks to (4.2.17). Overall, (4.2.20) is therefore a perturbation of
the system

ż(t) =
e−z(0)

1 + e−z(0)
− e−z∗

1 + e−z∗
=

1

2
− q∗ =: γ.

Since the right hand side no longer depends on z(t), this system leads to a constant
drift of z(t), that is z(t) = γt, leading to mode collapse since (1+e−z(t))−1 ≈ (1+eγt)−1

goes to either 0 or 1.

Contrastive Divergence and Score-Matching. The continuous-time limit of
Contrastive Divergence (Algorithm 1) is equivalent to Score-Matching minimization.
The objective function becomes the Fisher divergence,

SM(z) = E∗[|∇ log ρz(X)−∇ log ρz∗(X)|2]
= E∗[|∇Uz(X)−∇Uz∗(X)|2],

which is in theory intractable due to the presence of the unknown parameter z∗; a
well-known computation4 shows that the gradient ∂zSM(z) can be estimated using
the training samples without resorting to z∗.
Now, the dynamics (4.2.6) is replaced by

ż(t) = ∂zE∗[|∇Uz(t)(X)−∇Uz∗(X)|2] (4.2.24)

= p∗∂zE[|∇Uz(t)(ξa)−∇Uz∗(ξa)|2] + q∗∂zE[|∇Uz(t)(ξb)−∇Uz∗(ξb)|2] (4.2.25)

where here again ξx ∼ N (x, 1). From (4.2.22) and the triangle inequality, we have(
E[|∇Uz(t)(ξa)−∇Uz∗(ξa)|2]

)1/2 ≤(
E[|∇Uz(t)(ξa)− (ξa − a)|2]

)1/2
+
(
E[|∇Uz∗(ξa)− (ξa − a)|2]

)1/2
≤ 0.0002 + 800e−2z(t)−20.

and the same approximation holds for the second part in (4.2.25). Overall, we get that
for any reasonable z, SM(z) ≈ 0: that is, every z minimizes the score. A similar analysis
leads to ∂zSM(z) ≈ 0. Consequently, ż(t) ≈ 0: Score Matching and Contrastive
Divergence leads to "no-learning".

4.2.2 Empirical gradient descent analysis

The gradient descent (4.2.6) represented an ideal situation where the expectations
Ez(t),E∗ can be exactly analyzed. In practice, the two terms of (4.2.6) are estimated;
the second term using a �nite number of training data {xi∗}, and the �rst one using

4Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6: 2005.



90

a �nite number of walkers {Xi
t}, with associated weights eA

i
t which are either evolved

using the Jarzynski rule, or simply set to 1 in the PCD algorithm. Our goal in this
section is to explain how these �nite-size approximations do not substantially modify
the previous analysis and lead to the behaviour presented in 4.2. For simplicity we
keep the time continuous.
We recall (4.2.7):

ż(t) =

∑N
i=1 e

Ai
t∂zUz(t)(X

i
t)∑N

i=1 e
Ai

t

−
∑n
i=1 ∂zUz(t)(x

i
∗)

n
. (4.2.26)

Jarzynski correction and correct estimation of the empirical weigths. The
continuous-time dynamics of the walkers and weigths in our method is given by

dXi
t = −α∇Uz(t)(Xi

t)dt+
√
2αdWt (4.2.27)

Ȧit = −∂zUz(t)(Xi
t)ż(t). (4.2.28)

Let n̂a∗ be the number of training data in Ia and p̂∗ = n̂a∗/n their proportion, and
similarly q̂∗ the proportion in Ib, and r = 1 − p̂∗ − q̂∗. By elementary concentration
results, the remainder 1− p̂∗− q̂∗ can be neglected: with high probability, it is smaller
than, eg, 0.0001. We will note ẑ∗ the parameter satisfying q̂∗ = e−ẑ∗

1+e−ẑ∗ . Using Lemma
4.2.1, the second term in (4.2.26) is approximated by q̂∗. Now let us turn to the �rst
term in (4.2.26). Still using Lemma 4.2.1, we see that the �rst term in (4.2.26) is well
approximated by ∑

i: xi
t∈Ib

eA
i
t∑n

i=1 e
Ai

t

. (4.2.29)

The second equation in (4.2.27) entails eA
i
t = exp

(
−
∫ t
0
∂zUz(s)(X

i
s)ż(s)ds

)
. Now let

us use Lemma 4.2.1: if Xi
s ∈ Ia, then ∂zUz(s)(Xi

s) ≈ 0. Conversely, if Xi
s ∈ Ib, then

∂zUz(s)(X
i
s) ≈ 1. Moreover, Proposition 4.2.1 and its proof essentially show that if Xi

0

belongs to the �rst well (close to a), then with high probability so does Xa
s for every

s, and in particular Xa
s ∈ Ia with high probability for every s. Consequently,

eA
i
t ≈ exp

(
−
∫ t

0

0ds

)
= 1 if Xi

0 ∈ Ia, (4.2.30)

eA
i
t ≈ exp

(
−
∫ t

0

ż(s)ds

)
= exp (−z(t) + z(0)) = exp (−z(t)) if Xi

0 ∈ Ib. (4.2.31)

As already explained, the dynamics (4.2.27) leaves approximately constant the number
of walkers in both modes; consequently, the proportion q̂(t) of walkers Xi

t in Ib remains
well approximated by the initial proportion, which is q̂(0), and we obtain that (4.2.29)
is well approximated by

q̂(0)e−z(t)

p̂(0) + e−z(t)q̂(0)
(4.2.32)
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where we noted p̂(0) = 1− q̂(0). Note that since z(0) = 0, with high probability p̂(0)
and q̂(0) are close to 1/2. The random variable p̂(0)/q̂(0) is thus close to 1.
Overall, we obtain that the system (4.2.26) is a perturbation of the following system:

ż(t) =
q̂(0)e−ẑ(t)

p̂(0) + q̂(0)e−ẑ(t)
− e−ẑ∗

1 + e−ẑ∗
. (4.2.33)

This system has a unique stable point equal to

z̃∗ := ẑ∗ + log(q̂(0)/p̂(0)). (4.2.34)

Remark 4.2.1. If the algorithm had been started at z(0) ̸= 0, one could check that
the stable point would become ẑ∗ + log(q̂(0)/p̂(0)) + z(0).

Freezing the weights leads to mode collapse. If the walkers still evolve un-
der the Langevin dynamics in (4.2.27) but the weigths are frozen at eA

i
t = e0 = 1

(`unweighted' algorithm), then (4.2.26) becomes

ż(t) =

∑N
i=1 ∂zUz(t)(X

i
t)

N
−
∑n
i=1 ∂zUz(t)(x

i
∗)

n
. (4.2.35)

Keeping the same notation as in the last subsection, the second term is still approxi-
mated by q̂∗, but this time the �rst term is instead approximated by∑

i:Xi
t∈Ib

1

n
= q̂(t) ≈ q̂(0).

Consequently, (4.2.35) is a perturbation of the system

ż(t) = q̂(0)− e−ẑ∗

1 + e−ẑ∗
=: γ̂, (4.2.36)

which no longer depends on t and thus leads to z(t) = γ̂t and to mode collapse.

The PCD algorithm leads to no-learning. In the preceding paragraph, at ini-
tialization, the walkers Xi

0 are distributed according to the initial model ρz(0). In
the PCD algorithm 2, the walkers are instead initialized directly at the training data
{xi∗}ni=1. However, in this case, the analysis of the preceding paragraph remains es-
sentially the same, with a single di�erence: the initial proportion of walkers that are
close to a, noted q̂(0), is now exactly q̂∗. Thus, (4.2.26) becomes a perturbation of

ż(t) = q̂∗ − q̂∗ = 0. (4.2.37)

The parameters remain constantly equal to its initial value z(0), i.e. there is no
learning.
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The CD algorithm leads to no-learning. The Continuous-time Contrastive-
Divergence algorithm is minimizing the Stein score and is equivalent to Score-Matching
as mentioned above: the direction of the gradient of the log-likelihood is that of the
gradient of the Stein Score, leading to no-learing. With the estimation given by the
training samples, the analysis is exactly the same as above:

ż(t) =
1

n

n∑
i=1

∂z|∇Uz(xi∗)−∇Uz∗(xi∗)|2

=
1

n

n∑
i=1

2∂z∇Uz(xi∗)× (∇Uz(xi∗)−∇Uz∗(xi∗)).

If xi∗ ∈ Ia, then as explained in the proof of Lemma 4.2.22, ∇Us(xi∗) ≈ (xi∗ − a) for
every s, hence ∂z∇Uz(xi∗)× (∇Uz(xi∗)−∇Uz∗(xi∗)) ≈ 0. The same holds for xi∗ ∈ Ib,
leading to (4.2.26) being a perturbation of the system

ż(t) = 0. (4.2.38)

4.2.3 On mode-collapse oscillations

Most of the approximations performed earlier rely on (4.2.21), that is, the learned
parameter z(t) remains in a compact set.
However, in the unweighted algorithm, this is no longer the case at large time scales,
since z(t) diverges from (4.2.36); in particular, the approximations from Lemma 4.2.1
become meaningless. In fact, Proposition 4.2.1 is no longer relevant. The core of
Proposition 4.2.1 rests upon the fact that if a walker Xi

t is close to a, then its dynamics
(4.2.27) is close to an Ornstein-Uhlenbeck process since ∇Uz(t)(Xi

t) ≈ (Xi
t − a). This

fails when z(t) has a large absolute value. Let us suppose for instance that z(t) is very
small (negative), so that e−z(t) is very large, |z(t)| ≫ |x − b|2. In (4.2.23), the �rst
term of the numerator is dominated by the second term. Overall, we get

∇Uz(t)(Xi
t) ≈ (Xi

t − b),

and this is valid for all Xi
t . Consequently, all the walkers now undergo an Ornstein-

Uhlenbeck process centered at b and in particular, the walkers that are close to a are
exponentially fast transferred to the region close to b. At this point, the �rst term in
(4.2.35) becomes close to 1, leading to the approximated system ż(t) = 1 − q̂∗: z(t)
oscillates back to +∞, until the same phenomenon happens again and all the walkers
transfer to the region close to a.
This leads to an oscillating behavior that can be observed on longer time scales (see
Figure 4.4 for example). We do not think that this phenomenon is relevant to real-
world situations since most learning algorithms are trained for a limited time period.
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4.3 Numerics

The code used to perform the numerical experiments is available at a public GitHub
repository5.

4.3.1 Synthetic Data: Gaussian Mixture

In this section, we use a GMM synthetic model to numerically illustrate the advantages
of our approach. Speci�cally, we assume that the data is drawn from the Gaussian
mixture density with two modes given by

ρ∗(x) = Z−1
∗

(
e−

1
2 |x−a∗|

2

+ e−
1
2 |x−b∗|

2−z∗
)
, Z∗ = (2π)d/2

(
1 + e−z∗

)
(4.3.1)

where a∗, b∗ ∈ Rd specify the means of the two modes and z∗ ∈ R controls their
relative weights p∗ = 1/(1 + e−z

∗
) and q∗ = 1− p∗ = e−z∗/(1 + e−z

∗
). The values of

a∗, b∗, z∗ are carefully chosen such that the modes are well separated and the energy
barrier between the modes is high enough such that jumps of the walkers between the
modes are not observed during the simulation with ULA. Consistent with (4.3.1) we
use an EBM with

Uθ(x) = − log
(
e−

1
2 |x−a|

2

+ e−
1
2 |x−b|

2−z
)
, (4.3.2)

where θ = (a, b, z) are the parameters to be optimized. We choose this model as it
allows us to calculate the partition function of the model at any value of the parame-
ters, Zθ = (2π)d/2 (1 + e−z). We use this information as a benchmark to compare the
prediction with those produced by our method.
In our numerical experiments, we set d = 50, use N = 105 walkers with a mini-batch
of N ′ = 104 and n = 105 data points. We initialize the model at θ0 = (a0, b0, z0) with
a0 and b0 drawn from an N(0, ϵ2Id) with ϵ = 0.1 and z0 = 0, meaning that the initial
ρθ0 is close to the PDF of an N(0, Id). The training is performed using Algorithm 4
with h = 0.1 and �xed learning rates γk = 0.2 for ak and bk and γk = 1 for zk.
We perform the resampling step by monitoring ESSk de�ned in (3.4.4) with constant
1/ck = 1.05 and using the systematic method. We also compare our results to those
obtained using ULA with these same parameters (which is akin to training with the
PCD algorithm) and with those obtained with the CD algorithm: in the latter case, we
evolve the walkers by ULA with h = 0.1 for 4 steps between resets at the data points,
and we adjust the learning rates by multiplying them by a factor 10. In all cases,
we use the full batches of walkers, weights, and data points to estimate the empirical
averages. We also use (3.4.3) to estimate the cross-entropy H(ρθk , ρ∗) during training
by our method (CD and PCD do not provide estimates for these quantities), and in
all cases compare the result with the estimate

H̃k = log
(
(2π)d/2

(
1 + e−z∗

))
− 1

n

n∑
j=1

log
(
e−

1
2 |x

j
∗−ak|

2

+ e−
1
2 |x

j
∗−bk|

2−zk
)

(4.3.3)

5
url: https://github.com/Davidedaca/EBMs_Jarzynski

https://github.com/Davidedaca/EBMs_Jarzynski
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Figure 4.1: GMM experiments: Evolution of the parameters and the cross entropy
during training by Algorithm 4, PCD, and CD. Average of 20 runs. Left
panels: evolution of pk = 1/(1 + e−zk ); middle panel: evolution of ak and bk;
right panel: evolution of the Kullback-Leibler divergence. All three methods
capture the location of the modes accurately, but only ours get the relative
weights of these modes accurately (whereas PCD leads to mode collapse, and
CD to an inaccurate estimate). Our method is also the only one that allows
for direct estimation of the cross-entropy during training, and the only one
performing GD on this cross-entropy�for better visualization we subtract the
entropy of the target H(ρ∗) and plot the Kullback-Leibler divergence instead
of the cross-entropy.

The results are shown in Figure 4.1. As can be seen, all three methods learn well
the values of a∗ and b∗ specifying the positions of the modes. However, only our
approach learns the value of z specifying their relative weights. In contrast, the PCD
algorithm leads to mode collapse, consistent with the theoretical explanation given in
Section 4.2, and the CD algorithm returns a biased value of z, consistent with the
fact that it e�ectively uses the Fisher divergence as the objective. The results also
show that the cross-entropy decreases with our approach, but bounces back up with
the PCD algorithm and stalls with the CD algorithms: this is consistent with the fact
that only our approach actually performs the GD on the cross-entropy, which, unlike
the other algorithms, our approach estimates accurately during the training.

Additional Details about GMM experiments. Here we give some additional
details and numerical results about GMM. The two wells of the teacher are aligned
along the �rst dimension, �xing the �rst component of the means to be a1∗ = −10 and
b1∗ = 6, and aα∗ = bα∗ = 0 for any α = 2, . . . , d; we also set z∗ = − log(3), corresponding
to a mass p∗ = 1/(1 + e−z∗) = 0.25 of the mode centered at a.

All the simulations are performed in d = 50, with a time step of h = 0.1 for the ULA
update. The number of data points is n = 104. The setup of the teacher is the same
for every simulation we display here and the optimization step is performed with full
batch gradient descent with learning rate constant in time.
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Figure 4.2: GMM experiments: Evolution of the parameters and the cross entropy
during training by Algorithm 3, PCD, and CD. W.r.t. Algorithm 3, we
display the results for �ve di�erent thresholds in the resampling step. Left
panels: evolution of pk = 1/(1 + e−zk ); middle panel: evolution of ak and bk;
right panel: evolution of the Kullback-Leibler divergence.

GMM for di�erent choices of ck. Results are shown in Figures 4.2 and 4.3. As
initial conditions we select a10 = −10−1, b10 = 10−1, aα0 ∼ 10−2N (0, 1) and bα0 ∼
10−2N (0, 1) for any α = 2, . . . , d; this perturbation around a = b = 0 is prescribed
to avoid numerical degeneracy. For z, we �x z0 = 0. We run Algorithm 3, as well
as the CD and PCD Algorithms 1 and 2 using N = 104 walkers for K = 8 · 103
iterations. We use a di�erent learning rate for z and a, b, namely γz = 0.125 and
γa,b = 0.2γz. Moreover, these values are multiplied by a factor 10 in CD. With regard
to the resampling step in Algorithm 3, we choose a threshold ck = c which is �xed
in time. We display the result for �ve possible values of this hyperparameter, namely
c = [0.1, 0.2, 0.4, 0.8, 1.0]; these are related to thresholds in the e�ective sampling size
(ESS) via ESSthresh = N/(c+ 1). With regard to Algorithm 3, we choose M = 1 and
N ′ = N , that is the full batch version; in the CD Algorithm 2 we choose P = 4 for
the number of ULA steps between restarts. Every run is performed �ve times and the
average between them is shown in �gures.

