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Modularity affects the robustness 
of scale‑free model and real‑world social 
networks under betweenness and degree‑based 
node attack
Quang Nguyen1,2* , Tuan V. Vu3, Hanh‑Duyen Dinh4, Davide Cassi5,7, Francesco Scotognella6, 
Roberto Alfieri5,7 and Michele Bellingeri5,6,7 

Abstract 

In this paper we investigate how the modularity of model and real‑world social 
networks affect their robustness and the efficacy of node attack (removal) strategies 
based on node degree (ID) and node betweenness (IB). We build Barabasi–Albert 
model networks with different modularity by a new ad hoc algorithm that rewire links 
forming networks with community structure. We traced the network robustness using 
the largest connected component (LCC). We find that when model networks present 
absent or low modular structure ID strategy is more effective than IB to decrease 
the LCC. Conversely, in the case the model network present higher modularity, the 
IB strategy becomes the most effective to fragment the LCC. In addition, networks 
with higher modularity present a signature of a 1st order percolation transition and a 
decrease of the LCC with one or several abrupt changes when nodes are removed, for 
both strategies; differently, networks with non‑modular structure or low modularity 
show a 2nd order percolation transition networks when nodes are removed. Last, we 
investigated how the modularity of the network structure evaluated by the modularity 
indicator (Q) affect the network robustness and the efficacy of the attack strategies in 
12 real‑world social networks. We found that the modularity Q is negatively correlated 
with the robustness of the real‑world social networks for both the node attack strate‑
gies, especially for the IB strategy (p‑value < 0.001). This result indicates how real‑world 
networks with higher modularity (i.e. with higher community structure) may be more 
fragile to node attack. The results presented in this paper unveil the role of modularity 
and community structure for the robustness of networks and may be useful to select 
the best node attack strategies in network.

Keywords: Network robustness, Modular network, Node attack strategy, Centrality 
measures
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Introduction
The study of real-world complex networks has attracted much attention in recent 
decades because a large number of complex systems in the real-world can be consid-
ered as complex networks, such as social (Borgatti et  al. 2009; Bellingeri et  al. 2020a, 
2020b), technological (Albert et al. 1999; Faloutsos et al. 1999), biological (Jeong et al. 
2000; Barra and Agliari 2010), ecological complex systems (Bellingeri and Bodini 2013; 
Bellingeri and Vincenzi 2013). Many real-world networks show a scale-free structure, 
making them resilient to random node failure (Cohen et al. 2000) but can disintegrate 
quickly when a small proportion of important nodes are removed (Albert et al. 1999). 
The network’s robustness, which evaluates the capability of network to hold its function-
ing under such failures or attacks has drawn extensive attention in recent years (Albert 
and Barabási 2002; Cohen et  al. 2000; Callaway et  al. 2000; Iyer et  al. 2013; Bellingeri 
et al. 2015; Bellingeri et al. 2014; Dall’Asta et al. 2006; Nguyen and Nguyen 2018; Wan-
delt et al. 2018; Bellingeri et al. 2019, 2020a, 2020b). Usually, Monte-Carlo simulation is 
used to evaluate the network robustness: for random failure, nodes/ links are removed 
with the same probability (random removal), while for intentional attack, nodes/links 
are removed according to different structural properties of the network and a robustness 
measure is then computed during the node/edge removal simulation (Albert et al. 2000; 
Cohen et al. 2000, 2001; Bellingeri et al. 2020a, 2020b; Lekha and Balakrishnan 2020). To 
identify the node/edge removal strategy that triggers the greatest amount of damage in 
the system is also highly important for revealing the links/nodes that act as key players 
in network functioning with many practical applications (Bellingeri et al. 2020a,2020b). 
For example, the understanding of how the node/edge removal affects real social sys-
tems may predict how the abandoning of individuals affects the information spread in 
the social network, thus individuating the “influential spreaders” in the network, such as 
most important scholars or influencers (Ahajjam and Badir 2018; Bellingeri et al. 2020a, 
2020b). On the other hand, in social contact network on which a disease can spread, it 
is critical to understand how node removal through vaccination affects the spread of the 
disease to efficiently prevent an epidemic (Holme 2004; Wang et al. 2015; Bellingeri et al. 
2020a, 2020b).

One of the most important measure of network robustness is the size of the larg-
est connected component (LCC), i.e. the LCC is the highest number of connected 
nodes in the network (Albert et  al. 2000). The LCC gives us a simple interpretation 
of the system robustness when subjected to node/edge removal accounting the larg-
est functioning part of the network. For example, if the Internet is attacked, all nodes 
(servers) within the LCC can still transfer information mutually and indicating the 
largest networked structure still active. Another example, in a social contact network, 
the LCC represents the highest number of individuals that can be affected by a dis-
ease spreading (Bellingeri et al. 2019). For this reason, the most efficient node attack 
strategy is the one that is able to induce the fastest LCC decrease (Fig.  1). Numeri-
cal simulations have shown that attack strategies based on network’s nodes central-
ity measures can effectively individuating the most important nodes to reduce the 
size of the LCC (Albert et al. 2000, Cohen et al. 2000, 2001; Callaway et al. 2000; Iyer 
et al. 2013; Bellingeri and Cassi 2018; Bellingeri et al. 2014; Nguyen and Nguyen 2018; 
Wandelt et al. 2018; Ghalmane et al. 2019a). In specific, overall findings showed that 
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nodes attack strategies based on betweenness centrality are highly efficient to dis-
mantle the LCC (Iyer et al. 2013; Bellingeri et al. 2014; Sun et al. 2017; Nguyen and 
Nguyen 2018; Wandelt et al. 2018), especially for real-world networks. However, the 
difference in the effectiveness varied considerably among real-world networks (Iyer 
et al. 2013; Bellingeri et al. 2014; Wandelt et al. 2020).

