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Abstract: This paper presents a systematic approach to design a hybrid oscillator that
admits an orbitally stable periodic solution of a certain type with pre-defined parameters.
The parsimonious structure of the Impulsive Goodwin’s oscillator (IGO) is selected for the
implementation due to its well-researched rich nonlinear dynamics. The IGO is a feedback
interconnection of a positive third-order continuous-time LTI system and a nonlinear frequency
and amplitude impulsive modulator. A design algorithm based on solving a bilinear matrix
inequality is proposed yielding the slope values of the modulation functions that guarantee
stability of the fixed point defining the designed periodic solution. Further, assuming Hill
function parameterizaton of the pulse-modulated feedback, the parameters of those rendering
the desired stationary properties are calculated. The character of perturbed solutions in vicinity
of the fixed point is controlled through localization of the multipliers. The proposed design
approach is illustrated by a numerical example. Bifurcation analysis of the resulting oscillator
is performed to explore the nonlinear phenomena in vicinity of the designed dynamics.

Keywords: Hybrid and switched systems modeling, Event-based control, Control in systems
biology, Controller constraints and structure, Application of nonlinear analysis and design.

1. INTRODUCTION

The impulsive Goodwin’s oscillator (IGO) was introduced
in Medvedev et al. (2006); Churilov et al. (2009) as a
mathematical model of non-basal testosterone regulation
in the male. The hybrid dynamics of the IGO portray the
discrete control exercised by neurons of the brain on the
hormone secretion of the endocrine glands of the organism
by manipulating the amplitude and frequency of (release)
hormone concentration pulses in blood.

In the IGO, the nonlinear static feedback of the original
(continuous) Goodwin’s oscillator, see Goodwin (1965), is
substituted with a pulse modulation law. The impulsive
feedback is constructed so that the IGO lacks equilibria
and, therefore, overcomes the well-known limitations of its
continuous predecessor in achieving sustained oscillation.
It is also shown in Mattsson and Medvedev (2015) that
solutions of the IGO can be fitted well to experimental
data of measured testosterone and luteinizing hormone
concentrations in healthy males. In contrast, the contin-
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uous Goodwin’s oscillator remains purely a conceptional
illustration of biological feedback regulation.

During the one and a half decennium since the inception of
the IGO, numerous publications featuring generalizations
of the concept to more dynamically complex continuous
parts have appeared. For instance, the effects of time delay
Churilov et al. (2014), exogenous driving signal Medvedev
et al. (2018), and local feedback Taghvafard et al. (2019)
have been studied. Yet, only analytical and numerical
analysis of the IGO was addressed in these papers, focusing
on periodical and non-periodical oscillating solutions.

The IGO in a periodic solution can also be perceived
as a feedback structure to produce a repeating sequence
of impulses exhibiting certain timing and weight. For an
orbitally stable periodic solution, the attractivity of the
orbit guarantees convergence to the nominal sequence
after a deviation from the orbit has been introduced. The
problem of selecting the parameters of the IGO to obtain
a predefined solution is first considered in Medvedev et al.
(2023). The introduced design approach employs necessary
and sufficient stability conditions of a periodic solution
to the IGO with a single firing of the pulse-modulated
feedback in the least period, i.e. a 1-cycle. These stability
conditions are difficult to generalize to solutions of higher
periodicity and continuous dynamics of higher order.
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and sufficient stability conditions of a periodic solution
to the IGO with a single firing of the pulse-modulated
feedback in the least period, i.e. a 1-cycle. These stability
conditions are difficult to generalize to solutions of higher
periodicity and continuous dynamics of higher order.

The present paper describes a solution to the IGO design
problem based on a Bilinear Matrix Inequality (BMI),
see e.g. VanAntwerp and Braatz (2000), for a 1-cycle
with a pre-defined period and pulse weight. The proposed
approach opens up for the use of established optimiza-
tion tools for the IGO-design with respect to solutions
of higher periodicity. Interestingly, the resulting compu-
tational problem is similar to what appears in output
feedback stabilization of linear time-invariant systems, cf.
Cao et al. (1998). Yet, in the case of IGO, the design
is performed with respect to a certain periodic solution
expressed as a fixed point and considered together with the
continuous dynamics of the oscillator. Further, the matter
of modulation functions parameterization is emphasized
in the proposed design approach since the solution to the
BMI and the desired solution parameters only provide
interpolation points to the discrete part of the IGO.