Mode collapse in GMM for PCD. Results are shown in Figure 4.4. In the same
setup as above we select as initial conditions a10 = −10−1, b10 = 10−1, aα0 ∼ 10−2N (0, 1)
and bα0 ∼ 10−2N (0, 1) for any α ∈ [2, d]; for z, we �x z0 = 0. The learning rate is
chosen to be γz = 5 for z and γa,b = 0.2γz for the means. The time step of ULA is
h = 0.2. Since the objective is to show mode collapse in the PCD algorithm, we run
just Algorithm 2 for K = 104 iterations and N = 104 walkers.

The need for resampling. In absence of resampling, we observe a dramatic dete-
rioration of ESS (Figure 4.5).



96

100 101 102

Rescaled Iterations

104

6 × 103

7 × 103

8 × 103

9 × 103

ES
S

9090.9
8333.3
7142.9
5555.6
5000.0

Figure 4.3: GMM experiments: Evolution of the e�ective sample size (ESS) for �ve
di�erent choices of threshold associated to c, constant in time. Bimodal
student.

0 50 100 150 200 250
Rescaled Iterations

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

p

Mass of the first mode - No resampling

160 180 200 220 240

0.16

0.18

0.20

0.22

0.24

0.26

p *

p

0 50 100 150 200 250
Rescaled Iterations

6000

7000

8000

9000

10000

St
an

da
rd

 E
SS

Figure 4.5: GMM in 50d without resampling step, full batch experiment with N = 105

walkers, average of 30 runs, 4.8 · 105 iterations. Left Panel: relative mass of
the �rst mode. Right panel: evolution of ESS

To investigate how this issue is solved by resampling, we compare the three routines
presented in Section 3.4, using three pre-speci�ed lags between the resampling steps.
We use the same hyperparameters (learning rate, target distribution, etc.) as in Figure
4.5. The results are shown in Figure 4.6: looking at the upper panels, we see that
strati�ed and systematic resampling are more stable than multinomial; moreover, if
the resampling step is performed too infrequently (green lines), the method converges
to a result where the target relative mass is o�. Looking at the lower panels, we see
that the minimum statistical error is obtained with systematic resampling; moreover,
the behaviour of uncertainty appears to be more stable than strati�ed.
As a side note, systematic resampling requires just a single random number, contrarily
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Figure 4.4: Mode collapse and oscillations in PCD. Evolution of the probability
pk = 1/(1 + e−zk ).

to multinomial and strati�ed which need N , making the former also more e�cient from
a computational point of view. This consideration, plus the experimental results we
just discussed, strongly motivate the adoption of such method for the resampling step
in our proposed algorithm.

Discussion. GMM in high dimension are challenging for the standard CD and PCD
algorithms given in 1 and 2. The experimental results of this section also con�rm the
theoretical analysis prsented in Appendix 4.2.1 below: CD is performing GD but on
Fisher divergence rather than cross entropy, and as a result it incorrectly estimates
the mass of the modes since Fisher divergence is insensitive to this quantity. On the
other hand, PCD causes cycles of mode collapse (see Figure 4.4 and the left panel
of Figure 4.2), and the KL divergence does not decreases monotonically, since the
protocol is not ensured to be gradient descent (right panel in Figure 4.2).
In this example, our Algorithm 3 outperforms these standard methods as it is an
implementation GD on cross-entropy. In particular, the estimation of the relative
mass with Algorithm 3 is more accurate than with the CD and PCD algorithms (see
Figure 4.2). Moreover, the computation of KL divergence via Jarzynski weights is
fairly precise; in Figure 4.2 the estimated KL and the exact one overlaps beyond
the minimum values reached in with the CD and PCD algorithms. With regard to
Figure 4.3, the choice of the threshold for resampling does not appear to be decisive
in this regime of hyperparameters; in fact, looking at the evolution of θ and of KL
divergence, the overall behavior of Algorithm 3 is not dramatically in�uenced by the
choice of c.

4.3.2 Real data: MNIST

Next, we perform empirical experiments on the MNIST dataset to answer the follow-
ing question: when it comes to high-dimensional datasets with multiple modes, can
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Figure 4.6: GMM in 50d with three resampling routines, full batch experiment with
N = 105 walkers, 50 runs per each resampling interval, 4.8 · 105 iterations.
Upper panels: relative mass of the �rst mode for each resampling method.
Lower panels: standard error computed using the empirical standard
deviation via σemp/

√
50.

our method produces an EBM that generates high-quality samples and captures the
relative weights of the modes accurately? To this end, we select a subset of MNIST
consisting of only three digits: 2, 3, and 6. Then, we choose 5600 images of label 2,
2800 images of label 3, and 1400 images of label 6 from the training set (for a total
of n = 9800 data points), so that in this manufactured dataset the digits are in have
respective weights 4/7, 2/7, and 1/7. We train two EBMs to represent this data set,
the �rst using our Algorithm 4, and the second using the PCD Algorithm 2. We
represent the energy using a simple six-layer convolutional neural network with the
swish activation and about 77K parameters. We use the ADAM optimizer for the
training with a learning rate starting from 10−4 and linearly decaying to 10−10 until
the �nal training step. The sample size of the walkers is set to N = 1024 and it is
�xed throughout the training.
The results are shown in Figure 4.7. Both our Algorithm 3 and the PCD Algorithm 2
generate images of reasonable quality; Jarzynski weights of the generated samples are
directly related to the image quality: this is shown in the left panel of Figure 4.10,
where we display images along with their Jarzynski weights. Moreover, the right panel
of Figure 4.10 indicates that resampling at the end of training using these weights helps
improve sample quality. Examples of generated images are shown in Figure 4.11.
However, the real di�erence between the methods comes when we look at the relative
proportion of the digits generated in comparison to those in the data set. In Figure 4.8,
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Figure 4.7: MNIST: Left panel: Examples of images generated by our method right after
resampling in the last epoch. Middle panel: Images randomly selected from
the test dataset of MNIST. Right panel: Examples of images generated by
training using the persistent contrastive divergence (PCD) algorithm.

we show the relative error on the weight estimation of each mode obtained by using
a classi�er pre-trained on the data set. Although the EBM trained with the PCD
algorithm can discover all the modes and generate images of all three digits present
in the training set, it cannot accurately recover the relative proportions of each digit.
In contrast, our method is successful in both mode exploration and weight recovery.

Figure 4.8: MNIST: Relative error of the weight estimation of the three modes (i.e.
three digits). Our method outperforms the PCD algorithm in terms of
recovery of the weight of each mode.

Unlike in the numerical experiments done on Gaussian mixtures with teacher-student
models, for the MNIST dataset, we cannot estimate the KL divergence throughout the
training as we do not know the normalization constant of the true data distribution.
Nevertheless, we can still use the formula (4.3.3) to track the cross-entropy between
the data distribution and the walker distribution a plot of which is given in the right
panel Figure 4.9 for the mini-batched training algorithm (Algorithm 4).
In these experiments with MNIST, we used the adaptive resampling scheme described
after equation 3.4.4. In practice, we observed that few resamplings are needed during
training, and they can often by avoided altogether if the learning rate is su�ciently
small. For example, in the experiment reported in the left panel of Figure 4.9) a single
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Figure 4.9: MNIST dataset: Left Panel: Convergence of the cross-entropy estimated by
using formulae (3.4.3) with the mini-batched algorithm (Algorithm 4). Right
Panel: Evolution of the e�ective sample size (ESS) de�ned in (3.4.4) � here
resampling was started after 240 epochs (with ck = 0 before and ck = 0.5
afterwards), and occurred only once immediately after being switched on.

resampling step was made. We also found empirically that the results are insensitive
to the choice of of the parameters ck used for resampling: the rule of thumb we found
is to not resample at the beginning of training, to avoid possible mode collapse, and
use resampling towards the end, to improve the image quality.

Figure 4.10: MNIST dataset: Left panel: Images randomly chosen during the training
from the entire set of generated samples with their associate Jarzynski
weights. From left to right, top to bottom, the higher the Jarzynski weight
is, the better the image quality is. Right panel: Images obtained under the
same training conditions, after resampling and continued training for 120
epochs.
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Figure 4.11: MNIST dataset: Left panel : images generated by the mini-batched version
of the Algorithm 4. Right panel : Images generated from the PCD with
mini-batches.

4.3.3 Real data: CIFAR-10

We perform an empirical evaluation of our method on the full CIFAR-10 (32 × 32)
image dataset. We use the a setup present in literature6, with the same neural archi-
tecture with nf = 128 features, and compare the results obtained with our approach
with mini-batching (Algorithm 4) to those obtained in a recent work7 with PCD and
PCD with data augmentation (which consists of a combination of color distortion,
horizontal �ip, rescaling, and Gaussian blur augmentations, to help the mixing of the
MCMC sampling and stabilize training). The hyperparameters are the same in all

Method FID Inception Score (IS)
PCD with mini-batches 38.25 5.96
PCD with mini-batches and data augmentation 36.43 6.54
Algorithm 4 with multinomial resampling 32.18 6.88
Algorithm 4 with systematic resampling 30.24 6.97

Table 4.1: CIFAR-10 dataset: Comparison of FID and Inception Score (IS) for PCD and
Algorithm 4. Experiments performed using the neural architecture in6 to
model the energy.

cases: we take N = 4096 Langevin walkers with a mini-batch size N ′ = 256. We
use the Adam optimizer with learning rate η = 10−4 and inject a Gaussian noise of
standard deviation σ = 3 × 10−2 to the dataset while performing gradient clipping

6Erik Nijkamp et al. �Learning non-convergent non-persistent short-run MCMC toward energy-
based model� in: Advances in Neural Information Processing Systems. vol. 32 2019.

7Yilun Du et al. �Improved Contrastive Divergence Training of Energy-Based Models� in: Inter-
national Conference on Machine Learning. PMLR 2021. 2837�2848
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Figure 4.12: CIFAR-10 dataset: Left panel : images generated by training with
Algorithm 4. Right panel : Images generated from the PCD with
mini-batches.

in Langevin sampling for better performance. All the experiments were performed
on a single A100 GPU. Training for 600 epochs took about 34 hours with the PCD
algorithm (w/ and w/o data augmentation) and about 36 hours with our method.
Some of the images generated by our method are shown in Figure 4.12. We also quan-
titatively evaluate the performance of our models with the commonly used metrics
(e.g. FID and Inception Score): the results are given in Table 4.1. They indicate that
our method can achieve slightly better performance than the PCD algorithms w/ and
w/o data augmentation at a similar computational cost. Furthermore, these results on
CIFAR-10 suggest that our method scales well to complicated training tasks on more
realistic data sets. A key component of the success of our method is the resampling
step. In Figure 4.13 we plot the E�ective Sample Size (ESS): each peak in Figure 4.13
indicates a step of resampling of all the samples. We note that training EBMs with
mini-batches has the side e�ect of a rapid loss of the ESS, which measures the sam-
ple quality. So, doing resampling with a proper criterion and a reliable resampler is
necessary. In conclusion, we would like to emphasize that the objective of the exper-
iments conducted was to assess the potential scalability of our method, rather than
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Figure 4.13: CIFAR-10 dataset: The E�ective Sample Size (ESS) during the training
with Algorithm 4. Each peak in the plot implies one step of resampling.
Notice that the number of resampling in CIFAR-10 experiments is
signi�cantly larger than the one in MNIST experiments ( 4.9), which
suggests the necessity of resampling in the scalability of our method.

striving to achieve state-of-the-art benchmarks. It's worth noting that when dealing
with complex data, particularly images, various techniques are commonly employed,
including sophisticated sampling and post-processing methods. Therefore, the results
of the CIFAR-10 experiments should be viewed conceptually: they demonstrate the
feasibility of integrating our algorithm into the realm of deep learning.
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The work described in this Part has also been previously published in:

� D. Carbone and L. Rondoni. Necessary and Su�cient Conditions for Time
Reversal Symmetry in Presence of Magnetic Fields. In: Symmetry 12.8 (2020),
p. 1336.

� D. Carbone, P. De Gregorio and L. Rondoni. Time reversal symmetry for clas-
sical, non-relativistic quantum and spin systems in presence of magnetic �elds.
Annals of Physics 2022, 441, 168853.

The bibliography style of the present Part is kept as in the original papers, i.e. not in
footnote format.
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Chapter 5

Time reversal symmetry for

classical, non-relativistic

quantum and spin systems in

presence of magnetic �elds

5.1 Introduction

The relation between time reversal invariance (TRI) and Onsager reciprocal relations
[1, 2], for systems coupled with a magnetic �eld is a topic well investigated since
Casimir's article [3]. A cardinal contribution was given by Kubo in Refs. [4�6] who
used the usual time reversal operation

TB(r,p, t;B) = (r,−p,−t;−B) (5.1.1)

for the correlator of two classical observables ϕ and ψ in the stationary state, where
r,p collectively represent coordinates and momenta of the particles of the system of
interest. He obtained the following chain of equalities:

⟨ϕ(0)ψ(t)⟩B = ηϕηψ⟨ϕ(0)ψ(−t)⟩−B = ηϕηψ⟨ϕ(t)ψ(0)⟩−B (5.1.2)

Here the factors ηψ and ηϕ are, respectively, the signatures of the observables ψ and
ϕ, i.e., of two generic functions de�ned on the phase space, with regard to the trans-
formation TB . Moreover, the angular brackets represent the average with respect to
the equilibrium probability distribution in phase space.
Generalized time reversal transformations di�erent from TB are already given by Lax
in Ref. [7], but in the previous century the statement that crystallized in the literature
was that only TB allows the reciprocal relations to hold. Unfortunately, this only leads
to a relation between two di�erent systems as stressed by the subscripts in (6.1.2), one
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with magnetic �eld B and the other with opposite �eld, which leads to Casimir's
modi�cation of Onsager reciprocal relations. As a consequence, the predictive power
of these relations is quite limited, compared to that of the original relations.

Recently, however, a di�erent perspective has been adopted in Refs. [8�10] for classical
systems coupled with a constant magnetic �eld along an axis and in Ref. [11] for a
magnetic �eld dependent on one space coordinate. In particular, it was shown that
suitable time reversal operations exist that yield (6.1.2) without the inversion of the
�eld. Furthermore, the quantum case, in the presence of a constant magnetic �eld has
been similarly treated in Ref. [12].

As we will show in detail, the generalized time reversal transformations that were in-
vestigated do not exhaust the set of all possible operations leading to TRI. The �rst
objective of this paper is to identify the most general time reversal operation compat-
ible with a classical Hamiltonian system. After this, we analyze the minimal coupling
with a generic magnetic �eld, formulating su�cient conditions for the magnetic �eld
and for the force potential that make the Onsager reciprocal relations hold.

This theoretical result is relevant also in the context of quantum mechanics, that
will be dealt with in a future paper. For exemplary instance, in Ref. [13] Büttiker
and collaborators analyzed quantum systems using the �tenfold way� developed by
Zirnbauer in Ref. [14], which is founded on the idea that the validity of the Onsager
reciprocal relations necessarily requires microreversibility, i.e., Onsager's notion that:
�if the velocities of all the particles present are reversed simultaneously the particles
will retrace their former paths, reversing the entire succession of con�gurations�, which
is to say that T (r,p, t) = (r,−p,−t) holds. As demonstrated in Refs. [8�10], this is
not always required for statistical properties, because other symmetries may as well
do. In this paper we show that further generalized time reversal operations exist that
can be used in Linear Response Theory and beyond.

In Section 5.2, we derive and discuss our results about time reversal invariant (TRI)
systems, in presence of magnetic �elds, and we introduce our methods of investigation.
In particular, we provide su�cient conditions for the magnetic �elds that allow TRI.
In Section 5.3, we summarize such results and outline future developments.

