
30 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

DATA-DRIVEN REDUCED ORDER MODELING OF ENVIRONMENTAL HYDRODYNAMICS USING DEEP
AUTOENCODERS AND NEURAL ODES / Dutta, S.; Rivera-Casillas, P.; Cecil, O. M.; Farthing, M. W.; Perracchione, E.;
Putti, M.. - (2021), pp. 1-16. (Intervento presentato al convegno 9th International Conference on Computational Methods
for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2021 tenutosi a ita nel 2021)
[10.23967/coupled.2021.017].

Original

DATA-DRIVEN REDUCED ORDER MODELING OF ENVIRONMENTAL HYDRODYNAMICS USING
DEEP AUTOENCODERS AND NEURAL ODES

Publisher:

Published
DOI:10.23967/coupled.2021.017

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2979061 since: 2023-06-04T10:24:58Z

International Center for Numerical Methods in Engineering

DATA-DRIVEN REDUCED ORDER
MODELING OF ENVIRONMENTAL
HYDRODYNAMICS USING DEEP

AUTOENCODERS AND NEURAL ODES
Sourav Dutta, Peter Rivera-Casillas, Orie Cecil, Matthew Farthing, Emma
Perracchione, Mario Putti

INFORMATION

Keywords:
Data-driven model order reduction
Autoencoder
Neural ordinary differential equations
Proper orthogonal decomposition
Dynamic mode decomposition
Radial basis function interpolation

DOI: 10.23967/coupled.2021.017

Published: 12/07/2021

IX International Conference on Computational Methods for Coupled Problems in Science and Engineering

COUPLED PROBLEMS 2021

E. Oñate, M. Papadrakakis and B. Schrefler (Eds)

DATA-DRIVEN REDUCED ORDER MODELING OF

ENVIRONMENTAL HYDRODYNAMICS USING DEEP

AUTOENCODERS AND NEURAL ODES

SOURAV DUTTA1†, PETER RIVERA-CASILLAS1, ORIE M. CECIL1, MATTHEW W.

FARTHING1, EMMA PERRACCHIONE2, AND MARIO PUTTI3

1 USACE Engineer Research Development Center, 3909 Halls Ferry Rd, Vicksburg MS 39180, USA,

2 University of Genoa, Via Dodecaneso 35, 16146 Genova, Italy,

3 University of Padua, Via Trieste, 63, 35131 Padova, Italy,

† email: sourav.dutta@erdc.dren.mil

Key words: Data-Driven Model Order Reduction, Autoencoder, Neural Ordinary Differential

Equations, Proper Orthogonal Decomposition, Dynamic Mode Decomposition, Radial Basis

Function Interpolation

Abstract. Model reduction for fluid flow simulation continues to be of great interest across

a number of scientific and engineering fields. In a previous work [1], we explored the use

of Neural Ordinary Differential Equations (NODE) as a non-intrusive method for propagating

the latent-space dynamics in reduced order models. Here, we investigate employing deep au-

toencoders for discovering the reduced basis representation, the dynamics of which are then

approximated by NODE. The ability of deep autoencoders to represent the latent-space is com-

pared to the traditional proper orthogonal decomposition (POD) approach, again in conjunction

with NODE for capturing the dynamics. Additionally, we compare their behavior with two

classical non-intrusive methods based on POD and radial basis function interpolation as well

as dynamic mode decomposition. The test problems we consider include incompressible flow

around a cylinder as well as a real-world application of shallow water hydrodynamics in an

estuarine system. Our findings indicate that deep autoencoders can leverage nonlinear manifold

learning to achieve a highly efficient compression of spatial information and define a latent-

space that appears to be more suitable for capturing the temporal dynamics through the NODE

framework.

INTRODUCTION

The computational challenges faced during high-fidelity numerical simulations of engineer-

ing systems governed by nonlinear partial differential equations (PDEs), especially in appli-

1

S. Dutta, P. Rivera-Casillas, O. M. Cecil, M. W. Farthing, E. Perracchione, and M. Putti

cations involving control [2], optimal design and multi-fidelity optimization [3], can often be

mitigated by the development of reduced order models (ROMs)[4].

Proper orthogonal decomposition (POD) [5, 6] is a well known method for extracting a

solution-dependent reduced basis space from a set of well-resolved, high-fidelity snapshots,

and is most effective when the coherent structures of the dataset can be ranked in terms of

their energy content. The POD method has been successfully applied in statistics [7], signal

analysis and pattern recognition [8], ocean models [9], air pollution models [10], convective

Boussinesq flows [11], and Shallow Water Equation (SWE) models [12, 13]. Alternatively,

nonlinear dimension reduction techniques such as kernel POD [14] or deep learning-based ap-

proaches like autoencoders [15, 16] have also been used for extracting a reduced basis. Com-

bining autoencoder-generated bases with various specialized machine learning algorithms for

time series modeling result in fully non-intrusive reduced order models [17, 18, 19]. Hybrid

methods [20, 21] can also be obtained by combining a nonlinear manifold learning technique

like autoencoder for discovering the latent space with an intrusive method for the temporal

dynamics.