The mechanism that gives rise to such an abrupt decrease is studied using percolation 
theory and is a signature of the first-order percolation phase transition (Achlioptas et al. 
2009; Riordan and Warnke 2011; Cho et al. 2013). However, the question whether such 
an abrupt decrease occurs for a certain real-world network under attack remain unclear. 
This question is of great importance from two aspects: on one hand, if we want to break 
a network using node removal, we would find strategies that remove nodes that can 
cause such abrupt and fast decrease in LCC’s size. On the other hand, if we want to pro-
tect a network, we must design it in a way that such abrupt decrease should not happen. 
Since the network robustness must depend on its topology, several studies have investi-
gated the relationship between topological metrics and the robustness of a network.

Iyer et al. (2013) studied robustness of model networks with power-law and expo-
nential degree distribution, with various node clustering coefficient (or node transi-
tivity) level. They found that increasing the clustering coefficient of the network nodes 
results in decreasing robustness to node attack with the most dramatic effect being 
displayed for node attack based on their degree and betweenness. The authors also 
suggested for increasing the robustness, it is necessary to design topological struc-
tures with low clustering coefficient as is consistent with the functional requirements 
of the network. Their simulation on real-world networks also show that the difference 
in the effectiveness among strategies varied across networks.

Nguyen and Trang Le (2019) studied the Facebook social networks and found those 
networks with higher modularity Q have lower robustness to node removal. The mod-
ularity indicator Q introduced by Newman and Girvan (2004) measures how well a 
network breaks into communities, (i.e. a community or module in a network is a well-
connected group of nodes which have sparser connections with the nodes outside the 
group). Networks with high modularity Q have dense connections (more links) among 
the nodes within modules but sparse connections (few links) among nodes from dif-
ferent modules. Therefore, the modularity Q is higher in networks with marked com-
munity structure, which are called ‘modular networks’ (Newman and Girvan (2004)).

B)
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p
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Fig. 1 Schematic behavior of the size of the LCC as a function of the proportion of remaining nodes p during 
a node removal process: A LCC shows a continuous 2nd order decreases without abrupt decrease and B LCC 
shows an abrupt decrease in correspondence of p = pc. The node attack strategy in B is able to dismantle 
the network with a smaller proportion of removed nodes, i.e. is the most effective to decrease the LCC, thus 
individuating the most important nodes in network
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Using percolation theory, Dong et al. (2018) pointed out that in a modular network, a 
small fraction of nodes that connect nodes of different modules, called ‘interconnected 
nodes’, is critical to the robustness of the network. By analyzing the LCC size during node 
removal process by varying the fraction of interconnected nodes (r) in the network, they 
found that LCC scale with r by a power-law with universal criticality. This result suggests 
that modular networks with higher fraction of interconnected nodes (therefore of lower 
modularity Q, because the fraction of links among nodes in the same module is lower) 
will result in a lower LCC decrease during node removal and consequently higher net-
work robustness.

Shai et  al. (2015) developed both analytical and simulation analyses for evaluating 
the robustness of random and scale-free model networks with modular structure (Shai 
et al. 2015). They simulate the attack of interconnected nodes, i.e. nodes that connect 
to neighbors that are in other modules, and analyze the critical node occupation prob-
ability pc, i.e. the fraction of remaining nodes p when a large decrease in LCC occurs, as 
a function of the number of modules m and the ratio between probabilities for an intra- 
and inter-module link α.

They found that percolation phase transition falls into two regimes depending on the 
number of modules m for a fixed α:

• For m < m∗ the network presents very high modularity and collapses abruptly under 
node removal as a result of the modules becoming disconnected from each another, 
while their internal structure is almost unaffected.

• In contrast, for m > m ∗ , the network presents low modularity and therefore, the 
node attack causes lower damage breaking continuously the entire system without 
sharp LCC decrease (i.e. 2nd order phase transition). Put another way, m∗ represents 
the threshold above which the network modular structure vanishes and the network 
returns to behaving as a non-modular network.

