
09 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Privacy-Preserving WiFi Fingerprint-Based People Counting for Crowd Management / Rusca, Riccardo; Gasco, Diego;
Casetti, Claudio; Giaccone, Paolo. - In: COMPUTER COMMUNICATIONS. - ISSN 0140-3664. - ELETTRONICO. -
225:(2024), pp. 339-349. [10.1016/j.comcom.2024.07.010]

Original

Privacy-Preserving WiFi Fingerprint-Based People Counting for Crowd Management

Publisher:

Published
DOI:10.1016/j.comcom.2024.07.010

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2990938 since: 2024-08-01T17:01:36Z

Elsevier



Computer Communications 225 (2024) 339–349

A
0

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Privacy-preserving WiFi fingerprint-based people counting for crowd
management
Riccardo Rusca ∗, Diego Gasco, Claudio Casetti, Paolo Giaccone
Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy

A R T I C L E I N F O

Keywords:
Crowd monitoring
People counting
WiFi
Probe request
Bloom filter
Anonymization noise
DBSCAN
Clustering

A B S T R A C T

The practice of people counting serves as an indispensable tool for meticulously monitoring crowd dynamics,
enabling informed decision-making in critical situations, and optimizing the management of urban spaces,
facilities, and services. Beyond its fundamental role in safety and security, tracking people’s flows has evolved
into a necessity for diverse business applications and the effective administration of both outdoor and indoor
urban environments. In the ongoing exploration of the study, emphasis is placed on employing a passive
counting technique. This method leverages WiFi probe request messages emitted by smart devices to assess
the number of devices, providing a reliable estimate of the number of people in a specific area. However,
it is crucial to acknowledge the dynamic landscape of privacy regulations and the concerted efforts by
leading smart-device manufacturers to fortify user privacy, as evidenced by the adoption of MAC address
randomization. In response to these considerations, an enhanced iteration of the WiFi traffic generator has been
introduced. This upgraded version is designed to generate realistic datasets with ground truth, aligning with
the evolving privacy landscape. Additionally, leveraging a profound understanding of probe requests and the
capabilities of the designed generator, a novel crowd monitoring solution that incorporates machine learning
techniques, named ARGO, has been developed. This innovative approach effectively addresses challenges posed
by randomized MAC addresses, incorporating Bloom filters to ensure a formal ‘‘deniability’’ that complies
with stringent regulations, including the European GDPR (European Parliament, Council of the European
Union, Regulation (EU), 2016). The proposed solution adeptly addresses the pivotal task of people counting
by harnessing WiFi probe request messages. Significantly, it prioritizes users’ privacy, aligning with the
foundational principles outlined in regulations such as the European GDPR.
1. Introduction

The shifting dynamics of public gatherings in the wake of the
COVID-19 pandemic have prompted a reevaluation of crowd man-
agement practices. In the wake of the post-pandemic era, the return
of large-scale events introduces challenges related to security threats
and potential congestion. Persistent limitations on gathering sizes un-
derscore the critical need for effective crowd management, placing
increased responsibility on authorities to ensure public safety. In this
evolving context, crowd management analytics have become indispens-
able tools for adaptive decision-making in response to dynamic cir-
cumstances. Effectively assessing crowd dynamics, estimating resource
requirements, and optimizing emergency response efforts become piv-
otal for the successful management of large-scale events. However,
counting and tracking individuals within large gatherings or chaotic
scenarios persist as challenges, demanding innovative solutions that
align with today’s privacy regulations and the heightened focus on user
privacy.

∗ Corresponding author.
E-mail address: riccardo.rusca@polito.it (R. Rusca).