Following the identification of the latent space, a reduced representation of the dynamical

system is obtained by a Galerkin or Petrov-Galerkin projection on to the latent space [13, 22],

which typically involves intrusive modifications of the high-fidelity system operators. This

work focuses on non-intrusive reduced order models (NIROMs) that do not require any knowl-

edge of the high-fidelity simulator. In such a framework, the evolution of the expansion coef-

ficients in the latent space is usually computed by the application of several regression-based

methods directly on the high-fidelity data. These include artificial neural networks (ANNs),

in particular multi-layer perceptrons [23], Gaussian process regression (GPR) [24], and radial

basis function (RBF) [25] interpolation. RBF interpolation in particular has been shown to be

quite successful for nonlinear, time-dependent partial differential equations (PDEs) [26], non-

linear, parametrized PDEs [25], and aerodynamic shape optimization [27].

Alternatively, in deep neural networks (DNN) such as ResNet, the evolution of features over

the depth of the network is equivalent to solving an ordinary differential equation (ODE) of

the form dz
dt

= F (z, θ) with the forward Euler method [28]. With this connection in mind,

[29] proposed a ’continuous-depth’ neural network called ODE-Net that effectively replaced

the layers in ResNet-like architectures with a trainable ODE solver. This neural ordinary differ-

ential equation approach (NODE) was further improved in [30, 31] and [32] proposed a NODE

generative model that can be efficiently trained on large-scale datasets. Some applications of

the NODE framework include latent space closure modeling [33], ODE/PDE model identifica-

tion [34], modeling of irregularly spaced time series data [35], and modeling of spatio-temporal

information in video signals [36].

Dynamic mode decomposition (DMD) is yet another method for obtaining a reduced order

model. DMD represents the temporal dynamics of a complex, nonlinear system [37, 38] as the

combination of a few linearly evolving, spatially coherent modes that oscillate at a fixed fre-

quency, and which are closely related to the eigenvectors of the infinite-dimensional Koopman

operator [39]. Several variants of the DMD algorithm have been proposed [2, 40, 41, 42] and

2

S. Dutta, P. Rivera-Casillas, O. M. Cecil, M. W. Farthing, E. Perracchione, and M. Putti

have been successfully applied as efficient ROM techniques for determining the optimal global

basis modes for nonlinear, time-dependent problems [43, 44]. For non-parametrized PDEs,

DMD presents an efficient framework that combines all the three stages of ROM development

to learn a linear operator in an optimal least square sense. However, this approach cannot be

directly applied to parametrized problems [45].

In [1], we explored propagating the dynamics of a latent space formed from POD modes with

neural ODEs. The present work investigates substituting the latent-space described by POD

modes with one learned by an autoencoder. Our results for the combined autoencoder-NODE

approach are compared to other methods like - a) dimension reduction by POD modes with la-

tent space temporal dynamics captured by Neural ODEs (POD-NODE), b) dimension reduction

via POD and temporal evolution of the latent space with Radial Basis Functions (POD-RBF),

and c) Dynamic Mode Decomposition (DMD), which serve as benchmarks in our numerical

experiments. The performance of each approach will be evaluated on sample problems based

on incompressible flow around a cylinder and shallow water hydrodynamics in the context of

fast replay applications for complex fluid-dynamics problems.

METHODOLOGY

The standard ROM development framework can be divided into three stages:

1. identification of a low-dimensional latent (or reduced-order) space,

2. representation of the nonlinear dynamical system in terms of the reduced basis and mod-

eling the evolution of the system of modal coefficients, and

3. reconstruction in the high-fidelity space for validation and analysis.

Dimension reduction

In this work, the dominant features of the unsteady flow-field have been extracted using a

linear modal decomposition technique, POD, and a nonlinear manifold learning method that

relies on deep, fully-connected, multi-layer perceptron (MLP) autoencoders that are highly ex-

pressive and scalable [46]. POD is a popular technique for dimension reduction of the solution

manifold of a dynamical system by determining a linear reduced space spanned by an orthogo-

nal basis with an associated energetic hierarchy, and which represents an optimal approximation

of the solution manifold with respect to the L2-norm. Given a matrix of high-fidelity system

snapshots S ∈ R
N×M and a matrix of orthonormal POD basis vectors θ, the modal coefficient

matrix Z = ΘTS constitutes our training data for the latent space learning methods. [47] pro-

vides an excellent overview of POD as well as a comparison with other dimension-reduction

techniques.

3

S. Dutta, P. Rivera-Casillas, O. M. Cecil, M. W. Farthing, E. Perracchione, and M. Putti

Autoencoders

An autoencoder is a type of feedforward neural network that is designed to learn the identity

mapping, h : v 7→ ṽ such that ṽ ≈ v and h : RN 7→ R
N . This is accomplished using a two-part

architecture. The first part is called an encoder, hE , defined by z = hE(v;θE) where z ∈ R
m

(m ≪ N), which maps a high-dimensional input vector v to a low-dimensional latent vector z.

hE hD

Latent

Space,

𝒛

In
p

u
t,

 𝒙

R
e

co
n

stru
cte

d

In
p

u
t, #𝒙

Encoder Decoder

𝜽𝑬 𝜽𝑫

Figure 1: The architecture of the autoencoder

network

The second part is called a decoder, hD, de-

fined as ṽ = hD(z;θD), which maps the la-

tent vector z to an approximation ṽ of the

high-dimensional input vector v. The combi-

nation of the two parts yields an autoencoder

of the form

h : v 7→ hD ◦ hE(v). (1)

