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Abstract
We consider the linear water-wave problem in a periodic channel Πℎ ⊂ ℝ2,
which consists of infinitely many identical containers and connecting thin struc-
tures. The connecting canals are assumed to be of constant, positive length, but
their depth is proportional to a small parameter ℎ. Motivated by applications to
surface wave propagation phenomena, we study the band-gap structure of the
essential spectrum in the linear water-wave system, which forms a spectral prob-
lem where the spectral parameter appears in the Steklov boundary condition
posed on the free water surface. We show that for small ℎ there exists a large
number of spectral gaps and also find asymptotic formulas for the position of the
gaps as ℎ → 0: the endpoints are determined within corrections of order ℎ3∕2.
The width of the first spectral band is shown to be 𝑂(ℎ).
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1 INTRODUCTION

1.1 Overview of the results

In this paper we deal with wave propagation modelled by the linear water-wave system with spectral Steklov boundary
condition on the freewater surface, see Equations (1.5)–(1.7).We consider the 2-dimensional case, where thewater domain
Πℎ ⊂ ℝ2 forms an unbounded periodic channel consisting of infinitely many identical bounded containers connected by
canals with constant length but with width (or rather depth) proportional to a small parameter ℎ > 0, see Fig. 1. The
frequency ranges included in the continuous spectrum of this physical system describe the propagation of water waves
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F IGURE 1 Periodic channel with thin connecting canals

on the free surface of the water filled domain, see for example the monograph [11]. The bands and gaps of the continuous
spectrum are called passing and stopping zones for waves.
The special feature of the linear water-wave equation is the appearance of the spectral parameter in the Steklov bound-

ary condition on the freewater surface. Thismakes a direct application of the classical Sobolev-spacemethods difficult, see
for example [11], especially for an approach based on the application of the Dirichlet-to-Neumann-(or Steklov–Poincaré-)
operator, which is a non-local operator and thus complicated from the point of view of applying themethods of the asymp-
totic analysis; also, see the review paper [12].We followhere themodified techniques used for example in [19, 22] which are
based, among other things, on an unconventional definition of the problem operator with mixed types of inner products
containing both volume and surface integrals; see (1.14). This method has been used for example for proving or disproving
the existence of eigenvalues in some frequency interval.
For a fixed ℎ, the essential spectrum 𝜍ess of the original problem is non-empty due to the unboundedness of the domain.

More precisely, due to the periodicity of the domain, it follows from the Floquet–Bloch–Gelfand(FBG) -theory (see for
example the books [10, 23, 24] and papers [15]; [18], Theorem 2.1; [21], Theorem 3.4.6, for a presentation relevant to the
case of this paper) that 𝜍ess has the band-gap structure

𝜍ess =
∞⋃
𝑘=1

𝖡ℎ
𝑘
, 𝖡ℎ

𝑘
=

{
Λℎ
𝑘
(𝜃) ∶ 𝜃 ∈ [0, 2𝜋)

}
, (1.1)

where the spectral bands 𝖡ℎ
𝑘
are compact subintervals of the positive real axis. By 𝜃 we denote here the Floquet parameter

and
(
Λℎ
𝑘
(𝜃)

)∞
𝑘=1

is the sequence of the eigenvalues of a “model problem” obtained from (1.5)–(1.7) by using the FBG-
transform. In general, the spectral bands may and often do overlap, in which case the essential spectrum is connected.
However, in between the bands there may also appear gaps which are free of the essential spectrum and which describe
“forbidden” frequencies with no wave propagation (or, stopping zones between passing ones). The position of such gaps
is in general of interest in physical applications, since they may be wanted for example for the design of wave filters
and dampers.
In this paper we study the asymptotic position of the bands 𝖡ℎ

𝑘
as ℎ → +0 and apply the results to detect gaps in the

essential spectrum (1.1). In the main result, Theorem 5.1, we show that

|||Λℎ
𝑘
(𝜃) − ℎΛ0

𝑘
(𝜃)||| ≤ 𝐶𝑘ℎ

3∕2 (1.2)

for all 𝑘 ∈ ℕ (with constants 𝐶𝑘 > 0 not depending on ℎ or 𝜃), where the sequence Λ0
𝑘
(𝜃) consists of the eigenvalues of

a “limit problem” corresponding to the case ℎ = 0, or vanishing canals: it is a system of finitely many boundary value
problems for certain simple ordinary differential equations with certain peculiar boundary conditions connecting them.
The numbers Λ0

𝑘
are solutions of an explicit transcendental equation (3.6), and as we will show in Section 3, it is possible

to get a lot of information on them by using computational arguments and in particular to show that infinitely many
spectral gaps indeed exist in the case of the limit problem. Then, the estimate (1.2) implies that the spectrum 𝜍ess also has
at least any given number of gaps, if ℎ > 0 is sufficiently small; see Theorem 5.2. However, since the constants 𝐶𝑘 in (1.2)
also depend on 𝑘, we can only assure that finitely many gaps exist for a fixed ℎ.
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F IGURE 2 a) Periodicity cell of the channel, b) periodicity cell in the case𝐻0 = 0

The proofs of Theorem 5.1 and Theorem 5.2 will be presented in Sections 5 and 6, and they consist of the justification
of the formal asymptotic analysis of the model problem in Sections 2 and 4; the latter section contains the construction of
the approximate eigenfunctions of the model problem. One more main tool is the so-called convergence lemma, which is
Lemma 6.1 in Section 6.
Besides the Steklov spectral condition and periodic structure, one more characteristic feature of the problem under

consideration is described by junctions of massive bodies with thin ligaments. For example, the dumbbell, which is a
union of two massive domains connected by a thin cylinder, is a classical object in asymptotic analysis. The spectrum of
the Laplace–Neumann problem in such a domain has been studied in many papers starting from the pioneering works
[1, 2]. Aymptotic expansions for eigenvalues and eigenfunctions have been constructed and applied in many other works
including [9, 16, 17]; recently, for example in [4]. Concerning asymptotic methods, we will here partly follow the approach
in [20].

1.2 Formulation of the problem, operator theoretic tools

Let us proceed with the exact formulation of the problem. We consider an infinite two-dimensional periodic channel
Πℎ ⊂ ℝ2 consisting of water containers connected by narrow canals of diameter𝑂(ℎ). The coordinates of the points in the
channel are denoted by 𝑥 = (𝑥1, 𝑥2) = (𝑦, 𝑧). We choose the coordinate system in such a way that the axis of the channel
is in 𝑥1-direction and the free surface is on the line {𝑥 ∶ 𝑥2 = 0}. In more detail, the periodic channelΠℎ is defined as the
interior of the set

Πℎ =
⋃
𝑗∈ℤ

Ωℎ
𝑗 ,

where the domains Ωℎ
𝑗 are translates of the periodicity cell Ω

ℎ,

Ωℎ
𝑗 =

{
𝑥 ∶ (𝑥1 − 𝑗, 𝑥2) ∈ Ωℎ

}
, 𝑗 ∈ ℤ = {0, ±1, ±2, …}.

The periodicity cell (see Fig. 2.a)) Ωℎ ⊂ (−1∕2, 1∕2) × (−𝖽, 0), where 𝖽 > 0 is the depth of the channel, consists of two
main parts, the container Ω and the connecting canals 𝑄ℎ

0 , … , 𝑄ℎ
𝑁 , more precisely,

Ωℎ = Ω ∪

(
𝑁⋃
𝑗=0

𝑄ℎ
𝑗

)
∪

(
𝑁⋃
𝑗=0

⋃
±

(
{±𝓁} × 𝜎ℎ𝑗

))
.

Here, the following notation and conventions are used. The container Ω ⊂ ℝ2 is a domain with a Lipschitz boundary
and compact closure, and it is contained in the rectangle (−𝓁, 𝓁) × (−𝖽, 0), where 0 < 𝓁 < 1∕2. Moreover, we assume that
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for some 0 < 𝖽′ < 𝖽 the line segments {±𝓁} × (−𝖽′, 0) are part of the boundary 𝜕Ω. The boundary of Ω consists of the
free water surface Γ0 = 𝜕Ω ∩ {𝑧 = 0} and the wall and bottom Σ = 𝜕Ω ∩ {𝑧 < 0}. The connecting canals𝑄ℎ

𝑗 ∶= 𝑄ℎ
𝑗+ ∪ 𝑄

ℎ
𝑗−,

where

𝑄ℎ
𝑗− =

(
−
1
2
,−𝓁

)
× 𝜎ℎ𝑗 , 𝑄

ℎ
𝑗+ =

(
𝓁,
1
2

)
× 𝜎ℎ𝑗 and 𝜎ℎ𝑗 ∶=

(
𝑑𝑗 − ℎ𝐻𝑗, 𝑑𝑗

)
, (1.3)

are determined by the depth positions and relative widths

0 = 𝑑0 > 𝑑1 > … > 𝑑𝑁 > −𝖽′ , 𝐻𝑗 > 0 ∀ 𝑗 ∈ {0, … ,𝑁}.

We also denote 𝜎ℎ ∶=
⋃𝑁

𝑗=0 𝜎
ℎ
𝑗 and 𝑃𝑗± =

(
± 𝓁, 𝑑𝑗

)
for all 𝑗 and signs. The parameter ℎ > 0 is assumed so small that the

canals 𝑄ℎ
𝑗 do not touch each other. We also write

Υ ∶= Υ− ∪ Υ+ ∶=
(
−
1

2
, −𝓁

)
∪
(
𝓁,

1

2

)
. (1.4)

The free surface of the periodicity cellΩℎ (independent of ℎ) is denoted by Γ = 𝜕Ωℎ ∩ {𝑥2 = 0}, and the wall and bottom
part of the boundary is

Σℎ = 𝜕Ωℎ ⧵
(
Γ ∪

(
{−𝓁} × 𝜎ℎ

)
∪
(
{𝓁} × 𝜎ℎ

))
i.e. we leave out the lateral ends of the canals from Σℎ. Finally, the free water surface of the entire channel Πℎ and its
wall/bottom are defined, respectively, as

Γtot = 𝜕Πℎ ∩ {𝑥2 = 0} =
{
𝑥 ∈ ℝ2 ∶ 𝑥2 = 0

}
, Σℎtot = 𝜕Πℎ ∩ {𝑥2 < 0}.

Remark 1.1. We will use the following general notation. We write ℝ+
0 for the set of non-negative real numbers. Given

a domain Ξ ⊂ ℝ𝑑, the symbol |Ξ| stands for its volume in ℝ𝑑 and (⋅, ⋅)Ξ stands for the natural scalar product in 𝐿2(Ξ),
and 𝐻𝑘(Ξ), 𝑘 ∈ ℕ, for the standard Sobolev space of order 𝑘 on Ξ. The norm of a function 𝑓 belonging to a Banach
function space 𝑋 is denoted by ‖𝑓;𝑋‖. For 𝑟 > 0 and 𝑎 ∈ ℝ𝑁 , 𝐵(𝑎, 𝑟) (respectively, 𝑆(𝑎, 𝑟) ) stand for the Euclidean
ball (resp. ball surface) with centre 𝑎 and radius 𝑟. By 𝐶, 𝑐 (respectively, 𝐶𝑘, 𝑐𝑘, 𝐶(𝑘) etc.) we mean positive constants
(resp. constants depending on a parameter 𝑘) which do not depend on functions or variables appearing in the inequal-
ities, but which may still vary from place to place. The gradient and Laplace operators ∇ and Δ act in the variable 𝑥,
unless otherwise indicated. We write 𝜕𝑦 = 𝜕∕𝜕𝑦 etc. , and 𝜕𝜈 for the outward normal derivative on the boundary of a given
planar domain.

In the framework of the linear water-wave theory we consider the spectral Steklov–Neumann problem in the
channel Πℎ,

−Δ𝑢(𝑥) = 0 for all 𝑥 ∈ Πℎ, (1.5)

𝜕𝜈𝑢(𝑥) = 0 for a.e. 𝑥 ∈ Σℎtot, (1.6)

𝜕𝑧𝑢(𝑥) = 𝜆𝑢(𝑥) for a.e. 𝑥 ∈ Γtot. (1.7)

Here 𝑢 = 𝑢(𝑥) = 𝑢(𝑥; ℎ) is the velocity potential, 𝜆 = 𝜆(ℎ) = 𝑔−1𝜔2 is a spectral parameter related to the frequency of
harmonic oscillations 𝜔 = 𝜔(ℎ) > 0 and the acceleration of gravity 𝑔 > 0 (the dependence of 𝜆 on ℎ will usually not be
displayed). By the geometric assumptions made above, the derivative 𝜕𝜈 is defined almost everywhere on Σℎ. It coincides
with 𝜕𝑧 on the free surface Γtot.
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The spectral problem (1.5)–(1.7) can be transformed into a family of spectral problems in the periodicity cell using the
FBG-transform

𝑢(𝑦, 𝑧) ↦ 𝑈(𝑦, 𝑧, 𝜃) =
1√
2𝜋

∑
𝑗∈ℤ

𝑒−𝑖𝜃𝑗𝑢(𝑦 + 𝑗, 𝑧),

where (𝑦, 𝑧) ∈ Πℎ on the left while 𝜃 ∈ [0, 2𝜋) and (𝑦, 𝑧) ∈ Ωℎ on the right. As is well known, the FBG-transform estab-
lishes an isometric isomorphism

𝐿2
(
Πℎ

)
≃ 𝐿2

(
0, 2𝜋; 𝐿2

(
Ωℎ

))
,

where 𝐿2(0, 2𝜋; 𝐵) is the Lebesgue space of functions with values in the Banach space 𝐵, endowed with the norm

‖‖𝑓; 𝐿2(0, 2𝜋; 𝐵)‖‖ =
(
∫

2𝜋

0
‖𝑓(𝜃); 𝐵‖2 𝑑𝜃)1∕2

.