Traditional crowd monitoring techniques, ranging from ubiquitous
surveillance cameras to sophisticated LiDAR and infrared systems, have
long served as foundational tools for gathering insights into crowd
dynamics. In addition, the utilization of WiFi and Bluetooth fingerprints
has provided valuable data for tracking individuals within a given
space. However, the effectiveness of these methods is now being chal-
lenged by the advent of stringent data protection regulations, exempli-
fied by the European General Data Protection Regulation (GDPR) [1].
The GDPR, enacted to safeguard individuals’ privacy rights, imposes
rigorous guidelines on collecting, processing, and storing personal data.
Furthermore, the increased importance on user privacy, especially tar-
geted by the leading smart device manufacturers, adds a layer of
complexity to traditional monitoring methods. Wishing to avoid being
blamed for the lack of privacy concerns, these manufacturers have
started adopting features like MAC address randomization. This inten-
tional obfuscation of device identifiers poses a significant challenge
vailable online 25 July 2024
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to conventional crowd monitoring systems that rely on consistent and
unique identifiers for accurate tracking.

This study proactively addresses this shifting landscape, introduc-
ing an advanced WiFi traffic generator crafted to generate realistic
datasets and a novel crowd monitoring framework, called ARGO. The
proposed crowd counting architecture leverages the capabilities of a
Raspberry Pi IoT device, employing it to intercept broadcast WiFi probe
request packets, and a machine learning algorithm specifically tai-
lored to mitigate the challenges posed by MAC address randomization.
More in detail, the designed methodology incorporates a clustering
method, utilizing the DBSCAN algorithm to effectively classify probe
requests belonging to a single device. This innovation contributes to
the precision and reliability of the crowd counting approach, even in
the face of randomized MAC addresses. Furthermore, to ensure the
secure transmission of results over the network, ARGO leverage the
Anonymization noise technique, introduced in [2]. This technique for-
ifies Bloom filter data structures containing detected MAC addresses,
dding an extra layer of privacy protection. Operating under the con-
ept of 1-deniability, the proposed methodology involves the secure
ransmission of Bloom filters over the network. The resulting server-
ide intersections allow for an in-depth analysis of people flow within
pecific time windows, ensuring a robust, privacy-conscious crowd
onitoring solution.

The main contributions can be summarized as follows:

• Development of an advanced realistic WiFi Probe Request Gen-
erator: an upgraded iteration of the WiFi probe request genera-
tor has been introduced, capable of generating realistic datasets
aligned with evolving privacy regulations.

• Introduction of ARGO Crowd Monitoring Framework: a novel
crowd monitoring solution, named ARGO, has been developed.
This framework leverages machine learning techniques to ad-
dress challenges posed by randomized MAC addresses, ensuring
accurate people counting while prioritizing user privacy.

• Creation of a cost-effective Counting Architecture: a novel archi-
tecture has been introduced, prioritizing cost-effectiveness with-
out compromising on functionality or accuracy. This architecture
encompasses efficient hardware and software components, and it
is able to work in every weather condition.

• Comprehensive Testing and Validation: the testing and vali-
dation phase involved a thorough examination of the developed
crowd-monitoring framework. This included the utilization of
various datasets, ranging from synthetic data to realistic datasets
collected from real-world environments.

The rest of the paper is organized as follows: Section 2 explores
ertinent related work, Section 3 delves into the preliminaries and
nhanced version of the probe request generator, while Section 4 de-
cribe the data handling in a GDPR-compliant way. After that, Section 5
resents the proposed counting framework, that leverages Clustering
echnique. Section 6 provides an overview of the comprehensive de-
loyed architecture, followed by Section 7, which unveils the results
btained from real-world and synthetic datasets. Finally, Section 8 of-
ers conclusive remarks, summarizing the contributions of the proposed
rowd monitoring solution, and the future directions.