This autoencoder is trained by computing the

optimal values of the parameters (θ∗
E,θ

∗
D)

that minimize the reconstruction error over all

the training data

θ
∗
E, θ

∗
D = argmin

θE ,θD

L(v, ṽ), (2)

where L(v, ṽ) is a chosen measure of discrepancy between v and its approximation ṽ. The

restriction dim(z) = m ≪ N = dim(v) forces the autoencoder model to learn the salient

features of the input data via compression into a low-dimensional space and then reconstructing

the input, instead of directly learning the identity function. It is worth noting that with the

choice of a linear, single-layer encoder of the form z = HEv, and a linear, single-layer decoder

of the form ṽ = HDz, where HE ∈ R
m×N , HD ∈ R

N×m, and a squared reconstruction error as

the loss function L(ṽ,v) = ‖v− ṽ‖2
2
, the autoencoder model has been shown to learn the same

subspace as that spanned by the first m POD modes if H = HE = HD. However, additional

constraints are necessary to ensure that the columns of H form an orthonormal basis and follow

an energy-based hierarchical ordering [48].

In this work, autoencoders are employed to generate separate low-dimensional latent rep-

resentations of the pressure (depth) and the velocity snapshot data on the computational grid

points obtained from the high-fidelity simulation of the numerical examples. The encoder and

decoder neural networks are constructed using fully-connected MLP architectures, as depicted

in Figure 1. As the high-fidelity simulation data is usually available on a two-dimensional

spatial grid, the data is first flattened and then fed to the autoencoder model.

Latent space evolution

In this section, we outline the non-intrusive framework for modeling the evolution of time-

series data in the latent space. RBF interpolation is a classical, data-driven, kernel-based method

4

S. Dutta, P. Rivera-Casillas, O. M. Cecil, M. W. Farthing, E. Perracchione, and M. Putti

for computing an approximate continuous response surface that aligns with the given multivari-

ate data. More details about the POD-RBF NIROM framework can be found in [26]. The second

technique called NODE is a neural-network based method to predict the continuous evolution

of a vector c over time, that is designed to preserve memory effects within the architecture.

Neural ordinary differential equations

We assume that the time evolution of the modal coefficients of the high-fidelity dynamical

system in the latent space can be modeled using a (first-order) ODE,

d z

dt
= F(t, z(t)), with z(0) = z0, z ∈ R

d, d ≥ 1. (3)

The goal is to obtain a NN approximation F̂ of the dynamics function F such that d z
dt

≈

net(t, z) = F̂(t, z,ω). The full procedure can be outlined as follows:

1. Compute the time series of modal coefficients [z0, . . . , zM−1] for t ∈ {0, . . . ,M − 1}
where zk ∈ R

m.

2. Initialize a NN approximation for the dynamics function F̂(t, z,ω) where ω represents

the initial NN parameters.

3. The NN parameters are optimized iteratively through the following steps.

(a) Compute the approximate forward time trajectory of the modal coefficients by solv-

ing eq. (3) using a standard ODE integrator as,

ẑM−1 = ODESolve(F̂ ,ω, z0, t0, tM−1) (4)

(b) The free parameters of the NODE model are {ω, t0, tM−1}. Evaluate the differen-

tiable loss function L
(
ODESolve(F̂ ,ω, z0, t0, tM−1)− zM−1

)
.

(c) To optimise the loss, compute gradients with respect to the free parameters. Similar

to the usual backpropagation algorithm, this can be achieved by first computing the

gradient ∂L/∂ẑ(t), and then a performing a reverse traversal through the intermedi-

ate states of the ODE integrator. For a memory-efficient implementation, the adjoint

method [29] can be used to backpropagate the errors by solving an adjoint system

for the augmented state vector b = [∂L
∂ẑ
, ∂L
∂ω

, ∂L
∂t
]T backwards in time from tM−1 to

t0.

(d) The gradient ∂L
∂ω

(t = 0) computed in the previous step is used to update the param-

eters ω by using an optimization algorithm like RMSProp or Adam.

4. The trained NODE approximation of the dynamics function can be used to compute pre-

dictions for the time trajectory of the modal coefficients.

5

S. Dutta, P. Rivera-Casillas, O. M. Cecil, M. W. Farthing, E. Perracchione, and M. Putti

Following [1], we adopt the TFDiffEq (https://github.com/titu1994/tfdiffeq)

library that runs on the Tensorflow Eager Execution platform to train the NODE models. RM-

SProp is adopted for loss minimization with an initial learning rate of 0.001, a staircase decay

function with a range of variable decay schedules, and a momentum coefficient of 0.9.

As a final point of comparison, we consider the standard Dynamic mode decomposition

(DMD)[37, 38] algorithm, which is a powerful data-driven method capable of providing an

accurate decomposition of a complex system into spatiotemporal coherent structures that may

be used for short-time future-state prediction.

NUMERICAL EXPERIMENTS

In this section, we first assess the use of autoencoders for building a reduced space in which

the system dynamics are propagated by NODE for a benchmark flow problem characterized by

the incompressible Navier Stokes equations (NSE). We compare the performance of this frame-

work with a POD-NODE method where NODE is employed to capture the evolution of modal

coefficients in a reduced space defined by a POD basis. Also, we examine the relative per-

formance of different NIROM models for a real-world estuarine flow application governed by

the shallow water equations (SWE). The POD-RBF and DMD NIROM training runs were per-

formed on a Macbook Pro 2018 with a 2.9 GHz 6-Core Intel Core i9 processor and 32 GB 2400

MHz DDR4 RAM. The autoencoder latent-space representations were trained on Vulcanite, a

high performance computer at the U.S. Army Engineer Research and Development Center DoD

Supercomputing Resource Center (ERDC-DSRC). Vulcanite is equipped with NVIDIA Tesla

V100 PCIe GPU accelerator nodes and has 32GBytes memory/node. Training for the NODE

models was performed in serial on Jim, a high performance computer at the U.S. Army Engi-

neer Research and Development Center Coastal and Hydraulics Lab (CHL), which is equipped

with 2 Intel Xeon E5-2699 v3 CPUs and 128Gbytes of memory/node.