The paper is organized as follows. First, the equations of
the IGO are summarized. Necessary for the paper exposi-
tion facts about the dynamics of the IGO and, in particu-
lar, 1-cycle are then presented. Then, the proposed design
procedure is introduced and illustrated by a numerical
example. Further, to review the nonlinear dynamics of the
designed IGO under parameter variation and in transients
around the fixed point, bifurcation analysis is performed.

2. THE IMPULSIVE GOODWIN’S OSCILLATOR

The continuous part of the IGO, see Medvedev et al.
(2006); Churilov et al. (2009), is given by

ẋ(t) = Ax(t), z(t) = Cx(t), (1)

where

A =

−a1 0 0
g1 −a2 0
0 g2 −a3


, B =


1
0
0


, C⊺ =


0
0
1


,

a1, a2, a3 > 0 are distinct constants, g1, g2 > 0 are
positive gains, z is the controlled output, and the state
variables are x = [x1, x2, x3]

⊤. It is readily observed
that the matrix A is Hurwitz stable and Metzler. Both
properties agree well with the biological background of
the model. Asymptotic stability of (1) corresponds then
to the fact that biochemical substances decay with time
and the positivity of x ensures an interpretation of the
state variables in terms of concentrations. The chain
structure of the continuous part portrays three substances
represented by their concentrations where a preceding
substance stimulates the production of the next one.

The impulsive feedback constitutes a difference equation

x(t+n ) = x(t−n ) + λnB, tn+1 = tn + Tn, (2)

Tn = Φ(z(tn)), λn = F (z(tn)), B⊺ = [1 0 0] ,

where n = 0, 1, . . .. The minus and plus in a superscript
in (2) denote the left-sided and a right-sided limit, respec-
tively. The instants tn are called (impulse) firing times and
λn represents the corresponding impulse weight. Notwith-
standing the jumps in (2), z(t) is a smooth function since

CB = 0, CAB = 0, CA2B ̸= 0. (3)

Control law (2) constitutes a frequency and amplitude
pulse modulation operator Gelig and Churilov (1998) im-
plementing an output feedback over (1). The amplitude

modulation function F (·) and frequency modulation func-
tion Φ(·) are continuous and monotonic; F (·) is non-
increasing and Φ(·) is non-decreasing, also,

Φ1 ≤ Φ(·) ≤ Φ2, 0 < F1 ≤ F (·) ≤ F2, (4)

where Φ1, Φ2, F1, F2 are positive constants. Despite
of the impulsive nature of the feedback, its effect on
continuous part (1) is, in a broad sense, similar to that of
a conventional negative feedback. The firings of feedback
law (2) are more sparse (larger Tn) and less prominent
(lower weight λn) for higher values of the output z(t).

3. STABLE 1-CYCLE IN THE IGO

Propagating from one firing time to the next one, the
sequence of the state vector of the IGO obeys the impulse-
to-impulse map Churilov et al. (2009)

Xn+1 = Q(Xn), (5)

Q(ξ) = eAΦ(Cξ) (ξ + F (Cξ)B) ,

where Xn = x(t−n ). A periodic solution of the IGO with
one firing of the feedback on the period is referred to as
1-cycle, see Zhusubaliyev and Mosekilde (2003), implying

X = Q(X). (6)

As proved in Churilov et al. (2009), the IGO always has a
unique 1-cycle, whose pulse weight λ and period T can be
directly evaluated from the model parameters.

Introduce first and second divided difference de Boor
(2005) of the exponential function

e[a, b] =
ea − eb

a− b
, (7)

e[a, b, c] =
e[c, b]− e[a, b]

c− a
. (8)

The transition matrix of (1) is then

expAt =


e−a1t 0 0
g1t e[−a1t,−a2t] e−a2t 0

g1g2t
2 e[−a1t,−a2t,−a3t] g2t e[−a2t,−a3t] e

−a3t


 .

The expression for the matrix exponential is essentially a
consequence of Opitz’s formula, see e.g. de Boor (2003).
In virtue of the Mean Value Theorem for divided differ-
ences (de Boor, 2005, Corollary to Proposition 43), all
divided differences of the exponential function are positive.
This is well in line with the fact of A being Metzler.