We denote by𝐻1
𝜃

(
Ωℎ

)
, where 𝜃 ∈ [0, 2𝜋), the subspace of the Sobolev space𝐻1

(
Ωℎ

)
consisting of functions satisfying the

quasiperiodic boundary condition (1.11) (see below). The FBG-transform is also an isomorphism from the Sobolev space
𝐻1

(
Πℎ

)
onto𝐻1

(
0, 2𝜋;𝐻1

𝜃

(
Ωℎ

))
(see [5] and e.g. [21, § 3.4], [18, Cor. 3.4.3], [10, Sec. 2.2]).

Applying the FBG-transform to the differential equation (1.5) and to the boundary conditions (1.6)–(1.7), we obtain a
family of model problems in the periodicity cell Ωℎ parametrized by the dual variable 𝜃, the Floquet parameter,

−Δ𝑈(𝑥) = 0, 𝑥 ∈ Ωℎ, (1.8)

𝜕𝜈𝑈(𝑥) = 0, 𝑥 ∈ Σℎ, (1.9)

𝜕𝑧𝑈(𝑥) = Λ𝑈(𝑥), 𝑥 ∈ Γ, (1.10)

𝑈(1∕2, 𝑧) = 𝑒𝑖𝜃𝑈(−1∕2, 𝑧), 𝑧 ∈ 𝜎ℎ, (1.11)

𝜕𝑦𝑈(1∕2, 𝑧) = 𝑒𝑖𝜃𝜕𝑦𝑈(−1∕2, 𝑧), 𝑧 ∈ 𝜎ℎ. (1.12)

Here, 𝑈 = 𝑈(𝑥) = 𝑈(𝑥; ℎ, 𝜃) and Λ = Λ(ℎ, 𝜃) is a new notation for the spectral parameter 𝜆.
Our approach to the spectral properties of the model is similar to [20, 22] and others. We write the variational form of

the problem (1.8)–(1.12) for the unknown function 𝑈 ∈ 𝐻1
𝜃

(
Ωℎ

)
as

(∇𝑈,∇𝑉)Ωℎ = Λ(𝑈,𝑉)Γ , 𝑉 ∈ 𝐻1
𝜃

(
Ωℎ

)
. (1.13)

We denote briefly byℎ = ℎ(𝜃) the space𝐻1
𝜃

(
Ωℎ

)
endowed with the new scalar product

(𝑢, 𝑣)ℎ = (∇𝑢,∇𝑣)Ωℎ + (𝑢, 𝑣)Γ, (1.14)

where the inner product in Γ is understood in the sense of traces, and define a self-adjoint, positive and compact operator
ℎ = ℎ(𝜃) ∶ ℎ(𝜃) → ℎ(𝜃) using the identity(ℎ(𝜃)𝑢, 𝑣

)
ℎ
= (𝑢, 𝑣)Γ ∀ 𝑢, 𝑣 ∈ (𝜃). (1.15)

The problem (1.13) is then equivalent with the standard spectral problem in the Hilbert spaceℎ(𝜃)

ℎ(𝜃)𝑢 = 𝑀𝑢,
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with the new spectral parameter

𝑀 = 𝑀(ℎ, 𝜃) = (1 + Λ(ℎ, 𝜃))−1. (1.16)

Clearly, according to [3, Thm. 10.1.5, 10.2.2] the spectrumofℎ(𝜃) consist of null, which is a point in the essential spectrum,
and a positive sequence

(
𝑀ℎ

𝑘
(𝜃)

)∞
𝑘=1

of eigenvalues (counting multiplicities) convergent to 0; these can be calculated from
the usual min-max principle

𝑀ℎ
𝑘
(𝜃) = min

𝐸𝑘
max

𝑣∈𝐸𝑘⧵{0}

(ℎ(𝜃)𝑣, 𝑣
)
ℎ

(𝑣, 𝑣)ℎ
,

where the minimum is taken over all subspaces 𝐸𝑘 ⊂ ℎ(𝜃) of co-dimension 𝑘 − 1. Using (1.14) and (1.15), we can write a
max-min principle for the eigenvalues of the problem (1.13):

Λℎ
𝑘
= Λℎ

𝑘
(𝜃) =

1

𝑀ℎ
𝑘
(𝜃)

− 1 = max
𝐸𝑘

min
𝑣∈𝐸𝑘⧵𝐻

1
0(Ω

ℎ;Γ)

(∇𝑣,∇𝑣)Ωℎ + (𝑣, 𝑣)Γ
(𝑣, 𝑣)Γ

− 1

= max
𝐸𝑘

min
𝑣∈𝐸𝑘⧵𝐻

1
0(Ω

ℎ;Γ)

‖∇𝑣; 𝐿2(Ωℎ)‖2‖𝑣; 𝐿2(Γ)‖2 . (1.17)

On the other hand, formula (1.16) and the properties of the sequence
(
𝑀ℎ

𝑘
(𝜃)

)∞
𝑘=1

mean that the eigenvalues (1.17) form
an unbounded sequence

0 ≤ Λℎ
1(𝜃) ≤ Λℎ

2(𝜃) ≤ ⋯ ≤ Λℎ
𝑘
(𝜃) ≤ ⋯→ +∞, (1.18)

where multiplicities have been taken into account. We denote by𝑈ℎ,𝜃
𝑘

∈ ℎ(𝜃) the eigenfunction corresponding toΛℎ
𝑘
(𝜃)

and assume that these eigenfunctions are normalized so as to form, for fixed ℎ and 𝜃, an orthonormal sequence in the
space 𝐿2(Γ). The functions 𝜃 ↦ Λℎ

𝑘
(𝜃) are continuous and 2𝜋-periodic (see for example [7, Ch. 9], [10, Sec. 3.1]). Hence,

the spectral bands 𝖡ℎ
𝑘
=

{
Λℎ
𝑘
(𝜃) ∶ 𝜃 ∈ [0, 2𝜋)

}
of (1.1) indeed are compact intervals.

2 THE FORMAL ASYMPTOTIC PROCEDURE

2.1 Equations for the terms of the ansatz

In Sections 2–4 we apply the method of matched asymptotic expansions, see [6, 13, 25] and others, to construct approxi-
mating near-eigenfunctions for the model problem (1.8)–(1.12). We fix 𝑘 and 𝜃 for this section and usually suppress them
from the notation, denoting for example Λℎ ∶= Λℎ

𝑘
(𝜃), and 𝑈ℎ ∶= 𝑈ℎ,𝜃

𝑘
and similarly for the other quantities.

We will next adapt to our problem the asymptotic ansätze used in [20] for a parameter independent Steklov problem.
Inside the container Ωwe write the outer expansion

𝑈ℎ(𝑥) = 𝑈ℎ,𝜃
𝑘
(𝑥) = 𝑎 + ℎ𝑈′(𝑥) +⋯ , (2.1)

where the constant 𝑎 = 𝑎𝑘(𝜃) and the function 𝑈′ = 𝑈′𝜃
𝑘
are to be determined, and the dots indicate higher order terms

in ℎ which are inessential for our formal analysis. The outer expansion in the canals 𝑄ℎ
𝑗±, 𝑗 = 0,… ,𝑁, reads as

𝑈ℎ
(
𝑦, 𝜁𝑗

)
= 𝑤𝑗(𝑦) + ℎ2𝑊𝑗

(
𝑦, 𝜁𝑗

)
+⋯, (2.2)

where the functions 𝑤𝑗 = 𝑤𝜃
𝑗,𝑘

and𝑊𝑗 = 𝑊𝜃
𝑗,𝑘

are to be determined and the variable 𝜁𝑗 is stretched in 𝑧-direction,

𝜁𝑗 = ℎ−1
(
𝑧 − 𝑑𝑗

)
, 𝑗 = 0, 1, … ,𝑁.
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For Λℎ = Λℎ
𝑘
(𝜃), we use the expansion

Λℎ = ℎΛ0 +⋯ (2.3)

where Λ0 = Λ0
𝑘
(𝜃) is to be found.

2.2 Outer expansions in the canals

Let us derive equations for the terms introduced above. Putting the expansion (2.2) into (1.8) yields

𝜕2𝑦𝑤𝑗(𝑦) + ℎ2𝜕2𝑦𝑊𝑗

(
𝑦, 𝜁𝑗

)
+ ℎ2ℎ−2𝜕2

𝜁
𝑊𝑗

(
𝑦, 𝜁𝑗

)
= 0 +⋯ . (2.4)

Collecting terms of the lowest order ℎ0 in (2.4) leads to the equation

−𝜕2
𝜁
𝑊𝑗

(
𝑦, 𝜁𝑗

)
= 𝐹𝑗

(
𝑦, 𝜁𝑗

)
∶= 𝜕2𝑦𝑤𝑗(𝑦), 𝜁𝑗 ∈

(
−𝐻𝑗, 0

)
, (2.5)

for all 𝑗 = 0,… ,𝑁.
Let us consider the case 𝑗 = 0. Setting (2.2) and (2.3) to the boundary condition (1.10) gives us

ℎ2ℎ−1𝜕𝜁𝑊0(𝑦, 0) +⋯ = 𝜕𝑧
(
𝑤0(𝑦) + ℎ2𝑊0(𝑦, 𝜁𝑗

)
+⋯)|||𝑧=0

= ℎΛ0
𝑘

(
𝑤0(𝑦) + ℎ2𝑊0(𝑦, 0) +⋯

)
so we obtain from the terms of order ℎ the boundary condition for equation (2.5)

𝜕𝜁𝑊0(𝑦, 0) = 𝐺0(𝑦) ∶= Λ0𝑤0(𝑦) , 𝑦 ∈ Υ (2.6)

(see (1.4) for the notation). Since 𝜕𝑧𝑤0 = 0 everywhere on the bottom of the canal, Equation (1.9) leads to the boundary
condition

𝜕𝜁𝑊0

(
𝑦, −𝐻0

)
= 𝐺𝐻 ∶= 0 , 𝑦 ∈ Υ. (2.7)

We consider the problem (2.5), (2.6), (2.7) as a one-dimensional Neumann problem for the function𝑊0 in the variable
𝜁𝑗 so that 𝑦 is regarded as a parameter. The compatibility condition in this problem reads as

0

∫
−𝐻𝑗

𝐹0(𝑦, 𝜁) 𝑑𝜁 + 𝐺0(𝑦) − 𝐺𝐻 = 0

and converts into

0

∫
−ℎ𝐻0

𝜕2
𝜁
𝑊0(𝑦, 𝜁0±) 𝑑𝑧 = ℎ𝐻0𝜕𝜁𝑊0(𝑦, 0) , 𝑦 ∈ Υ±.

On the other hand, by (2.5),

0

∫
−ℎ𝐻0

𝜕2
𝜁
𝑊0

(
𝑦, 𝜁0±

)
𝑑𝑧 = −ℎ𝐻0𝜕

2
𝑦𝑤0(𝑦)
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for 𝑦 ∈ Υ±, hence, using (2.6), (2.7) we get the following differential equation for 𝑤0:

−𝐻0𝜕
2
𝑦𝑤0(𝑦) = Λ0𝑤0(𝑦), 𝑦 ∈ Υ. (2.8)

If 𝑗 = 1,… ,𝑁, we derive an equation for 𝑤𝑗 in the same way, except that the homogeneous Neumann condition (1.9) is
used instead of (1.10) so that 𝐺0 is omitted. As a result we get the equations

−𝐻𝑗𝜕
2
𝑦𝑤𝑗(𝑦) = 0 for 𝑗 = 1,… ,𝑁 , 𝑦 ∈ Υ. (2.9)

As for the boundary conditions associated with (2.8), (2.9), the outer expansion does not contribute to the behaviour of
the ansatz near 𝑦 = ±1∕2 hence, all 𝑤𝑗 must satisfy the quasiperiodic boundary conditions

𝑤𝑗(1∕2) = 𝑒𝑖𝜃𝑤𝑗(−1∕2), 𝜕𝑦𝑤𝑗(1∕2) = 𝑒𝑖𝜃𝜕𝑦𝑤𝑗(−1∕2). (2.10)

In addition, due to the leading term of the outer expansion (2.1), we require that for all 𝑗 = 0,… ,𝑁 there holds

𝑤𝑗(±𝓁) = 𝑎. (2.11)

This condition connects all Equations (2.8) and (2.9).