The above studies indicate that network modular structure is a key role in determining 
its robustness. However, the study of this important structural property on the network’s 
robustness as well as other dynamic processes is still limited, as pointed out by Cherifi 
et al (2019). In this work, we analyze empirically how the modularity of scale-free model 
and real-world social networks affects their robustness and the relative efficacy of dif-
ferent node attack strategies. We introduce a novel algorithm to build model networks 
tuning their modularity. Using the proposed algorithm, we simulate networks with dif-
ferent levels of modularity Q by changing the ratio of intra-modules links over inter-
modules links (κ). We demonstrated this method on the scale-free Barabási–Albert (BA) 
(Barabási and Albert 1999) model network with different degree density. We found that 
the attack strategy based on node betweenness, which was found to be the most effec-
tive strategy to break the LCC of real-world networks (Wandelt et al. 2018; Nguyen et al. 
2019), is the best strategy to disrupt the LCC only when κ is higher than a given value κc, 
i.e. when the network has high modularity Q. Below, when network has low modularity 
Q, or even no modular structure, the attack strategy based on node degree is more effec-
tive. In addition, the type of the network percolation phase transition when nodes are 
removed change from a continuous 2nd order (in which LCC has no abrupt decrease) 
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to an abrupt 1st order transition (with abrupt LCC decrease) when κ increases. We also 
examine the effect of network’s density (i.e. the average number of links per node) and 
the number of modules on network robustness and found that those parameters affect 
the network robustness, but not the type of the network percolation phase transition 
(1st or 2nd order) which only depends on κ. Finally, we study those effects for a vari-
ety of real-world social networks and we found that the real-world social networks with 
higher modularity Q are less robust when subjected to both attack strategies, especially 
for betweenness-based strategy. In other words, the efficacy of the attack strategy based 
on nodes betweenness is higher for real-world social networks showing higher modular-
ity Q.

Methods
A network can be represented as a graph G = (V, E), where V = {1, 2, …, N} is the set 
of N nodes (vertices), and E = {eij | i, j ∈ V, i  = j} is the set of E links (edges). Networks 
can be undirected when the links have no specified direction, or directed, in the case 
links present directionality. Network are unweighted when only the presence-absence 
of the links is considered, or weighted, in the case some interaction value is associated 
to the link, i.e. the link weight. Undirected and unweighted networks can be abstracted 
by an NxN adjacency matrix A where element aij = 1 when there is a link between node 
i and j and aij = 0 otherwise. In this paper, only undirected and unweighted networks are 
considered.

Generation of model scale‑free network

In order to generate a model scale-free networks, we select the well-known preferen-
tial attachment Barabási–Albert (BA) model (Barabási and Albert 1999) with size of 
N = 10,000 nodes. The BA model starts from a small clique (a completely connected 
graph) of N0 nodes. At each successive time step, a new node is added and connected 
to M0 different existing nodes (M0 < N0) with the probability of connect an existing node 
is proportional to its degree (i.e. the number of links to the node). The network then 
has a power-law degree distribution P(k) = k−γ with degree exponent γ = 3 (Barabási and 
Albert 1999). We chose the average node degree 

〈

k
〉

 between 2 and 32.
From the BA network we generated modular networks using a new ad hoc algorithm 

by re-wiring links as following:

• Each node is assigned randomly to a module ci = {1, 2, …, m} where m is the total 
number of modules. The number of nodes in each module is approximately N/m.

• For each link connecting two nodes i and j of different modules ci ≠ cj (inter-modules 
links), we will rewire it with a probability w (and keep it without rewiring with prob-
ability 1 – w) by the following procedure:

• We randomly select one node between the two ending nodes of the link, says i, 
and find another node l within the same module of the node i (cl = ci). We then 
detach the inter-modules link between nodes i and j and create a new intra-mod-
ule link between nodes i and l. The node l is selected with a probability propor-
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tioned to its degree (node with higher degree in the module ci has higher probabil-
ity of being selected)

• If some nodes are isolated in the network after rewiring, they will be removed. 
However, we find that only a negligible proportion of nodes can be isolated after 
the rewiring.

We show in Appendix A that, as long as N is high enough, this rewiring procedure sta-
tistically preserve the BA model node degree distribution (scale-free and degree expo-
nent γ = 3).

Thus, by changing the probability w we can change the ratio κ between the number 
of intra-module links Lintra (links that connects two nodes from the same module) and 
inter-modules links Linter (links that connects two nodes of different modules), thus 
varying the community structure of the network. The relation between κ and w can be 
derived as following:

• The number of inter-modules links (Linter) and intra-module links (Lintra) before the 
rewiring process are Linter = (m−1)

m
N �k�
2

 and Lintra = 1
m

N �k�
2

.
• After the rewiring process they become Linter=(1− w) (m−1)

m
N �k�
2

 and  
Lintra= ( 1

m + w (m−1)
m )

N �k�
2

• The ratio κ between Lintra and Linter becomes:

 which is a monotone function of w when m > 1.
• We derive α, the ratio between the probability for a given link to be intra-link (pintra) 

over that for a given link to be inter-link (pinter) as in (Shai et al 2015) by:

 which is also a monotone function of w when m > 1.
The monotone change of κ and α as function of w was confirmed with simulation 

results which are shown in Appendix B.
Thus increasing w, we increase the modularity of the network, i.e. increasing w we 

emphasize the network community structure. Figure 2 presents example of modular net-
work with m = 5 and different value w, created from the initial network with N = 10,000 
and the average degree of 

〈

k
〉

 = 8. For each experiment, we simulate 100 model networks 
and average the results.