For further use, introduce the partition

A =


A11 02×1

A21 −a3


. (9)

Then

exp (A11t) =


e−a1t 0

g1t e[−a1t,−a2t] e
−a2t


.

In the proposition below and throughout the paper, vector
inequalities are interpreted element-wise.

Proposition 1. (Medvedev et al., 2023) Given the param-
eters of 1-cycle T > 0, λ > 0, the fixed point X⊺ =
[x01, x02, x03] > 0 of the map Q from (5) corresponding
to the 1-cycle is calculated as
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x01 =
λe−a1T

1− e−a1T
,

x02 =
λg1T e[−a1T,−a2T ]

(1− e−a1T )(1− e−a2T )
, (10)

x03 =
λg1g2T

2
(
e[−a1T,−a2T,−a3T ]

(1− e−a1T )(1− e−a2T )(1− e−a3T )

+ e[−(a1 + a2)T,−(a1 + a3)T,−(a2 + a3)T ]
)
.

The coordinates of X scale linearly with λ but depend on
T in a highly nonlinear manner. Thus adjusting the cycle
amplitude is simpler than changing its period.

From Churilov et al. (2009), a 1-cycle is known to be
orbitally stable if only only if the Jacobian

Q′(X) = eAΦ(z0) (I + F ′(z0)BC) + Φ′(z0)AXC, (11)

z0 = CX,

is Schur stable. In order to reduce the problem of stabiliz-
ing the fixed point of (6) to a feedback control problem,
employ the following form of the Jacobian above.

Proposition 2. (Medvedev et al. (2023)). Jacobian (11) ad-
mits the parameterization

Q′(X) = eAΦ(z0) +(F ′(z0)J +Φ′(z0)D)E,

where E = [0 0 1], J⊺ = [j1, j2, j3], D
⊺ = [d1, d2, d3] and

J > 0, D < 0.

Exact expressions for J,D are provided in Medvedev et al.
(2023). Here it suffices to mention that J = eAΦ(z0) B > 0
since A is Metzler and B > 0. Further, D = AX < 0
and the inequality is due to the structure of A and the
expression for X in (10).

Using Proposition 2, the Jacobian can be written as

Q′(X) = eAΦ(z0) + [J D]

[
F ′(z0)
Φ′(z0)

]
E, (12)

where JF ′(z0) + DΦ′(z0) < 0, for all feasible values of
F ′(z0),Φ

′(z0). The latter inequality highlights the role of
pulse-modulated feedback (2) as negative feedback with
respect to the IGO output z(t).

From (12), it becomes apparent that the problem of
obtaining a stable 1-cycle corresponding to the fixed point
X in the IGO is similar to the classical problem of (static)
output feedback stabilization of a discrete linear time-
invariant (LTI) system, see e.g. Cao et al. (1998). More
specifically, the latter solves the problem of finding a gain
Kd to stabilize the closed-loop system

xd(t+ 1) = Adx(t) +Bdu(t),

y(t) = Cdx(t), u(t) = Kdy(t).

In the IGO, the slopes of the modulation functions play
the role of feedback gains and control the eigenvalue
spectrum of the Jacobian. Since the signs of F ′(z0) and
Φ′(z0) are constrained by the structure of the IGO and
the actual dynamics of the oscillator are highly nonlinear,
the similarity is only partial and stabilization is considered
with respect to a certain solution, i.e. a 1-cycle.

By analogy with the output feedback stabilization prob-
lem, the selection of F ′(z0),Φ

′(z0) to stabilize the fixed
point X is equivalent to solving, with respect to K and P

(AΦ +WKE)⊺P (AΦ +WKE)− P < 0, (13)

where

AΦ = eAΦ(z0),W = [J D] ,K⊺ = [F ′(z0) Φ′(z0)] , P > 0,

and P , K are decision variables. The matrix inequality
(13) is non-convex, yet software for solving BMIs through
iterative procedures is available, e.g. Dinh et al. (2011),
although there is no proof of convergence and the compu-
tational problem is in general known to be NP-complex.

The eigenvalues of the Jacobian Q′(X), i.e. the multipliers
of the fixed point X, define the character of the transient
behavior in vicinity of it, cf. Section 5. Due to the structure
of the Jacobian in (12), its eigenvalues cannot be freely
assigned by choosing the parameters of pulse-modulated
feedback (2). The analogy to output feedback stabilization
of LTI systems does not provide much insight into the
spectrum localization of the closed-loop system. The result
below partially answers the question of how the eigenvalues
of Q′(X) can be placed by selecting the slopes of the
modulation functions.