2.3 Boundary layer phenomenon

Near the points 𝑃𝑗± =
(
± 𝓁, 𝑑𝑗

)
the narrow canals 𝑄ℎ

𝑗±, 𝑗 = 0,… ,𝑁, are joined with the large containerΩ. The geometry
is thus crucially different from that of the isolated container, and there arises boundary layer effects, which influence the
solutions𝑈 of (1.8)–(1.12). In the framework of the method of matched asymptotic expansions, these effects are described
by the inner expansions

𝑈ℎ
(
𝜉𝑗±

)
= 𝑣0𝑗±

(
𝜉𝑗±

)
+ ℎ𝑣′𝑗±

(
𝜉𝑗±

)
+⋯ (2.12)

where 𝑣0𝑗± = 𝑣0,𝜃
𝑗±,𝑘

and 𝑣′𝑗± = 𝑣′𝜃
𝑗±,𝑘

and we use the stretched coordinates

𝜉𝑗± =
(
𝜉
𝑗±
1 , 𝜉

𝑗±
2

)
=

(
𝜂𝑗±, 𝜁𝑗

)
=

(
ℎ−1(±𝑦 − 𝓁), ℎ−1

(
𝑧 − 𝑑𝑗

))
. (2.13)

For 𝑗 = 0,… ,𝑁, the coordinate dilation 𝑥 ↦ 𝜉𝑗± and formal substitution ℎ = 0 transform the singularly perturbed domain
Ωℎ into the unbounded one Ξ𝑗 = 𝕂𝑗 ∪ ℙ𝑗 , where the quadrants, half-spaces and strips are denoted by

𝕂0 =
{
𝜉 ∈ ℝ2 ∶ 𝜉1 < 0, 𝜉2 < 0

}
,

𝕂𝑗 =
{
𝜉 ∈ ℝ2 ∶ 𝜉1 < 0

}
for 𝑗 = 1,… ,𝑁,

ℙ𝑗 =
{
𝜉 ∈ ℝ2 ∶ 𝜉1 ≥ 0, 𝜉2 ∈ (−𝐻𝑗, 0)

}
for 𝑗 = 0,… ,𝑁,

see Fig. 3.
The functions 𝑣0𝑗± and 𝑣

′
𝑗± of (2.12) satisfy the homogeneous Neumann problem

−Δ𝜉𝑣(𝜉) = 0, 𝜉 ∈ Ξ𝑗,

𝜕𝜈(𝜉)𝑣(𝜉) = 0, 𝜉 ∈ 𝜕Ξ𝑗, (2.14)

which comes directly from (1.8), (1.9), while the Steklov condition (1.10) turns according to (2.13) and (2.3) into

𝜕𝑧𝑈
ℎ − Λ𝑈ℎ = ℎ−1𝜕𝜁0𝑈

0 − ℎΛ0𝑈0 +⋯
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(B)(A)

F IGURE 3 The streched domains a) Ξ0 and b) Ξ𝑗 , 𝑗 = 1,… ,𝑁

so that the term ℎ2Λ0𝑈0 disappears in the limit after multiplication by ℎ and the homogeneous Neumann condition
occurs again.
We obtain from the expansion (2.2) in the canal 𝑄ℎ

𝑗± that

𝑈ℎ
(
𝑦, 𝜁𝑗

)
= 𝑤𝑗(±𝓁) + (𝑦 ∓ 𝓁)𝜕𝑦𝑤𝑗(±𝓁) +⋯

= 𝑤𝑗(±𝓁) ± ℎ𝜂𝑗±𝜕𝑦𝑤𝑗(±𝓁) +⋯ . (2.15)

Looking at (2.15) we observe that the terms of the inner expansion (2.12) must behave linearly in the strip outlets ℙ𝑗 . Let
us list such solutions of (2.14). The first one is evident: the constant function, denoted by 𝑉0

𝑗± = 1. The second solution
𝑉1
𝑗± must grow as ±𝐻−1

𝑗 𝜂𝑗± in ℙ𝑗 . Since the flux in the strip outlet

lim
𝑅→+∞

0

∫
−𝐻𝑗

𝜕𝑉1
𝑗±

𝜕𝜂
(𝑅, 𝜁) 𝑑𝜁 = ±1

does not vanish, the flux in the angular outlet 𝕂𝑗 is nonzero, too. This leads to the decompositions

𝑉1
0±

(
𝜉0±

)
= ±

2
𝜋
ln

1
𝜚0±

± 𝐶0 + 𝑂

(
1
𝜚0±

)
, 𝜚0± → +∞ in 𝕂0, (2.16)

𝑉1
𝑗±

(
𝜉𝑝±

)
= ±

1
𝜋
ln

1
𝜚𝑗±

± 𝐶 + 𝑂

(
1
𝜚𝑗±

)
, 𝜚𝑗± → +∞ in 𝕂𝑗, 𝑗 = 1,… ,𝑁, (2.17)

where 𝜚𝑗± = ||𝜉𝑗±|| for all 𝑗. Notice that the numbers 𝜋∕2 and 𝜋 in (2.16) and (2.17) are nothing but the angles of opening
of 𝕂0 and 𝕂𝑝, respectively.
A basic result in harmonic analysis assures the existence of the solutions 𝑉1

𝑗± = −𝑉1
𝑗∓, and their uniqueness follows

from the requirement

𝑉1
𝑗±(𝜉

𝑗±) = ±𝐻−1
𝑗 𝜂𝑗± + 𝑂

(
𝑒−𝐻𝑗𝜂𝑗±∕𝜋

)
, 𝜂𝑗± → +∞ in ℙ𝑗,

since the constant is annulled here.
Comparing the expansions (2.12) and (2.15) in the canal 𝑄ℎ

𝑗±, the matching procedure gives us

𝑣0𝑗±(𝜉) = 𝑤𝑗(±𝓁)𝑉
0
𝑗±(𝜉) = 𝑤𝑗(±𝓁), (2.18)

𝑣′𝑗±(𝜉) = ±𝐻𝑗𝜕𝑦𝑤𝑗(±𝓁)𝑉
1
𝑗±(𝜉) + 𝑐ℎ

𝑗,𝓁
, (2.19)
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where the constant 𝑐ℎ
𝑗,𝓁

does not affect our formal analysis, cf. Remark 2.1. Taking into account (2.18), (2.19) and recalling
(2.16), (2.17) we see that near the points

(
± 𝓁,−𝑑𝑗

)
and inside the container Ω there holds

𝑈ℎ(𝑥) = 𝑤𝑗(±𝓁) ± ℎ
1 + 𝛿𝑗,0

𝜋
𝐻𝑗𝜕𝑦𝑤𝑗(±𝓁) ln

1
𝜚𝑗±

+ 𝑐ℎ𝑗± +⋯ (2.20)

with the Kronecker delta 𝛿𝑗,0, for all 𝑗 = 0,… ,𝑁.

Remark 2.1. We have ln 𝜚𝑗± = ln 𝑟𝑗± − ln ℎ, where 𝑟𝑗± is the distance between the points 𝑥 and
(
± 𝓁𝑗, −𝑑𝑗

)
. The factor

ln ℎ in (2.20) can be hidden into the term 𝑐ℎ𝑗± so that the constant

𝑐′𝑗± = 𝑐ℎ𝑗± ± 𝜋−1
(
1 + 𝛿𝑗,0

)
𝐻𝑗𝜕𝑦𝑤𝑗(±𝓁) ln ℎ

becomes independent of the large parameter | ln ℎ| and can be fixed at the next step of the asymptotic procedure. □

Comparing (2.20) and the outer expansion (2.1) in Ω, we conclude that matching at the level 1 = ℎ0 yields the relation
(2.11), where 𝑗 = 0,… ,𝑁 and 𝑎 is a constant, whilematching at the level ℎ requires the following behavior of the correction
term, when |(𝑦 ± 𝓁, 𝑧 − 𝑑𝑗

)| approaches 0:
𝑈′(𝑥) = ±

1 + 𝛿𝑗,0
𝜋

𝐻𝑗𝜕𝑦𝑤𝑗(±𝓁) ln
1
𝑟𝑗±

+ 𝑂(1) . (2.21)

2.4 Outer expansion in the container

The detached logarithmic terms in (2.21) can be interpreted as Poisson kernels and in this way the correction term 𝑈′ in
the ansatz (2.1) for 𝑈ℎ is obtained as the solution of the following Neumann problem in Ω, which is to be understood in
the sense of distribution theory:

−Δ𝑈′(𝑥) = 0, 𝑥 ∈ Ω, (2.22)

𝜕𝑧𝑈
′(𝑥) = Λ0𝑎, 𝑥 ∈ Γ, (2.23)

𝜕𝜈𝑈
′(𝑥) =

∑
±

𝑁∑
𝑗=0

±𝛿𝑃𝑗±𝐻𝑗𝜕𝑦𝑤𝑗(±𝓁), 𝑥 ∈ Σ. (2.24)

Here, 𝛿𝑏 denotes the Dirac mass at the point 𝑏 of a one-dimensional manifold, namely the boundary curve Σ.
The compatibility condition ∫

𝜕Ω
𝜕𝜈𝑈

′ 𝑑𝑠 = 0 in the Neumann problem (2.22)–(2.24) leads to the relation

2𝓁Λ0𝑎 +
𝑁∑
𝑗=0

𝐻𝑗

(
𝜕𝑦𝑤𝑗(𝓁) − 𝜕𝑦𝑤𝑗(−𝓁)

)
= 0. (2.25)

To describe the solution of (2.22)–(2.24), we note that the boundary ofΩ coincides with a line segment in a neighbourhood
of every 𝑃𝑗± with 𝑗 ≥ 1, but the two points 𝑃0± are corners ofΩ. This leads to the observation that, given a constant 𝑎 ∈ ℂ
such that (2.25) holds, the problem (2.22)–(2.24) has a (harmonic) solution 𝑈′ in Ω,

𝑈′(𝑥) =
∑
±

𝑁∑
𝑗=0

𝐾𝑗±
𝜋

log
(|𝑥 − 𝑃𝑗±|) +𝑈, (2.26)
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where

𝐾𝑗± = ±
𝐻𝑗

1 + 𝛿𝑗,0
𝜕𝑦𝑤𝑗(±𝓁) for 𝑗 = 0,… ,𝑁 (2.27)

and the harmonic function 𝑈̃ in Ω satisfies

sup
𝑥∈Ω

|||𝑈(𝑥)||| ≤ 𝐶 inf
𝑗±

|||𝑥 − 𝑃𝑗±
||| , sup

𝑥∈Ω

|||∇𝑈(𝑥)||| ≤ 𝐶. (2.28)

The form of the singularities (2.26) at 𝑃𝑗±, 𝑗 ≥ 1, can be deduced from basic distribution theory, namely, in the space of
distributions on the one-dimensional space of 𝑧-axis there holds

𝜕
𝜕𝑦

ln(|𝑥 + (𝜀, 0)|) = 𝜀|𝑥 + (𝜀, 0)|2 → 𝜋𝛿0 as 𝜀 → 0

where 𝛿0 is the Dirac measure at 0. However, the corner points 𝑃0± are more complicated, and the asymptotic form of
the solution in their vicinity as well as the estimates (2.28) are determined by the theory of elliptic boundary problems in
corner and conical domains (see [8, 14] and, e.g., [21, Ch. 2, Sect. 3.6]).

3 LIMIT PROBLEMAND ITS EIGENVALUES

Equations (2.8) and (2.9) with boundary conditions (2.10) and (2.11), together with Equation (2.25), constitute the so-called
limit problem. As this problem concerns functions which are constant in Ω, its variational formulation is defined in the
space

𝜃(Υ) =
{
⃖⃗𝑤 = (𝑤0, … ,𝑤𝑁) ∈ 𝐻1(Υ)𝑁+1 ∶ 𝑤𝑗(1∕2) = 𝑒𝑖𝜃𝑤𝑗(−1∕2) and

∃𝑤∙ ∈ ℂ such that 𝑤𝑗(𝓁) = 𝑤𝑗(−𝓁) = 𝑤∙ ∀ 𝑗 = 0,… ,𝑁
}
. (3.1)

The variational problem, for the unknown ⃖⃗𝑤 ∈ 𝜃(Υ), is obtained by integrating (2.8), (2.9), and taking into account (2.10),
(2.11) and (2.25):

𝑁∑
𝑗=0

∫
Υ

𝜕𝑦𝑤𝑗(𝑦)𝜕𝑗𝑣𝑗(𝑦) 𝑑𝑦 = Λ0 ∫
Υ

𝑤0(𝑦)𝑣0(𝑦) 𝑑𝑦 + 2𝓁(𝑁 + 1)Λ0𝑤∙𝑣∙ ∀ 𝑣 ∈ 𝜃(Υ). (3.2)

The problem (2.8)–(2.11) can be solved explicitly for a fixed 𝑎 in the sense that the eigenvalues Λ0 are determined as
solutions of a transcendental equation. We need to derive this equation and also prove results on the possible values of
the solutions in order to establish the existence of spectral gaps. Due to the linearity of Equations (2.8)–(2.10) we see that
𝑎 of (2.11) can be considered as a normalization constant; it becomes fixed via the normalization just after (3.9).
The solution 𝑤0 of (2.8) has the expression

𝑤0(𝑦) =

⎧⎪⎨⎪⎩
𝐴𝑒𝑖𝐻

−1
0 Λ0𝑦 + 𝐵𝑒−𝑖𝐻

−1
0 Λ0𝑦 in Υ−,

𝐴𝑒𝑖(𝜃−𝐻
−1
0 Λ0)𝑒𝑖𝐻

−1
0 Λ0𝑦 + 𝐵𝑒𝑖(𝜃−𝐻

−1
0 Λ0)𝑒−𝑖𝐻

−1
0 Λ0𝑦 in Υ+,

(3.3)

where 𝐴, 𝐵 are obtained imposing condition (2.10):

𝐴 =
𝑒𝑖(𝜃+𝐻

−1
0 Λ0(1−𝓁)) − 𝑒𝑖𝐻

−1
0 Λ0𝓁

𝑖2𝑒𝑖𝜃 sin(𝐻−1
0 Λ0(1 − 2𝓁))

, 𝐵 =
𝑒−𝑖𝐻

−1
0 Λ0𝓁 − 𝑒𝑖(𝜃−𝐻

−1
0 Λ0(1−𝓁))

𝑖2𝑒𝑖𝜃 sin(𝐻−1
0 Λ0(1 − 2𝓁))

.
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The solutions 𝑤𝑗 , 𝑗 ≥ 1, of (2.9), (2.11) with 𝑎 = 1 are given by

𝑤𝑗(𝑦) =

⎧⎪⎨⎪⎩
1 − 𝑒−𝑖𝜃

1 − 2𝓁
(𝑦 + 𝓁) + 1 inΥ−,

1 − 𝑒−𝑖𝜃

1 − 2𝓁
(𝑦 − 𝓁)𝑒𝑖𝜃 + 1 inΥ+.