. Related works

In recent years, numerous approaches have been suggested to ad-
ress the challenge of counting people. Recent research has highlighted
he feasibility of utilizing LiDAR sensors to detect individuals based
n the distinct temperatures detected in scanned areas. Works such
s [3] have demonstrated the tremendous potential of this technol-
gy, yet they have also brought attention to limitations such as the
nvolvement of expensive hardware and the complex management of
hese sensors. Another well-known approach involves the use of multi-
amera surveillance systems, combined with advanced deep learning
340
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echniques. Specifically, in [4,5], the authors employ a multi-camera
urveillance system that integrates partial body detection and exten-
ively utilizes computer vision frameworks like YOLO [6]. While these
ethods deliver accurate counts of individuals in examined areas, they
resent challenges related to user-sensitive data and the limited range
f environments in which they can be applied.

In recent studies [7], a novel approach to crowd monitoring has
een introduced. This technique leverages WiFi communication mes-
ages, specifically honing in on the probe request frames transmitted
y the WiFi interfaces of devices searching for available access points
o establish a connection. This method involves collecting and tracking

iFi fingerprints from mobile devices, both in indoor and outdoor
ettings. Importantly, compared to other solutions, it requires cheaper
quipment and advances new techniques for preserving user privacy.
owadays, several methodologies are delving into the utilization of
rtificial intelligence algorithms to categorize probe requests, enabling
he identification of individual devices. In [8], the authors focus on
mplementing a state-machine framework named Sherlock. This frame-
ork exploits the analysis and association of probe requests detected

n predefined time windows of one minute, providing an estimation
f the number of individual devices in each time interval. Conversely,
ecent literature introduces frameworks that employ both traditional
ata mining techniques. Examples of these methodologies can be found
ithin [9–11], where authors utilize clustering algorithms to extract
roups of messages, each corresponding to a detected device. The
uthors focus on key probe request fields, such as sniffing times-
amp, throughput capabilities, MAC Addresses, and transmission power
RSSI).

Clustering-based techniques possess the capability to group probe
equests based on predefined metrics, offering a flexible approach to
attern recognition. A distinctive characteristic of these techniques
s that the number of clusters formed is not predetermined before
he process but emerges organically as the outcome. Consequently,
pecifying the number of groups becomes a parameter that cannot be
redefined for the algorithm. In light of this consideration, traditional
lustering methods like K-Means, which depend on a predetermined
umber of clusters, are avoided. Instead, ARGO is designed to fa-
or density-based clustering algorithms. These density-based methods,
xemplified by algorithms such as DBSCAN (Density-Based Spatial
lustering of Applications with Noise) [12] and OPTICS (Ordering
oints To Identify the Clustering Structure) [13], are particularly well-
uited for identifying clusters of arbitrary shapes and sizes. Unlike
-Means, which assumes a pre-established number of clusters and relies
n distance metrics, density-based algorithms discern clusters based
n the density of data points. This characteristic renders them more
obust in handling intricate patterns and mitigating noise within the
ataset provided as input. The adaptability of density-based algorithms
s especially valuable when dealing with real-world scenarios where
he number and shapes of clusters may vary, offering a more versatile
nd reliable solution for the developed clustering-based crowd counting
ethodology.

Modern machine learning approaches have also been investigated,
or example, in [14], authors focus on overcoming the MAC address
andomization through a neural network that has the objective of
ssociating different probe requests to one device.

The utilization of WiFi probe requests presents significant chal-
enges, particularly in the fine-tuning of machine learning models and
he validation of systems. These challenges stem from the absence
f collections of probe requests with associated information about
he number of devices that generated them, commonly referred to
s ground truth. Acquiring this crucial data involves employing ap-
roximated methods, which are inherently complex, particularly in
ensely populated environments. Illustrating the essential nature of this
round truth data and, simultaneously, the formidable challenge of
btaining it with precision, is exemplified in the work outlined in [15].

n this study, a meticulously crafted dataset was curated, comprising
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probe requests from 21 devices. Each device underwent thorough anal-
ysis within an anechoic chamber, where packet transmissions were
measured across various phases of activity. The significance of this
endeavor lay in the complete isolation of the chamber from other elec-
tronic devices equipped with WiFi interfaces, ensuring measurements
could be conducted without interference.