Flow around a cylinder

The problem of two-dimensional, incompressible flow arond a cylinder is a classical bench-

mark CFD example that simulates a time-periodic fluid flow through a 2D pipe with a circular

obstacle. For further details about the problem setup please see [1]. High-fidelity simulation

data is obtained with OpenFOAM using an unstructured mesh with 14605 nodes at Re = 100,

such that the flow exhibits the periodic shedding of von Karman vertices. 313 training snapshots

are collected for t = [2.5, 5.0] seconds with ∆t = 0.008 seconds, and the NIROM predictions

are obtained for t = [2.5, 6.0] seconds with ∆t = 0.002 seconds.

Several different architectures were explored for the autoencoder model by varying the model

parameters like the dimension of the latent space, the activation functions used, various con-

figurations of the learning rate evolution during training, and Table 1 shows four of the best

architectures for the cylinder flow example. The second column shows the size of the latent

space for each of the solution variables p, vx, vy. The third and fourth columns list the activa-

tion functions used in the last hidden encoder and the last hidden decoder layers, respectively.

6

S. Dutta, P. Rivera-Casillas, O. M. Cecil, M. W. Farthing, E. Perracchione, and M. Putti

Id Units Encoder Decoder Scaling MSE Training

Range
(p, vx, vy)

2-8

linear,

relu, ...

elu,

tanh, ...

AE1 (5, 8, 7) linear sigmoid [0, 1] 2.398e-6 9.38 min

AE2 (2, 2, 2) linear sigmoid [0, 1] 4.196e-6 9.56 min

AE3 (2, 2, 2) linear tanh [−1, 1] 2.499e-6 9.29 min

AE4 (2, 3, 3) linear sigmoid [0, 1] 3.107e-6 9.07 min

Table 1: Best Autoencoder architectures for the cylinder example. Models were trained for

1000 epochs using the Adam optimizer with initial learning rate = 1e-3 and momentum = 0.9.

Figure 2: Visualization of the modal coefficients of the

first two latent space modes for x-velocity, as generated

by POD and the four chosen autoencoder models for the

cylinder example

The fifth column shows the scal-

ing applied to the input data which

is directly determined by the acti-

vation function used in the decoder

output layer. In general, it was

found that activation functions that

required scaled input data like sig-

moid, tanh performed better for the

decoder output layer than some of

the (semi-)unbounded ones like lin-

ear, relu, and elu. However, un-

bounded activation functions like

linear and elu were seen to gener-

ate a more accurate and efficient la-

tent space. The encoder and the

decoder networks were made up of

four hidden layers with gradually

decreasing and gradually increas-

ing size, respectively, and charac-

terized by the relu activation func-

tion, which were found to gener-

ate the least noisy latent representa-

tions. The Adam optimizer is used

for training with an initial learning

rate=10−3 and momentum=0.9. An

adaptive learning rate decay algorithm is employed that monitors the training loss and reduces

the learning rate by a factor of 2 if no improvement is detected for 200 epochs. The sixth col-

umn of Table 1 lists the total mean square reconstruction error for all three solution variables,

while the last column shows the training times for each model on two NVIDIA Tesla V100

7

S. Dutta, P. Rivera-Casillas, O. M. Cecil, M. W. Farthing, E. Perracchione, and M. Putti

GPU nodes.

Figure 3: Training characteristics for a fixed autoencoder architecture while varying the latent

space dimension

Figure 4: Training characteristics of the chosen four autoencoder architectures (see Table 1)

over 1000 epochs

Figure 2 shows the temporal coefficients for the first two latent modes of vx using a POD

truncation that captures 99% of modal energy content, and the four chosen AE models. While

the POD modal coefficients are arranged according to the decreasing order of amplitude, this

cannot be guaranteed for the AE-generated spaces. AE2 and AE3 models define a latent space

of dimension 2, whereas the AE4 model has 3 latent space units and the AE1 model is identical

to the dimension of the POD bases for each variable - 5 (p), 8 (vx), and 7(vy). The richer quality

of the AE4 latent space leads to better expressivity which is reflected in the subtler features

captured in the modal coefficients (Figure 2 row 2) and also in the lowest reconstruction error

(Table 1).

Figure 3 shows the evolution of the training loss and the adaptive decay of the learning rate

while training autoencoder models for vx using four gradually increasing latent space dimen-

sions - 2, 3, 4, 8. The AE3 architecture was adopted for these runs. The optimization of the

hyperparameters with respect to the training loss becomes gradually harder as the dimension of

the latent space increases. So the models with smaller latent spaces initially show a faster re-

duction in training losses. However, the enhanced expressivity of the models with higher latent

8

S. Dutta, P. Rivera-Casillas, O. M. Cecil, M. W. Farthing, E. Perracchione, and M. Putti

Id Lyrs Units Act.
LR steps,

rate
Scaling Aug. MSE Training

Range 1-4 32-512
tanh,

elu,...