(3.4)

Note that 𝑤𝑗 does not depend on 𝑗 and, in particular,

𝜕𝑦𝑤𝑗(𝓁) − 𝜕𝑦𝑤𝑗(−𝓁) =
2 cos 𝜃 − 2
1 − 2𝓁

. (3.5)

Replacing the solutions (3.3)–(3.5) into (2.25), we obtain the following transcendental equation which implicitly expresses
the dependence of Λ0 = Λ0

𝑘
(𝜃) on 𝜃:

𝓁
(
Λ0

)2
𝐻0

+ Λ0
cos 𝜃 − cos

(
𝐻−1
0 Λ0(1 − 2𝓁)

)
sin

(
𝐻−1
0 Λ0(1 − 2𝓁)

) +
cos 𝜃 − 1
1 − 2𝓁

𝑁∑
𝑗=1

𝐻𝑗 = 0. (3.6)

Notice that according to the above derivation of the equation (3.6), we only take into account its positive solutionsΛ0. The
following observation can be proven by an elementary argument.

Lemma 3.1. Given 𝜃 ∈ [0, 2𝜋], the positive solutions of Equation (3.6) form an increasing unbounded sequence.

Proof. We first remark that the set of solutions of (3.6) does not have finite accumulation points. Indeed, it suffices to
consider points Λ0 = 𝑃 ∈ (0, +∞) such that𝐻−1

0 Λ0(1 − 2𝓁) ≠ 𝑗𝜋 for any 𝑗 ∈ ℕ0 (so that the denominator in (3.6) is non-
zero). Then, for a fixed 𝜃, the expression on the left-hand side of (3.6) is a real analytic function 𝐹𝑃 ofΛ0 in a neighborhood
𝑈𝑃 of 𝑃, and 𝐹𝑃 does not vanish identically in 𝑈𝑃, which can be seen directly from its expression in (3.6). By well known
properties of analytic functions or power series, the point 𝑃 cannot be an accumulation point of zeros of 𝐹𝑃, which proves
the claim.
In order to show that there exist infinitely many solutions, we first fix 𝜃 ∈ (0, 𝜋∕2], hence, cos 𝜃 ∈ [0, 1), and letΛ0 ≥ 1.

Then, (3.6) is equivalent to

𝑏1Λ
0 +

𝑏3(𝜃)

Λ0
=
cos(𝑏2Λ

0) − cos 𝜃

sin(𝑏2Λ0)
, (3.7)

where 𝑏1 and 𝑏2 are nonzero constants and 𝑏3(𝜃) is a number uniformly bounded with respect to 𝜃. Let us consider any
𝑚 ∈ ℕ so large that on the interval

𝐽𝑚 ∶=

[
1
𝑏2
2𝜋𝑚,

1
𝑏2
(𝜃 + 2𝜋𝑚)

]
∋ Λ0 (3.8)

the value of the left-hand side of (3.7) is at least 1. Then, the value of the function Λ0 ↦ cos
(
𝑏2Λ

0
)
− cos 𝜃 decreases

monotonely on 𝐽𝑚 from some number 𝛿(𝜃) > 0 to 0, and on the same interval, the value of the function Λ0 ↦ sin
(
𝑏2Λ

0
)

increases monotonely from 0 to some number 𝛿′(𝜃) > 0. This shows the right-hand side of (3.7) is a continuous function
of Λ0 in the interior of 𝐽𝑚, the values of which decrease monotonely from +∞ to 0. The left-hand side of (3.7) defines a
continuous function on 𝐽𝑚, the values of which stay on some compact interval contained in [1, +∞), by assumption. By
Rolle’s theorem, the equation must have a solution in the interval (3.8).
Similar arguments apply to all other cases 𝜃 ∈ (𝜋∕2, 2𝜋). If 𝜃 = 0 so that cos 𝜃 = 1, Equation (3.6) reduces to

𝑎Λ0 =
cos(𝑏2Λ

0) − 1

sin(𝑏2Λ0)
.

Using the above reasoning one easily finds a solution in a neighborhood of every point 𝑏−12 (2𝜋𝑚 + 𝜋), where
cos(𝑏2Λ

0) = −1. □
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A solution Λ0 of (3.6) is an eigenvalue of the limit problem with finite multiplicity. For every 𝑘 we denote by

⃖⃗𝑤𝑘(𝜃) = ⃖⃗𝑤𝑘 =
(
𝑤𝑘,𝑗

)𝑁
𝑗=1

∈ 𝜃(Υ) (3.9)

the corresponding eigenvector, which is the solution of (2.8)–(2.11) constructed in (3.3)–(3.4). Since this eigenvector is
uniquely determined, we deduce that every eigenvalue Λ0 is simple. Thus, according to Lemma 3.1, we can order them
into an increasing sequence

0 < Λ0
0(𝜃) < Λ0

1(𝜃) < … < Λ0
𝑘
(𝜃) < … → +∞. (3.10)

By using standard results in the operator theory in Hilbert spaces, wemake the eigenfunctions ⃖⃗𝑤𝑘(𝜃) into an orthonormal
sequence in the space 𝐿2(Υ)𝑁+1.

Remark 3.2. We will need the observation that for any eigenfunction ⃖⃗𝑤𝑘(𝜃) we have ‖‖𝑤𝑘,0; 𝐿
2(Υ)‖‖ ≥ 𝑐 > 0 for a constant

independent of 𝜃. This follows from the form of the solutions (3.3) and (3.4). In more detail, given 𝑗 = 1,… ,𝑁, we see
from the explicit expression (3.4) that the modulus |𝑤∙| of the common boundary value is not larger than than a constant
times ‖‖𝑤𝑘,𝑗; 𝐿

2(Υ)‖‖. Similarly, the form of the solution (3.3) shows that ‖‖𝑤𝑘,0; 𝐿
2(Υ)‖‖ ≥ 𝑐|𝑤∙|. The assertion follows from

the normalization ‖‖⃖⃗𝑤𝑘(𝜃); 𝐿
2(Υ)𝑁+1‖‖ = 1.

We now turn to the case where only the upper canal exists (𝑁 = 0) and show that there are infinitely many dis-
joint compact intervals which do not intersect the set of the values Λ0

𝑘
(𝜃). Indeed, in this case Equation (3.6) can be

written as

𝑡 = 𝐴
cos 𝑡 − cos 𝜃

sin 𝑡
, (3.11)

where 𝑡 = Λ0(1 − 2𝓁)∕𝐻0 and 𝐴 = (1 − 2𝓁)∕𝓁.

Lemma 3.3. Let𝑁 = 0, and let𝐻0, 𝓁 be given as in Section 1.2. Then, there exists 𝛿0 ∈ (0, 𝜋) such that Equation (3.11) does
not have a solution 𝑡 belonging to any interval [2𝜋𝑚 − 𝛿0, 2𝜋𝑚),𝑚 = 1, 2, 3, …, for any 𝜃 ∈ [0, 2𝜋].

Proof. Let us denote 𝜆 = cos 𝜃 ∈ [−1, 1] and 𝑡 = 2𝜋𝑚 − 𝛿 for some𝑚 = 1, 2, … and 0 < 𝛿 < 𝜋. We choose 𝛿0 > 0 so small
that

𝛿0 <
1
2

𝜋

1 + 𝐴∕2
, (3.12)

and 𝛿∕2 ≤ sin 𝛿 ≤ 𝛿 and cos 𝛿 ≥ 1 − 𝛿2∕2 for all 𝛿 ∈ (0, 𝛿0]. Since sin 𝑡 = − sin 𝛿 and cos 𝑡 = cos 𝛿, we obtain that (3.11) is
equivalent to

𝛿 sin 𝛿 = 𝐴 cos 𝛿 − 𝐴𝜆 + 2𝜋𝑚 sin 𝛿. (3.13)

Here we have by (3.12)

𝛿 sin 𝛿 ≤ 𝛿2 <
𝛿
2

𝜋

1 + 𝐴∕2
(3.14)

and

𝐴 cos 𝛿 − 𝐴𝜆 + 2𝜋𝑚 sin 𝛿 ≥ 𝐴(1 − 𝜆) −
𝐴𝛿2

2
+ 𝜋𝑚𝛿

≥ 𝛿
(
𝜋 −

𝐴𝛿
2

)
> 𝛿

(
𝜋 −

𝐴
2

𝜋

1 + 𝐴∕2

)
= 𝛿

𝜋

1 + 𝐴∕2
, (3.15)

we see that (3.13) and thus (3.11), (3.6) cannot happen for 𝑡 ∈ [2𝜋𝑚 − 𝛿0, 2𝜋𝑚). □
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Let us then consider the general case 𝑁 > 0. Using the same notation as in (3.11), Equation (3.6) reads now as

𝑡 = 𝐴
cos 𝑡 − cos 𝜃

sin 𝑡
+ (1 − cos 𝜃)

𝐻̃
𝑡
, (3.16)

where

𝐻̃ =
(1 − 2𝓁)

∑𝑁
𝑗=1 𝐻𝑗

𝓁𝐻0
> 0.

Lemma 3.4. Let 𝑁 > 0, and let 𝐻0, 𝓁 be given as in Section 1.2. Then, there exist 𝛿0 ∈ (0, 𝜋) and 𝑚0 ∈ ℕ such that
Equation (3.11) does not have a solution 𝑡 belonging to any interval [2𝜋𝑚 − 𝛿0, 2𝜋𝑚), where 𝑚 ∈ ℕ with 𝑚 ≥ 𝑚0, for any
𝜃 ∈ [0, 2𝜋].

This follows by a simple modification of the proof of the previous lemma. Namely, the term (1 − cos 𝜃)𝐻̃∕𝑡 in (3.16)
causes to the right hand side of Equation (3.13) a new term, the modulus of which is 𝑂(1∕𝑡) and which thus is smaller
than 𝛿𝜋∕(4(1 + 𝐴∕2)) for large enough 𝑡. Hence, an argument similar to (3.14)–(3.15) still applies.
Although we have not exactly defined the essential spectrum 𝜍0ess of the limit problem, let us denote

𝜍0ess =
∞⋃
𝑘=1

⋃
𝜃∈[0,2𝜋)

{
Λ0
𝑘
(𝜃)

}
. (3.17)

By Lemma 3.1, the set 𝜍0ess ⊂ ℝ+
0 is unbounded. Thus, 𝜍0ess contains infinitely many “gaps” as explained in the following

result, which is a direct consequence of Lemmas 3.3 and 3.4.

Corollary 3.5. There are infinitely many disjoint compact intervals [𝑎𝑘, 𝑏𝑘] such that

0 < 𝑎1 < 𝑏1 < … < 𝑎𝑘 < 𝑏𝑘 < … → +∞

and 𝜍0ess ∩ [𝑎𝑘, 𝑏𝑘] = ∅ as well as 𝜍0ess ∩ (𝑏𝑘, 𝑎𝑘+1) ≠ ∅ for all 𝑘 ∈ ℕ.