The node attack strategies

The network generated above will be exposed to two node attack (removal) simula-
tion processes (or node attack strategies) where a p proportion of nodes with lowest 

κ =
Lintra

Linter
=

(

1

m + w (m−1)
m

)

N �k�
2

1− w (m−1)
m

N �k�
2

=
1+ w(m− 1)

(1− w)(m− 1)
=

m

(1− w)(m− 1)
− 1

α =
pintra

pinter
∼ (m− 1)

Lintra

Linter
=

m

(1− w)
− (m− 1)
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centrality measures are kept and q = 1-p proportion of highest centrality measure nodes 
are removed together with their links:

• The first attack strategy removes nodes according to their degree, i.e. the number of 
links to it, as centrality measure and it is called initial degree (ID) node attack strat-
egy (Albert and Barabási 2002; Bellingeri et al. 2014; Wandelt et al. 2018).

• The second strategy uses a macro-scale network metric, the node betweenneess, 
which is the number of times that a node appears in the shortest paths among all 
nodes pairs in the network (Brandes 2001). This method is commonly used to break 
real-world networks and is called initial betweenneess (IB) node attack strategy (Bell-
ingeri et al. 2014; Wandelt et al. 2018).

In the case of ties, i.e. nodes with equal ranking, we randomly sort the sequence. Since 
the node attack strategies are partially stochastic process, we average the outcomes over 
100 simulations.

The network robustness measures

To measure the robustness of the network under nodes attack we traced the size of 
first largest connected component 1st LCC and the second 2nd LCC as a function of p. 
Further, for each attack simulation, we compute a single value defined as the network 
robustness (R) as done in Bellingeri et  al. (2019). The value of R is the average of the 
normalized sized of the 1st LCC (normalized by the initial number of node N) along the 
removal process. R can range between two theoretical extremes, R ≃ 0 (absolute fragile 
network) and R≃1 (absolute robust network). In addition, we identify the critical value 
of occupation probability pc as the largest value of p where LCC has an abrupt decrease, 
as shown in Fig. 1B. In the case no abrupt decrease was found (Fig. 1A), we compute pc 
using the “Molloy-Reed” criterion (Callaway et al. 2000; Cohen et al. 2000), which states 
that the network loses its overall connectivity when each node in the network has less 
than two links on average. It translates to the mathematic condition of 

〈

k2
〉

/
〈

k
〉

< 2 , 
where k is the node degree. Thus, the higher are R and the lower pc the more robust 
is the network under node attack. As a consequence, when comparing the efficacy of 
the node attack strategies, the higher are R and lower pc, the lower is the efficacy of the 

Initial network w = 0.9 w = 0.98 w = 0.995

(A) (B) (C) (D)
Fig. 2 Visualization of the model for generating scale‑free BA modular networks. The modularity of the 
network increases from (A) to (D). A initial non‑modular scale‑free BA network of size N = 10,000 with average 
degree 〈k〉 = 8. B–D: Illustration of the increasing modularity effect of w on the obtained modular network 
divided into m = 5 modules
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strategy to disrupt the LCC. We then denote pc
ID and pc

IB the node occupation probabil-
ity against ID and IB node attack strategies, respectively; as well as we denote RID and 
RIB the network robustness against ID and IB node attack strategies, respectively.

Real‑world social networks dataset

In addition to model networks, we analyze 12 real-world social networks, in which 8 
are networks of Facebook’s pages where nodes represent pages of different topics—TV 
Shows, Politician, Government, Public Figures, Athletes, Company, New sites and Art-
ist—and links are mutual likes between them. The Facebook’s pages data is collected 
from https:// snap. stanf ord. edu, prepared by (Rozemberczki et al. 2019). Beside, we use 
two financial networks where nodes represent the US SP500 stocks and links are cal-
culated from the correlation matrix using threshold method (see Nguyen et  al. 2019); 
the co-authorship network of scientists working on network theory and experiment 
(NetScience) where nodes represent authors and link’s weight represents the number of 
common papers (Newman 2003; Boccaletti et al. 2006); and the Email network of people 
in a large European Research Institution (Email) where nodes represent researchers and 
links indicate that at least one email was sent between two researchers (Leskovec and 
Faloutsos 2007; Hao Yin et al. 2017).

Table 1 summarizes the following statistics of the real-world social networks:: 

• Node degree: is the number of links to the node (Boccaletti et al. 2006). The degree of 
node i is given by:

where aij=1 in the case there is a link connecting nodes i and j and is 0 otherwise; the 
term N means the sum is over all nodes in the network.

ki =
∑

j �=i∈N

aij

Table 1 Structural statistics of the real‑world social networks: nodes (N), links (L), size of the LCC, 
size of the LCC as % with respect the total number of network nodes, average node degree 〈k〉 , 
diameter (D), transitivity (C), the edge density and the modularity (Q)

To compute modularity Q, a clustering step was executed in priori using the popular fast‑greedy modularity optimization 
algorithm (Clauset et al. 2004)