5k-25k,

0.1-0.9

AE1-NODE1 1 256 elu 10k, 0.3 No No 2.30e-5 28.80 hrs

AE1-NODE2 1 256 tanh 5k, 0.7 Yes No 1.34e-4 28.69 hrs

AE1-NODE3 1 512 elu 5k, 0.5 No No 1.97e-5 29.17 hrs

AE1-NODE4 1 256 tanh 10k, 0.25 Yes Yes 1.49e-4 28.27 hrs

AE1-NODE5 4 64 tanh 5k, 0.5 Yes No 1.33e-4 33.08 hrs

Table 2: Results for the best NODE architectures for the cylinder example using the latent space

defined by the AE1 autoencoder model. All NODE models were trained for 50000 epochs using

the fourth-order Runge-Kutta solver and the RMSProp optimizer with initial learning rate = 1e-

3 and momentum = 0.9.

dimensions allow them to reach lower values of training loss after sufficient epochs of training,

whereas the losses for the models with smaller latent dimensions appear to stagnate. Figure 4

shows the training loss and the learning rate decay for the four chosen AE models. It is evident

that the AE4 model with the richest latent spaces achieves the sharpest reduction in training

loss, followed by AE4, whereas the latent space dimensions for models AE1 and AE2 appear

to be significant barriers in their training efficiency.

An extensive exploration of the NODE hyperparameter and architecture space for the cylin-

der example was reported in [1]. Based on those inferences and some further numerical study,

five architectures were selected, and the results after training for 50000 epochs using the la-

tent space data generated by the AE1 model are presented in Table 2. All the models generate

accurate predictions at a finer temporal resolution than the training data, and have excellent

agreement with the high-fidelity solution even while extrapolating outside the training data

(5 ≤ t ≤ 6 seconds).

The first row of Fig. 5 compares the time trajectory of the spatial root mean square errors

(RMSE) in the high-fidelity space for NIROM solutions generated using the POD and the AE1

basis with the NODE3 and NODE5 configurations. It is encouraging to note that even though

the latent-space sizes are identical between the POD and the AE1 basis, the AE1-NODE so-

lutions are more accurate, confirming that the nonlinear AE basis generates a more accurate

spatial compression than a linear POD basis of similar size. (IF space allows add reconstruction

error values here). The second row of Fig. 5 compares the RMSE between the AE4-NODE3,

POD-NODE3, and two DMD NIROM models with truncation levels of r = 3 and r = 8.

The AE4-NODE3 model achieves better accuracy than all the other models even with the most

highly compressed latent space (p, vx, vy:2,3,3). The DMD(8) model is roughly comparable

with the POD-NODE3 model owing to the similarity in their latent space dimensions, whereas

the DMD(3) model fares the worst due to the lack of hierarchical ordering in its latent basis.

9

S. Dutta, P. Rivera-Casillas, O. M. Cecil, M. W. Farthing, E. Perracchione, and M. Putti

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Time (seconds)

0.00

0.01

0.02

0.03

0.04 POD-NODE3:p
AE1-NODE3:p

POD-NODE5:p
AE1-NODE5:p

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Time (seconds)

0.00

0.02

0.04

0.06 POD-NODE3:vx
AE1-NODE3:vx

POD-NODE5:vx
AE1-NODE5:vx

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Time (seconds)

0.00

0.02

0.04

0.06

0.08 DMD(3):p
DMD(8):p

POD-NODE3:p
AE4-NODE3:p

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Time (seconds)

0.00

0.02

0.04

0.06

0.08 DMD(3):vx
DMD(8):vx

POD-NODE3:vx
AE4-NODE3:vx

Figure 5: Row1 - Comparison of RMSE of the NODE3 and the NODE5 models using POD and

the AE1 basis; Row2 - Comparison of RMSE of the POD-NODE and the AE-NODE models

with two DMD models with comparable latent space dimensions for the cylinder example

Shallow water equations

The final numerical example involves flows governed by the depth-averaged SWE which is

written in a conservative residual formulation as

R ≡
∂q

∂t
+

∂px

∂x
+

∂py

∂y
+ r = 0, (5)

where the state variable q = [h, uxh, uyh]
T consists of the flow depth, h, and the discharges

in the x and y directions, given by uxh and uyh, respectively. Further details about the flux

vectors px, py and the high-fidelity model equations are available in [26]. The high-fidelity

numerical solutions of the SWE are obtained using the 2D depth-averaged module of the Adap-

tive Hydraulics (AdH) finite element suite, which is a U.S. Army Corps of Engineers (USACE)

high-fidelity, finite element resource for 2D and 3D dynamics [49].

Tidal flow in San Diego bay

This numerical example involves the simulation of tide-driven flow in the San Diego Bay

in California, USA. The AdH high-fidelity model consists of N = 6311 nodes, uses tidal data

obtained from NOAA/NOS Co-Ops website at a tailwater elevation inflow boundary and has no

flow boundary conditions everywhere else. Further details are available in [26].