4 APPROXIMATING NEAR-EIGENFUNCTIONS

In this section we present a formula for the near-eigenfunctions  ℎ =  ℎ,𝜃
𝑘

, which will be used to approximate the
eigenfunctions 𝑈ℎ,𝜃

𝑘
, see (1.18) and the convention for the notation in the beginning of Section 2. Accordingly, for every

𝑗 = 0,… ,𝑁 we choose 𝐶∞-cut-off functions 𝜒ℎ𝑗± ∶ 𝑄ℎ
𝑗 → [0, 1] which are constant in the 𝑧-direction, such that, for

(𝑦, 𝑧) ∈ 𝑄ℎ
𝑗 ,

𝜒ℎ𝑗+(𝑦, 𝑧) =

{
1 , if 𝓁 ≤ 𝑦 ≤ 𝓁 + ℎ,
0 , if 𝓁 + 2ℎ ≤ 𝑦 ≤ 1∕2 or 𝑦 ≤ 0,

(4.1)

and then set 𝜒ℎ𝑗−(𝑦, 𝑧) = 𝜒ℎ𝑗+(−𝑦, 𝑧) for (𝑦, 𝑧) ∈ 𝑄ℎ
𝑗 . Moreover, we choose a 𝐶

∞-cut-off function𝑋ℎ ∶ Ω → [0, 1] such that
for all (𝑦, 𝑧) ∈ Ω,

𝑋ℎ(𝑦, 𝑧) =

{
0 , if ||(𝑦, 𝑧) − 𝑃𝑗±|| ≤ ℎ for some 𝑗 = 0,… ,𝑁 and ±,
1 , if ||(𝑦, 𝑧) − 𝑃𝑗±|| ≥ 2ℎ for all 𝑗 = 0,… ,𝑁 and ± ;

we can require that

𝜕𝜈𝑋
ℎ = 0 on 𝜕Ω.
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We also may assume that the functions satisfy the estimates

|||∇𝜒ℎ𝑗±||| ≤ 𝐶ℎ−1 , |||∇2𝜒ℎ𝑗±
||| ≤ 𝐶ℎ−2 (4.2)

in their domains of definitions, and the same estimates for 𝑋ℎ as well.
Now, let 𝑘 ∈ ℕ and 𝜃 ∈ [0, 2𝜋) and thus also the limit problem eigenvalue Λ0

𝑘
(𝜃) = Λ0 and its eigenvector ⃖⃗𝑤𝑘(𝜃) =(

𝑤𝑘,𝑗

)𝑁
𝑗=0

=∶
(
𝑤𝑗

)𝑁
𝑗=0

be fixed, see Lemma 3.1 and (3.9). Let us define the approximating near-eigenfunctions ℎ =  ℎ,𝜃
𝑘

by

 ℎ =

⎧⎪⎨⎪⎩
𝑎 + ℎ𝑋ℎ

(
𝑈′ −

∑
±

𝑁∑
𝑗=0

𝐾𝑗±

𝜋
log ℎ

)
+ ℎ𝑊 in Ω,∑

±
𝜋−1

(
± 𝐻̃𝑗

)((
1 − 𝜒ℎ𝑗±

)
𝑤𝑗 + 𝜒ℎ𝑗±𝑤𝑗(±𝓁)

)
+ ℎ𝑊 in 𝑄ℎ

𝑗 , 𝑗 = 0,… ,𝑁,
(4.3)

where 𝑎 is the common boundary value 𝑤∙ for the normalized eigenfunction ⃖⃗𝑤𝑘 of the limit problem, (3.9), and
𝐻̃𝑗 = 𝐻𝑗∕

(
1 + 𝛿𝑗,0

)
, while the function𝑊 ∶= 𝑊𝜃

𝑘
describes the boundary layer and it reads as

𝑊(𝑥) =
∑
±

𝑁∑
𝑗=0

(
𝐾𝑗±
𝜋

𝑉1
𝑗±(𝜉

𝑗±) −
𝐾𝑗±
𝜋

log |𝜉𝑗±|𝑋ℎ(𝑥) −
1
ℎ

𝐾𝑗±
𝜋

(𝑦 ∓ 𝓁)
(
1 − 𝜒ℎ𝑗±(𝑦)

))
(4.4)

where 𝜉𝑗± =
(
ℎ−1(±𝑦 − 𝓁), ℎ−1

(
𝑧 − 𝑑𝑗

))
(see (2.13)) and𝑉1

𝑗± are the harmonic functions defined around (2.16)–(2.17). As
a consequence of (2.16), (2.17), (4.4), the function𝑊 satisfies

|||𝑊(𝑥)||| ≤ 𝐶ℎ for 𝑥 ∈ Ωwith |||𝑥 − 𝑃𝑗±
||| ≥ 𝑅 (4.5)

|||𝑊(𝑥)||| ≤ 𝐶𝑒−1∕ℎ for 𝑥 ∈ 𝑄𝑗± with
|||𝑥 − 𝑃𝑗±

||| ≥ 𝑅, (4.6)

for some constant 𝑅, 0 < 𝑅 <
1

2
− 𝓁, independent of ℎ.

We will need the following lower bound valid for small enough ℎ > 0,

‖‖‖ ℎ,𝜃
𝑘

;ℎ‖‖‖ ≥ 𝑐𝑘,Ω, (4.7)

where the constant 𝑐𝑘,Ω > 0 may depend on 𝑘 and Ω but not on ℎ or 𝜃. To get estimate (4.7) we use the trace inequal-
ity ‖‖ ℎ,𝜃

𝑘
; 𝐿2(Γ)‖‖ ≤ 𝐶‖‖ ℎ,𝜃

𝑘
;ℎ‖‖, observe that the 𝐿2(Υ)-norm of the 𝑄ℎ

0 -component of  ℎ,𝜃
𝑘

is an 𝑂(ℎ)-perturbation of
2𝐻̃0𝜋

−1‖‖𝑤𝑘,0, 𝐿
2(Υ)‖‖ and that this norm is bounded from below by a positive constant, according to Remark 3.2.

5 MAIN RESULT ON THE ASYMPTOTIC POSITION OF SPECTRAL BANDS

We now state our main result concerning the asymptotic position of the spectral bands. It also justifies the formal asymp-
totic analysis of the previous sections and motivates the use of the approximate eigenfunctions (4.3). The result yields
the existence of spectral gaps in the essential spectrum (1.1). We recall that the eigenvalues Λℎ

𝑘
(𝜃) of the model problem

were defined in (1.18), and those of the limit problem Λ0
𝑘
(𝜃) in Lemma 3.1 and (3.10). The final step of the proof will be

completed only in the last section.

Theorem 5.1. For every 𝑘 ≥ 1 there exists a constant 𝐶𝑘 such that, for each 𝜃 ∈ [0, 2𝜋),

|||Λℎ
𝑘
(𝜃) − ℎΛ0

𝑘
(𝜃)||| < 𝐶𝑘ℎ

3∕2. (5.1)
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Theorem 5.1 and Corollary 3.5, see also (1.1) and (3.17), imply:

Theorem 5.2. Given a positive integer 𝑁 there exists ℎ𝑁 > 0 such that the spectrum 𝜍ess of the linear water-wave problem
(1.5)–(1.7) inΠℎ has at least𝑁 gaps, if ℎ ∈ (0, ℎ𝑁).

We start the proof of Theorem 5.1 by stating a classical lemma on near eigenvalues and eigenvectors (see [26] and, e.g.,
[3, Ch. 6]).

Lemma 5.3. Let  be a self-adjoint, positive, and compact operator in a Hilbert space. If a number 𝜇 > 0 and an element
̂ ∈  satisfy ‖‖̂ ;‖‖ = 1 and ‖‖ ̂ − 𝜇̂ ;‖‖ =∶ 𝜏 ∈ (0, 𝜇), then the segment [𝜇 − 𝜏, 𝜇 + 𝜏] contains at least one eigenvalue
of  . Moreover, for every 𝜌 ∈ (𝜏, 𝜇) we have

‖‖‖‖‖̂ −
∑
𝑘

𝑎𝑘𝑘

‖‖‖‖‖ ≤ 2
𝜏
𝜌

(5.2)

where the sum is taken over all eigenvalues of the operator  contained in the interval [𝜇 − 𝜌, 𝜇 + 𝜌]with multiplicities taken
into account, and𝑘 are the corresponding eigenvectors orthonormalizedwith respect to each other in, while the coefficients
𝑎𝑘 are normalized by

∑
𝑘 |𝑎𝑘|2 = 1.

It will also be useful to formulate an intermediate step in the proof of the main result. Note that if Λ0
𝑘
(𝜃) is a simple

eigenvalue in the following lemma, then 𝓁 = 𝑘 holds for these indices.

Lemma 5.4. Given 𝑘 and 𝜃 ∈ [0, 2𝜋), let the function ℎ
𝓁
(𝜃) =∶  ℎ be defined as in (4.3) by using any of the eigenfunctions

⃖⃗𝑤𝓁(𝜃), (3.9), of the eigenvalue Λ0
𝑘
(𝜃) in (3.10). Then, for some ℎ′ > 0 there holds

‖‖‖ℎ ℎ − 𝜇ℎ ℎ;ℎ‖‖‖ ≤ 𝐶ℎ3∕2 ∀ ℎ ∈ (0, ℎ′), (5.3)

where 𝜇ℎ = 𝜇ℎ
𝑘
(𝜃) = 1∕

(
1 + ℎΛ0

𝑘
(𝜃)

)
.

Proof of Theorem 5.1. Here, given 𝑘 we will find an eigenvalue Λℎ
𝑗 (𝜃) with an unspecified index 𝑗, such that (5.1) holds

with this eigenvalue in the place of Λℎ
𝑘
(𝜃). We will show only in Section 6 that 𝑗 = 𝑘, because this conclusion will require

some additional arguments.
So, let now 𝑘 and 𝜃 and thus also the number Λ0

𝑘
(𝜃) be fixed. We aim to apply Lemma 5.3 to the operator ( =)ℎ(𝜃) ∶

ℎ → ℎ(= ) of (1.15). Let us define an approximate eigenvalue and eigenvector of ℎ(𝜃) by

(𝜇 =) 𝜇ℎ
𝑘
(𝜃) = 1∕

(
1 + ℎΛ0

𝑘
(𝜃)

)
, (5.4)

(̂ =) ℎ
𝑘
(𝜃) = ‖‖‖ ℎ

𝑘
(𝜃);ℎ(𝜃)‖‖‖−1 ℎ

𝑘
(𝜃) =∶ 𝑐−1  ℎ

𝑘
, (5.5)

where  ℎ
𝑘
(𝜃) is defined as in (4.3) by using any of the eigenvectors ⃖⃗𝑤𝓁(𝜃), (3.9), of the eigenvalue Λ0

𝑘
(𝜃). Definition (5.4)

is motivated by the relation (1.16). From now on, we mostly suppress the indices 𝑘 and 𝜃 from the notation and denote
𝜇ℎ
𝑘
(𝜃) =∶ 𝜇ℎ, ℎ

𝑘
(𝜃) =∶ ℎ, Λ0

𝑘
(𝜃) =∶ Λ0 and so on. Our aim is to show that 𝜏 of Lemma 5.3 can be chosen as small as

𝐶𝑘ℎ
3∕2:

𝜏 = ‖‖‖ℎℎ − 𝜇ℎℎ;ℎ‖‖‖ ≤ 𝐶ℎ3∕2 ; (5.6)

in other words, we prove Lemma 5.4. Then, Lemma 5.3 gives an eigenvalue𝑀ℎ of ℎ with the estimate

|||𝑀ℎ − 𝜇ℎ||| ≤ 𝐶𝑘ℎ
3∕2.
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Using (5.4) and (1.16) this turns into an eigenvalue Λℎ
𝑗 (𝜃) of (1.8)–(1.12), for some 𝑗. As mentioned, the identity 𝑗 = 𝑘 will

be proven later. We have

𝐶𝑘ℎ
3∕2 ≥ |||𝑀ℎ − 𝜇ℎ||| = ||||||

1

1 + Λℎ
𝑗 (𝜃)

−
1

1 + ℎΛ0
𝑘
(𝜃)

|||||| (5.7)

hence, |||1 + Λℎ
𝑗 (𝜃) −

(
1 + ℎΛ0

𝑘
(𝜃)

)||| ≤ 𝐶𝑘ℎ
3∕2

(
1 + Λℎ

𝑗 (𝜃)
)(
1 + ℎΛ0

𝑘
(𝜃)

)
. (5.8)

For ℎ ≤ ℎ𝑘 with a small enough ℎ𝑘 > 0we have 𝐶𝑘ℎ3∕2
(
1 + ℎΛ0

𝑘
(𝜃)

) ≤ 1∕2 and thus, by (5.8) and the triangle inequality,

|||1 + Λℎ
𝑗 (𝜃)

||| ≤ 2
(
1 + ℎΛ0

𝑘
(𝜃)

)
so that applying (5.8) again,

|||Λℎ
𝑗 (𝜃) − ℎΛ0

𝑘
(𝜃)||| ≤ 2𝐶𝑘ℎ

3∕2
(
1 + ℎΛ0

𝑘
(𝜃)

)2 ≤ 𝐶′
𝑘
ℎ3∕2

(
1 + ℎΛ0

𝑘
(𝜃)

)
, (5.9)

i.e. the claim in the beginning of the proof holds true.
Thus, as explained, we are left here with the task of proving (5.6). To this end we write, using ℎ = 𝑐−1  ℎ, (1.14), (1.15),