Network N L LCC LCC (%) 〈k〉 D C Density Q

TV Shows 3892 17,262 3892 100 4.4 20.0 0.443 0.00228 0.830

Politician 5908 41,729 5908 100 7.1 14.0 0.429 0.00239 0.815

Government 7057 89,455 7057 100 12.7 10.0 0.433 0.00358 0.614

Public Figures 11,565 67,114 11,565 100 5.8 15.0 0.215 0.00100 0.645

Athletes 13,866 86,858 13,866 100 6.3 11.0 0.303 0.00090 0.637

Company 14,113 52,310 14,113 100 3.7 15.0 0.287 0.00053 0.656

New sites 27,917 206,259 27,917 100 16.2 15.0 0.138 0.00052 0.529

Artist 50,515 819,306 50,515 100 7.4 11.0 0.295 0.00064 0.457

SP500_1 315 8706 315 100 27.6 6.0 0.511 0.08802 0.253

SP500_2 371 10,636 369 99 28.7 6.0 0.718 0.07748 0.373

NetScience 1589 2742 379 24 1.7 17.0 0.878 0.00109 0.954

Email 1005 16,064 986 98 16.0 7.0 0.450 0.01592 0.341

https://snap.stanford.edu
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• Modularity: The modularity indicator Q calculates how modular is a given division of 
a network into subnetworks (modules or communities):

where L is the number of links, aij is the element of the A adjacency matrix in row i 
and column j, ki is the degree of i, kj is the degree of j, ci is the module (or commu-
nity) of i, cj that of j, the sum goes over all i and j pairs of nodes, and δ(x, y) is 1 if x = 
y and 0 otherwise (Clauset et al. 2004).

• LCC: the largest connected component (also called ‘giant cluster’) represents the 
maximum number of connected nodes in the network (Boccaletti et al. 2006; Bell-
ingeri et al. 2020a, 2020b). Considering all the network clusters, i.e. the sub-networks 
of connected nodes, the LCC can be defined:

where Sj is the size (number of nodes) of the j-th cluster.
• Diameter: the diameter of the network (D) is the longest shortest path length of all 

pairs of nodes in the network, also called the longest geodesic (Newman 2013).
• Transitivity: the transitivity (C) is based on triplets of nodes. A triplet is three nodes 

that are connected by either two (open triplet) or three (closed triplet) undirected 
links. The transitivity is the number of closed triplets (or 3-node closed triangle) over 
the total number of triplets (both open and closed). In formula:

where λclosed is the number of closed triples and λtotal is the number of all possible 
triples in the network. Transitivity represents the overall probability for the network 
to have adjacent nodes interconnected, thus making more tightly connected modules 
(Newman et al. 2002)

• Link Density: the link density (Density) is number of links divided by the total num-
ber of possible links (Boccaletti et al. 2006).

Results
Robustness of non‑modular scale‑free BA network

In Fig. 3 we depict the outcome of a scale-free BA network of size N = 10,000 nodes and 
average degree 

〈

k
〉

 = 4 without rewiring process subjected to ID and IB attack strategies. 
The average size of the 1st and 2nd LCC was shown as a function of the occupation prob-
ability p for each strategy. We found that the 1st LCC decreases continuously under both 
strategies and the network is completely broken down (i.e. the 1st LCC shrinks to quasi 
zero) at a critical occupation probability pc (0.62 and 0.56 for ID and IB, respectively). 
At this transition, we also found that the 2nd LCC has its maximum value as shown in 
Fig. 3B. Such phase transitions are called ‘continuous phase transitions’ or ‘second-order 
phase transitions’ and denote robust network (Mnyukh 2013). Interestingly, while overall 

Q =
1

2L

∑

i,j

(

aij −
kikj

2L

)

δ(ci, cj)

LCC = max
j

(Sj)

C =
�closed

�total
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findings showed that nodes attack strategies based on betweenness centrality are highly 
efficient for most real-world networks (Bellingeri et al. 2014; Iyer et al, 2013; Nguyen and 
Nguyen 2018; Wandelt et al. 2018), our results shown different conclusion. For scale-free 
BA networks without modular structures, the degree-based strategy ID performs bet-
ter than the betweenness-based strategy IB. On the contrary, for scale-free BA networks 
with significant modular structures (higher value of parameter w), betweenness-based 
strategy IB clearly performs better than the degree-based strategy ID. It is therefore 
arguable that the presence of modular structure in networks is an important factor 
enhancing the efficacy of betweenneess-based attack strategy for breaking the 1st LCC, 
as shown in the next sub-section.

Robustness of modular scale‑free BA network

We first present the robustness of the network of different modularity by varying the re-
wiring ratio w, then we discuss the robustness of the network with different node aver-
age degree 

〈

k
〉

 and number of modules m.

Robustness as a function of the modularity

We simulate scale-free BA network of size N = 10,000 nodes with m = 5 modules and 
average degree 

〈

k
〉

 = 4, then applying the rewiring method with increasing w. At first 
when w is small (and the network presents low modularity), we found that the network is 
resilient and the pc remains approximately equivalent as with the original non-modular 
network for both ID and IB attack strategies (Fig. 4). Also, the degree-based strategy ID 
still performs better than the betweenness-based strategy IB. At this level of modular-
ity, the network still owns a high number of inter-modules links. In consequence, when 
the attack strategies remove nodes the 1st LCC continuously become smaller but still 

Fig. 3 Simulation result using ID and IB strategies for the non‑modular network with N = 10,000 nodes and 
average degree 〈k〉 = 4 with: A Size of the first largest connected component (1st LCC) and B the second 
largest connected component (2nd LCC) as a function of the occupation probability p. The result is averaged 
over 100 simulations
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hold the connection among modules, denoting higher network robustness against node 
attack.