The principal minors of a real matrix A

A =

[
a11 a12 a13
a21 a22 a23
a31 a32 a33

]
,

are detA, the diagonal entries aii, i = 1, 2, 3, and the
second-order complementary minors

m11(A) = a22a33 − a23a32,

m22(A) = a11a33 − a31a13,

m33(A) = a11a22 − a21a12.

A matrix is called P-matrix if all the principal minors of
it are positive Fiedler and Pták (1962).

Proposition 3. Consider the IGO given by (1), (2) where
F (·) is non-increasing and Φ(·) is non-decreasing. Then the
Jacobian Q′(X) is a P-matrix if and only if

0 < e−a3T +γΦ′(z0), (14)

0 < e−a3T +j3F
′(z0) + d3Φ

′(z0), (15)

where

γ = d3 − L exp (−A11T )

[
d1
d2

]
,

L = g2T [g1T e[−a1T,−a2T,−a3T ] e[−a2T,−a3T ]] .

Proof. Omitted.

The result below follows due to the theorem on the
localization of the eigenvalues in Kellogg (1972).

Corollary 4. Let the Jacobian Q′(X) be a P-matrix with
the eigenvalues µi, i = 1, 2, 3. Then it holds that

| argµi| <
2π

3
.

Thus the eigenvalues of the Jacobian cannot, under the
specified conditions, lie in a certain wedge around the
negative axis in the complex plane.

4. DESIGN PROBLEM

Consider the problem of selecting the free parameters of
the IGO defined by (1), (2) for the oscillator to exhibit a
1-cycle of the (least) period of T and with the weight λ.

Assume the parameter values g1 = 2.0, g2 = 0.5, a1 =
0.08, a2 = 0.15, and a3 = 0.2505. Design now feedback
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x01 =
λe−a1T

1− e−a1T
,

x02 =
λg1T e[−a1T,−a2T ]

(1− e−a1T )(1− e−a2T )
, (10)

x03 =
λg1g2T

2
(
e[−a1T,−a2T,−a3T ]

(1− e−a1T )(1− e−a2T )(1− e−a3T )

+ e[−(a1 + a2)T,−(a1 + a3)T,−(a2 + a3)T ]
)
.

The coordinates of X scale linearly with λ but depend on
T in a highly nonlinear manner. Thus adjusting the cycle
amplitude is simpler than changing its period.

From Churilov et al. (2009), a 1-cycle is known to be
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z0 = CX,
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J > 0, D < 0.
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Assume the parameter values g1 = 2.0, g2 = 0.5, a1 =
0.08, a2 = 0.15, and a3 = 0.2505. Design now feedback

(2) ensuring that the IGO exhibits a 1-cycle with the
parameters λ = 5, T = 30.

Making use of Proposition 1, the fixed point corresponding
to the desired solution is

X⊺ = [0.4988 12.6479 33.9716] , (16)

and thus z0 = 33.9716. Design inequality (13) is satisfied
for F ′(z0) = −0.1, Φ′(z0) = 0.05, and

P =

[
0.4055 0.1362 0.3581
0.1362 3.7646 8.8469
0.3581 8.8469 23.6682

]
.

The spectral radius is then ρ (Q′(X)) = 0.596181.

Following Churilov et al. (2009), define the modulation
functions in (2) as the Hill functions

Φ(z) = k1 + k2
(z/hΦ)

pΦ

1 + (z/hΦ)pΦ
, (17)

F (z) = k3 +
k4

1 + (z/hF )pF
.

Then the bounds in (4) are F1 = k3, F2 = k3 + k4,Φ1 =
k1,Φ2 = k1+k2. To obtain the desired 1-cycle parameters,
the coefficients of the modulation functions have to satisfy

k3 < λ < k3 + k4, k1 < T < k1 + k2. (18)

The derivatives of modulation functions (17) are

Φ′(z) =
k2pΦz

pΦ−1h−pΦ

Φ

(1 + (z/hΦ)pΦ)
2 , F

′(z) = −
k4pF z

pF−1h−pF

F

(1 + (z/hF )pF )2
.

Notice that, for pF , pΦ < 1, both Φ′(z) and F ′(z) have a
singularity in z = 0.