10

S. Dutta, P. Rivera-Casillas, O. M. Cecil, M. W. Farthing, E. Perracchione, and M. Putti

POD-NODE solution at t=17.36 hrs
 0.92640<ux<1.10591

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) POD-NODE ux

AE-NODE solution at t=17.36 hrs
 0.88352<ux<1.07144

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) AE-NODE ux

0.130506 <POD-NODE ux Error< 0.135954
 Rel. Error 2-norm : 0.049377

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

(c) POD-NODE error

0.037588 <AE-NODE ux Error< 0.042090
 Rel. Error 2-norm : 0.027899

0.03

0.02

0.01

0.00

0.01

0.02

0.03

(d) AE-NODE error

Figure 6: NIROM solutions of ux and errors at t = 17.36
hours for the San Diego example

The training space is generated

using 1801 high-fidelity snapshots

obtained between t = 41 minutes

to t = 50 hours at a time inter-

val of ∆t = 100 seconds. The

predicted ROM solutions are com-

puted for the same time interval

with ∆t = 50 seconds. A latent

space of dimension 265(p, ux, uy :
36, 115, 113) is generated by us-

ing a POD truncation tolerance of

τPOD = 5 × 10−7 for each solution

component. The AE2 architecture

designed for the cylinder example

is modified by including BatchNor-

malization layers for each hidden

layer, using full batches for train-

ing, and by enforcing a latent space

of dimension 30 for each solution

component. The RBF NIROM ap-

proximation is computed using a

shape factor, c = 0.01. The sim-

ulation time points provided as in-

put to the NODE model are normal-

ized to lie in t ∈ [0, 1]. The ‘dopri5’

ODE solver is adopted for comput-

ing the hidden states both forward

and backward in time. Learning from the conclusions of the cylinder example, a network con-

sisting of a single hidden layer with 256 neurons is deployed and the RMSProp optimizer with

an initial learning rate of 0.001, a staircase decay rate of 0.5 every 5000 epochs, and a momen-

tum of 0.9 is utilized for training the model over 20000 epochs. For the DMD NIROM, the

simulation time points are normalized to an unit time step, and a truncation level of r = 115 is

used to compute the DMD eigen-spectrum.

Figure 6 compares the POD-NODE and AE-NODE NIROM solution fields (top row) for ux

at t = 17.36 hours and the corresponding error plots (bottom row). It can be seen that even

while using a latent dimension that is three times smaller than POD, the relative errors for the

AE-NODE solution (0.0279) is almost two times lower than that of the POD-NODE solution

(0.0494). Figure 7 shows the spatial RMSE over time for the depth (left) and the x-velocity

(right) NIROM solutions. The AE-NODE (30 modes) solution has comparable accuracy to the

POD-NODE (36 modes) and the DMD (115 modes) solution for the depth variable and actually

outperforms the POD-NODE (115 modes) solution for the x-velocity variable. Additionally,

11

S. Dutta, P. Rivera-Casillas, O. M. Cecil, M. W. Farthing, E. Perracchione, and M. Putti

unlike the RBF NIROM solution, the AE-NODE solution does not exhibit any appreciable ac-

cumulation of error over time due to the higher-order time-stepping scheme adopted for NODE.

Figure 7: NIROM RMSEs for the San Diego example

CONCLUSION

We have studied the combined use of autoencoders as a data-driven method for identify-

ing an efficient reduced latent space that approximates the solution manifold of a system of

nonlinear, time-dependent PDEs and neural ODEs as a non-intrusive method for modeling the

evolution of the reduced latent space coefficients for the aforementioned dynamical system.

Numerical experiments were carried out with a benchmark periodic flow problem governed

by the incompressible Navier Stokes equations and a real-world application of estuarine flow

dynamics governed by the two-dimensional shallow water equations. The AE latent space rep-

resentation was shown to provide a very high degree of efficient spatial compression, especially

for the advection-dominated shallow water example. The POD-NODE NIROM formulation

demonstrated a stable and accurate learning trajectory in modeling reduced basis dynamics,

even in comparison to classical ROM techniques utilizing DMD, POD and RBF interpolation.

The AE-NODE formulation also produced encouraging extrapolatory predictions for the flow

around a cylinder example. This presents an exciting prospect for future exploration as even

for an isolated system, unperturbed by unseen external forcings, truly extrapolative predictions

of reduced order dynamics in flow regimes that do not correspond to the training data is a rare

feature for most well-established ROM frameworks.

This study leads to several promising avenues of research. For instance, neural architecture

search (NAS) tools can be adopted to perform an exhaustive exploration of the network archi-

tecture and model hyperparameter space for a wide range of flow dynamics in order to gain

insight of the learning trajectory and to design more generalizable AE models with improved

reconstruction accuracy. Moreover, integrating the process of identification of an AE-based

latent space with the modeling of system dynamics using NODE may lead to significant perfor-

mance improvements if the two independent learning problems can be designed to intelligently

12

S. Dutta, P. Rivera-Casillas, O. M. Cecil, M. W. Farthing, E. Perracchione, and M. Putti

inform each other. All the relevant data and codes for this study will be made available in a

public repository at https://github.com/erdc/aenode_nirom upon publication.

ACKNOWLEDGMENTS

This research was supported in part by an appointment of the first author to the Postgraduate

Research Participation Program at the U.S. Army Engineer Research and Development Center,

Coastal and Hydraulics Laboratory (ERDC-CHL) administered by the Oak Ridge Institute for

Science and Education through an interagency agreement between the U.S. Department of En-

ergy and ERDC. Permission was granted by the Chief of Engineers to publish this information.