5.2 Theory and Results

This section is organized as follows: Section 5.2.1 summarizes previous results on TRI
in presence of a magnetic �eld and its relevance for the Onsager reciprocal relations and
other statistical equalities. Section 5.2.2 identi�es the general form of a TRI operation
for a system coupled with a magnetic �eld B, and gives su�cient conditions on B
for such operations to exist. This is connected with the question of gauge freedom,
which is analyzed in Section 5.2.3. Section 5.2.4 closes the loop concerning su�cient
conditions, expressing them directly from the point of view of the magnetic �eld.
Finally, various examples of potentials are used to illustrate our theoretical results.
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5.2.1 Onsager Reciprocal Relations and T-Symmetry

A dynamical system St : Ω → Ω, on a phase space Ω with t ∈ R, is called TRI if there
exists a map M : Ω −→ Ω, such that:

MSt = S−tM , and M2 = I (5.2.1)

The operator St is the time evolution operator on the phase space, which moves every
initial condition Γ ∈ Ω to the corresponding evolved phase point StΓ ∈ Ω. As St and
S−t are operators related to the same dynamics, forward in one case and backward in
the other,M in (5.2.1) has to preserve the equations of motion and so the Hamiltonian,
cf. Section 5.2.2.
As shown for instance in Ref. [8], the canonical time reversal operation, i.e.,M(r,p) =
(r,−p), does not verify Equation (5.2.1) when St describes the evolution of a system in
a magnetic �eld. While the equations of motion are preserved by TB , i.e., by inverting
momenta and magnetic �eld together with time, that operation means dealing with
di�erent systems, subject to di�erent magnetic �elds, rather than with a single system
in given magnetic �eld. Thus, one only obtains relations such as the Onsager�Casimir
ones, (6.1.2), that do not quantify the properties of a system of interest: they merely
link non-quanti�ed properties of two di�erent systems in two di�erent magnetic �elds.
Given the observables ϕ, ψ : Ω −→ R, their correlator with respect to a probability
distribution in phase space, ρ, is de�ned by:

⟨ϕ(0)ψ(t)⟩B =

∫
Ω

dXρ(X)ϕ(X)ψ(StX) (5.2.2)

In case an operation M verifying Equation (5.2.1) exists, Onsager reciprocal relations
hold, as can be demonstrated analyzing the correlator (5.2.2). This can be seen through
the following steps: �rst, M is used to change variable within the integral, setting
X = MY , whose Jacobian determinant is 1, because M is an isometry. It follows
that:

⟨ϕ(0)ψ(t)⟩B =

∫
Ω

dY ρ(MY )ϕ(MY )ψ(StMY ) (5.2.3)

Suppose that ϕ and ψ respectively possess signatures ηϕ and ηψ under the action ofM,
and that the probability density ρ is even under M, as appropriate for an equilibrium
distribution of a Hamiltonian particles system, such as the canonical ensemble. This
leads to the result showed in Ref. [8]:

⟨ϕ(0)ψ(t)⟩B = ηϕηψ

∫
Ω

dY ρ(Y )ϕ(Y )ψ(S−tY ) = ηϕηψ⟨ϕ(0)ψ(−t)⟩B (5.2.4)

Using the invariance for time translation of the equilibrium state, i.e., translating
forward by a time t the last term of (5.2.4), we come to the �nal result:

⟨ϕ(0)ψ(t)⟩B = ηϕηψ⟨ϕ(t)ψ(0)⟩B (5.2.5)

This is related to the Onsager theory of linear response as follows: given the macro-
scopic observables αi, i = 1, ..., n, and entropy S of a system subjected to (relatively)
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small thermodynamic forces Xj , j = 1, ..., n, one may write:

α̇i =
∑
j

LijXj Xj =
∂S
∂αj

; i, j = 1, ..., n (5.2.6)

where the linear transport coe�cients are obtained via the Green�Kubo integrals of the
corresponding correlators (see Ref. [15]). Therefore, the symmetry properties of Lij
descend from those of ⟨αi(0)αj(t)⟩. If ηi and ηj are the signatures of the macroscopic
observables, we have:

⟨αi(0)αj(t)⟩B = ηiηj⟨αi(t)αj(0)⟩B ; i, j = 1, ..., n (5.2.7)

that, after integration in time, yield the Onsager reciprocal relations:

Lij = ηiηjLji ; i, j = 1, ..., n (5.2.8)

Our goal is to identify the general form of a time reversal transformation, as well as the
conditions under which Onsager symmetry may be obtained in presence of a magnetic
�eld.

5.2.2 Dynamics and Transformations

Consider a system of particles coupled with an external static magnetic �eld and
subject to forces expressed by a potential. The corresponding Hamiltonian writes:

H =

N∑
i=1

[
(pi − qiA(xi, yi, zi))

2

2mi

]
+ U(X,P ,C) (5.2.9)

where N is the number of particles, qi and mi are the charge and the mass of the i-th
particle, the �rst addend is the coupling to the magnetic �eld and U(X,P ,C) is the
force potential. In general, U depends on 2dN coordinates (X,P ), if each particle has
got d degrees of freedom, but it may also depend on a set of parameters C. Without
loss of generality, let us assume that the particles move in 3-dimensional space and
that d = 3. In the following we are going to use Ak(xi, yi, zi), with k = 1, 2, 3, to
denote the components of the vector potential A(xi, yi, zi).
Let us begin identifying the possible time reversal operations for a Hamiltonian system,
in general. Later, we will focus on those that are not broken by magnetic �eld.

Proposition 5.2.1. Take the 6-dimensional space of a single particle, with coordinates
and momenta (x, y, z, px, py, pz), and let I be the identity operator on this space. The
general form of a time reversal operator T , for classical Hamiltonian dynamics, writes:

T (x, y, z, px, py, pz) = P (s1x, s2y, s3z,−s1px,−s2py,−s3pz) (5.2.10)

where P is a permutation of coordinates and of their conjugate momenta, such that
P 2 = I, and si, which equals 1 or −1, takes opposite values in front of coordinates
and momenta.



113

Proof. That P 2 be the identity and that si be ±1 is imposed by the fact that T 2 = I,
i.e., that a time reversal transformation must be involutional. That a coordinate and
its respective momentum have opposite sign is imposed by the form of the Hamilton
equations: 

∂H

∂pi
= ẋi

∂H

∂xi
= −ṗi

(5.2.11)

In fact, assuming that the Hamiltonian itself veri�es TRI, an overall minus sign arises
when time is reversed. Then, in order to preserve the form of the equations of motion,
a minus sign has to distinguish xi from its conjugate momentum pi.

Note that P in Equation (5.2.10) is not a permutation of six elements but it acts
in a block diagonal way on the coordinates and in the same way on the momenta.
For instance, assuming P swaps x and y, it does the same with the corresponding
momenta:

(x, y, z, px, py, pz)
P−→ (y, x, z, py, px, pz) (5.2.12)

This action comes in addition to the compulsory alternation of signs between coordi-
nates and conjugated momenta produced by the si factors.
In order to enumerate how many di�erent time reversal transformations exist, let us
represent them in matrix form. As positions and momenta are bound to be distin-
guished by a minus sign, it su�ces to consider the 3-dimensional space of positions,
hence to consider a 3 × 3 matrix, Md. The action of T on the corresponding momenta
will be given by −Md.
First, suppose P is the identity, so that Md takes the diagonal form:

Md =

s1 0 0
0 s2 0
0 0 s3

 (5.2.13)

In this case, there are eight possible choices for T , as shown in Ref. [9]. For exam-
ple, the usual time reversal operation that preserves the coordinates and reverses the
momenta corresponds to s1 = s2 = s3 = 1.
If, on the other hand, P ̸= I, the total number of permutations of three elements is the
order of the discrete group S3, i.e., 3! = 6. But the cyclical and the counter-cyclical
permutations are not involutions, and only the swap permutations remain:

Mxy =

 0 sP 0
sP 0 0
0 0 s3

 (5.2.14)

Myz =

s1 0 0
0 0 sP
0 sP 0

 (5.2.15)
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Mxz =

 0 0 sP
0 s2 0
sP 0 0

 (5.2.16)

where sP = ±1 and the subscript on M identi�es the swap. The non-zero elements
in the 2 × 2 permutation blocks must own the same sign to ensure that the transfor-
mation squared is the identity. This amounts to 12 transformations: four for each of
the matrices (5.2.14), (5.2.15) and (5.2.16). Adding these to the previous 8 transfor-
mations, we obtain a total of 20 generalized time reversal transformations, that can
be used to derive the Onsager reciprocal relations, following e.g., the approach of Ref.
[9].
For the invariance of the Hamiltonian, let us directly consider the magnetic �eld, B ̸=
0. First, let the particles of the system be coupled to B only, so that U(X,P ,C) = 0.
As there are 20 possible transformations for each particle subspace, one can choose a
time reversal operation among 20N . For instance, letM1 andM2 be two matrices that
represent two suitable transformations on 6-dimensional subspaces; one may combine
them in a single transformation O acting on the entire phase space as:

O(X,P ) = (M1x1,−M1p1, ...,M2xk,−M2pk, ...,M2xN ,−M2pN ) (5.2.17)

where a special combination of the two operations has been chosen. By de�nition,
O automatically satis�es the conditions (5.2.1), and can be used under the Kubo
correlation integral.
To �nd involutions that act on the entire phase space, not as block diagonal single
particle matrices, one may consider non-diagonal time reversal operations, that act on
the Hamiltonian (5.2.9) exchanging coordinates and momenta of di�erent particles.
However, because in general particles have di�erent masses, mi ̸= mj for i ̸= j, such
operations do not qualify as time reversal involutions. For example, consider the
following transformation:

(x1, ...,xj ,xj+1, ...,xN ,p1, ....,pj ,pj+1, ...,pN )
Mnd−−−→ (x1, ...,xj+1,xj , ...,xN ,−p1, ....,−pj+1,−pj , ...,−pN )

(5.2.18)
where x1 = (x1, y1, z1). Writing the summation in Equation (5.2.9) as:

N∑
i=1

[
(pi − qiA(xi))

2

2mi

]
= ...+

(pj − qjA(xj , yj , zj))
2

2mj
+
(pj+1 − qj+1A(xj+1, yj+1, zj+1))

2

2mj+1
+...

(5.2.19)
the transformation (5.2.18) yields:

...+
(pj + qjA(xj , yj , zj))

2

2mj+1
+

(pj+1 + qj+1A(xj+1, yj+1, zj+1))
2

2mj
+ ... (5.2.20)

As the transformation (5.2.18) does not act on the masses, Equation (5.2.20) may di�er
from the corresponding term in Equation (5.2.19), even in cases in whichA(xj , yj , zj) =
A(xj+1, yj+1, zj+1): the Hamiltonian is not invariant under the action of Mnd. De-
pending on the values of the particles masses, certain swaps may be allowed or not.
In the following, we limit our investigation to the case that excludes particles swaps.
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Considering the 20 operations listed above, (5.2.13), (5.2.14), (5.2.15) and (5.2.16), let
us now relate them to the functional form of the vector potential of Equation (5.2.9).
Neglecting for sake of simplicity the particle index i, we have:

(p− qA)2 = (px − qA1)
2 + (py − qA2)

2 + (pz − qA3)
2 (5.2.21)

Under the action of the map (5.2.10) with P = I, this yields:

(−s1px−qA1(s1x, s2y, s3z))
2+(−s2py−qA2(s1x, s2y, s3z))

2+(−s3pz−qA3(s1x, s2y, s3z))
2

(5.2.22)
and imposing that the result equals the expression (5.2.21),

(px−qA1)
2+(py−qA2)

2+(pz−qA3)
2 = (px+qs1A

T
1 )

2+(py+qs2A
T
2 )

2+(pz+qs3A
T
3 )

2

(5.2.23)
where the ATk is the transformed component Ak(s1x, s2y, s3z), the Hamiltonian veri�es
TRI. We can thus write:

Proposition 5.2.2. The necessary and su�cient algebraic conditions for the validity
of Equation (5.2.23) are given by:

ATk = −skAk k = 1, 2, 3 (5.2.24)

Proof. On the one hand, if (5.2.24) holds, substitution immediately yields (5.2.23).
Vice versa, starting from the validity of (5.2.23), one notes that the squares of p and
A are squared norms of vectors in R3, hence are invariant under rotations, as the
generalized time reversal operations are. Consequently, the following equality holds:

−pxA1 − pyA2 − pzA3 = pxs1A
T
1 + pys2A

T
2 + pzs3A

T
3 (5.2.25)

As each Ak only depends on (x, y, z), and the conjugate momenta are independent,
one may vary at will the values of (px, py, pz) in (5.2.25). Setting to zero two of them,
one gets (5.2.24) for the third. Repeating, for the other pairs, (5.2.24) is obtained.

Actually, TRI in presence of a magnetic �eld is less demanding than that, because it
su�ces that (5.2.23) holds up to a gauge transformation. In other words, (5.2.21) can
be generally replaced by:

[p− q(A+∇G)]2 = [px − q(A1 + ∂xG)]
2 + [py − q(A2 + ∂yG)]

2 + [pz − q(A3 + ∂zG)]
2

(5.2.26)
where G is a suitable scalar function that can be introduced without a�ecting the
dynamics.

Proposition 5.2.3. Admitting possible gauge transformations, the necessary and suf-
�cient algebraic conditions for the time reversal invariance of Equation (5.2.23) are
expressed by:

ATk = −sk(Ak + ∂iG) k = 1, 2, 3 and i = x, y, z (5.2.27)
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Proof. The reasoning used in the proof of Proposition 5.2.2 can be repeated. Intro-
ducing Ai + ∂iG in place of Ai, in the left hand side of Equation (5.2.23), we get:

(px − q(A1 + ∂xG))
2 + (py − q(A2 + ∂yG))

2 + (pz − q(A3 + ∂zG))
2 =

(px + qs1A
T
1 )

2 + (py + qs2A
T
2 )

2 + (pz + qs3A
T
3 )

2
(5.2.28)

Then, direct substitution shows that (5.2.27) implies (5.2.28). The inverse implication
follows from the fact that Equation (5.2.28) has to hold for any value of the coordinates
and the momenta. In particular, considering the case px = py = pz = 0, we have:

(A+∇G)2 = [AT ]2 (5.2.29)

and trivially the following:

−px(A1+∂xG)−py(A2+∂yG)−pz(A3+∂zG) = pxs1A
T
1 +pys2A

T
2 +pzs3A

T
3 (5.2.30)

The thesis follows separately considering pairs in which two among px, py and pz
vanish.

As an example, take a constant magnetic �eld along the z axis, which corresponds to a
vector potential A(x, y, z) = A0(0, x, 0) = (0, A0x, 0), and choose the Coulomb gauge.
Then (5.2.24) reduces to s1x = −s2x for any value of x, that is:

s1 = −s2 (5.2.31)

In this case, the number of diagonal time reversal operations that preserve TRI is four,
Ref. [9]. Indeed, every constraint on the values of si halves the number of available
reversal operations. Then, applying the transformation (5.2.14) to (5.2.21) yields (the
same can be repeated for (5.2.15) and (5.2.16)):

(−sP px−qA2(sP y, sPx, s3z))
2+(−sP py−qA1(sP y, sPx, s3z))

2+(−s3pz−qA3(sP y, sPx, s3z))
2

(5.2.32)
and in the same way as Proposition 5.2.2 we derive three necessary and su�cient
conditions 

A1(sP y, sPx, s3z) = −sPA2(x, y, z)

A2(sP y, sPx, s3z) = −sPA1(x, y, z)

A3(sP y, sPx, s3z) = −szA3(x, y, z)

(5.2.33)

In the singular case A(x, y, z) = (0, A0x, 0), (5.2.33) reduces to 0 = ±sPx, which
clearly has no solution for sP = ±1; on the other hand, one observes that the same
magnetic �eld corresponds to the vector potential A(x, y, z) = A0/2(−y, x, 0), that
instead leads to {

−sPx = −sPx
sP y = sP y

(5.2.34)

which has solution. In other words, the four transformations in the form (5.2.14)
continue to hold. The point is that one can use the gauge freedom to replace (5.2.33),



117

and write: 
A1(sP y, sPx, s3z) = −sP (A2(x, y, z) + ∂yG)

A2(sP y, sPx, s3z) = −sP (A1(x, y, z) + ∂xG)

A3(sP y, sPx, s3z) = −sz(A3(x, y, z) + ∂zG)

(5.2.35)

In the next section, we discuss in detail the role of the gauge.

5.2.3 Gauge

By de�nition, the gauge choice has no physical consequences. In our case, the dynamics
does not change if the vector potential A is replaced by A+∇G, with G : R3 −→ R a
scalar function. As commonly done in this kind of magnetostatic problems, we choose
the Coulomb gauge:

∇ ·A = 0 (5.2.36)

The consequence of this on the physical �eld B, hence on the conditions for TRI, can
be illustrated starting from the diagonal transformations and recasting (5.2.27) in the
following fashion:

(s1A
T
1 , s2A

T
2 , s3A

T
3 ) = −(A1 + ∂xG,A2 + ∂yG,A3 + ∂zG) = −(A+∇G) (5.2.37)

where we used the fact that (5.2.10) has to be an involution.
One can view Equation (5.2.10) (with P = I in the diagonal case) as a transformation
on the vector �eld V (R3) of whichA is an element, that transforms as a vector and not
as a pseudo-vector. Hence, the necessary conditions (5.2.24) imply thatA transformed
as a vector �eld in R3 under a diagonal operation M′ : V (R3) −→ V (R3) has to equal
−A up to a gauge transformation, and B is then mapped to −B.
The same applies to the non diagonal transformations: we rewrite (5.2.35) asA′

1

A′
2

A′
3

 = −Mxy

A1 + ∂xG
A2 + ∂yG
A3 + ∂zG

 (5.2.38)

where A′
k = Ak(sP y, sPx, s3z). As the inverse of the matrix Mxy equals the matrix

itself, multiplying Equation (5.2.38) side by side by Mxy the consequence is again to
transform A into −A up to a gauge transformation. The same obviously holds for
Mxz and Myz.
The gauge freedom can be accounted for by introducing the equivalence classes [A] of
the vector potentials that lead to the same magnetic �elds, i.e., whose elements di�er
by the gradient of an at least twice di�erentiable scalar function G(x, y, z). We denote
by [A]R an element of the class [A], that corresponds to a particular choice of G. We
can now state the following:

Proposition 5.2.4. A generalized time reversal operation M of form (5.2.10), that
acts on all particles 6-dimensional subspaces, preserves TRI in the presence of a mag-
netic vector potential A if and only if the associated transformation de�ned on the
3-dimensional vector �eld space, M′ : V (R3) −→ V (R3), obeys:

M′A = MM (A1(MMx), A2(MMx), A3(MMx)) = [−A]R (5.2.39)
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with MM one 3-dimensional speci�c matrix representation verifying M2
M = I.