Frequency modulation: Introduce the auxiliary variables

ηΦ =

(
z0
hΦ

)pΦ

, θΦ =
k2pΦ

2z0Φ′(z0)
.

Then, to render the desired value Φ′(z0), θΦ has to satisfy
the equation

η2Φ + 2(1− θΦ)ηΦ + 1 = 0,

resulting in

ηΦ,1,2 = θΦ − 1±
√

θΦ(θΦ − 2).

Clearly, only positive real values of ηΦ are feasible, which
fact limits the Hill function order of the frequency modu-
lation function from below

pΦ >
4z0Φ

′(z0)

k2
.

Keeping in mind (18), select k2 = 40, yielding pΦ > 0.1699.
When real, ηΦ,1,2 are always positive. For pΦ = 2, one
obtains ηΦ,1 = 45.0760, ηΦ,2 = 0.0222 and, from

hΦ,1,2 =
z0

pΦ
√
ηΦ,1,2

,

two feasible values of the scaling coefficient hΦ,1 = 5.0599,
hΦ,2 = 228.0806 are calculated. The value of k1 is obtained
from the equation Φ(z0) = T . By substituting hΦ,1, hΦ,2

into the expression for F (z), one has

k1,1 = −9.1319, k1,2 = 29.1319.

Naturally, a negative time difference between impulses is
not feasible and the positive value of k1 has to be selected.

Amplitude modulation: Similarly, in terms of the auxil-
iary variables

ηF =

(
z0
hF

)pF

, θF =
k4pF

2z0F ′(z0)
,

one has
η2F + 2(1 + θF )ηF + 1 = 0,

and then

ηF,1,2 = −(θF + 1)±
√

θF (θF + 2).

To obtain a real value of ηF , the order of the Hill function
should be bounded from below

0 < −4z0F
′(z0)

k4
< pF . (19)

To fulfill (18), select k4 = 0, yielding 1.6986 < pF .
Thus the choice pF = pΦ = 2 is feasible and leads to
ηF,1 = 2.2691, ηF,2 = 0.4407. Then the scaling factors of
the amplitude modulation function are hF,1 = 22.5521,
hF,2 = 51.1734. The value of k3 is calculated from F (z0) =
λ, which gives for each hF,1, hF,12

k3,1 = 2.5529, k3,2 = −0.5529.

Only k3,1 is feasible since a negative k3 allows (cf. (18)) for
negative impulse weights in transients. To recapitulate, the
following parameters of the modulation functions apply

Scenario 1
Φ(z) : k1 = 29.1319, k2 = 40, pΦ = 2, hΦ = 228.0806
F (z) : k3 = 2.5529, k4 = 8, pF = 2, hF = 22.5521

The designed modulation functions F (z), Φ(z), together
with their derivatives are plotted in Fig. 1.

Obtaining a unique parameter set for the modulation
functions given a continuous part of the IGO and a pre-
defined 1-cycle is not always possible. To illustrate this,
consider a case of pΦ < 1 resulting in the following
parameter values for the same fixed point as before.

Scenario 2
Φ(z) : k1 = 27.7502, k2 = 40, pΦ = 0.8, hΦ = 1.1537 · 103
F (z) : k3 = {1.1157, 0.8843}, k4 = 8, pF = 1.7, hF =

{32.8351, 35.1474}
This solution is characterized by a high value of hΦ that
makes the frequency modulation function less insensitive
to changes in the output z(t). Two similar feasible solu-
tions for the amplitude modulation functions then arise.

5. BIFURCATION ANALYSIS

The dynamics of the IGO, as of any pulse-modulated
system, are highly nonlinear and the design procedure
outlined in the previous section is based on a desired sta-
tionary periodic solution. Therefore, numerical analysis of
system behavior in deviation from the stationary solution
and under parametric uncertainty is necessary.

In the analysis below, the parameters of Scenario 1 in
Section 4 are assumed.