Recent regulations, notably the General Data Protection Regulation
(GDPR) [1], impose significant challenges on the storage and man-
agement of sensitive information. A specific concern arises from the
continuous emission of probe request messages by mobile devices, con-
taining crucial information such as MAC addresses, essential for device
identification and monitoring. It is noteworthy that the GDPR catego-
rizes MAC addresses as personal data [16]. Even with the widespread
adoption of privacy measures like MAC address randomization by most
devices, as detailed in [17], compliance with GDPR regulations remains
a paramount consideration.

To address the privacy concerns inherent in handling such data,
ARGO incorporates a specific data structure designed to store collected
MAC addresses while adhering to GDPR rules — the Bloom Filter [18].
This particular data structure serves as a space-efficient probabilistic
tool for membership queries. Studies in the literature [19,20] have
demonstrated that, through the application of symmetric homomorphic
encryption, these structures allow for the anonymization of stored MAC
addresses.

Finally, it is worth mentioning that a preliminary version of some
parts of this work has appeared in [2,21]. Specifically, the introduction
of the first version of the probe request generator capable of producing
realistic traces with both probe request messages and the essential
ground truth, and the concept of Anonymization noise applied to Bloom
ilters. In this current study, an improved iteration of the probe request
enerator is unveiled, featuring additional enhancements to render
enerated traces more faithful to real-world scenarios. Moreover, a
ovel framework that capitalizes on advanced clustering techniques
nd incorporates new features is introduced, specifically it focuses
n the frequency of message delivery and information gleaned from
ndividual device models about their behavior under diverse network
onditions. Importantly, ARGO is designed in strict adherence to the
obust guidelines set forth by GDPR.

. Probe request generator

As previously mentioned, the proposed approach relies on WiFi sig-
al reception and processing to estimate the presence of smart devices
uch as smartphones, tablets, laptops, and smartwatches. This method
nvolves scanning the WiFi spectrum in order to capture WiFi packets
ransmitted by smart devices. When the WiFi interface is activated, it
mits a burst of broadcast messages, called WiFi probe requests, to
ocate nearby Access Points (APs). In the following, an overview of
ey WiFi features is provided, which are exploited to extract valuable
nformation from the transmitted messages. Then, the Probe Request
enerator is described in detail.

.1. Probe request frames

The identification and the subsequent connection to a network, pass
hrough a series of WiFi management frames called probe requests.
f a device has its WiFi interface activated, it automatically starts a
iscovery phase for available Access Points (APs) by broadcasting this
ype of message. Even after the device connection to an AP, the probe
equest sending process still continues with the aim of identifying other
vailable APs. Until 2014, it was common to find the original MAC
ddress as the device identifier within probe requests, and this posed
ignificant privacy issues for users, considering its globally unique
ature. In the past years, vendors have started to adopt MAC address
andomization as a privacy-enhancing measure, as underlined in a
tudy [22] and analyzed in the research [17]. While some devices
341
completely randomize the 64-byte MAC address, others choose to ran-
domize only the second half while retaining the first 3 bytes, known
as the Organizationally Unique Identifier (OUI). This new method aims
to advance user protection against possible malicious attacks since it
would be easy to use the original MAC address of a device to commit
various crimes, such as device tracking or spoofing. It is important to
underline that when a device establishes an association, it continues
to use the last MAC address employed for communication with the
Access Point (AP) with which it is connected. However, with other
access points, the device still adopts random MAC addresses. For crowd
monitoring research, the adoption of this protection measure poses
substantial challenges, since the collected traces now may present
thousands of different MAC addresses even if the actual devices present
in the sniffing area are many fewer.