When this is veri�ed, the Hamiltonian is preserved up to a gauge transformation and
the corresponding equations of motion are in turn veri�ed.

Proof. The direct implication directly comes from Equations (5.2.37) and (5.2.38),
where the invariance of the equations of motion leads to the condition (5.2.39). Vice
versa, assuming there is an involutionM′ verifying Equation (5.2.39), with 3-dimensional
matrix representationMM , one can introduce the transformationM ≡ (MMx,−MMp),
which preserves the structure of the Hamilton equations under time reversal, because
it alternates signs. Furthermore, the Hamiltonian is unchanged under the application
of M to every particle space, since M(p−qA(x))2 = (−MMp−qA(MMx))2 by de�-
nition. Using (5.2.39) and M2

M = I we obtain M(p−qA(x))2 = (p−q[A(x)]R)
2.

Remark 5.2.1. Applying M as a variable change in the integral (5.2.3) deeply dif-
fers from inverting B. The coordinates swap operated by M may amount to a mere
rearrangement of the order in which the contributions to the integral coming from the
di�erent regions of the phase space are summed up, that does not a�ect the total. That
depends on the functions that are integrated. For instance, given an average electric
current from left to right, corresponding to a forward trajectory of particles, its time
reverse may exist even if the particles do not trace backward the con�gurations of the
forward trajectory; a reversed average of momenta su�ces.

Remark 5.2.2. Remark 5.2.1 rests on the hypothesis that all coordinate transforma-
tions of interest map the domain of integration on itself. Depending on the geometry
of interest, a coordinate change may kick some particle out of the volume occupied by
the system under investigation. As long as one remains within the realm of in�nite
homogeneous systems, or far from possible boundaries, as common in response the-
ory, this is not an issue. In general, one has to consider case by case whether the
phase space is invariant under the chosen time reversal mapping. If the dynamics is
not translation invariant, making all time reversal symmetries fail, in principle one
obtains a method to experimentally �nd a violation of Onsager reciprocal relations.

To test the condition of Proposition 5.2.4, it su�ces to check that the curl of A and of
M′A corresponds to B and −B, respectively. For example, take a constant magnetic
�eld with gauge choices A1(x, y, z) = (0, A0x, 0) and A2(x, y, z) = (−A0y, 0, 0), which
are elements of the same class [A]. Applying the transformation of Equation (5.2.14)
with sP = 1 and s3 = 1, one obtains A′

2(x, y, z) = (0,−A0x, 0) that does not equal
−A2(x, y, z), but equals −A1(x, y, z), showing that it nevertheless belongs to the class
[−A]. Thus, the transformation of Equation (5.2.14) satis�es the necessary condition
(5.2.39) for TRI.

5.2.4 Magnetic �eld

Proposition 5.2.4 can be formulated in an equivalent form that does not involve gauge
freedom:
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Proposition 5.2.5. A generalized time reversal operation M of form (5.2.10), that
acts on all particles 6-dimensional subspaces, preserves TRI in the presence of a mag-
netic �eld B if and only if the associated transformation de�ned on the 3-dimensional
vector �eld space, M′ : V (R3) −→ V (R3), obeys:

M′B = det(MM )MM (B1(MMx), B2(MMx), B3(MMx)) = −B (5.2.40)

with MM the 3-dimensional speci�c matrix representation verifying M2
M = I.

Proof. The derivation is trivial because (5.2.39) and (5.2.40) are equivalent statements
by de�nition of a magnetic �eld as curl of vector potential, which transforms as a
pseudo-vector in 3D space.

Again, TRI preserves the Hamiltonian, up to a gauge choice, as well as the correspond-
ing equations of motion. This perspective is particularly useful in classical mechanics,
in which only the magnetic �eld matters, because the equations of motion are the
fundamental element of the theory.
Now, given a magnetic �eld B(x), the necessary conditions for a transformation to
preserve TRI are obtained from Equations (5.2.13), (5.2.14), (5.2.15) or (5.2.16). To
do that for the 20 transformations we have got, let us express B in the basis î, ĵ, k̂ of
the 3-dimensional space as:

B = B1(x)̂i+B2(x)ĵ +B3(x)k̂ (5.2.41)

and take the diagonal transformations with matrix representation (5.2.13). Following
the rule (5.2.40), B transforms as:

B′ = s1s2s3[s1B1(s1x, s2y, s3z)̂i+ s2B2(s1x, s2y, s3z)ĵ + s3B3(s1x, s2y, s3z)k̂]
(5.2.42)

Then, the necessary matching conditions between the magnetic �eld components and
the transformation follow from the second equality of (5.2.40), and write:

B1(x, y, z) = −s2s3B1(s1x, s2y, s3z)

B2(x, y, z) = −s1s3B2(s1x, s2y, s3z)

B3(x, y, z) = −s1s2B3(s1x, s2y, s3z)

(5.2.43)

Therefore, given the magnetic �eld, one can verify by inspection which of the eight
diagonal transformations yield TRI. The same reasoning can be repeated for the non
diagonal transformations, with representations (5.2.14), (5.2.15) or (5.2.16), whose
application to (5.2.41) implies:

B′
xy = −s3[sPB2(sP y, sPx, s3z)̂i+ sPB1(sP y, sPx, s3z)ĵ + s3B3(sP y, sPx, s3z)k̂]

(5.2.44)
B′
yz = −s1[s1B1(s1x, sP z, sP y)̂i+ sPB3(s1x, sP z, sP y)ĵ + sPB2(s1x, sP z, sP y)k̂]

(5.2.45)
B′
xz = −s2[sPB3(sP z, s2y, sPx)̂i+ s2B2(sP z, s2y, sPx)ĵ + sPB1(sP z, s2y, sPx)k̂]

(5.2.46)
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where the subscripts identify the transformation. This derives from the fact that the
determinant of the matrices (5.2.14), (5.2.15) and (5.2.16) equals the opposite of the
diagonal element: −s2P si = −si. Then, the necessary matching conditions for the 12
non-diagonal reversal operators write:

B1(x, y, z) = s3sPB2(sP y, sPx, s3z)

B2(x, y, z) = s3sPB1(sP y, sPx, s3z)

B3(x, y, z) = B3(sP y, sPx, s3z)

(5.2.47)


B1(x, y, z) = B1(s1x, sP z, sP y)

B2(x, y, z) = s1sPB3(s1x, sP z, sP y)

B3(x, y, z) = s1sPB2(s1x, sP z, sP y)

(5.2.48)


B1(x, y, z) = s2sPB3(sP z, s2y, sPx)

B2(x, y, z) = B2(sP z, s2y, sPx)

B3(x, y, z) = s2sPB1(sP z, s2y, sPx)

(5.2.49)

This concludes the case of systems with U(X,P ,C) = 0 in the Hamiltonian. For
U(X,P ,C) ̸= 0, TRI requires also the following:

MU(X,P ,C) = U(MCX,−MCP ,C) = U(X,P ,C) (5.2.50)

where M is a time reversal transformation on the phase space, obtained by applying
a given MC to the coordinates, and alternating signs with the momenta. Let us
begin introducing a force E deriving from a scalar potential Φ that depends only on
coordinates, so that −∇Φ = F , and the Hamiltonian reads:

H =

N∑
i

[
[pi − qiA(xi, yi, zi))]

2

2mi
+Φ(xi, yi, zi)

]
(5.2.51)

Given a transformationM that satis�es the conditions of Proposition 5.2.5, the Hamil-
tonian (5.2.51) results invariant under the application of M if:

MΦ(X) = Φ(MCX) = Φ(X) (5.2.52)

and MC is used as in Equation (5.2.50) (n.b. this includes the notable case of the cou-
pling with an electric �eld). In the following Section, we investigate notable examples
of force potentials.

5.2.5 Force Potentials

In this Section we consider physically relevant inter-particle potentials. Without loss of
generality, we take a constant magnetic �elds along the z axis, i.e., B = (0, 0, 1), which
breaks four of the eight diagonal time reversal symmetries. In turn, the conditions
(5.2.47), (5.2.48) and (5.2.49) imply that only the four non diagonal operations (5.2.14)
yield TRI, producing a total of eight time reversal symmetries.
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example Take a central potential, e.g., the Coulomb potential between charged
particles:

U(X,P ,C) =

N∑
i<j

fij(C)u(rij) ; rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 ,

(5.2.53)
rij being the distance between particle i and particle j, C a vector of parameters,
and fij a function of such parameters. This potential satis�es the condition (5.2.52)
because each of the 20 available transformations MC is an element of the orthogonal
group O(3). In particular, one may take block diagonal operators with 3 × 3 blocks
given by (5.2.13), (5.2.14), (5.2.15) or (5.2.16). As a consequence, rij is left unchanged
by the action of M on the phase space. Moreover, MC does not act on the space of
the parameters C, leaving each fij invariant.
While very simple, the potentials of this form are most common and useful; in par-
ticular, interactions between structureless objects are commonly modelled by central
forces, such as those derived from Lennard�Jones, Morse, Coulomb, gravitational and
Yukawa potentials.

example The Coulomb ring-shaped (or Hartmann) potential treated in Ref. [16]

U(xi, yi, zi) = − Z√
x2i + y2i + z2i

+
1

2
Q

1

x2i + y2i
Q > 0 , Z > 0 (5.2.54)

is used in quantum mechanics, and can be used to model a force �eld that is not
purely central, thanks to its second addend, that depends on the square distance from
z axis. Here, the term x2i + y2i is invariant under the action of the 8 possible diagonal
transformations; in particular, we have:

(s1xi)
2 + (s2yi)

2 = x2i + y2i (5.2.55)

In addition, for the non-diagonal transformations of the form (5.2.14), we have:

(sP yi)
2 + (sPxi)

2 = x2i + y2i (5.2.56)

In conclusion, this kind of potential does not add restrictions to TRI, other than those
imposed by the magnetic �eld.

example A di�erent kind of potentials, used, e.g., in molecular dynamics, depends
on momenta. For instance, in Ref. [17], classical Fermion-like particles are simulated
with the following potential:

U(pi) =
Ep

1 + ebp(|pi|2−1)
(5.2.57)

where Ep and bp are dimensional constants, while pi = (pxi , p
y
i , p

z
i ). In this case, the

particles are decoupled, but they are subject to an external momentum dependent
force. TRI, hence its consequences such as Onsager reciprocal relations, may hold
even in a system like this, if the functional form of the magnetic �eld allows, because
|pi| is invariant under rotations.
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example The Polarisable Ion Model (PIM) potential, is particularly interesting in
molecular dynamics studies, to take into account certain intermolecular interactions
cf. Refs. [18, 19]. In the case of an N particles system, it is expressed by:

U = Ucharge + Udispersion + Urepulsion + Upolarization (5.2.58)

where
Ucharge =

∑
i

∑
j>i

qiqj
rij

(5.2.59)

is the Coulomb electric potential,

Udispersion = −
∑
i

∑
j>i

(
Cij6
(rij)6

f ij6 (rij) +
Cij8
(rij)8

f ij8 (rij)

)
(5.2.60)

is due to dipole-dipole and dipole-quadrupole dispersion,

Urepulsion =
∑
i

∑
j>i

Bije
−αijrij (5.2.61)

is a short-range repulsion term, and

Upolarization =
∑
i

∑
j>i

(
qirij · µj

(rij)3
f ij4 (rij)−

qjrij · µi

(rij)3
f ji4 (rij)

)
+

∑
i

∑
j>i

(
µi · µj

(rij)3
− 3(rij · µi)(rij · µj)

(rij)5

)
+
∑
i

|µi|2

2αi

(5.2.62)

is the polarization interaction term, with µi the induced dipole moment of the molecule
i. While the parts in Equations (5.2.59), (5.2.60) and (5.2.61) are like the potential
(5.2.53), and are invariant under any time reversal operation, the term in Equation
(5.2.62) is hard to control, since it is de�ned recursively: for any particle i, µi in
principle depends on the coordinates and on the dipole momenta of all the other
particles. Explicitly expressing this dependence is problematic, and the veri�cation of
Equation (5.2.50) so far remains out of reach. In fact, this potential is only analyzed
through approximations and numerically.

5.3 Conclusions

In this article, we have generalized the results of Refs. [8�11], increasing the number
of time reversal symmetries that concern mechanical systems in general, and systems
in magnetic �eld, in particular. We focused on block diagonal transformations, com-
posed by operations acting on the 6-dimensional subspace of each particle, and we
have introduced suitable equivalence classes to account for the corresponding gauge
invariance. We then obtained su�cient conditions for TRI to hold in presence of a
magnetic �eld, which imply, for instance, Onsager reciprocal relations. Substantially
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enlarging the range of applicability of TRI, we contribute to understand why violations
of such relations to date are not reported, despite the presence of magnetic �elds.
The next step will be to investigate the necessary conditions for the validity of Onsager
reciprocal relations. Indeed, as Ref. [11] states, the discovery of a violation of On-
sager reciprocal relations may lead to the never observed situation of non-dissipative
currents. This may be a dynamically indirect reason why Onsager reciprocal relations
cannot be broken, at least in classical systems where the evidence of superconductivity
was never found.
In the �nal part of this paper, we have illustrated the application of our results to
notable potentials. Such a few examples do not exhaust the set of possible situations
in which TRI holds or is violated, both theoretically and experimentally. However,
it covers typical situations and constitutes a guide for further investigations of the
Onsager reciprocal relations.
As pointed out by one of the anonymous referees, electromagnetism is inherently rela-
tivistic, hence in future works we may investigate the extension of our present results
to the relativistic case. As a matter of fact, regarding the time reversal operations
on the single particle subspace, thus of any set of non-interacting particles, a formal
extension of our involutions is immediate, although not necessarily conceptually sat-
isfactory, given the role of time in Minkowski space. Moreover, Statistical Mechanics
relations, such as those considered in this paper, require interacting particles. This
makes the subject most intriguing and challenging [20�22].