Only when w is higher than 0.95 the network become fragile and the 1st LCC abruptly 
decreases at some value of p, as seen in Fig. 4A,B when the network is attacked by the 
IB and ID strategies, respectively. The abrupt decrease of the 1st LCC is clearly observed 
if we plot individual simulations as can been seen in the insert graph of Fig.  4A. We 
observed that the abrupt decrease can occur several times during a simulation and it 
correspond to the moment in which the node removal triggers the disconnection of a 
module, thus producing a faster LCC decrease.

This value of w = 0.95 corresponds to the ratio between the number of intra-module 
links and inter-modules links κc = 23.8 (for m = 5). At this point the connection between 
modules in network is sparse enough and the removal of critical nodes may break 
down the global connectivity. We call pc the largest value of p with an abrupt decrease 
of the 1st LCC, as proposed by (Shai et  al. 2015), and show its relationship with w in 
Fig. 5A. This abrupt decrease happens when a local structure is separated from the 1st 
LCC (denoting lower network robustness). As a result, the size of the 2nd LCC abruptly 
increase at pc and gradually decrease afterward (see Fig. 4C,D).

Now we analyze the modular network robustness using the metric R. As can be seen 
from Fig. 4, all networks become more fragile when w increases for both IB and ID strat-
egies. This is illustrated in Fig.  5A where R was found to be a monotonic decreasing 
function of w for both IB and ID strategies. We also found that the RIB is higher than 
the RID when w is small (< 0.98); on the contrary when w is clearly higher than 0.98, RIB 
become lower than RID showing that the network becomes more vulnerable to the IB 
strategy than the ID strategy.

For illustration of the relative effectiveness, we plot the performance of the IB and ID 
strategies at three values of w within the three regimes discussed above, w = 0.8, 0.99 

Fig. 4 Averaged simulation result for modular networks generated from BA network with N = 10,000, m = 5 
and 〈k〉 = 4 with different value of rewiring probability w: Size of the first largest connected component (1st 
LCC) and the second largest connected component (2nd LCC) as a function of the occupation probability p 
when attacked by IB (A and C, respectively) and ID (B and D, respectively). In (A), an insert showing 20 single 
simulations of the network with rewiring probability of w = 0.995 illustrates the abrupt decreases
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and 0.995 in Fig. 5C,D,E,F,G,H. Clearly, the ID strategy performs better than IB strat-
egy when w = 0.8, approximately equally when w = 0.99, and it is less effective when 
w = 0.995.

Robustness as a function of network density

Next we examine the effect of the link density (i.e. the average number of links per node) 
by simulating scale-free BA network of size N = 10,000 nodes, number of modules m = 5 
with varying average node degree 

〈

k
〉

 from 2 to 16, attacked for both the attack strategies 
IB and ID. We found that pc decreases as the link density increase (Figs. 6 and 7B,D)—
the networks become more robust when nodes have more links. However, the transi-
tions type only depends on the rewiring ratio w and is relatively stable with respect to 
the average degree 

〈

k
〉

 change (Fig.  6). In other words, the ratio of the probability of 
inter-modules links over the probability of intra-module links α (which is a function of 
w) is the critical factor to determine the type of the phase transition.

Robustness as a function of number of modules

Here, we generated scale-free BA network of size N = 10,000 nodes and average 
degree 

〈

k
〉

 = 4 with number of modules m varying from 2 to 20. We run node attack 

Fig. 5 Simulation result for modular networks generated from BA network with N = 10,000, m = 5 and 〈k〉 = 4: 
A The critical occupation probability pc and B the single value network robustness (R) as a function of the 
re‑wiring ratio w. The trend is clear, when w > 0.98, pc

IB becomes higher than pc
ID and RIB becomes smaller 

than RID, showing that the network becomes more vulnerable to the betweenness‑based strategy than the 
degree‑based strategy. C–H Size of the 1st LCC and the 2nd LCC as a function of the occupation probability 
p with three different value of w: 0.8 (C,F), 0.99 (D,G) and 0.995 (E,H). All results are averaged over 100 
simulations
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Fig. 6 Simulation result by IB and ID attack strategies for the modular networks generated from BA network 
with N = 10,000, m = 5 with different value of rewiring probability w and for different node average degree 
〈k〉 . Size of the 1st LCC (A, C, E) and the 2nd LCC (B, D, F) as a function of the occupation probability p when 
attacked by IB for various average node degree 〈k〉 . Size of the 1st LCC (G, I, K) and the 2nd LCC (H, J, L) as a 
function of the occupation probability p when attacked by ID for various average node degree 〈k〉 . All results 
are averaged over 100 simulations
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simulation by both attack strategies IB and ID. We found that for IB strategy the pc 
sharply decreases when w < 0.98 regardless of the number of modules in the network 
(Fig.  8B). The decrease is somehow smoother for ID strategy. For this reason, the 
transition type is relatively insensitive to the number of modules m, as we observed 
for the network density. Moreover, we found that the critical occupation probabil-
ity pc slightly increases with m, suggesting that the model networks become slightly 
more fragile when they have more modules (Fig. 8).