3.2. Probe request generator

To address the challenge of MAC address randomization, various
machine learning techniques were employed. The goal was to discern
whether different MAC addresses could be attributed to the same
device. Achieving this, required access to datasets of varying sizes to
train and test the machine learning algorithms effectively. Getting large
datasets proved relatively straightforward, however obtaining accurate
ground truth data to accompany these datasets presented a significant
hurdle. In light of this challenge, a unique realistic probe request
generator has been created, an initial version has been introduced
in [2]. This generator enables the production of an abundant supply
of realistic traces while also furnishing the crucial ground truth data
required. Following the initial public release, potential for further im-
provement was identified. Consequently, the generator was enhanced,
incorporating new features to refine its capabilities and further advance
research in this domain.

3.2.1. Enhanced frame generation
First of all, the construction of the probe request frames was dele-

gated to the Python library called Scapy [23]. This solution facilitates
adherence to the 802.11 standard, simplifying the process of crafting
network messages.

Additionally, after conducting some analysis, a precise pattern for
the management of frame sequence numbers was identified. Specifi-
cally, it was observed that the initial frame in each burst displays a ran-
domly chosen sequence number that is independent of previous frames,
while subsequent frames within the same burst have sequence numbers
that increment sequentially by one. This behavior was incorporated
into the new frame creation process.

In the generator’s database, each device is marked with a flag
indicating whether it employs MAC address randomization. When a
device does not employ randomization, its MAC address is constructed
using the vendor’s specific Organizationally Unique Identifier (OUI) for
the initial 24 bytes, with random bytes used for the remaining portion.
It is noteworthy that all packets sent by these kinds of device share the
same MAC address.

3.2.2. Throughput capabilities
Each device model encapsulates a set of capabilities within its probe

requests, pertaining to throughput, such as: VHT (Very High Through-
put), HT (High Throughput), and Extended. These capabilities provide
insight into how the specific model operates and its potential data
transfer speeds. VHT indicates support for the highest throughput, typ-
ically associated with 802.11ac and newer standards, while HT denotes
support for high throughput, commonly found in 802.11n devices.
The ‘‘Extended’’ capability implies additional features or enhancements
beyond the standard throughput specifications. These capabilities are
crucial for network management and optimization, allowing efficient
utilization of available bandwidth and resources.
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3.2.3. Added special fields: WPS and UUID-E
Probe requests can sometimes contain the WPS with the UUID-E in

the header and the SSID in the payload. According to [24], it is evident
that only a small number of messages include all three of these fields.
Specifically, the combination of WPS and UUID-E is found in only 11%
of the cases analyzed, and there is no precise statistical information
available for the SSID field.

As a result, when a new device is powered on in the emulated
environment, an extra option is now available: there is an 11% chance
that the device will be assigned randomly generated WPS and UUID-
E values. If these values are assigned to a particular device, they are
subsequently included in the packet creation process, and placed inside
the headers of the packets.

3.2.4. Probe collision avoidance
One of the primary challenges in generating packet traces is man-

aging the arrival times of messages. Particularly in heavily congested
environments, the possibility of two probe requests, sent from different
devices, reaching the sniffer simultaneously cannot be ignored. In the
generated .𝑝𝑐𝑎𝑝 file, this results in two frames having the same times-
tamp. In real systems, these occurrences are referred to as collisions
and are typically resolved through backoff-based recovery procedures
in case of unicast traffic, while they may go unnoticed for broadcast
data.

To address the potential for collisions and ensure that synthetic
packets are not lost, an additional feature has been incorporated into
the system. Specifically, when a new event of type SendPacket is about
to be added to the event list, it checks for possible time overlaps with
existing events of the same type. If no collision is detected, the event
is added as usual. However, if a collision is identified, a mechanism is
activated to adjust the timing.

In these cases, the execution time of the new event is shifted
forward by a very small increment, specifically, 0.001 s. This minimal
adjustment is chosen to have the least possible impact on the originally
scheduled arrival time of the packet. Moreover, the order of magni-
tude around milliseconds was driven by the typical timing between
different packets within the same burst, which tends to fall within the
millisecond range, between values of 20 to 50 ms. After this adjustment,
the new event is inserted into the event list as usual. The cumulative
time by which the new event has been changed is recorded as the
return value. This aids in synchronizing subsequent packets within the
ongoing burst to the revised arrival time established for the preceding
packet. Once these necessary time adjustments are made, the event is
added to the simulator’s list of events.