Chapter 6

Time reversal symmetry for

classical, non-relativistic

quantum and spin systems in

presence of magnetic �elds

6.1 Introduction

For particles systems constituting a macroscopic object, the standard derivation of
the validity of the Onsager reciprocal relations is based on the time reversal invariance
(TRI) of the dynamics [1, 2]. Magnetic �elds have long been thought to break TRI,
and to require a modi�cation of the Onsager relations, that fundamentally weakens
their predictive power and practical relevance [3]. Unlike the original relations, that
represent a property of a single system in a given magnetic �eld, the modi�ed relations
refer, indeed, to a relation between two independent systems, separately coupled to
opposite magnetic �elds.
Kubo continued this investigation in his fundamental papers on linear response, illus-
trating the e�ect of the time reversal operator on the correlator of two classical, or
quantum, observables ϕ and ψ. Beginning with a classical system in a magnetic �eld
B, with con�guration coordinates r, and momenta p, Kubo introduced the following
operator:

TB(r,p, t;B) = (r,−p,−t;−B) (6.1.1)

where t is the time variable. This operator implements a kind of time reversal, be-
cause it associates every trajectory of the system, with one that traces back itself, in
con�guration space. He then proved that

⟨ϕ(0)ψ(t)⟩B = ηϕηψ⟨ϕ(0)ψ(−t)⟩−B = ηϕηψ⟨ϕ(t)ψ(0)⟩−B (6.1.2)

125
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where the angular brackets represent averaging with respect to the equilibrium phase
space probability distribution in presence of the magnetic �eld B, or −B, depending
on the index; and ηϕ and ηψ are respectively the signatures of ϕ and ψ under the
action of TB , cf. [4�6].
Recently, it has however been shown that generalized time reversal symmetries hold,
and can be used to prove the validity of the Onsager relations, as well as other relations
that require TRI, such as the �uctuation relations, also in presence of magnetic �elds,
[7�13].
Generalized time reversal transformations di�erent from TB were known much earlier,
cf. Lax [14] and other authors, but the view that crystallized in the XX century
and early XXI century literature was that Onsager relations and �uctuation relations
require invariance of the dynamics under the Kubo transformation. Unfortunately,
that is not enough to quantify a given property of a given system, but it merely links
di�erent properties of two di�erent systems, one with magnetic �eld B and the other
with opposite, −B, �eld. In this respect, the Onsager-Casimir relations, in particular,
fundamentally di�er from the Onsager relations.
This point of view has been superseded in works concerning classical systems coupled
to a constant magnetic �eld along a �xed direction, �rst in Ref.[7], and in Ref.[11] for
space dependent �elds. It was shown that there exist time reversal symmetries which
are preserved by a magnetic �eld. The list of such symmetries has been substantially
extended in Ref.[15].
The quantum case with a constant magnetic �eld has been �rst treated in Ref.[10], for
spinless particles. In reality, the concept of generalized TRI was well understood much
earlier in the quantum mechanical literature [14]. For instance, in the so-called "ten
fold formalism" [16], it is used as a classi�cation tool for the symmetries of quantum
systems. Nevertheless, when discussing Onsager relations, Lax reiterates the Casimir
reasoning, based on the inversion of the magnetic �eld [14].
The basis of this approach, using Onsager's words, is the following: "if the velocities
of all the particles present are reversed simultaneously the particles will retrace their
former paths, reversing the entire succession of con�gurations", which is known as the
microreversibility condition [1]. Continuing, Onsager also states: "We like to think
that the dynamical laws which govern the world of atoms are also reversible. The
information that we have about the atoms a�ords considerable support for this belief of
ours, and we have no serious counter-indications, if any. If the dynamical laws of an
isolated molecular system are reversible the kinetic theory requires that in the long run
every type of motion must occur just as often as its reverse, because the congruence of
the two types of motion makes them apriori equivalent".
Onsager then develops a reasoning, in which "opposite" phenomena occur with same
frequency, opposite meaning the reversed succession of con�gurations. In absence of
magnetic �elds or rotating frames, this comes for free in Hamiltonian dynamics, hence
it is a perfectly �ne assumption.
Therefore, Ref.[16], which investigates the Onsager relations and the symmetries of
quantum mechanical systems, takes microreversibility as its starting point: "In this
classi�cation, the possible symmetries that the Hamiltonian H satis�es are (i) TRS :
H = THT−1, with T = −iK, with the complex conjugation operator K in the spinless
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case, and T = −iσyK for spin-1/2 fermions, with the Pauli matrix σy acting in spin
space".
Nevertheless, while this approach is su�cient, it is way stronger than required for
statistical relations, such as Onsager's. What su�ces is that the correlation func-
tions, hence averages over trajectories, enjoy a given symmetry that holds even if
trajectories do not come in pairs that trace the same set of con�gurations in opposite
chronological order. One may argue that conditions weaker than microreversibility
do not correspond to the true time reversibility, whatever that means, but the e�ect
on statistical properties corresponding to macroscopic observables may well be the
same. Something less than the traditional reversibility still su�ces for the purpose of
statistical mechanics or of thermodynamics.
In this paper, we show formally and via examples that:

� there exists a more general class of time reversal transformation in Classical
Mechanics. Their compatibility with the magnetic �eld can be studied through
a particular compatibility condition;

� this new generalized time reversal operations, including the ones found in Ref.[15],
can be applied to quantum systems;

� the spin is compatible with TRI in presence of an external magnetic �eld;

� one application of the above results implies an interesting symmetry of the dif-
fusion tensor.

6.2 Theory

As recalled in Sect.6.1, su�cient conditions for the validity of Onsager reciprocal
relations are known, and they include a set of generalized time reversal symmetries.
On the contrary, very little is known about necessary conditions. First, in Sec.6.2.1,
we recall the main facts about time reversal transformation in classical mechanics,
introducing a whole new class of operations. Then, we illustrate quantum mechanical
time reversal operators, in the case of spinless particles, extending the treatment of
Sec.6.2.1 to the quantum realm, cf. Sec.6.2.2. In Sec.6.2.3 we investigate the issue of
time reversal in the context of quantum systems composed by particle of spin 1/2.
In Sec.6.2.4 we summarize the concept of Kubo canonical quantum correlators, as
well as the derivation of Onsager relations from a generalized time reversal symmetry
obtained in Ref.[10]. Subsequently, we illustrate the compatibility conditions between
the di�erent time reversal operations and a generic magnetic �eld. We recall the
su�cient conditions of Ref.[15] that lead to Onsager relations in classical mechanics,
and we extend them to the operations found in Sec.6.2.1 and to the case of particles
with spin. The striking result of this Section is that a time reversal operator that
works in the spinless case, works also for particles of spin 1/2. Finally, in Sec.6.2.5 we
study the constraints imposed by TRI on the di�usion tensor in a particular physical
setup, in the wake of the reasoning of Ref.[8].
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6.2.1 Classical mechanics

The microscopic state of a system made of N classical particles is represented by the
collection of coordinates and momenta of all its particles, that constitutes a point Γ
in the phase space Ω. In case of dynamics determined by a Hamiltonian H, the time
evolution of the coordinates and momenta is prescribed by the following equations of
motion: 

∂H

∂pi
= ẋi

∂H

∂xi
= −ṗi

i = 1, ..., 3N (6.2.1)

Denote by St : Ω → Ω the operator that expresses the solutions of the equations of
motion up to time t, i.e. StΓ is the state at time t, if it was Γ a time 0. Following
Abraham Ref.[17], the dynamics are called time reversal invariant (TRI) if there exists
a linear antisymplectic involution M : Ω → Ω (an operator such that M2 = I, the
identity) such that:

MStΓ = S−tMΓ , ∀Γ ∈ Ω , ∀t ∈ R (6.2.2)

The reason for this terminology is that right multiplication by M before application
to Γ yields:

S−t = MStM (6.2.3)

which means that the backward time evolution is conjugated to the forward time
evolution via the involution M, in such a way that one backward trajectory can be
obtained by properly applying M to the forward trajectory.
Microreversibility corresponds to TRI under the involution M de�ned by M(x,p) =
(x,−p), but we call time reversal invariant all the dynamics for which one involution
obeying Eq.(6.2.2) exists.
From the point of view of the equations of motion, we can de�ne an extended operation
T ≡ M ◦ T, where T maps the time parameter t to −t in Eqs.(6.2.1). The system
veri�es TRI under M if the application of T to the equations of motion leaves them
unchanged. Note that the concept of time reversal de�ned by Eq.(6.2.2) concerns
trajectories in phase space.

De�nition 6.2.1. A matrix operator P is symplectic or, respectively, antisymplectic
on a 2n-dimensional phase space Ω if

PTωP = ω or PTωP = −ω (6.2.4)

where ω is the antisymmetric matrix

ω =

(
0 −In
In 0

)
(6.2.5)

and In is the n× n identity matrix.

This can now be used to de�ne the time reversal transformations of Hamiltonian
systems.
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De�nition 6.2.2. A time reversal transformation M, for a Hamiltonian system, is
a linear operator acting on the space Ω in such a way that:

� It is an involution, that is M2 = I.

� It is an antisymplectic linear operator.

As in Ref.[15], we begin considering transformations that separately act on the 6-
dimensional subspaces of Ω that concern single particles. In this case, a time reversal
transformation on Ω can be written as:

M(x, y, z, px, py, pz) = P (s1x, s2y, s3z,−s1px,−s2py,−s3pz) (6.2.6)

where si = ±1, and P is a permutation obeying P 2 = I, which acts in the same way
on coordinates and on the corresponding momenta. Our �rst result is the following
theorem.

Theorem 6.2.1. Consider a system of N particles subject to an external magnetic
�eld, described by the Hamiltonian

H =

N∑
i=1

[
(pi − qiA(xi))

2

2mi

]
(6.2.7)

The matrix representation of the antisymplectic operator M representing a time re-
versal operation for such a system is block diagonal on the phase space Ω and takes
the form:

M =

(
A 0
0 −A

)
(6.2.8)

with M = 3N , A ∈ O(M) and A2 = I.

Proof. We start from a generic matrix M ∈ GL(2M,R), i.e.

M =

(
A B
C D

)
(6.2.9)

where A, B, C and D are M ×M blocks. As stressed in Refs.[7, 15], a time reversal
operation de�ned as in De�nition 6.2.2 yields TRI if and only if

H(MΓ) = H(Γ) , ∀Γ ∈ Ω (6.2.10)

Thus, the Hamiltonian (6.2.7) requires M to not mix coordinates and momenta. In
the case it does, the minimal coupling term (pi − qiA(xi))

2 is not preserved by the
operation. In formulae, the matrix must be block diagonal:

M =

(
A 0
0 D

)
(6.2.11)

As M must preserve the norm in the 2N -dimensional phase space, because of the
presence of the square in the minimal coupling term, M must be orthogonal and,
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consequently one has A ∈ O(M) and D ∈ O(M), with M = 3N . Moreover, the trans-
formation must be antisymplectic by De�nition 6.2.2. Then, we impose the constraint:

MTωM = −ω ; i.e.
(
AT 0
0 DT

)(
0 −In
In 0

)(
A 0
0 D

)
=

(
0 In

−In 0

)
(6.2.12)

which leads to the constraint ATD = −I. Then,

M =

(
A 0
0 −(AT )−1

)
(6.2.13)

Finally, because M is block diagonal, and M2 = I, Eq.(6.2.11) implies A2 = I and
D2 = I. Ultimately, since A is orthogonal, that is AAT = I, and A2 = I, we obtain
that A is a symmetric matrix, i.e. A = AT . The proof is then complete, observing
that

(AT )−1 = A−1 = A (6.2.14)

This means that the number of time reversal operations is the number of matrices
A that are orthogonal and involutory. In particular, let us consider 3N × 3N ma-
trices whose entries are 0 or 1, called binary matrices (more general matrices will be
considered later, in Section 6.2.4). Among binary matrices we have the following:

De�nition 6.2.3. A permutation matrix is a matrix obtained permuting the row of
an identity matrix of the same dimension.

We are now going to �nd the time reversal matrices using some results of Group
Theory [18]. First, note the following proposition.

Proposition 6.2.1. The involutory binary matrices A are in one-to-one correspon-
dence with the linear representations of the cyclic group Z2 over a 3N -dimensional
vector space.

Proof. By de�nition, the group Z2 is the set {e, a} with e the group identity and
a2 = e. A linear representation R(a) on a 3N -dimensional vector space is a 3N × 3N
matrix such that R(a)2 = R(e) = I3N . Moreover, S2, the symmetric group on 2
elements, coincides with Z2 and, in general, a representation of an element of Sk must
be a permutation, hence an orthogonal, matrix. Then, a matrix R(a) has the required
property, and the possible A and the R(a) are in one-to-one correspondence.

Considering that one such matrix A is a permutation, it is a representation of an
element of S3N , like R(a). Now, let us introduce the cycle decomposition of a permu-
tation of S3N , denoted by:

(·)...(·)︸ ︷︷ ︸
r1

(··)...(··)︸ ︷︷ ︸
r2

... (·...·)︸ ︷︷ ︸
r3N

(6.2.15)
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which is invariant under group conjugation, and allows us to uniquely label each
conjugation class with a set of integers {r1, ..., r3N} satisfying the following constraint:

3N∑
l=1

lrl = 3N (6.2.16)

There is a useful way to represent the conjugation classes:

De�nition 6.2.4 (Young tableaux). There is a one-to-one correspondence between
a conjugation class {rl} of the group Sk and the following graphical representations
known as Young tableau,

1 2 3 . . . a1−1 a1

1 2 . . . . . . a2

...
...

...

1 ak−1

ak

(6.2.17)

where the number of squares al in each of the k rows obeys the following rules:

1. al+1 ≤ al ∀l = 1, ..., k.

2. The total number of squares in the tableau equals k:
∑k
l=1 al = k

Then, the one-to-one correspondence between the class {rl} and the corresponding
Young tableau is given by:{

rl = al − al+1 , ∀ l = 1, ..., k − 1

rk = ak
(6.2.18)

For instance, S3 can be associated with any of the three following Young tableaux:

(6.2.19)

that respectively correspond to three sets {rl}: {3, 0, 0}, {1, 1, 0} and {0, 0, 1}. In-
cidentally, this also constitutes one method for identifying the partitions of a �xed
integer n (see Cap. 5.2 in Ref.[18]). Now, the constraint (6.2.16) takes an interesting
form, thanks to the following Corollary.

Corollary 6.2.1. The conjugation classes {ri} of S3N containing elements represented
by involutory binary matrices obey

rl = 0 ∀l ≥ 3 (6.2.20)
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Proof. This is a consequence of Proposition 6.2.1: the conjugation class represented
by A contains elements a such that a2 = e, that is its cycle decomposition can be
made only of cycles of order 1 or 2.

To compute the number |{ri}| of elements in a conjugation class {ri}, we use the
following known fact [18]:

Theorem 6.2.2. The number of elements in the conjugation class {rl} is

|{rl}| =
k!∏k

i=1 i
riri!

(6.2.21)

which leads us the fundamental result of this Section:

Corollary 6.2.2 (Number of generalized time reversal operations). Setting M = 3N ,
the maximum number of generalized time reversal operations involving binary matrices,
for a system of N particles described by the Hamiltonian (6.2.7), is given by:

∆̃even(M) =

M/2∑
r2=0

M ! 2M−2r2

(M − 2r2)! r2!
(6.2.22)

if M is even and by

∆̃odd(M) =

(M−1)/2∑
r2=0

M ! 2M−2r2

(M − 2r2)! r2!
(6.2.23)

if M is odd.

Proof. The total number of time reversal operations that satisfy Corollary 6.2.1 is the
sum of the number of elements in the conjugation classes, i.e.

∆̃ ≡
∑
{rl}

|{rl}| (6.2.24)

under the condition (6.2.20) which, together with (6.2.16), yields:

r1 + 2r2 =M (6.2.25)

Then, using (6.2.21) and (6.2.25) in (6.2.24) we obtain

∆even(M) =

M/2∑
r2=0

M !

(M − 2r2)!r2! 2r2
(6.2.26)

for M even, while

∆odd(M) =

(M−1)/2∑
r2=0

M !

(M − 2r2)!r2! 2r2
(6.2.27)

forM odd, where the sum stops at (M−1)/2, because of the constraint in Eq.(6.2.25).
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Now, consider for instance one conjugation class {rl}, hence a single addend of the
summation in these formulae. Each cycle in a decomposition like (6.2.15) is de�ned
up to a minus sign. For example, take the matrix representation 0 sp 0

sP 0 0
0 0 s3

 (6.2.28)

associated to the time reversal operation that acts as a block diagonal on each particle
subspace as

M(x, y, z, px, py, pz) = (sP y, sPx, s3z,−sP py,−sP px,−s3pz) (6.2.29)

That corresponds to a permutation belonging to the conjugation class {rl} = {1, 1, 0}
of S3: it is evident as the 2× 2 block that corresponds to the cycle of order 2 carries
a sign sP , and similarly the cycle of order 1 for s3. In general, we can multiply by ±1
each cycle block in the representative matrix. This proves that we have to multiply
each addend of the summations in (6.2.26) and (6.2.27) by a factor 2r1+r2 , obtaining:

∆̃even(M) =

M/2∑
r2=0

M ! 2r1+r2

(M − 2r2)!r2! 2r2
(6.2.30)

∆̃odd(M) =

(M−1)/2∑
r2=0

M ! 2r1+r2

(M − 2r2)!r2! 2r2
(6.2.31)

Finally, recalling relation (6.2.25) we get the two formulae (6.2.22) and (6.2.23).