Fig. 2(a) shows the variation of the multipliers for fixed
point (16) with respect to the parameter a3 in (1). The
latter defines the time constant of the last step of the
first-order block chain and can be seen as a pre-filter
introduced before feedback controller (2). Due to linearity
of the continuous part of the IGO, similar bifurcation
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(a)

(b)

(c)

(d)

Fig. 1. The designed modulation functions and their
derivatives. Function value in z0 is marked by circle.
The 1-cycle parameters λ = 5, T = 30. (a) Φ(x3).
(b) Φ′(x3). Here hΦ = 228.0806, k1 = 29.1319 for 1
and hΦ = 5.0599, k1 = −9.1319 for 2. (c) F (x3). (d)
F ′(x3). Here hF = 22.5521, k3 = 2.5529 for 3 and
hF = 51.1734, k3 = −0.5525 for 4.

phenomena arise under variation of a1 and a2. To better
illustrate this diagram, a magnified part of the Fig. 2(a)
that is outlined by the rectangle is presented in Fig. 2(b).
As the parameter a3 increases, two multipliers ρ1 and ρ2
of a stable fixed point may become complex: one of the
real multipliers becomes equal to another one ρ1 = ρ2 = µ
and results in the pair of complex-conjugated multipliers
ρ1,2 = µ ± i ω. Here µ and ω are the real and imaginary

(a)

Fig. 2. (a) Variation of the multipliers ρ1,2 for 0.01 < a3 <
0.3. λ = 5.0, T0 = 30.0. (b) Magnified part of the
multiplier diagram for the fixed point that is outlined
by the rectangle in (a).

(green line) parts of the multipliers ρ1,2 = µ± i ω. As one
can see from Fig. 2, the third multiplier ρ3 is always real.

If one of the multipliers is real (in Fig. 2 ρ3, |ρ3| < 1) and
the other two are complex-conjugated ρ1,2 and |ρ1,2| =√
µ2 + ω2 < 1, then a fixed point is called a stable focus. If

all multipliers ρ1, ρ2, ρ3 are real, and modulo less than one,
then a fixed point O is called a stable node. With further
increase in the value of a3, a pair of complex-conjugated
multipliers ρ1,2 = µ±iω become real again, and the stable
focus fixed point transforms into a stable node one.

Figs. 3(a),(b) show the transient behavior when the two
multipliers ρ1, ρ2 are real and negative, the third ρ3 one
is close to zero. In this case the convergence to the desired
1-cycle is non-monotonous and highly oscillating. This
type of convergence can be beneficial in applications where
mean values of the output are important as the transient
behavior exhibits a train of interchanging over- and under-
doses tending to the pre-defined λ.

Finally, Fig. 3(c),(d) covers the case when one of multipli-
ers is real and the other two are complex-conjugated. Then
the convergence is also non-monotonous but the transient
process offers a compromise between the convergence rate
and overshoot. This a type of transient that is often en-
countered in process control.

Notice that the multipliers cannot be placed arbitrarily
due to the constrained structure of Q′(X) given by (12).

6. CONCLUSION

The problem of designing a pulse-modulated feedback for
a given continuous part of the IGO and pre-defined pa-
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focus fixed point transforms into a stable node one.
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multipliers ρ1, ρ2 are real and negative, the third ρ3 one
is close to zero. In this case the convergence to the desired
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type of convergence can be beneficial in applications where
mean values of the output are important as the transient
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doses tending to the pre-defined λ.

Finally, Fig. 3(c),(d) covers the case when one of multipli-
ers is real and the other two are complex-conjugated. Then
the convergence is also non-monotonous but the transient
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and overshoot. This a type of transient that is often en-
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6. CONCLUSION

The problem of designing a pulse-modulated feedback for
a given continuous part of the IGO and pre-defined pa-

(a)

(b)

(c)

(d)

Fig. 3. (a) The parameter values a3 = 0.2505 and mul-
tipliers: ρ1 = −0.0161654, ρ2 = −0.596171 and
ρ3 = 5.07482 · 10−5. (b) The convergence of the
sequence F (zk) to the λ = 5.0. (c) The parameter
values a3 = 0.0475 and multipliers: ρ1,2 = µ ± iω,
µ = −0.06864 and ω = 0.245587. (d) The convergence
of the sequence F (zk) to λ = 5.0.

rameters of a 1-cycle is considered and solved for Hill-type
modulation functions. The design problem involves calcu-
lating a fixed point of the discrete map that captures the
evolution of the continuous state vector of the oscillator
through the sequence of feedback firings. The fixed point

and, therefore, the corresponding 1-cycle is stabilized by
evaluating the slopes of the modulation functions at the
fixed point as a solution of a BMI.
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