Robustness and structural properties in real‑world networks

In Fig.  9 we present the average size of the 1st and 2nd LCC as a function of the 
occupation probability p for both IB and ID strategies for the 12 real-world net-
works. We found that the IB strategy is more effective than ID strategy in 7 out of 
12 of the real-world networks. Those networks are supposed to have higher level of 
modular structure. Of the 5 remaining networks, the ID strategy is more effective 
than the IB strategy for the Public Figures, Athletes and Company networks, while 
both strategies are of the same efficacy for News sites and Artist networks.

In order to shed light on the relationship between modularity Q, node degree, and 
the efficacy of the attack strategies, we fit the linear models of the robustness RIB 
against the modularity Q and the average node degree 

〈

k
〉

 . In Fig. 10A we show the 
linear model of the RIB with respect to the modularity Q for our modular model net-
work generated with different w from a BA network of N = 10,000, 

〈

k
〉

 = 4 and m = 5. 
We find a significant trend as RIB decreases when Q increases (p-value = 0.01) with 
an abrupt decrease when Q is high (about 0.8). Very interesting, in our real-world 
social networks dataset, we find a similar RIB decrease with modularity Q (Fig. 10E, 

Fig. 7 Robustness measures of simulation result for the modular networks generated from BA network with 
N = 10,000, m = 5 with different value of rewiring probability w and for different node average degree 〈k〉 : 
A, C the single value network robustness (R) and B, D the critical occupation probability pc as a function of 
the re‑wiring ratio w for different node average degree 〈k〉 for IB and ID strategies, respectively. All results are 
averaged over 100 simulations
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p-value < 0.001) corroborating the negative relationship between RIB and the modu-
larity Q of the networks. To note, we do not observe the abrupt robustness decrease 
in the real-world social networks (Fig.  10E). This absence of an abrupt robustness 
RIB decrease can be due to the fact that real-world networks may vary in other 
structural properties (for example, links density, transitivity, assortativity, number 
of modules, etc..), and this structural variability may affect the network response to 
IB node attack. For this reason, the variability in real-world social networks struc-
ture, with many structural factors affecting the network robustness, may prevent the 
abrupt RIB decrease as a function of the modularity Q that we observe in model net-
works. In fact, it should be noted that the network’s robustness can be changed with-
out changing the modularity Q. For example, Yang et  al. (2015) and Mozafari and 
Khansari (2019) were able to improve the network’s robustness with links rewiring 
while preserving the modularity Q.

Further, we find a clear RIB and RID increase by increasing the average node degree 
in our model networks (p-value < 0.001, Fig. 10B,D). This is in agreement with past 
analyses showing how the network robustness to node removal increases with the 
linkage density, i.e. the higher the number of links per node, the slower is the net-
work fragmentation under node removal (Albert and Barabási 2002; Iyer et al. 2013).

Differently, we do not find a significant relationship between RIB and RID and 
〈

k
〉

 in 
our real-world social networks dataset (p-value > 0.1, Fig. 10F,H). Even in this case, 
the variability in real-world networks structure, with many structural factors affect-
ing their robustness, may hide the emergence of a clear relationship between the 
linkage density measured by the average node degree 

〈

k
〉

 and the robustness of the 
network against node attack.

Fig. 8 Robustness measures of simulation result for the modular networks generated from BA network with 
N = 10,000, 〈k〉 = 4 with different value of rewiring probability w and for different number of modules m in 
the network: A, C the single value network robustness (R) and B, D the critical occupation probability pc as a 
function of the re‑wiring ratio w for different node average degree 〈k〉 for IB and ID strategies, respectively. All 
results are averaged over 100 simulations
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Discussion and Conclusion
In this work we study the robustness of scale-free model and real-world social networks 
with different modularity. The scale-free model networks are generated from BA model 

Fig. 9 The size of the 1st and 2nd LCC as a function of occupation probability p of 12 real‑world networks 
when attacked by IB and ID strategies
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with a novel method for tuning their modular structure. Using Monte-Carlo simula-
tion we simulate two node attack strategies, IB and ID based on node’s betweenness 
and degree, respectively. With both attack strategies, we found two types of percolation 
transitions take place. The 1st type of transition with abrupt decrease happens when the 
model network has high modularity, representing by κ > κc with κc ~ 23.8 (or equivalently 
by w ~ 0.98) for both IB and ID attack strategies. Also at and above this critical point, 
the model network is more fragile under betweenness-based strategy attack: RIB < RID, as 
found in many real-world complex networks. When κ < κc or when the model network 
has no modular structure, the network experiences a continuous 2nd order phase tran-
sition under both node-attack strategies. Interestingly, under this regime, the network 
is more robust against the betweenness-based attack strategy IB than the degree-based 
attack strategy ID, contrary to most of the results on real-world networks.