To illustrate this result, let us apply it to the 6-dimensional subspace of a system with
N = 1. Here, M = 3 so we use (6.2.23) and we obtain:

∆̃odd(3) =

1∑
r2=0

M ! 2M−2r2

(M − 2r2)! r2!
=

3! 23

3! 0!
+

3! 21

1! 1!
= 8 + 12 = 20 (6.2.32)

Correctly, this result coincides with the one obtained in Ref.[15] for single particle
subspaces of N particle systems. This kind of operations swap di�erent coordinates
and momenta of a given particle. For example, they include the time reversal trans-
formation

(x1, ..., xj , xj+1, ..., xM , p1, ...., pj , pj+1, ..., pM )
Mnd−−−→ (x1, ..., xj+1, xj , ..., xM ,−p1, ....,−pj+1,−pj , ...,−pM )

(6.2.33)
that permutes coordinates xj and xj+1 of a given particle. In fact, this operation
corresponds to a matrix A of formIj−1 0 0

0 B 0
0 0 IM−j−1

 (6.2.34)
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where Ik is the k × k identity matrix and B is a 2× 2 block such as

B =

(
0 1
1 0

)
(6.2.35)

This matrix is the representation of a permutation that belongs to the conjugation
class {M − 2, 1}, that is the permutations composed by M − 2 cycles of order 1 and
one cycle of order 2.
As last remark, the generalization of the concept of time reversal leads to a notable
outcome on the rule of transformation of other classical observables, as for example
angular momentum. Let us recall its de�nition:

De�nition 6.2.5. For a classical Hamiltonian system, the total angular momentum
is de�ned by

L =

N∑
i=1

xi × pi (6.2.36)

The canonical time reversal operation (X,P ) 7→ (X,−P ) trivially transforms L into
−L. The same holds for the 20 time reversal operations that do not permute coordi-
nates of di�erent particles. Restricting to the single particle subspaces (xi,pi), and
denoting the transformation rule by:

(xi,pi) → (Rxi,−Rpi) (6.2.37)

where Theorem 6.2.1 implies R ∈ O(3), we obtain:

L 7→ L′ = −
N∑
i=1

Rxi ×Rpi = −L (6.2.38)

where we used the fact that the cross product is unchanged by coherent rotation of
both factors. On the other hand, transformations with matrix representation like
(6.2.8), where A does not separately act on each particle subspace, do not reverse L.
Consider, for example, the following generalized time reversal operation:

(x1, ..., xj , xj+1, ..., x3N , p1, ..., pj , pj+1, ..., p3N )
Mnd−−−→ (x3N , ..., xj , xj+1, ..., x1,−p3N , ...,−pj ,−pj+1, ...,−p1)

(6.2.39)
which swaps x1 and x3N and coherently acts on momenta as prescribed by Theorem
6.2.1. Then, consider the z component of L. By de�nition of cross product we have:

Lz = x1p2 − x2p1 + ...+ x3N−2p3N−1 − x3N−1p3N−2 (6.2.40)

which becomes

Lz = −x3Np2 + x2p3N + ...− x3N−2p3N−1 + x3N−1p3N−2 ̸= −Lz (6.2.41)

under the application of Mnd. The same holds for Lx and Ly. The conclusion is the
following:



135

Proposition 6.2.2. There exist generalized time reversal operations that do not re-
verse the sign of the classical mechanics angular momentum.

Note that the time reversal operation Mnd works, in particular for a system of free
equal mass particles, whose Hamiltonian is expressed by H =

∑3N
i=1 p

2
i /2m.

We now extend to Quantum Mechanics, the present reasoning. Indeed, in Ref.[10],
only 8 time reversal operations had been identi�ed, that classically take the form

T (x, y, z, px, py, pz, t) = (s1x, s2y, s3z,−s1px,−s2py,−s3pz,−t) (6.2.42)

6.2.2 The time reversal operator

Let us begin with spinless nonrelativistic particles. The fundamental axiom is that
the state of the system is represented by a wave function, that obeys the Schrödinger
equation:

i
∂ψ(x, y, z, t)

∂t
= Hψ(x, y, z, t) (6.2.43)

where our units imply ℏ = 1. As in Classical Mechanics, we have an evolution equation
that is invariant under time reversal. The corresponding Hilbert space is the quantum
counterpart of the classical phase space. Then, we follow Wigner's approach to de�ne
time reversal transformations, cf. Refs.[19, 20]. In the following we will consider op-
erators and their matrix representations; for the sake of simplicity, the same symbol
will be used.

De�nition 6.2.6 (Spinless particles). An operator on the Hilbert space of the wave
functions of an N particle system is called a time reversal operator T if it obeys:

� T = UK, with U a unitary operator and K the complex conjugation operator,
i.e. it is antilinear

� It is an involution in the quantum sense, that is T 2 = ±I, where I is the identity
operator

� It is kinematically admissible, that is it preserve the canonical commutation re-
lations [xn, pm] = iδnm

To proceed analogously to the classical case, we exploit the following result [21]:

Proposition 6.2.3. The matrix representation of a time reversal operator T for a
system of N particles belongs to Sp(6N,C).

For instance, in the case of a system with only two coordinates, the operators x1 and
x2, and of a time reversal operator such that:

T x1T −1 = x2

T x2T −1 = x1
(6.2.44)



136

the matrix representation of T in terms of coordinates is given by:(
0 1
1 0

)
(6.2.45)

The Stone-Von Neumann Theorem [22] now states that in coordinates representation,
i.e. for a wave function de�ned as coordinate dependent, the operators xi and pi
uniquely act as: 

xiψ(x0) = xi0ψ(x0)

piψ(x0) = −i ∂ψ
∂xi

(x0)
(6.2.46)

One can equivalently de�ne the action of coordinate and momentum operators in
momentum space, via Fourier transform.

Proposition 6.2.4. The complex conjugation preserves the canonical commutation
relation.

Proof. Using Eq. (6.2.46), we can obtain the rule of transformation of the coordinate
and momentum operators:

KpiK
−1 = −KiK−1 ∂

∂xi
= i

∂

∂xi
= −pi (6.2.47)

and
KxiK = xi (6.2.48)

The proof of the canonical nature of K is then trivial, since applying K to both side
of the canonical commutation relations[

xi, pj
]
= iδij (6.2.49)

one obtains [
KxiK,KpjK

]
= KiKδij (6.2.50)

that is equivalent to (6.2.49) by de�nition ofK. Then, the 6N×6N matrix representing
K on the 6N -dimensional space of symbolic vectors (X,P ), is given by:

K =

(
I 0
0 −I

)
(6.2.51)

which is trivially antisymplectic, and acts separately on coordinate and momentum
operators

Counting the generalized time reversal operations is now reduced to �nding alterna-
tives to the matrix representation of K. Table 6.1 illustrates the parallel with Classical
Mechanics.
Recall that a fundamental aspect of Classical mechanics is that T acts on the Hamil-
tonian structure as an antisymplectic operator, and then M is also antisymplectic
in order to obtain a symplectic transformation. Now, Proposition 6.2.3 says that in
Quantum Mechanics T is represented by a symplectic matrix. Furthermore, K is rep-
resented by an antisymplectic matrix, that is it plays the role of T. So, the situation
is very similar to the classical one, and U is antisymplectic.
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Classical Mechanics Quantum Mechanics

Time Reversal M T = UK

Commutation Relations {xi, pj} = δij
[
xi, pj

]
= iδij

Table 6.1: Comparative scheme

Theorem 6.2.3. Take the 3N -dimensional vectors X and P of respectively the co-
ordinate and momentum operators of a quantum system made of N particles. Given
a time reversal operator T = UK, the matrix representation of U on the 6N -vectors
(X,P ) takes the form

U =

(
A 0
0 −A

)
(6.2.52)

where A is a symmetric or an antisymmetric matrix.

Proof. As in Theorem 6.2.1, T cannot swap coordinates and momenta of di�erent
particles, because of the minimal coupling term in the Hamiltonian. Then, the matrix
representation of U takes the form

U =

(
A 0
0 B

)
(6.2.53)

As in the proof of Theorem 6.2.1, we obtain A†B = −I. Then, we can write:

U =

(
A 0
0 −(A†)−1

)
(6.2.54)

where we used the fact that the antisymplectic condition for Sp(6N,C) is expressed
by:

U†ωU = −ω (6.2.55)

and involves the dagger operation instead of the transpose. Now, U is unitary by
De�nition 6.2.6, and so we have A = (A†)−1, which leads to Eq. (6.2.52).
To prove that A is symmetric or antisymmetric, use the involutory property T 2 =
UKUK = UU∗ = ±I, which implies AA∗ = ±I. Moreover, U is unitary, hence
AA† = I. Then, for AA∗ = I we obtain AT = A, i.e. A symmetric, whilst for
AA∗ = −I we have AT = −A, and is A antisymmetric.

Note that K is of the form (6.2.52), and corresponds to the the canonical time reversal
operation, that preserves coordinates and reverses momenta. If we restrict to the part
of U acting on the coordinate (and then separately on momentum) operators, we �nd
that a complex transformation of X and P cannot be used. Suppose that

T PT −1 = P ′ = Re(P ′) + Im(P ′)i (6.2.56)
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and consider a system of free particles with Hamiltonian H = P 2/2m. Applying the
time reversal operator, we have:

H ′ = T HT −1 =
(P ′)2

2m
=

Re(P ′)2 + 2Im(P ′)Re(P ′)i− Im(P ′)2

2m
(6.2.57)

where the Hamiltonian is preserved only if 2Im(P ′)Re(P ′) = 0, since the H is real
in X and P . But if Im(P ′) ̸= 0, as assumed, that requires Re(P ′) = 0. But then
H ′ < 0 should equal H > 0, which is absurd. This reasoning can be extended to the
case of an external magnetic �eld. Because H ∝

∑N
i=0(pi − qA(xi))

2, there is again
an addend proportional to P 2 and the proof applies. Therefore, we may adopt the
following:

Assumption 6.2.1. The unitary operation U associated to a time reversal operator
T = UK acting on the coordinate (and momentum) operators is real.

This assumption immediately leads to:

Corollary 6.2.3. If A is real and symmetric, it belongs to O(3N), as in Classical
Mechanics.

Proof. In the real case, the constraints AA† = I and A = AT imply AAT = I, which
means that A ∈ O(3N).

We can then straightforwardly repeat the arguments developed for the classical case,
starting from Proposition 6.2.1. In particular, we consider permutation matrices also
in this quantum framework. Therefore, the generalized time reversal operators can
be counted using Corollary 6.2.2. Moreover, let A be real but antisymmetric. In this
case, Theorem 6.2.3 requires A2 = −I. Then, consider the following de�nition.

De�nition 6.2.7. Let Z4 be a �nite cyclic group with generator a (a4 is the group
identity e), and with the real 2× 2 matrix representation given by:

R4(e) = I R4(a) =

(
0 −1
1 0

)
R4(a

2) = −I R4(a
3) =

(
0 1
−1 0

)
(6.2.58)

Then, the following holds.

Proposition 6.2.5. If the number of particles N is odd, A is not real and antisym-
metric. If N is even, the number of time reversal operators ∆̃ (that is the number of
possible A's) equals

∆̃ =
M !

(M/2)!
with M = 3N (6.2.59)

Proof. The condition A2 = −I means that A ∈ GL(3N, (R)) is a linear representation
of the element a or a3 of the group Z4 over a 3N -dimensional vector space. Moreover,
AT = −A implies that it is antisymmetric. Then, A must contain only 2 × 2 blocks,
like R4(a) and R4(a

3), with vanishing diagonal elements. So, for odd N , the 3N ×3N
matrix cannot be built using 2× 2 blocks.
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In the case of N even, it su�ces to use Eq.(6.2.21) with k = M and ri = 0, for
i ̸= 2. Indeed, Corollary 6.2.1 holds, and antisymmetry implies that the diagonal
elements vanish, excluding cycles of order 1. Moreover, it is trivial to make a one-to-
one correspondence between R4(a) and the representative of the non trivial element
of Z2:

R(a) =

(
0 1
1 0

)
(6.2.60)

Then, one must count the elements of a conjugation class built only with cycles of order
2, which can be done using Eq.(6.2.21) and considering that the number of cycles of
order 2 over M elements is M/2. The result is:

∆ =
M !

2M/2(M/2)!
(6.2.61)

Finally, unlike the case of Classical mechanics, in which M2 = I, here we also admit
the opposite sign for the 2 × 2 block, that corresponds to R4(a

3). Multiplying ∆ by
2M/2, we �nally get Eq.(6.2.59).

The di�erence between Classical and Quantum cases is easily revealed by the following
example. The Hamiltonian of a system made of 2 free quantum particles moving in
1-dimension is given by H = p21/2m + p22/2m. Consider a time reversal operator T
whose unitary part is represented on the vectors of momentum operators P = (p1, p2)
by the matrix

Q =

(
0 −1
1 0

)
(6.2.62)

While admitted in quantum mechanics, it is not acceptable in classical mechanics,
because Q2 = −I.
Having exhausted our treatment of spinless particles coupled with an external magnetic
�eld, we now turn to the case of particles with spin 1/2.

6.2.3 Time reversal with spin

For nonrelativistic spin systems, the equation of motion is the Pauli equation:{
N∑
i

1

2mi
[σi · (pi − qiA(xi, yi, zi))

2

}
|ψ⟩ = i

∂

∂t
|ψ⟩ (6.2.63)

where |ψ⟩ represents the total state of the system of N particles and the spin operator
σi of the i-th particle is expressed by

σi = I ⊗ ...⊗ σ︸︷︷︸
i

⊗...⊗ I (6.2.64)

where σ = (σx, σy, σz) contains the Pauli matrices as Cartesian components and I is
the identity operator. The Pauli vector identity:

(σ · a)(σ · b) = a · b+ iσ · (a× b) (6.2.65)
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yields
N∑
i

1

2mi

[
(pi − qiA(xi, yi, zi))

2 − qiσi ·B
]
|ψ⟩ = i

∂

∂t
|ψ⟩ (6.2.66)

where B = ∇×A. For the time reversal operator, we may adopt the following form:

T = (Uc ⊗ Us)K (6.2.67)

where Uc denotes the part acting on the coordinate and momentum operators, as in
Sec.6.2.2; while Us is the part acting on the spin operators. Both Uc and Us must
be unitary, in order to represent time reversal operators. Since σi separately acts on
single particles spin operators, in the following we omit the subscript i, considering,
without loss of generality, the e�ect of T on σ.
In this framework, time reversal has been traditionally de�ned as an operator T that
preserves the commutation relations and, analogously to classical mechanics, yields
[20]:

T σT −1 = −σ (6.2.68)

which directly implies:
Us = σy (6.2.69)

Unfortunately, this condition does not allow us to treat particles with spin [10]. On
the other hand, Proposition 6.2.2 suggests we may relax some restriction. Therefore,
we adopt the following, minimal, de�nition that does not include condition (6.2.68)
and that actualizes De�nition 6.2.6 to particles with spin 1/2.

De�nition 6.2.8 (Particles with spin 1/2). An antilinear operator T verifying De�-
nition 6.2.6 is called a time reversal operator for particles with spin, if it preserves the
commutation relations of Pauli matrices:

[σi, σj ] = iε k
ij σk (6.2.70)

where i, j, k = x, y, z and ε k
ij is the Levi-Civita symbol.

Note that only σy is complex and so the complex conjugation operator K preserves
(6.2.70). To proceed, let us recall two results of Lie Group Theory [23], taking R3 as
a Lie algebra generated by three vectors (e1, e2, e3):

Theorem 6.2.4. There exists a linear invertible map Φ : su(2) −→ R3 such that

Φ

([
i

2
σi,

i

2
σj

])
= Φ

(
i

2
σi

)
× Φ

(
i

2
σj

)
; with Φ

(
i

2
σi

)
= ei (6.2.71)

where × (the usual cross product) is the Lie product.

Theorem 6.2.5. An element of the unitary group U ∈ U(2) can be expressed as

U = e
i
2λ

0

(
I cos

λ

2
+ i

λjσj
λ

sin
λ

2

)
= e

i
2λ

0

V (6.2.72)

where λj ∈ R for j = 0, 1, 2, 3, λ = |λ|, for λ = (λ1, λ2, λ3), and V ∈ SU(2).
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Theorem 6.2.4 allows us to �nd a Us that preserves the commutation relations (6.2.70),
by �nding a transformation that preserves a right handed triad in R3.

Lemma 6.2.1. Linear transformations mapping a right handed basis in R3 into an-
other belong to SO(3).

Another useful fact is that given V ∈ SU(2) as in (6.2.72), one has:

σyUσy = U∗ (6.2.73)

where U∗ is the complex conjugate of U . Then, thanks to the properties of the Pauli
matrices, we obtain:

σy

(
I cos

λ

2
+ i

λjσj
λ

sin
λ

2

)
σy = I cos

λ

2
+i
λ1σyσxσy + λ2σyσyσy + λ3σyσzσy

λ
sin

λ

2
=

(
I cos

λ

2
− i

λjσj
λ

sin
λ

2

)
(6.2.74)

Another useful classical result of group theory is the following:

Theorem 6.2.6. The quotient group SU(2)/Z2 is isomorphic to the group SO(3).
The isomorphism is de�ned by:

U†σiU = [Λ(U)]jiσj (6.2.75)

where Λ(U) is a 3 × 3 special orthogonal matrix associated to U ∈ SU(2)/Z2 and we
used Einstein summation rule.

For example, the operator Ud acting on the spin operators of a single particle as

UdσxU
−1
d =sxσx

UdσyU
−1
d =syσy

UdσzU
−1
d =szσz

(6.2.76)

can be associated with the matrix

Λ(Ud) =

sx 0 0
0 sy 0
0 0 sz

 (6.2.77)

and the whole equivalence class {Ud,−Ud} is is represented by Λ(Ud).
Let us now analyze the case in which Λ(U) is a permutation and an involution, hence
it is not a cyclic or counter-cyclic permutation of the basis vectors. Proceeding anal-
ogously to the case of time reversal operations acting on coordinates, we obtain the
following theorem concerning the spin space.

Theorem 6.2.7. Given an operator T = UK, where K is complex conjugation, a
time reversal operator acting on the spin space is obtained if U is unitary and obeys:

U (1)
xy = θ(σz ∓ iI)

U (1)
yz = θ(σx ∓ iI)

U (2)
xz = θ(σx ± σz)

Ud = σi

(6.2.78)
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where θ ∈ C, |θ| = 1/
√
2, and i = x, y, z.