REFERENCES

[1] Sourav Dutta, Peter Rivera-Casillas, and Matthew W Farthing. Neural Ordinary Differential Equa-

tions for Data-Driven Reduced Order Modeling of Environmental Hydrodynamics. In Proc. AAAI

2021 Spring Symp. Comb. Artif. Intell. Mach. Learn. with Phys. Sci., Stanford, CA, USA, 2021.

CEUR-WS, cs.LG/2104.13962.

[2] Joshua L. Proctor, Steven L. Brunton, and J. Nathan Kutz. Dynamic mode decomposition with

control. SIAM J. Appl. Dyn. Syst., 15(1):142–161, 2016.

[3] Benjamin Peherstorfer, Karen Willcox, and M A X Gunzburger. Optimal model management for

multifidelity Monte Carlo estimation. SIAM J. Sci. Comput., 38(5):A3163–A3194, 2016.

[4] P. Benner, S. Gugercin, and K. Willcox. A survey of projection-based model reduction methods for

parametric dynamical systems. SIAM Rev., 57(4):483–531, 2015.

[5] L. Sirovich. Turbulence and the dynamics of coherent structures. Part I:Coherent structures. Quart.

Appl. Math., 45:561–571, 1987.

[6] G. Berkooz, P. Holmes, and J.L. Lumley. The proper orthogonal decomposition in the analysis of

turbulent flows. Annu. Rev. Fluid Mech., 25(1):539–575, 1993.

[7] I.T. Jolliffe. Principal Component Analysis. Springer New York, USA, 1986.

[8] P. Deheuvels and G.V. Martynov. A Karhunen-Loeve decomposition of a Gaussian process gen-

erated by independent pairs of exponential random variables. J. Func. Anal., 255(9):2363–2394,

2008.

[9] P.T.M. Vermeulen and A.W. Heemink. Model-reduced variational data assimilation. Monthly

Weather Review, 134:2888–2899, 2006.

[10] F. Fang, T. Zhang, D. Pavlidis, C.C. Pain, A.G. Buchanan, and I.M. Navon. Reduced order mod-

elling of an unstructured mesh air pollution model and application in 2D/3D urban street canyons.

Atmos. Env., 96:96–106, 2014.

[11] O. San and J. Borggaard. Principal interval decomposition framework for POD reduced-order

modeling of convective Boussinesq flow. Int. J. Numer. Methods Fluids, 78(1):37–62, 2015.

13

S. Dutta, P. Rivera-Casillas, O. M. Cecil, M. W. Farthing, E. Perracchione, and M. Putti

[12] R. Stefanescu, A. Sandu, and I.M. Navon. Comparison of POD reduced order strategies for the

nonlinear 2D shallow water equations. Int. J. Numer. Methods Fluids, 76(8):497–521, 2014.

[13] A. Lozovskiy, M.W. Farthing, C.E. Kees, and E. Gildin. POD-based model reduction for stabilized

finite element approximations of shallow water flows. J. Comput. Appl. Math., 302:50–70, 2016.

[14] Matteo Salvador, Luca Dede, and Andrea Manzoni. Non Instrusive Reduced Order Modeling of

Parameterized PDEs by Kernel POD and Neural Networks, 2021, math.NA/2103.17152.

[15] Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Deep learning for universal linear embed-

dings of nonlinear dynamics. Nature Comm., 9(1), 2018.

[16] Hojat Ghorbanidehno, Jonghyun Lee, Matthew Farthing, Tyler Hesser, Eric F. Darve, and Peter K.

Kitanidis. Deep learning technique for fast inference of large-scale riverine bathymetry. Advances

in Water Resources, 147:103715, 2021.

[17] Francisco J. Gonzalez and Maciej Balajewicz. Deep convolutional recurrent autoencoders for learn-

ing low-dimensional feature dynamics of fluid systems, 2018, 1808.01346.

[18] Hamidreza Eivazi, Hadi Veisi, Mohammad Hossein Naderi, and Vahid Esfahanian. Deep neural

networks for nonlinear model order reduction of unsteady flows. Phys. Fluids, 32(10):1–19, 2020.

[19] Romit Maulik, Bethany Lusch, and Prasanna Balaprakash. Reduced-order modeling of advection-

dominated systems with recurrent neural networks and convolutional autoencoders. Phys. Fluids,

33(3), 2021.

[20] Kookjin Lee and Kevin T. Carlberg. Model reduction of dynamical systems on nonlinear manifolds

using deep convolutional autoencoders. J. Comput. Phys., 404:108973, 2020, 1812.08373.

[21] Youngkyu Kim, Youngsoo Choi, David Widemann, and Tarek Zohdi. A fast and accurate

physics-informed neural network reduced order model with shallow masked autoencoder, 2020,

math.NA/2009.11990.

[22] A. Lozovskiy, M. Farthing, and C. Kees. Evaluation of Galerkin and Petrov-Galerkin model re-

duction for finite element approximations of the shallow water equations. Comput. Methods Appli.

Mech. Eng., 318:537–571, 2017.

[23] J.S. Hesthaven and S. Ubbiali. Non-intrusive reduced order modeling of nonlinear problems using

neural networks. J. Comput. Phys., 363:55–78, 2018.

[24] M. Guo and J.S. Hesthaven. Data-driven reduced order modeling for time-dependent problems.

Comput. Methods Appl. Mech. Eng., 345:75–99, 2019.