In addition, our work showed that the ratio κ is the main factor for the relative 
efficacy between two strategies as well as the type of percolation transition: small κ 
corresponds to 2nd order continuous phase transition while high κ corresponds to 
an abrupt percolation transition. Further, we investigate how the modularity affects 
the robustness of the system against node removal in 12 real-world social networks 
and find a similar RIB decrease with modularity Q (p-value < 0.001) that we observe 
in model networks varying the modularity. This result indicates how networks with 
higher modularity (i.e. with higher community structure) may be more fragile to 
betweenness-based node attack. At the same, this result shows how the betweenness 
based node attack (IB) is highly effective when attacking a network with a marked 
community structure (higher modularity Q). Differently, in the case the network 

Fig. 10 Linear models of the robustness R as a function of the modularity indicator Q (R = α·Q + β) and 
the average node degree 〈k〉 (R = α · 〈k〉 + β). Top row: model networks (red points); Bottom row: real‑world 
social networks (blue points). A, C Model networks are generated with N = 10,000, 〈k〉 = 4, m = 5 and with 
increasing modularity by varying the parameter w. B, D Model networks are generated with N = 10,000, 
m = 5, w = 0.9 and varying 〈k〉 in the interval (4, 32). Statistical outcomes of the linear model parameters 
(slope α and intercept β): A RIB versus Q: α = − 0.2, β = 0.35, p‑value = 0.01; B RIB versus 〈k〉 : α = 0.01, β = 0.14, 
p‑value < 0.001; C RID versus Q: α = − 0.15, β = 0.31, p‑value < 0.001; D RID versus 〈k〉 : α = 0.01, β = 0.1, 
p‑value < 0.001; E RIB versus Q: α = − 0.26, β = 0.37, p‑value = 0.001; F RIB versus 〈k〉 : α = 0.004, β = 0.18, 
p‑value = 0.16; G RID versus Q: α = − 0.22, β = 0.36, p‑value = 0.035; H RID versus 〈k〉 : α = 0.003, β = 0.2, 
p‑value = 0.2
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shows very low modularity (or no modularity), the degree-based node attack ID may 
perform better than IB.

The implication of this work is multiple. Firstly, it helps to understand the role of mod-
ularity and community structure for the robustness of networks, and to select the most 
effective node removal in networks, depending on their modular structure. If a net-
work has high modularity, and one would like to break it, it would be better to adopt the 
betweenness-based strategy (IB), otherwise one should use the degree-based strategy 
(ID). Although we have tested two main attack strategies, the IB and ID strategies, the 
same procedure can be extended to other node attack strategies, especially the one that 
takes into account the network’s community structure (Magelinski et al. 2021). Inversely, 
if one found that the betweenness-based strategy is more efficacy than the degree-based 
strategy, one can infer that this network is highly modular, and vice-versa.

Secondly, model networks of different structures can be tested using the rewiring 
method we propose in this paper, such as the Erdos–Renyi (ER) random network 
(Erdos and Renyi 1960; Bollobas 2001), the Watts-Strogatz (WS) small-world network 
model (Watts and Strogatz 1998), or scale-free networks with different power expo-
nents. These analyses may be useful to find different relationship between the model 
network community structure and its robustness.

Finally, our novel algorithm which built model networks with tunable modularity, 
provides a method to study role of community structure for other dynamic processes 
on networks, such as epidemic spreading process (Salathe and Jones 2010), and the 
immunization strategy (Gupta et al. 2016, Chakraborty et al. 2016, Kumar et al. 2018, 
Ghalmane et al. 2019b).

Appendix
A. Prove that the rewired network statistically preserves the original node degree 

distribution

Given a node with degree k, the proportion of inter-modules links and intra-module 
links of this node before the rewiring process are approximated by (m−1)

m k and 1mk , 
respectively, where m is the number of modules. A proportion w of its inter-modules 
links will be rewired, thus the expected number of links that this node loses is:

Similarly, this node can also be selected when links from nodes of the same modules 
are rewired. We compute the expected number of rewired links that this node can 
acquire as following:

• The total of rewired links in the network is w (m−1)
m N < k >

• The total of rewired links that will be connected to nodes within the module of the 
node is: w (m−1)

m N < k > /m

w
(m− 1)

m
k
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• The probability that the node is selected is proportioned to the ratio of its degree 
to the total degree of all nodes in the module (according to our method) and is: 
k/(N < k > /m)

• The expected number of rewired links that this node can be selected is therefore 
equal to: w (m−1)

m N < k > /m× k/(N < k > /m) = w (m−1)
m k

which is exactly equal to the expected number of links that this node loses. In con-
sequence, the expected number of links of each node after rewiring process is equal 
to their initial degree, and the network’s degree distribution remain unchanged.

B. Graph of κ , α and Q as function of rewiring probability w and number of modules m

(A, B) Comparison of analytical and simulation results for modular scale-free BA net-
work for κ (A) as a function of w and m and α (B) as a function of w and m. Both 
measures show the goodness of mathematical derivation in the Method section. In 
(C) we present the simulation results for modular scale-free BA network for the mod-
ularity measure Q as a function of w and m.
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