Proof. First, we consider the diagonal transformations Ud that do not permute the
Pauli matrices:

UdσxU
−1
d =sxσx

UdσyU
−1
d =syσy

UdσzU
−1
d =szσz

(6.2.79)

where si = ±1, i = x, y, z, to ensure the involution nature of the operation. Moreover,
since the triad must remain right handed we need that sxsysz = 1. Then, apart from
the trivial case sx = sy = sz = 1, there are three possibilities. First, the case sy = 1
and sx = sz = −1 that corresponds to the canonical situation, since Eqs.(6.2.79)
become

UdσxU
−1
d =− σx

UdσyU
−1
d =σy

UdσzU
−1
d =− σz

(6.2.80)

whose solution is Ud = σy. The second case is sx = 1 and sy = sz = −1, which leads
to Ud = σx. The third case, Ud = σz, holds for the sz = 1 and sx = sy = −1. This
leads to T 2 = UdKUdK = ±I as requested. Regarding Ud = σx and Ud = σz the
action of K is irrelevant since these matrices are real, hence:

T 2 = σ2
x = σ2

z = I (6.2.81)

Lastly, the case Ud = σy, gives T 2 = −σ2
y = −I.

Concerning transformations that permute the order of the basis elements, and so of
the Pauli matrices, we have the following possibilities: if we want to permute σx and
σy we take either:

U (1)
xy σx(U

(1)
xy )

−1 =∓ σy

U (1)
xy σy(U

(1)
xy )

−1 =± σx

U (1)
xy σz(U

(1)
xy )

−1 =σz

(6.2.82)

or

U (2)
xy σx(U

(2)
xy )

−1 =± σy

U (2)
xy σy(U

(2)
xy )

−1 =± σx

U (2)
xy σz(U

(2)
xy )

−1 =− σz

(6.2.83)

To permute σy and σz we take either:

U (1)
yz σx(U

(1)
yz )

−1 =σx

U (1)
yz σy(U

(1)
yz )

−1 =∓ σz

U (1)
yz σz(U

(1)
yz )

−1 =± σy

(6.2.84)
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or

U (2)
yz σx(U

(2)
yz )

−1 =− σx

U (2)
yz σy(U

(2)
yz )

−1 =± σz

U (2)
yz σz(U

(2)
yz )

−1 =± σy

(6.2.85)

To permute σx and σz we take either:

U (1)
xz σx(U

(1)
xz )

−1 =∓ σz

U (1)
xz σy(U

(1)
xz )

−1 =σy

U (1)
xz σz(U

(1)
xz )

−1 =± σx

(6.2.86)

or

U (2)
xz σx(U

(1)
xz )

−1 =± σz

U (2)
xz σy(U

(1)
xz )

−1 =− σy

U (2)
xz σz(U

(1)
xz )

−1 =± σx

(6.2.87)

Here, we required that the triad remains right handed, so the representation on the as-
sociated vectors ei (see Theorem 6.2.4) is a matrix of SO(3). For instance, Eqs.(6.2.82)
are associated with a matrix

O =

 0 ∓1 0
±1 0 0
0 0 1

 (6.2.88)

that is special orthogonal. In fact, it is the linear application of SO(3) that maps
(ex, ey, ez) to (∓ey,±ex, ez). Now, use Theorem 6.2.5. Because Uxy must be unitary,
we express it as the following linear combination:

Uxy = ασx + βσy + γσz + δI α, β, γ, δ ∈ C (6.2.89)

whose coe�cients obey Eq. (6.2.72). Substituting (6.2.89) in the third equation of
Eqs.(6.2.82), we obtain the condition:

ασxσz + βσyσz + γI + δσz = ασzσx + βσzσy + γI + δσz (6.2.90)

and, recalling that the Pauli matrices satisfy the fundamental relation

σiσj = δijI + iϵijkσk (6.2.91)

Eq(6.2.90) writes

−iασy + iβσx + γI + δσz = iασy − iβσx + γI + δσz (6.2.92)

Since the set {σi, I} is a basis for the algebra u(2), the coe�cient of the linear com-
binations on both sides of Eq.(6.2.92) must coincide, which means α = β = 0, and
Uxy = γσz + δI. Substituting in the �rst of Eqs.(6.2.82) one gets:

γσzσx + δσx = ∓γσyσz ∓ δσy (6.2.93)
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that is
iγσy + δσx = ∓iγσx ∓ δσy (6.2.94)

which implies δ = ∓iγ. To ensure that the corresponding matrix

U (1)
xy = γσz ∓ iγI = γ(σz ∓ iI) (6.2.95)

is unitary, we need UU† = I, that is:

γ2(σz ∓ iI)(σz ± iI) = 2γ2I = I (6.2.96)

which means: |γ| = 1/
√
2. The last thing to check, for a time reversal operator, is

that it is an involution, i.e. that T 2 = UKUK = ±I holds. This is indeed the case:

U (1)
xy KU

(1)
xy K = γ2(σz ∓ iI)(σz ± iI) = I (6.2.97)

The same reasoning can be repeated for the remaining permutations, which leads to:

U (2)
xy = θ(σx ± σy)

U (1)
yz = θ(σx ∓ iI)

U (2)
yz = θ(σy ± σz)

U (1)
xz = θ(σy ± iI)

U (2)
xz = θ(σx ± σz)

(6.2.98)

where θ is a complex number with modulus |θ| = 1/
√
2. One may easily check that

T 2 = ±I in all cases:

U (2)
xy KU

(2)
xy K = θ2(σx ± σy)(σx ∓ σy) = ∓iσz ̸= ±I

U (1)
yz KU

(1)
yz K = θ2(σx ∓ iI)(σx ± iI) = I

U (2)
yz KU

(2)
yz K = θ2(σy ± σz)(−σy ± σz) = ±iσx ̸= ±I

U (1)
xz KU

(1)
xz K = θ2(σy ± iI)(−σy ∓ iI) = ∓2iσy ̸= ±I

U (2)
xz KU

(2)
xz K = θ2(σx ± σz)(σx ± σz) = I

(6.2.99)

The Theorem is proven, taking U (1)
xy , U

(1)
yz and U (2)

xz as the non diagonal time reversal
operators on spin space.

Now, swapping a pair of coordinates requires at most 2matrices. The total, considering
also Ud, makes 9 possible matrices Us. Because, each of them is de�ned up to a
complex number of modulus 1, it seems that in�nitely many are allowed. But whenever
Us is applied to an operator on the spin space, giving Usf(σi)U−1

s , that number is
eliminated. Therefore, there are 9 operators acting di�erently on Pauli matrices.
This exhausts our present investigation of generalized time reversal invariance, for
quantum nonrelativistic systems, with and without half integer spin. In the following,
we apply our results to the theory of the Onsager relations, looking for generalizations
of the compatibility conditions found in Ref.[15], between time reversal transformations
and a generic magnetic �eld.
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6.2.4 Compatibility condition between time reversal operations

and magnetic �eld

The reasoning developed by Kubo about correlation functions and the entailing trans-
port coe�cients [4], requires the existence of a time reversal operation, that commutes
with the Hamiltonian of the system of interest. Because the quantum observables
are de�ned as hermitian operators, one cannot follow the classical procedure to de-
rive correlator relations. Given two observables ϕ and ψ, the mean value ⟨ϕ(0)ψ(t)⟩
is ill-de�ned, as the combined operator ϕ(0)ψ(t) is not guaranteed to be hermitian.
Therefore, Kubo introduced the canonical correlator in Response Theory as:

⟨ϕ(0);ψ(t)⟩ = 1

β

∫ β

0

dλ Tr[ρeλHϕ(0)e−λHψ(t)] (6.2.100)

where ρ is the density operator, H the hamiltonian, and Tr the trace over the Hilbert.
Kubo then proved that this is indeed a real quantity. Note that nonrelativistic sys-
tems with spin are allowed: it su�ces to include the spin degrees of freedom within
the Hilbert space. Another possible de�nition is to symmetrize the correlator as
⟨ϕ(0), ψ(t)⟩ = ⟨ϕ(0)ψ(t)⟩ + ⟨ψ(t)ϕ(0)⟩, but Kubo showed that 6.2.100 is su�ciently
general. The su�cient condition for the validity of the Onsager relations can then be
formulated as e.g. Ref.[10]:

Proposition 6.2.6. Consider a quantum mechanical particle system in a magnetic
�eld B, with Hamiltonian H and density matrix ρ. Let T = UK be a time reversal
operator that commutes with H, and let ϕ and ψ be two observables with signatures ηϕ
and ηψ with respect to T , i.e

T ϕT −1 = ηϕϕ T ψT −1 = ηψψ (6.2.101)

Then, the equality:
⟨ϕ(0);ψ(t)⟩B = ηϕηψ⟨ϕ(t);ψ(0)⟩B (6.2.102)

holds.

This is the core of the Onsager reciprocal relations in Quantum mechanics in the pres-
ence of a magnetic �eld. Therefore, we now investigate how particular magnetic �elds
a�ect the number of time reversal operations consistent with Eq.(6.2.102). Consider
the following Hamiltonian for a system of spinless particles coupled with a potential
vector A:

H =

N∑
i=1

[
(pi − qiA(xi, yi, zi))

2

2mi

]
(6.2.103)

where N is the number of particles, qi and mi are the charge and the mass of the i-th
particle, and

(p− qA)2 = −∇2 + iq∇ ·A+ iqA · ∇+ q2A2 (6.2.104)

The commonly used Coulomb gauge ∇·A = 0 that importantly e�ects on this expres-
sion eliminating the second addend. As well-known, the vector potential associated to
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a magnetic �eld is de�ned up to the gradient of a scalar function since B = ∇ ×A.
Thus, we can de�ne an equivalence class containing the vector potentials that orig-
inate the same magnetic �eld. In the following, we refer to [A(x)]R to denote a
representative of the class containing A(x).
After this clari�cations, let us step back to the classical case: we now show the core
theorem that regards the compatibility between a particular time reversal operation
and a generic magnetic �eld (and so vector potential). We point out as in the following
we are going to refer to V (Rn) as the space of vector �elds on Rn.

Theorem 6.2.8 (Compatibility conditions for A in Classical Mechanics). Consider
a system of N particles of equal mass m and charge q. Let M be a generalized
time reversal operator acting on the coordinates as (MA)(X) = A(MMX), where
MM ∈ O(3N). Denote by A(X) = (A(x1), ...,A(xN )) the 3N dimensional vectors
of coordinates, and by [A(X)]R = ([A(x1)]R, ..., [A(xN )]R) the corresponding equiva-
lence class. Introduce the reversal operator M′ : V (R3N ) −→ V (R3N ) de�ned by:

(M′A)(X) ≡ MMA(MMX) (6.2.105)

The operator M yields TRI in the presence of a magnetic vector potential A, if and
only if

(M′A)(X) = [−A(X)]R (6.2.106)

Proof. Recall that TRI holds if there is a time reversal transformation that preserves
the equations of motion, as well as the Hamiltonian up to a gauge transformation.
In our case, the equations of motion are invariant under a gauge transformation, as
can be easily seen. Then, in the presence of the minimal coupling with a magnetic
�eld, the condition H(MΓ) = H(Γ) is veri�ed for a gauge transformation, for any Γ.
Therefore, the Hamiltonian can be written as

H(X,P ) =
1

2m

∑
i

[pi−qA(xi)]
2 =

1

2m
[P−qA(X)]2 =

1

2m
[P+qMMA(MMX)]·[P+qMMA(MMX)]

(6.2.107)
where P and A are 3N -dimensional vectors. By Theorem 6.2.1, a time reversal oper-
ation for systems subject to a magnetic �eld must act separately on coordinates and
momenta, namely the transformation must be expressed by:

(X,P )
M−−→ (MMX,−MMP ) (6.2.108)

with MM ∈ O(3N). This yields

H(MMX,−MMP ) =
1

2m
[−MMP − qA(MMX)]2

=
1

2m
[P + qMMA(MMX)]2

(6.2.109)

where we used the fact that the scalar product is invariant under rotations such asMM .
Now, let G be the scalar function involved in the gauge choice, de�ne ∇3NG(X) =
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(∇G(x1), ...,∇G(xN )), and let us introduce the equivalence class of vector potentials
de�ned by:

[A] = {A | ∇ ×A = B} (6.2.110)

This is the set of vector potentials corresponding to a given magnetic �eld B. One
representative element of this class, denoted by a subscript R, is expressed by:

[A(X)]R = ([A(x1)]R, ..., [A(xN )]R) (6.2.111)

Now, takingMMA(MMX) = −(A(X)+∇3NG(X)), substitution shows that (6.2.107)
and (6.2.109) are equal, up to a gauge transformation. The transformation leaves the
equations of motion unchanged. If, on the other hand, (6.2.107) and (6.2.109) are
equivalent for any value of P and X, that is:

P 2 + 2qP · (A(X) +∇3NG(X)) + q2(A(X) +∇3NG(X))2

= P 2 − 2qP · MMA(MMX) + q2(MMA(MMX))2 , ∀P
(6.2.112)

we can choose P = 0 obtaining

q2(A(X) +∇3NG(X))2 = q2(MMA(MMX))2 (6.2.113)

Then, Eq.(6.2.112) reduces to

2qP · (A(X) +∇3NG(X)) = −2qP · MMA(MMX) (6.2.114)

Therefore, MMA(MMX) = −(A(X) +∇3NG(X)) holds.

This result generalizes the compatibility conditions of Ref.[15], which focused on the
20 transformations that separately act on each particle subspace. The result of Ref.[15]
can be interpreted as a corollary of Theorem 6.2.8.

Corollary 6.2.4. Take a block diagonal transformation MM separately acting on each
particle subspace, denoting by Mm one such 3× 3 block. Then

M′A = MmA(MmX) = [−A]R (6.2.115)

Proof. It trivially follows form the de�nition of A given in Theorem 6.2.8, and from
Eq.(6.2.106), where MM is a block diagonal acting on a single 3-dimensional particle
subspace.

Proposition 6.2.7. Take the Hamiltonian (6.2.103) in which (mi, qi) ̸= (mj , qj) if
i ̸= j are particle indices. Then, a time reversal operator yielding TRI is given by a
block diagonal matrix A, whose blocks separately act on single particle subspaces.

Proof. By reductio ad absurdum, suppose a valid non diagonal time reversal operation
Mnd exists for the system described by the Hamiltonian (6.2.103). Without loss of
generality, assume that the operation acts on the M ×M coordinates (with M = 3N)
swapping those of particle j with those of particle j + 1:

(x1, ...,xj ,xj+1, ...,xN ,p1, ...,pj ,pj+1, ...,pN )
Mnd−−−→ (x1, ...,xj+1,xj , ...,xN ,−p1, ...,−pj+1,−pj , ...,−pN )

(6.2.116)
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By hypothesis, H(MndΓ) = H(Γ), because Mnd yields TRI. It su�ces to check
the contributions due to particles j and j + 1, because all other contributions are
unchanged. Thus we can write:

N∑
i=1

[
(pi − qiA(xi))

2

2mi

]
= ...+

(pj − qjA(xj))
2

2mj
+

(pj+1 − qj+1A(xj+1))
2

2mj+1
+ ...(6.2.117)

...+
(pj+1 + qjA(xj+1))

2

2mj
+

(pj + qj+1A(xj))
2

2mj+1
+ ...(6.2.118)

But mi ̸= mj or qi ̸= qj for ∀i ̸= j by hypothesis. Then, in general, one has
H(MndΓ) ̸= H(Γ), unless special cases are considered, because the coordinates and
the momenta may take any value in R3. This is absurd. As the reasoning can be
repeated varying i and j in (6.2.116), Mnd cannot mix the di�erent single particles
coordinates and momenta; it must be block diagonal, with each block acting on a
single particle subspace.

This result may seem to be a drastic limitation on the range of TRI, but in reality it
is not. Systems with particles of same charge and mass are the most widely studied,
both theoretically and experimentally.

In Ref.[15], the compatibility conditions is expressed also in terms of the magnetic
�eld, instead of the vector potential. Here, we present an alternative derivation of
that result result. We point out as in the following we are going to refer to Vp(Rn) as
the space of pseudovector �elds on Rn.