(4.7), (5.4) and the Green formula,

𝜏 = sup
𝑍

||(ℎℎ − 𝜇ℎℎ, 𝑍
)
ℎ
||

= 𝑐−1 sup
𝑍

||( ℎ, 𝑍
)
Γ
− 𝜇ℎ

( ℎ, 𝑍
)
Γ
− 𝜇ℎ

(
∇ ℎ, ∇𝑍

)
Ωℎ

||
= 𝜇ℎ𝑐−1 sup

𝑍

||(1 + ℎΛ0
)( ℎ, 𝑍

)
Γ
−

( ℎ, 𝑍
)
Γ
−

(
∇ ℎ, ∇𝑍

)
Ωℎ

||
= 𝜇ℎ𝑐−1 sup

𝑍

||ℎΛ0
( ℎ, 𝑍

)
Γ
+

(
Δ ℎ, 𝑍

)
Ωℎ −

(
𝜕𝜈 ℎ, 𝑍

)
𝜕Ωℎ

||. (5.10)

The supremum is calculated here over all functions 𝑍 ∈ ℎ with norm one.
(𝑖) Let us consider

(
Δ ℎ, 𝑍

)
Ωℎ . We use the fact that𝑈′ and 𝑉1

𝑗± are harmonic functions (see (2.22), (2.14), the text after
(2.15)) and (4.4) to obtain in the subdomain Ω

Δ ℎ = ℎ
[
Δ,𝑋ℎ

](
𝑈′ −

∑
±

𝑁∑
𝑗=0

(
𝐾𝑗±
𝜋

log ℎ −
𝐾𝑗±
𝜋

log |𝜉𝑗±|))

where [Δ, 𝑋ℎ] denotes the commutator of the Laplacian and the pointwise multiplier operator 𝑓 ↦ 𝑋ℎ𝑓 for 𝑓 ∈ ℎ.
Hence, [Δ, 𝑋ℎ] is a first order partial differential operator, the support of which (precisely, the supports of the non-constant
coefficient functions) are contained in the set

supp∇𝑋ℎ ⊂
⋃
𝑗,±

𝑅ℎ𝑗,± =
⋃
𝑗,±

{
𝑥 ∈ Ω ∶ ℎ ≤ |||𝑥 − 𝑃𝑗±

||| ≤ 2ℎ
}
. (5.11)

By (5.11) and properties (2.26)–(2.28), we get for 𝑥 ∈ supp∇𝑋ℎ ⊂ Ω

||||||𝑈′(𝑥) −
∑
±

𝑁∑
𝑗=0

𝐾𝑗±
𝜋

(
log ℎ + log ||𝜉𝑗±||)|||||| =

||||||𝑈′(𝑥) −
∑
±

𝑁∑
𝑗=0

𝐾𝑗±
𝜋

log ||𝑥 − 𝑃𝑗±||||||||
≤ sup

𝑥∈supp∇𝑋ℎ

||𝑈(𝑥)|| + 𝐶ℎ sup
𝑥∈supp∇𝑋ℎ

||∇𝑈(𝑥)|| ≤ 𝐶′ℎ.
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Since themodulus of the coefficients of the operator [Δ, 𝑋ℎ] have the upper bound𝐶
(||∇𝑋ℎ|| + ||Δ𝑋ℎ||) ≤ 𝐶ℎ−2, we obtain

‖Δ ; 𝐿∞(Ω)‖ ≤ 𝐶. (5.12)

Moreover, becauseℎ embeds (by the trace theorem) into 𝐿4(𝛾) for any line segment 𝛾 included inΩ, (5.12) yields for all
𝑗 and signs

±𝓁∓2ℎ

∫
±𝓁

𝑑𝑗+2ℎ

∫
𝑑𝑗−2ℎ

|||Δ ℎ(𝑦, 𝑧)||| |𝑍(±𝓁 ∓ 2ℎ, 𝑧)|𝑑𝑧 𝑑𝑦

≤ ‖Δ ℎ; 𝐿∞(Ω)‖⎛⎜⎜⎜⎝
±𝓁∓2ℎ

∫
±𝓁

𝑑𝑗+2ℎ

∫
𝑑𝑗−2ℎ

𝑑𝑧 𝑑𝑦

⎞⎟⎟⎟⎠
3∕4⎛⎜⎜⎜⎝

±𝓁∓2ℎ

∫
±𝓁

𝑑𝑗+2ℎ

∫
𝑑𝑗−2ℎ

|𝑍(±𝓁 ∓ 2ℎ, 𝑧)|4 𝑑𝑧 𝑑𝑦⎞⎟⎟⎟⎠
1∕4

≤ 𝐶ℎ3∕2‖𝑍;ℎ‖ ≤ 𝐶ℎ3∕2.

Using this, (5.11) and the Cauchy–Schwartz–Bunyakowski inequality we obtain

||(Δ ℎ, 𝑍
)
Ω
|| ≤ |||(Δ ℎ, 𝑍

)
Ω
−

∑
𝑗,±

(
Δ ℎ, 𝑍(±𝓁 ∓ 2ℎ, 𝑧)

)
𝑅ℎ𝑗,±

||| + 𝐶ℎ3∕2

≤ ∑
𝑗,±

||||||||
±𝓁∓2ℎ

∫
±𝓁

𝑑𝑗+2ℎ

∫
𝑑𝑗−2ℎ

(
Δ ℎ(𝑦, 𝑧)

)(
𝑍(𝑦, 𝑧) − 𝑍(±𝓁 ∓ 2ℎ, 𝑧)

)
𝑑𝑧 𝑑𝑦

|||||||| + 𝐶ℎ3∕2

≤ 𝐶′
∑
𝑗,±

‖‖‖Δ ℎ; 𝐿∞(Ω)‖‖‖
±𝓁∓2ℎ

∫
±𝓁

𝑑𝑗+2ℎ

∫
𝑑𝑗−2ℎ

±𝓁∓2ℎ

∫
𝑦

|𝜕1𝑍(𝑠, 𝑧)|𝑑𝑠 𝑑𝑧 𝑑𝑦 + 𝐶ℎ3∕2

≤ 2𝐶′ℎ
∑
𝑗,±

𝑑𝑗+2ℎ

∫
𝑑𝑗−2ℎ

±𝓁∓2ℎ

∫
±𝓁

|∇𝑍(𝑠, 𝑧)|𝑑𝑠 𝑑𝑦 + 𝐶ℎ3∕2

≤ 𝐶′′ℎ

⎛⎜⎜⎜⎝
𝑑𝑗+2ℎ

∫
𝑑𝑗−2ℎ

±𝓁∓2ℎ

∫
±𝓁

𝑑𝑠 𝑑𝑦

⎞⎟⎟⎟⎠
1∕2⎛⎜⎜⎝∫Ω |∇𝑍|2 𝑑𝑥⎞⎟⎟⎠

1∕2

+ 𝐶ℎ3∕2 ≤ 𝐶′′′ℎ3∕2, (5.13)

where also ‖‖𝑍;ℎ‖‖ ≤ 1 was taken into account.
In the subdomains 𝑄ℎ

𝑗 , where 𝑗 = 0,… ,𝑁, we write using the equalities (2.9) and the Kronecker delta

(
Δ ℎ, 𝑍

)
𝑄ℎ𝑗

=
𝛿0,𝑗𝐻̃𝑗

𝜋

(
𝜕2𝑦𝑤0,

(
1 − 𝜒𝑗±

)
𝑍
)
𝑄ℎ0

−
𝐻̃𝑗

𝜋

∑
±

([
𝜕2𝑦, 𝜒𝑗±

](
𝑤𝑗 − 𝑤𝑗(±𝓁)

)
, 𝑍

)
𝑄ℎ𝑗

+ ℎ
(
Δ𝑊,𝑍

)
𝑄ℎ𝑗
. (5.14)
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Then, (4.4) and the harmonicity of 𝑉1
𝑗± imply

ℎ
(
Δ𝑊,𝑍

)
𝑄ℎ𝑗

= −
∑
±

𝐾𝑗±
𝜋

(
𝜕2𝑦

(
(𝑦 ∓ 𝓁)

(
1 − 𝜒𝑗±(𝑦)

))
, 𝑍

)
𝑄ℎ𝑗

= −
∑
±

𝐾𝑗±
𝜋

([
𝜕2𝑦, 𝜒𝑗±

]
(𝑦 ∓ 𝓁), 𝑍

)
𝑄ℎ𝑗
. (5.15)

The smoothness of 𝑤𝑗 and its Taylor expansion near the point 𝑦 = ±𝓁 yield

||𝑤𝑗(𝑦) − 𝑤𝑗(±𝓁) − (𝑦 ∓ 𝓁)𝜕𝑦𝑤𝑗(±𝓁)|| ≤ 𝐶ℎ2 (5.16)

for 𝑦 belonging to the supports of ∇𝜒𝑗± and Δ𝜒𝑗±, because these are of diameter 𝑂(ℎ). From (5.14), (5.15) and

𝐾𝑗± = ±𝐻̃𝑗 𝜕𝑦𝑤𝑗(±𝓁)

(see (2.27), (4.3)) we obtain

||||(Δ ℎ, 𝑍
)
𝑄ℎ𝑗

−
(
𝜕2𝑦𝑤0,

(
1 − 𝜒𝑗±

)
𝑍
)
𝑄ℎ𝑗

||||
≤ ||||([𝜕2𝑦, 𝜒𝑗±](𝑤𝑗 − 𝑤𝑗(±𝓁)

)
, 𝑍

)
𝑄ℎ𝑗

+ ℎ
(
Δ𝑊,𝑍

)
𝑄ℎ𝑗

||||
=

∑
±

𝐻̃𝑗

|||||
([
𝜕2𝑦, 𝜒𝑗±

](
𝑤𝑗 − 𝑤𝑗(±𝓁) − (𝑦 ∓ 𝓁)𝜕𝑦𝑤𝑗(±𝓁)

)
, 𝑍

)
𝑄ℎ𝑗

||||| ≤ 𝐶ℎ3∕2, (5.17)

since the left factor in the inner product in (5.17) is a bounded function due to (5.16) and ||∇𝜒𝑗±|| + ||∇2𝜒𝑗±|| ≤ 𝐶ℎ−2, and
the right factor 𝑍 can be treated by an argument similar to (5.13).
Combining (5.13) and (5.17) we thus get(

Δ ℎ, 𝑍
)
Ωℎ =

(
𝐻̃0𝜕

2
𝑦𝑤0,

(
1 − 𝜒0±

)
𝑍
)
𝑄ℎ0

+ 𝑂
(
ℎ3∕2

)
. (5.18)

(𝑖𝑖) Let us next consider the term ℎΛ0
( ℎ, 𝑍

)
Γ
in (5.10). Here, we remind that the definition of the norm ofℎ implies

‖‖‖𝑍; 𝐿2(Γ ∩ Ω)‖‖‖ ≤ 𝐶, (5.19)

and then we apply (2.26), (2.28) to get

ℎΛ0
||||||
(
ℎ𝑋ℎ

(
𝑈′ −

∑
±

𝑁∑
𝑗=0

𝐾𝑗±
𝜋

log ℎ

)
, 𝑍

)
Γ

||||||
≤ 𝐶ℎ2| log ℎ|Λ0‖‖‖𝑈; 𝐿∞(Ω)‖‖‖ ‖‖‖𝑍; 𝐿2(Γ ∩ Ω)‖‖‖ ≤ 𝐶′ℎ2| log ℎ|. (5.20)

We also have ‖‖𝑊;𝐿2
(
Γ ∩ Ω

)‖‖ ≤ 𝐶| log ℎ|, so that the Cauchy–Schwartz-inequality and (5.19), (5.20) yield
ℎΛ0

( ℎ, 𝑍
)
Γ∩Ω

= ℎΛ0(𝑎, 𝑍)Γ∩Ω + 𝑂
(
ℎ2| log ℎ|).

The contribution of the term with𝑊 is of order 𝑂
(
ℎ2| log ℎ|) also in the subdomain 𝑄ℎ

0 . Moreover,

ℎΛ0|||(𝜒ℎ0±𝑤0(±𝓁), 𝑍
)
Γ∩𝑄ℎ0

||| ≤ 𝐶ℎ2
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due to (5.19) and the size of the support of the cut-off-function. We thus obtain

ℎΛ0
( ℎ, 𝑍

)
Γ
= ℎΛ0(𝑎, 𝑍)Γ∩Ω + ℎΛ0

((
1 − 𝜒ℎ0±

)
𝑤0, 𝑍

)
Γ∩𝑄ℎ0

+ 𝑂
(
ℎ2| log ℎ|) (5.21)

since the subdomains 𝑄ℎ
𝑗 , 𝑗 ≥ 1, do not contribute to this term.