[25] C. Audouze, F. De Vuyst, and P.B. Nair. Nonintrusive Reduced-Order Modeling of Parametrized

Time-Dependent Partial Differential Equations. Numer. Methods Partial Differ. Equation,

29(5):1587–1628, 2013.

[26] Sourav Dutta, Matthew W. Farthing, Emma Perracchione, Gaurav Savant, and Mario Putti. A

greedy non-intrusive reduced order model for shallow water equations. J. Comput. Phys., page

110378, 2021.

14

S. Dutta, P. Rivera-Casillas, O. M. Cecil, M. W. Farthing, E. Perracchione, and M. Putti

[27] E. Iuliano and D. Quagliarella. Aerodynamic shape optimization via non-intrusive POD-based

surrogate modelling. In 2013 IEEE Congr. Evol. Comput. CEC 2013, pages 1467–1474. IEEE,

2013.

[28] Lars Ruthotto and Eldad Haber. Deep Neural Networks Motivated by Partial Differential Equations.

J. Math. Imaging Vis., pages 2–10, 2019.

[29] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural Ordinary

Differential Equations, 2018, 1806.07366.

[30] Amir Gholami, Kurt Keutzer, and George Biros. Anode: Unconditionally accurate memory-

efficient gradients for neural odes, 2019, cs.LG/1902.10298.

[31] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented Neural ODEs, 2019,

stat.ML/1904.01681.

[32] Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M Oberman. How to train your

neural ODE: the world of Jacobian and kinetic regularization, 2020, stat.ML/2002.02798.

[33] Romit Maulik, Arvind Mohan, Bethany Lusch, Sandeep Madireddy, Prasanna Balaprakash, and

Daniel Livescu. Time-series learning of latent-space dynamics for reduced-order model closure.

Phys. D Nonlinear Phenom., 405:132368, 2020.

[34] Yifan Sun, Linan Zhang, and Hayden Schaeffer. NeuPDE: Neural Network Based Ordinary and

Partial Differential Equations for Modeling Time-Dependent Data. Proc. Mach. Learn. Res.,

107(2016):352–372, 2020.

[35] Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations

for irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,

E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32,

pages 5320–5330. Curran Associates, Inc., 2019.

[36] David Kanaa, Vikram Voleti, Samira Kahou, and Christopher Pal. Simple Video Generation using

Neural ODEs. In Annu. Conf. Neural Inf. Process. Syst. 2019, NeurIPS 2019, Vancouver, BC,

Canada, 2019.

[37] P.J. Schmid. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech.,

656(July 2010):5–28, 2010.

[38] J. Nathan Kutz, Steven L. Brunton, Bingni W. Brunton, and Joshua L. Proctor. Dynamic Mode

Decomposition: Data-Driven Modeling of Complex Systems. Society for Industrial and Applied

Mathematics, Philadelphia, PA, third edition, 2016.

[39] B O Koopman. Hamiltonian Systems and Transformation in Hilbert Space. Proc. Natl. Acad. Sci.

U. S. A., 17(5):315–8, 1931.

[40] J. Nathan Kutz, Xing Fu, and Steven L. Brunton. Multiresolution dynamic mode decomposition.

SIAM J. Appl. Dyn. Syst., 15(2):713–735, 2016.

15

S. Dutta, P. Rivera-Casillas, O. M. Cecil, M. W. Farthing, E. Perracchione, and M. Putti

[41] A.K. Alekseev, D.A. Bistrian, A.E. Bondarev, and I.M. Navon. On linear and nonlinear aspects of

dynamic mode decomposition. Int. J. Numer. Methods Fluids, 82(6):348–371, 2016.

[42] Soledad Le Clainche and Jose M. Vega. Higher order dynamic mode decomposition. SIAM J. Appl.

Dyn. Syst., 16(2):882–925, 2017.

[43] D.A. Bistrian and I.M. Navon. An improved algorithm for the shallow water equations model

reduction: Dynamic Mode Decomposition vs POD. Int. J. Numer. Methods Fluids, 2015.

[44] D.A. Bistrian and I.M. Navon. Randomized dynamic mode decomposition for nonintrusive reduced

order modelling. Int. J. Numer. Methods Eng., 112:3–25, 2017.

[45] Fahad Alsayyari, Zoltán Perkó, Marco Tiberga, Jan Leen Kloosterman, and Danny Lathouwers.

A fully adaptive nonintrusive reduced-order modelling approach for parametrized time-dependent

problems. Comput. Methods Appl. Mech. Eng., 373:113483, 2021.

[46] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the Dimensionality of Data with Neural

Networks. Science, 313:504–507, 2006.

[47] Kunihiko Taira, Maziar S. Hemati, Steven L. Brunton, Yiyang Sun, Karthik Duraisamy, Shervin

Bagheri, Scott T.M. Dawson, and Chi An Yeh. Modal analysis of fluid flows: Applications and

outlook. AIAA J., 58(3):998–1022, 2020.

[48] Elad Plaut. From Principal Subspaces to Principal Components with Linear Autoencoders, 2018,

stat.ML/1804.10253.

[49] C.J. Trahan, G. Savant, R.C. Berger, M. Farthing, T.O. McAlpin, L. Pettey, G.K. Choudhary, and

C.N. Dawson. Formulation and application of the adaptive hydraulics three-dimensional shallow

water and transport models. J. Comput. Phys., 374:47–90, 2018.

16