Theorem 6.2.9 (Restricted compatibility conditions for B in Classical Mechanics).
Consider a system of N particles of equal mass m and charge q. Let M be a generalized
time reversal operator acting on the coordinates asMX = (Mmx1, ...,MmxN ), where
Mm ∈ O(3). Introduce the pseudovector �eld rotation operator M′ : Vp(R3) −→ Vp(R3)
de�ned by:

(M′B)(x) = det(Mm)MmB(Mmx) (6.2.119)

The operator M yields TRI in the presence of a magnetic �eld B, if and only if

(M′B)(x) = −B(x) (6.2.120)

Proof. We have to prove that (6.2.115) and (6.2.120) are equivalent. Let us introduce
the notation:

∇x ≡ (∂x, ∂y, ∂z) (6.2.121)

hence ∇Mmx is the gradient with respect to the coordinates rotated by Mm. Then,
keeping in mind that B = ∇ ×A, the application of the transformation M′ de�ned
by the orthogonal matrix Mm yields [24]:

M′(∇x ×A) = (Mm∇Mmx)× (MmA ◦Mm)

= det(Mm)Mm(∇Mmx ×A ◦Mm)

= det(Mm)MmB ◦Mm

(6.2.122)
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because an orthogonal matrix such as Mm yields:

∇Mmx ×A ◦Mm = ∇×A = B , Mm∇Mmx = ∇x (6.2.123)

Now, assuming Eq.(6.2.115) holds, we have:

det(Mm)MmB ◦Mm = ∇x × [−A]R = −B (6.2.124)

Vice versa, assuming Eq.(6.2.120) holds, we start from

det(Mm)Mm∇Mmx ×A ◦Mm = −∇x ×A (6.2.125)

Moreover, using the �rst and second lines of (6.2.122), we get

∇x × (MmA ◦Mm) = −∇x ×A (6.2.126)

and so, considering the fact that the rotor of a gradient is null, we obtain the thesis
(6.2.115), where gauge freedom is included.

In the presence of magnetic �elds, Theorem 6.2.8 seems to directly apply only in the
case of the block diagonal time reversal operations. Unlike Theorem 6.2.8, Theorem
6.2.9 cannot be immediately generalised to the cases with a magnetic �eld, because in
R3N we miss the analogue of the relation A = ∇×B, which holds in R3. Operators
similar to the curl can be de�ned in spaces other than R3, see for example Ref.[25],
but we cannot claim that A = ∇×B, for A,B ∈ R3N . Finally coming to the quantum
context, the following holds.

Proposition 6.2.8. The statements of Theorems 6.2.8 and 6.2.9 extend to Quantum
Mechanics on compact spaces, when X is identi�ed with the position operator, cf.
Theorem 6.2.3.

Proof. Let us start from Theorem 6.2.8: regarding (6.2.107) and (6.2.108) the only
di�erences are that P = −i∇ and that the case M2

M = −I is admitted. The proof
can be repeated until (6.2.112), since using Coulomb gauge and (6.2.104) we do not
have the 2 in front of the mixed product. As a side note, the Coulomb gauge condition
involves a scalar product too and so it invariant under rotation.
At this point, since we are using operators, we cannot impose P = 0 as done in
Classical Mechanics. Nevertheless, (6.2.112) is an equivalence between operators and
so it must holds for any wave function de�ned on a certain domain. If the domain is
compact, we can consider the case of the constant without issues of normalization; the
application to it of the di�erential operator P yields the constraint

q2(A(X) +∇3NG(X))2 = q2(MMA(MMX))2 (6.2.127)

Finally, we obtain an expression similar to (6.2.114):

(A(X) +∇3NG(X)) · P = −MMA(MMX) · P (6.2.128)

where we used the correct ordering of the momentum operators. Also in this case the
only way to verify this operator equality is to have MMA(MMX) = [−A]R.
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Coming to Theorem 6.2.9, its extension is trivial since the proof involves only functions
of the coordinate operator which acts in a multiplicative way in coordinate represen-
tation; in this way, we can proceed as if we were manipulating numbers and not
operators, easily reproducing the demonstration.

This is our main result for the spinless case. Two observations and a fundamental
example are in order.

Remark 6.2.1. The compatibility condition on magnetic �elds of Theorem 6.2.9
seems to be of limited applicability, compared to the one about vector potentials,
since it is limited to transformations separately acting on single particle subspaces.
Nevertheless, that is the most interesting case, since particles usually interact with
each other. For instance, in the case of the central interaction potential:

V =
∑
i<j

v(xi − xj) (6.2.129)

with given pair potential v(x) = v(|x|), treated in Ref.[15], the time reversal opera-
tions must be block diagonal. It must separately and identically act on each particle
subspace, otherwise v(xi − xj) would not be preserved, in general. If the time re-
versal operation is such a block diagonal operator Q, it can be combined with the
operator Pij that swaps particle i with particle j, obtaining a new involution QPij :
QPijQPij = I. The same applies to the case of half integer spin particles, and it is not
necessary to repeat the reasoning. Obviously, an interaction term, such as (6.2.129),
prevents the use of the time reversal operations of Proposition 6.2.5, that cannot be
expressed by 3× 3 block diagonal matrices. Thus, in the following we neglect the case
with Q2 = −I.

Remark 6.2.2. The action of the operator T of Proposition 6.2.6 deeply di�ers from
that of the traditional one, which includes the inversion of the magnetic �eld, TB , cf.
Eq.(6.1.1). Nevertheless, T su�ces for the validity of the Onsager relations, because
they arise from a phase space integration and, pairing di�erently the contributions
to the correlator, the integral may still yield the same result. Statistical mechanical
relations are typically of this kind. Therefore, they do not require microreversibility.
Weaker conditions su�ce, such as those discussed here, that we may call statistical
time reversibility, cf. also Refs.[26�28]. This equally applies to the quantum case, if
trajectories are replaced by the time evolution of states in the Hilbert space. In fact,
the invariance of the Hamiltonian and of the equation of motion ensures that

|ψ′(t′)⟩ = T |ψ(t′)⟩ , with t′ = −t

is a physical state if |ψ(t)⟩ is. Roughly speaking, in the quantum case it is just a
matter of rearranging the contributions to the trace in (6.2.100).

Let us reconsider, in the light of the above result, the case of a constant magnetic �eld.

Theorem 6.2.10. Take a system of particles interacting via the central potential
(6.2.129). Let this system be subjected to a constant external magnetic �eld, B =
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(B1, B2, B3). The dynamics is invariant under in�nitely many time reversal opera-
tions: those whose action on each single particle subspace is represented by:

M =

a b 0
b −a 0
0 0 1

 (6.2.130)

where a, b ∈ R, a2 + b2 = 1 and det(M) = −1.

Proof. The time evolution of the system does not depend on the coordinates frame,
so we can choose the axis z along the direction of B, and write B = (0, 0, 1), up to
a dimensional constant. Consider the time reversal transformations whose action on
each single particle subspace is represented by Eq.(6.2.130). By de�nition, M ∈ O(3)
and M2 = I, therefore M represents the action on coordinates of a time reversal
operation, as follows from Theorem 6.2.1. Furthermore, the compatibility condition
of Theorem 6.2.9 is trivially veri�ed:

det(M)MB = (0, 0,−1) = −B (6.2.131)

Taking a = cos θ and b = sin θ, with θ ∈ [0, 2π), in�nitely many possible choices are
allowed for M .

This result seems to boldly contradict the traditional opinion that any magnetic �eld
breaks TRI. With hindsight, it is not so surprising, when the existence of generalized
time reversal symmetries has been ascertained. In particular, a constant magnetic �eld
directed along along the z axis preserves all the symmetries that di�er by rotations of
the xy plane, if it preserves one of them.
In the case of particles with spin, the Pauli Hamiltonian (6.2.63) contains the minimal
coupling term, for which Proposition 6.2.8 applies. However, magnetic �eld and spins
are also coupled, with the spins belonging to a di�erent space. Then, a time reversal
operation ought to take the form:

T = (Uc ⊗ U1
s ⊗ ...⊗ UNs )K (6.2.132)

where Uc acts on coordinate and momentum operators, while U is acts on the spin
operator of particle i. The situation di�ers from that considered in Theorem 6.2.8,
because we now have:

T HT −1 ∝ B(UcxiU
−1
c ) · U isKσiKU

i
s (6.2.133)

where H is the Hamiltonian and B the magnetic �eld. This way, the minimal coupling
and the spin couplings with B are considered independently of each other: a time
reversal operation compatible with the minimal coupling leaves the spin �eld coupling
unchanged.

Remark 6.2.3. The transformation Uc acts on coordinates and not on B as a vector
�eld, that is the components of B transform as

UcBiU
−1
c ≡ Bi(UcxiU

−1
c ) (6.2.134)
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Note that statistical relations could be used to distinguish systems whose particles pos-
sess spin or from those which do not, if the extra conditions implied by the presence of
spin reduced the number of suitable time reversal operators. In fact, for transforma-
tions like (6.2.132), and with block diagonal Uc separately acting on single particles
subspaces, this is not possible.

Theorem 6.2.11. The compatibility condition of Theorem 6.2.9 su�ces for TRI to
hold also in case of particles with spin that obey the Pauli equation (6.2.63).

Proof. Write the Pauli hamiltonian as:

H = Hmc +Hsc (6.2.135)

where Hmc refers to the minimal coupling, of the spinless case, and Hsc =
∑N
j=1 σj ·

B(xj) is the spin-�eld coupling, with σ = (σx, σy, σz). Given that we are analyzing
transformations separately acting on single particle spaces, we study a single addend
of the summation.
By hypothesis, there exists a time reversal operator T = (Uc ⊗Us)K whose action on
coordinates commutes with Hmc, i.e. Eq.(6.2.120) holds or, equivalently,

B(Mmx) = − 1

det(Mm)
M−1

m B(x) (6.2.136)

Because of Theorem 6.2.9, Mm is the 3-dimensional orthogonal and involutory matrix
representation of the action of the time reversal operator on a single particle position
operator. Under the action of Uc, one has:

Uc(σ ·B(x))U−1
c = σ · (−PB(x)) = −Pσ ·B(x) (6.2.137)

where Pσ = P ji σj , and

P =
1

det(Mm)
M−1

m (6.2.138)

which is a special orthogonal matrix. By Theorem 6.2.6, there exists a special unitary
matrix U such that

UσiU
−1 = P ji σj (6.2.139)

Then, because P 2 = I by de�nition of time reversal operation, we have U2 = ±I,
since the isomorphism maps ±I ∈ SU(2) to I ∈ SO(3). Moreover, letting K be the
complex conjugation operator, we have

σyKσiKσy = −σi (6.2.140)

where i, j = 1, 2, 3 = x, y, z. Now, take Us = Uσy. By de�nition, the time reversal
operator acts on spin operators as

T σiT −1 = UσyKσiKσyU
−1 = −P ji σj (6.2.141)
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where we used the decomposition of the Hilbert space of the system as the direct
product of the spin space and of the coordinate space. This allows us to separately
change the coordinate system in each space, and to write:

N∑
k=1

σk ·B(xk) =

N∑
k=1

[
σx ⊗B1(xk) + σy ⊗B2(xk) + σz ⊗B3(xk)

]
(6.2.142)

As the choice of the z axis in the spin space is not related to that of the z axis in
coordinate space, Us does not depend on the choice of Uc. This closes the circle: for
any valid Uc, we can always �nd U , and so Us, in order to keep Hsc invariant. In
particular, we obtain:

T σ ·B(x)T −1 = −Pσ · −PB(x) = σ ·B(x) (6.2.143)

Lemma 6.2.2. The Hamiltonian is not invariant under the action of Us = σy if the
magnetic �eld is constant. To be recover the original Hamiltonian, the magnetic �eld
must be manually inverted.

Proof. The choice Us = σy corresponds to U = I, that is P = I and Mm = ±I. This
yields to two constraints on the magnetic �eld: B(x) = −B(x) choosing the plus and
B(−x) = −B(x) with the minus, both absurd if B(x) = B is constant. But inverting
B obviously restores the original Hamiltonian.

Lemma 6.2.3. The operator Us = Uσy is such that

UsKUsK = ±I (6.2.144)

Proof. By direct computation

UsKUsK = UσyKUσyK = UσyU
∗σ∗
y = −UσyU∗σy = −U2 (6.2.145)

where we used (6.2.73). This complete the proof.

In particular, taking U = I in order to lie in the case of Lemma 6.2.2, we �nd the
usual relation σyKσyK = −I.
This means that a class of time reversal operations, the ones separately acting on the
single particle subspaces, can always be absorbed by an internal change of coordinates
in spin space. Consequently, one �nds that, contrary to what is commonly believed,
the presence of spin does not prevent time reversibility.

6.2.5 Application of generalized TRI

Let us consider the calculation of Ref.[9], concerning the di�usion tensor for a particle
system in the presence of a constant magnetic �eld along the z axis:

Dαβ = ⟨vαi (0)v
β
j (t)⟩ ∀i, j ; α, β = x, y, z (6.2.146)
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where α, β = x, y, z and i, j are particle labels. In particular, Ref.[8] proved that
the correlator of velocities (6.2.146) vanishes if there are two time reversal operations
that map pβj (t) respectively in pγk(−t) and −pγk(−t) (the case with i = j and α = β
simultaneously being excluded), while they act in the same way on pαi (t). The proof
simply observes that two expressions must be satis�ed at once:{

⟨vαi (0)v
β
j (t)⟩ = (±1)(+1)⟨vαi (0)v

γ
k (−t)⟩

⟨vαi (0)v
β
j (t)⟩ = (±1)(−1)⟨vαi (0)v

γ
k (−t)⟩

(6.2.147)

which only happens if the correlator vanishes. The case i = j and α = β is not included,
since the autocorrelation ⟨vαi (0)vαi (t)⟩ is always mapped in another autocorrelation
with plus sign. This example shows how practical the apparently abstract notion of
TRI can be. In the present case, it allows a direct evaluation of transport coe�cients.
For the classical case, we may now extend the result of [9] considering a more general
form of magnetic �eld.

Proposition 6.2.9. Let a system of coupled particles be subjected to an external mag-
netic �eld directed along the z-axis, B = B(x, y)k̂. Assume B(x, y) = B(x,−y) and
B(x, y) = B(y, x). Then, the di�usion tensor obeys:

Dxy = −Dyx (6.2.148)

Proof. Notice �rst that Eq.(6.2.120) is veri�ed by a magnetic �eld like the one in this
Proposition. For example, consider the time reversal operation on the single particle
subspace de�ned as

M(x, y, z, px, py, pz) = (y, x, z, py, px, pz) (6.2.149)

which implies

Mm =

0 1 0
1 0 0
0 0 1

 (6.2.150)

with the notation of Theorem 6.2.9. Equation (6.2.120) then holds for such a trans-
formation and the magnetic �eld. Applying the same to all the particle subspaces and
computing the correlators we obtain

⟨vxi (0)v
y
j (t)⟩ = ⟨vyi (0)v

x
j (−t)⟩ = −⟨vyi (0)v

x
j (t)⟩ (6.2.151)

that means Dxy = −Dyx.

Examples of magnetic �elds that satisfy Proposition 6.2.9 are B(x, y) = const and
B(x, y) = B(x2 + y2), respectively the case of a constant magnetic �eld and of a
magnetic �eld depending on the distance from the z axis. The result cannot be ob-
tained in term of the diagonal operations only, because the diagonal operations cannot
disentangle the pairs of subscripts and superscripts (i, x) and (j, y).
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6.3 Results and Discussion

In this paper we extended the list of generalized time reversal transformations, to
include operators that swap the coordinates of di�erent particles. This is allowed by
the fact that a point in a 6N -dimensional space does not distinguish the nature of
its single components. The formal de�nition of TRI does not prevent the use of this
kind of operations. Their importance arises in particular when one studies systems of
particles with the same mass and charge. These are important in the present context,
since investigations of the Onsager relations rarely deal with more than two species of
particles.
Moreover, we extended this treatment to the quantum mechanical framework, in the
wake of the work of Ref.[10], about the 8 diagonal time reversal operations on the single
particle subspace. In particular, we investigated the swap operation in a context of
nonrelativistic Quantum Mechanics.
We then de�ned generalized TRI for systems of particles with spin 1/2, described by
the Pauli equation. In previous works, this was considered out of reach [10], because
spin was believed to irremediably break TRI. On the contrary, we found combined
su�cient conditions, concerning the generalized time reversal transformations and the
form of the magnetic �eld, for the validity of TRI. That allow us to derive Onsager
relations, as well as other relations requiring TRI, to hold in quantum systems coupled
with an external magnetic �eld.
This is interesting not only because of the experimental and theoretical relevance
of such statistical mechanical relations, but also for the method used: we took full
advantage of the fact that relations such as Onsager's are statistical relations. This
allows many di�erent paths to the same result and, in particular, microreversibility
results unnecessary for Onsager and Fluctuation Relations.
We then developed an application to the calculation of the di�usion tensor, which
uses di�erent time reversal symmetries to conclude that certain correlators identically
vanish.
The investigation, however, is not over. As recalled in Ref.[11], violations of Onsager
relations, which would imply the existence non-dissipative currents, have never been
observed. And indeed Ref.[11] proved that those relations hold in cases in which one
would have expected they are violated. At the same time, or theory does not exhaust
all possible cases.
Our results may also also pave the way to a new understanding of symmetries in
quantum systems. The consequences of the generalized TRI have indeed rarely been
fully investigated.
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