(𝑖𝑖𝑖)We consider the term (𝜕𝜈 ℎ, 𝑍)𝜕Ωℎ . We have, by (2.23), (2.24),(
𝜕𝜈

(
ℎ𝑋ℎ𝑈′

)
, 𝑍

)
𝜕Ωℎ∩Ω

=
(
ℎ𝑋ℎ𝜕𝜈𝑈

′, 𝑍
)
Γ∩Ω

= ℎΛ0
(
𝑎, 𝑍

)
Γ∩Ω

− Λ0
(
ℎ
(
1 − 𝑋ℎ

)
𝑎, 𝑍

)
Γ∩Ω

= ℎΛ0
(
𝑎, 𝑍

)
Γ∩Ω

+ 𝑂
(
ℎ3∕2

)
,

where the contribution of (2.24) vanishes, since the Diracmasses are concentrated outside the support of𝑋ℎ, andwe used

||(ℎ(1 − 𝑋ℎ
)
𝑎, 𝑍

)
Γ∩Ω

|| ≤ 𝐶ℎ||supp(1 − 𝑋ℎ
)||1∕2‖‖𝑍; 𝐿2(Γ)‖‖ ≤ 𝐶′ℎ3∕2.

To estimate the contribution of the term with𝑊 we remark that by definition,𝑊
(
𝜉𝑗±, 𝜂𝑗±

)
satisfies the homogeneous

Neumann conditions at least everywhere in 𝜕Ωℎ ∩ 𝐵
(
𝑃𝑗±, 𝑅

)
for some positive constant 𝑅 independent of ℎ. Evidently,

the same holds also for the functions log |(𝜉𝑗±, 𝜂𝑗±)| in the sets 𝜕Ω ∩ 𝐵
(
𝑃𝑗±, 𝑅

)
. Clearly, the functions 𝑦

(
1 − 𝜒ℎ0±

)
satisfy

the homogeneous Neumann conditions in the sets 𝜕𝑄ℎ
𝑗± ∩ 𝐵

(
𝑃𝑗±, 𝑅

)
.

Summarizing these observations we get

ℎ
(
𝜕𝜈𝑊, 𝑍

)
𝜕Ωℎ = ℎ

(
𝜕𝜈𝑊, 𝑍

)
𝜕Ωℎ⧵∪𝐵(𝑃𝑗±,𝑅)

.

This is at most 𝑂
(
ℎ2

)
by (4.5), (4.6).

These estimates yield (
𝜕𝜈 ℎ, 𝑍

)
𝜕Ωℎ = ℎΛ0

(
𝑎, 𝑍

)
Γ∩Ω

+ 𝑂
(
ℎ3∕2

)
. (5.22)

(𝑖𝑣) Let us turn to the final estimate. According to (5.18), (5.21) and (5.22), the expression on the right of (5.10) is bounded
by

𝐶|||(𝜕2𝑦𝑤0,
(
1 − 𝜒ℎ0±

)
𝑍
)
𝑄ℎ0

+ ℎΛ0
(
𝑤0,

(
1 − 𝜒ℎ0±

)
𝑍
)
Γ∩𝑄ℎ0

||| + 𝑂
(
ℎ3∕2

)
. (5.23)

We have

(
𝜕2𝑦𝑤0, 𝑍

)
𝑄ℎ0

=

1∕2

∫
𝓁

0

∫
−ℎ

𝜕2𝑦𝑤0(𝑦)𝑍(𝑦, 𝑧) 𝑑𝑧 𝑑𝑦

=

0

∫
−ℎ

1∕2

∫
𝓁

𝜕2𝑦𝑤0(𝑦)𝑍(𝑦, 0) 𝑑𝑦 𝑑𝑧 +

0

∫
−ℎ

1∕2

∫
𝓁

𝜕2𝑦𝑤0(𝑦)
(
𝑍(𝑦, 𝑧) − 𝑍(𝑦, 0)

)
𝑑𝑦 𝑑𝑧. (5.24)

Here, the integrand of the first term is constant in the 𝑧-variable so that the integral equals, by (2.8),

ℎ
(
𝜕2𝑦𝑤0,

(
1 − 𝜒ℎ0±

)
𝑍
)
Γ∩𝑄ℎ0

= −ℎΛ0
(
𝑤0,

(
1 − 𝜒ℎ0±

)
𝑍
)
Γ∩𝑄ℎ0
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so that the second term in (5.23) is cancelled and we are left with the second term on the right of (5.24). This is small, as
seen by the estimate

0

∫
−ℎ

1∕2

∫
𝓁

|||𝜕2𝑦𝑤0(𝑦)
||||𝑍(𝑦, 𝑧) − 𝑍(𝑦, 0)|𝑑𝑦 𝑑𝑧

≤ ‖‖‖𝜕2𝑦𝑤0; 𝐿
∞
(
𝑄ℎ
0

)‖‖‖
0

∫
−ℎ

1∕2

∫
𝓁

𝑧

∫
0

|𝜕𝑧𝑍(𝑦, 𝜁)|𝑑𝜁 𝑑𝑦 𝑑𝑧
≤ ‖‖‖𝜕2𝑦𝑤0; 𝐿

∞
(
𝑄ℎ
0

)‖‖‖
0

∫
−ℎ

ℎ1∕2‖‖‖∇𝑍; 𝐿2(𝑄ℎ
0

)‖‖‖ 𝑑𝑧 ≤ 𝐶ℎ3∕2,

where the Cauchy–Schwartz–Bunyakowski inequality was used to obtain the factor ℎ1∕2. Here we used that the function
𝑤′′
0 is uniformly bounded, as a consequence of (2.8), (2.9).
This completes the proof of the bound (5.6). □

6 CONVERGENCE THEOREMAND THE END OF THE PROOF OF THEOREM 5.1

To finish the proof of Theorem 5.1, i.e., to show that the indices 𝑗 and 𝑘 are the same in the proof of the previous section,
we need the following result.

Theorem 6.1. Given 𝑘 ≥ 1 and 𝜃 ∈ [0, 2𝜋), there is a decreasing sequence {ℎ𝑚}∞𝑚=1 of positive numbers such that

ℎ−1𝑚 Λ
ℎ𝑚
𝑘
(𝜃)

converges to the eigenvalue Λ0
𝑘
(𝜃) of the limit problem (see Lemma 3.1). Moreover, the eigenfunctions 𝑈ℎ𝑚,𝜃

𝑘
converge in the

norm of 𝐿2(Υ) to an eigenfunction 𝑉 of the limit problem corresponding to the eigenvalue Λ0
𝑘
(𝜃). The sequence {ℎ𝑚}∞𝑚=1 can

be chosen to be the same for any finite number of indices 𝑘, and it can also picked up as a subsequence of any given positive,
decreasing sequence tending to 0.

Proof. We start by the remark that for every 𝑘 one can find positive constants 𝐶𝑘 and ℎ̃𝑘 such that,

Λℎ
𝑘
(𝜃) ≤ 𝐶𝑘ℎ for all 𝜃 and ℎ ∈

(
0, ℎ̃𝑘

]
. (6.1)

Namely, fixing 𝑘 and 𝜃, we found in the proof of Theorem 5.1 for all 𝑗 ∈ ℕ an index 𝓁 ∈ ℕ such that||ℎΛ0
𝑗(𝜃) − Λℎ

𝓁
(𝜃)|| ≤ 𝐶𝑗ℎ

3∕2. This estimate cannot hold for the same 𝓁 and two different numbers Λ0
𝑗(𝜃) and Λ

0
𝑗′
(𝜃) (just

by the triangle inequality), hence for a large enough 𝑗 we must have 𝓁 ≥ 𝑘. This yields

Λℎ
𝑘
(𝜃) ≤ Λℎ

𝓁
(𝜃) ≤ 𝐶𝑗ℎΛ

0
𝑗(𝜃).

By Lemma 3.1, the function 𝜃 ↦ Λ0
𝑗(𝜃) is continuous and thus bounded on the compact interval [0, 2𝜋] so that the bound

on the right-hand side can be made independent of 𝜃. This proves (6.1).
We fix 𝑘 ∈ ℕ and 𝜃 ∈ [0, 2𝜋) and, for every ℎ > 0, consider the eigenpair

{
Λℎ
𝑘
(𝜃), 𝑈ℎ,𝜃

𝑘

}
=∶

{
Λℎ,𝑈ℎ

}
of (1.8)–(1.12); for

the sake of clarity we again mostly suppress the indices 𝜃 and 𝑘 from the notation.
Using (6.1) and compactness we find a sequence {ℎ𝑚}

∞
𝑘=1

converging to 0 such that for some number
Λ̃ ∶= Λ̃𝑘(𝜃) ∈ [0, +∞),

ℎ−1𝑚 Λℎ𝑚 → Λ̃ as 𝑘 → +∞; (6.2)
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here, the same sequence {ℎ𝑚}∞𝑘=1 can be taken in the case several 𝑘 are considered simultaneously, or the sequence could
be defined as a subsequence of any given sequence converging to 0 (see the last statements of the theorem). The same is
true also in the later steps of the proof so that we do not comment these aspects any more.
For every 𝑗 = 0,… ,𝑁, let 𝜓𝑗 ∈ 𝐶∞(Υ) be a function of one variable such that for some constant 𝑏 = 𝑏𝑛(𝜃) ∈ ℂ, inde-

pendent of 𝑗,

𝜓𝑗
(
−
1
2

)
= 𝑒−𝑖𝜃𝜓𝑗

(1
2

)
, 𝜓𝑗(−𝓁) = 𝜓𝑗(𝓁) = 𝑏.

We define for every ℎ a test function Ψℎ ∈ 𝜃(Υ) in Ωℎ by

Ψℎ(𝑥) =

{
𝜓𝑗(𝑦), if 𝑥 = (𝑦, 𝑧) ∈ 𝑄ℎ

𝑗 ,

𝑏, for 𝑥 ∈ Ω,

which naturally can also be considered as belonging to the spaceℎ. Let us substitute this into (1.13):

ℎ−1
𝑁∑
𝑗=0

∫
𝑄ℎ𝑗

(
𝜕𝑦𝑈

ℎ(𝑥)
)
𝜕𝑦𝜓𝑗(𝑦) 𝑑𝑥 − ℎ−1Λℎ ∫

Υ

𝑈ℎ(𝑦, 0)𝜓0(𝑦) 𝑑𝑦 = ℎ−1Λℎ ∫
Γ⧵Υ

𝑈ℎ(𝑦, 0) 𝑏 𝑑𝑦. (6.3)

On the other hand, choosing 𝑈ℎ for 𝑉ℎ in (1.13) and taking into account the normalization made below (1.18) yield

‖‖‖∇𝑈ℎ; 𝐿2
(
Ωℎ

)‖‖‖2 = Λℎ‖‖‖𝑈ℎ; 𝐿2
(
Γ
)‖‖‖2 = Λℎ ≤ 𝑐ℎ (6.4)

and thus of course

‖‖‖𝑈ℎ; 𝐿2
(
Ωℎ

)‖‖‖2 ≤ 𝑐 (6.5)

with a constant 𝑐 = 𝑐𝑘 > 0 independent of ℎ or 𝜃. Let us write

𝑈ℎ(𝑥) = 𝑈ℎ
∙ + 𝑈ℎ

⟂(𝑥) , where 𝑈
ℎ
∙ =

1|Ω| ∫
Ω

𝑈ℎ 𝑑𝑥 and ∫
Ω

𝑈ℎ
⟂ 𝑑𝑥 = 0. (6.6)

By its definition, the Poincaré inequality applies to 𝑈ℎ
⟂ in Ω, and using (6.4) we obtain

‖‖‖𝑈ℎ
⟂; 𝐿

2(Ω)‖‖‖2 ≤ 𝑐‖‖‖∇𝑈ℎ
⟂; 𝐿

2(Ω)‖‖‖2 = 𝑐‖‖‖∇𝑈ℎ; 𝐿2(Ω)‖‖‖2
≤ 𝑐‖‖‖∇𝑈ℎ; 𝐿2

(
Ωℎ

)‖‖‖2 ≤ 𝑐′ℎ, (6.7)

so that combining the trace inequality with this implies

‖‖‖𝑈ℎ
⟂; 𝐿

2(Γ ⧵ Υ)‖‖‖ ≤ 𝑐‖‖‖𝑈ℎ
⟂;𝐻

1(Ω)‖‖‖ ≤ 𝑐′ℎ. (6.8)

Now, the sequence
(
𝑈ℎ𝑚

)∞
𝑚=1

is bounded in𝐻1(Ω), since the gradient sequence is bounded in 𝐿2(Ω) by (6.4) and both
component sequences determined by (6.6) are bounded in 𝐿2(Ω) by (6.5) and (6.7). Moreover, the embedding 𝐻1(Ω) ↪
𝐿2(Γ ⧵ Υ) is compact so

(
𝑈ℎ𝑚

)∞
𝑚=1

has a subsequence convergent in 𝐿2(Γ ⧵ Υ) with indices still denoted by {ℎ𝑚}∞𝑚=1. By

(6.8), the non-constant component
(
𝑈
ℎ𝑚
⟂

)∞
𝑚=1

of this subsequence tends to zero in the norm of 𝐿2(Γ ⧵ Υ), hence, for some
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constant 𝐵 we have

𝑈ℎ𝑚(⋅, 𝑦) → 𝐵 as𝑚 → +∞ (6.9)

in the norm of 𝐿2(Γ ⧵ Υ) and consequently the right-hand side of (6.3), denoted by 𝐼ℎ𝑅 , satisfies

𝐼
ℎ𝑚
𝑅 → 2Λ̃𝓁𝐵 𝑏 as𝑚 → +∞

where Λ̃ is as in (6.2).
To treat the left-hand side 𝐼ℎ𝐿 of (6.3) we let 𝑗 ∈ {0, … ,𝑁} and introduce the stretched coordinates 𝜁𝑗 = ℎ−1

(
𝑧 − 𝑑𝑗

)
so

that 𝜁𝑗 ∈
(
−𝐻𝑗, 0

)
for (𝑦, 𝑧) ∈ 𝑄ℎ

𝑗 . We define the stretched domain 𝐐𝑗 and the function𝐔ℎ
𝑗 on it by

𝐐𝑗 =
{(
𝑦, 𝜁𝑗

)
∶ (𝑦, 𝑧) ∈ 𝑄ℎ

𝑗

}
, 𝐔ℎ

𝑗 (𝑦, 𝜁𝑗) ∶= 𝑈ℎ(𝑦, 𝑧) for 𝑧 ∈ 𝑄ℎ
𝑗 (6.10)

and also the stretched domains (see (1.3))

𝐆𝑗 =
{(
𝑦, 𝜁𝑗

)
∶ (𝑦, 𝑧) ∈ 𝐺ℎ

𝑗

}
where

𝐺ℎ
𝑗 ∶= (−𝓁, 𝓁) × 𝜎ℎ𝑗 = (−𝓁, 𝓁) ×

(
𝑑𝑗 − ℎ𝐻𝑗, 𝑑𝑗

)
.

Let us consider 𝑗 = 0. Then, by (6.4),

‖‖‖𝐔ℎ
0(⋅, 0); 𝐿(Υ)

‖‖‖2 + ‖‖‖∇𝑦𝐔
ℎ
0 ; 𝐿

2
(
𝐐0

)‖‖‖2 + ℎ−2‖‖‖𝜕𝜁0𝐔ℎ
0 ; 𝐿

2
(
𝐐ℎ
0

)‖‖‖2
= ‖‖‖𝑈ℎ(⋅, 0); 𝐿(Υ)‖‖‖2 + ℎ−1‖‖‖∇𝑦𝑈

ℎ; 𝐿2
(
𝑄ℎ
0

)‖‖‖2 + ℎ−1‖‖‖𝜕𝑧𝑈ℎ; 𝐿2
(
𝑄ℎ
0

)‖‖‖2
≤ (

1 + ℎ−1Λℎ
)‖‖‖𝑈ℎ(⋅, 0); 𝐿2(Υ)‖‖‖2 ≤ 𝐶. (6.11)

Thus, the sequence
{
𝐔
ℎ𝑚
0

}∞
𝑚=1

is bounded in 𝐻1(𝐐0) (use the fundamental theorem of calculus and the smallness of
𝜕𝜁0𝐔0, (6.11), to proceed from 𝐿2(Υ) to 𝐿2(𝐐0)). Using arguments similar to those above and passing to a subsequence and
redefining the notation we find a sequence {ℎ𝑚}∞𝑚=1 converging to 0 such that in addition to (6.9) we have

𝐔
ℎ𝑚
0 → 𝑉0 weakly in𝐻1

(
𝐐0

)
(6.12)

𝐔
ℎ𝑚
0 (⋅, 0) → 𝑉0 strongly in 𝐿2(Υ) as𝑚 → +∞; (6.13)

notice that the function𝑉0 ∈ 𝐻1(Υ) does not depend on 𝜁0, due to the coefficient ℎ−2 of the 𝜕𝜁0 -term in the estimate (6.11)
(𝜕𝜁0𝐔

ℎ
0 vanishes in the limit).

Next let us consider the terms with 𝑗 = 1,… ,𝑁 of 𝐼ℎ𝐿 . First, we observe that by (6.5), (6.7)

‖‖‖𝑈ℎ; 𝐿2
(
𝐺ℎ
𝑗

)‖‖‖2 ≤ 2‖‖‖𝑈ℎ
∙ ; 𝐿

2
(
𝐺ℎ
𝑗

)‖‖‖2 + 2‖‖‖𝑈ℎ
⟂; 𝐿

2
(
𝐺ℎ
𝑗

)‖‖‖2
≤ 𝑐

(
mes

(
𝐺ℎ
𝑗

)
+ ℎ

) ≤ 𝐶ℎ ⇒ ‖‖‖𝐔ℎ
𝑗 ; 𝐿

2
(
𝐆𝑗

)‖‖‖2 ≤ 𝐶′

for all 𝑗. By the one dimensional Poincaré inequality, integrated with respect to 𝜁𝑗 ,

‖‖‖𝐔ℎ
𝑗 ; 𝐿

2
(
𝐐𝑗

)‖‖‖2 ≤ 𝑐
(‖‖‖𝜕𝑦𝐔ℎ

𝑗 ; 𝐿
2
(
𝐐𝑗 ∪ 𝐆𝑗

)‖‖‖2 + ‖‖‖𝐔ℎ
𝑗 ; 𝐿

2
(
𝐆𝑗

)‖‖‖2) ≤ 𝐶,
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with a constant 𝐶 = 𝐶𝑘 > 0 independent of 𝜃, since the termwith the derivative 𝜕𝑦 can be estimated by the normalization
(6.4). As in (6.6) we set

𝐔ℎ
𝑗

(
𝑦, 𝜁𝑗

)
= 𝐔ℎ

𝑗,∙(𝑦) + 𝐔ℎ
𝑗,⟂

(
𝑦, 𝜁𝑗

)
, where

𝐔ℎ
𝑗,∙ =

1||𝐐𝑗 ∪ 𝐆𝑗
|| ∫
𝐐𝑗∪𝐆𝑗

𝑈ℎ 𝑑𝑥 and ∫
𝐐𝑗∪𝐆𝑗

𝐔ℎ
𝑗,⟂ 𝑑𝑥 = 0.

Again, by the Poincaré inequality in 𝐐𝑗 ∪ 𝐆𝑗 ,

‖‖‖𝐔ℎ
𝑗,⟂; 𝐿

2
(
𝐐𝑗 ∪ 𝐆𝑗

)‖‖‖2 ≤ 𝑐‖‖‖𝜕𝜁𝑗𝐔ℎ
𝑗,⟂; 𝐿

2
(
𝐐𝑗 ∪ 𝐆𝑗

)‖‖‖2
= 𝑐‖‖‖𝜕𝜁𝑗𝐔ℎ

𝑗 ; 𝐿
2
(
𝐐𝑗 ∪ 𝐆𝑗

)‖‖‖2 ≤ 𝑐ℎ2, (6.14)

where the last inequality follows by scaling (6.4). Thus, using the argument (6.11) to estimate the gradient terms, the
sequence {𝐔ℎ𝑚

𝑗 }∞𝑚=1 is bounded in 𝐻
1
(
𝐐𝑗

)
and by (6.14), the non-constant component of the sequence again vanishes in

the limit. By the compactness of the embedding 𝐻1
(
𝐐𝑗 ∪ 𝐆𝑗

)
↪ 𝐿2

(
𝐐𝑗 ∪ 𝐆𝑗

)
we can again pass several times to subse-

quences, and redefining the notation we find a sequence {ℎ𝑚}∞𝑚=1 converging to 0 such that in addition to (6.9), (6.12),
(6.13) we have for all 𝑗

𝐔
ℎ𝑚
𝑗 → 𝑉𝑗 weakly in𝐻1

(
𝐐𝑗

)
, (6.15)

𝐔
ℎ𝑚
𝑗 (⋅, 0) → 𝑉𝑗 strongly in 𝐿2

(
𝐐𝑗 ∪ 𝐆𝑗

)
as𝑚 → +∞ (6.16)

for some functions 𝑉𝑗 ∈ 𝐻1
(
𝐐𝑗 ∪ 𝐆𝑗

)
, 𝑗 = 0,… ,𝑁, which again do not depend on 𝜁𝑗 , because of (6.14); as Sobolev func-

tions depending on one variable only they are continuous.
Since the last subsequence still satisfies (6.9), the boundary value of each 𝑉𝑗 , 𝑗 = 0,… ,𝑁, on the line segment

{±𝓁} ×
(
−𝐻𝑗, 0

)
must be equal to the constant 𝐵, and hence these functions can be glued into a single function

𝑉 ∈ 𝐻1
(
Ωℎ

)
by setting

𝑉(𝑥) =

{
𝑉𝑗(𝑦, 0), if 𝑥 = (𝑦, 𝑧) ∈ 𝑄𝑗,
𝐵, if 𝑥 ∈ Ω.

(6.17)

We also have, with Λ̃ as in (6.2),

𝐼
ℎ𝑚
𝐿 →

∑
𝑗

𝐻𝑗 ∫
Υ

(
𝜕𝑦𝑉𝑗(𝑦)

)
𝜕𝑦𝜓(𝑦) 𝑑𝑦 − Λ̃∫

Υ

𝑉𝑗(𝑦)𝜓(𝑦) 𝑑𝑦 as𝑚 → +∞.

The normalization ‖‖𝑈ℎ; 𝐿2(Γ)‖‖ = 1 and the norm convergence in (6.13), (6.16) yield

‖‖𝑉; 𝐿2(Υ)‖‖2 + 2|𝐵|𝓁 = 1, (6.18)

so that in particular 𝑉 ≠ 0. Formulas (6.12), (6.12), and (6.18) imply that the limits 𝑉 and Λ̃ satisfy the integral identity
(3.2). Thus, the function 𝑉, (6.17), (6.18), is an eigenfunction of the limit problem (3.2) corresponding to the eigenvalue Λ̃,
(6.2). This completes the proof of Lemma 6.1.
Finally, the claimed convergence of the eigenfunctions to 𝑉 follow from (6.9), the definition of 𝐔ℎ

𝑗 in (6.10), (6.13) and
(6.16). □

End of the proof of Theorem 5.1. Let us fix 𝑘 ∈ ℕ and 𝜃 ∈ [0, 2𝜋) and thus also the eigenvalue Λ0
𝑘
(𝜃); recall that its

multiplicity is one, see (3.9), (3.10). We claim that for some ℎ̂ > 0, the interval

Δ𝑘,𝜃 = [Λ0
𝑘
(𝜃) − 𝐶𝑘, Λ

0
𝑘
(𝜃) + 𝐶𝑘], (6.19)
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where 𝐶𝑘 = 𝐶𝑘(𝜃) =
1

4
min

(
Λ0
𝑘
(𝜃) − Λ0

𝑘−1
(𝜃), Λ0

𝑘+1
(𝜃)Λ0

𝑘
(𝜃)

)
> 0, contains for all ℎ ∈ (0, ℎ̂] exactly one eigenvalue

Λℎ
𝑗 (𝜃), with multiplicities counted.
For the proof we denote by𝑁(ℎ) the number of the eigenvalues Λℎ

𝑗 (𝜃) of the operatorℎ contained in the interval Δ𝑘,𝜃.
Indeed, by what was already proved in Section 5, we have 𝑁(ℎ) ≥ 1 for all small enough ℎ.
Consider first the case that the claim holds for some ℎ̂ > 0 and 𝑁(ℎ) > 1, for infinitely many ℎ ∈

(
0, ℎ̂

)
forming a set

with 0 as an accumulation point. Then, for each such ℎ we would have𝑁(ℎ) eigenfunctions𝑈ℎ,𝜃
𝑘(𝑝)

, 𝑝 = 1,… ,𝑁(ℎ), which
are orthogonal to each other in 𝐿2(Γ), see the text after (1.18). According to Theorem 6.1 and the choice of the interval
Δ𝑘,ℎ,𝜃 we find a sequence {ℎ𝑚}∞𝑚=1 such that

ℎ−1𝑚 Λ
ℎ𝑚
𝑘(𝑝)

(𝜃) → Λ0
𝑘
(𝜃) as𝑚 → +∞

for all 𝑝 = 1,… ,𝑁(ℎ), and also the eigenfunctions 𝑈ℎ𝑚,𝜃
𝑘(𝑝)

converge to some eigenfunctions 𝑢𝜃
𝑘(𝑝)

of the eigenvalue Λ0
𝑘
(𝜃)

in the norm of 𝐿2(Υ), as𝑚 → +∞. Moreover, by (6.8)

‖‖‖𝑈ℎ𝑚,𝜃
𝑝 ; 𝐿2(Γ ⧵ Υ)‖‖‖ ≤ 𝑐ℎ𝑚

so that the orthogonality of the 𝑁 functions 𝑈ℎ𝑚,𝜃
𝑝 in 𝐿2(Γ) leads to the conclusion that(
𝑢𝜃
𝑘(𝑝)

, 𝑢𝜃
𝑘(𝑝′)

)
𝐿2(Υ)

= 𝛿𝑝,𝑝′ , (6.20)

where we have the Kronecker delta of 𝑝, 𝑝′ = 1,… ,𝑁(ℎ) ≥ 2. But (6.20) implies, by a well-known lemma on perturbations
of orthonormal bases, that there exist at least two linearly independent eigenfunctions of the limit problem corresponding
to Λ0

𝑘
(𝜃), which is a contradiction. □
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