However, when dealing with thousands of simulated devices, it is
important to address a potential issue related to time shifting. There is a
risk of encountering an endless chain of collision events, disrupting the
perception of time with a significant accumulation of delays. To miti-
gate this, the generator implements a safeguard mechanism. A specific
threshold is established: if the number of shifts surpasses it, the packet
is dropped. With a time factor of 0.001 s, the threshold is set to 10,
ensuring that the variance between the originally scheduled time and
the adjusted time, caused by collisions, remains within one hundredth
of a second. This approach aims to balance collision resolution while
mitigating the risk of excessive adjustments disrupting packet timing
integrity.

Fig. 1 illustrates the collision management inside the Event Queue
of the probe request generator. Whenever a new probe request (PR3) is
generated by a device, the generator attempts to insert the event at the
head of the Event Queue. However, if its associated time coincides with
that of another probe request, such as PR1 in this example, a collision
is detected. In response, the time of PR3 is adjusted by a time shift
of 0.001 s, iterating this adjustment process until a vacant time slot is
identified, thereby enabling the insertion of the new probe request into
the queue.
342
Fig. 1. Collision management for a probe request PR3, when trying to insert it in the
Event Queue.

4. GDPR-compliant data handling and storage

To store and analyze the flow of people efficiently, it is essential
to consolidate data collected from multiple access points into a central
server for information extraction. However, this process must adhere to
GDPR-compliant data handling. To address this challenge, inspiration
was drawn from the work of the authors in [25], where they introduced
a pivotal concept for safeguarding anonymity: 𝛾-deniability.

In previous works, presented in [2], and explored in depth in [21],
the concept of 𝛾-deniability applied specifically to Bloom filters was
harnessed, with a focus on utilizing 𝛾 = 1. As a reminder, Defini-
tions 1 and 2 delineate the fundamental notions of the hiding set and
𝛾-deniability. These concepts serve as crucial pillars in the understand-
ing and implementation of the privacy-preserving techniques, called
anonymization noise.

Definition 1 (taken from [25] Hiding Set). A set 𝑉 is called Hiding Set
for a Bloom filter 𝐵𝐹 (𝑆) if 𝑉 contains all the elements 𝑣𝑖 ∈ 𝑈 such
that 𝑣𝑖 ∉ 𝑆 and a query for 𝑣𝑖 in the Bloom filter returns 1. Where |𝑈 |

represents a large set, approximately equal to 248 ≈ 2.8 1014.

Let 𝐵𝐹 (𝑆) be a Bloom filter storing a set 𝑆 of elements, and 𝑘 the
number of independent hash functions. The definition of 𝛾-Deniability
is the following:

Definition 2 (taken from [25] 𝛾-Deniability).: An element 𝑥 ∈ 𝑆
inserted in 𝐵𝐹 (𝑆) is defined deniable if ∀𝑖 ∈ {1..𝑘} there exists at least
one element 𝑣 ∈ 𝑉 such that ∃𝑗 ∈ {1..𝑘} such that 𝐻𝑖(𝑥) = 𝐻𝑗 (𝑣).
A 𝐵𝐹 (𝑆) is 𝛾-deniable whenever a randomly chosen element 𝑥 ∈ 𝑆 is
deniable with probability 𝛾.

Additionally, the novel notion ‘‘anonymization noise’’ was intro-
duced, consisting of 𝑛min randomly generated elements. These elements
are inserted into the Bloom filter as soon as it is instantiated, thereby
ensuring 1-deniability, and preserving the anonymity of data from
the very first insertion of a MAC address into the Bloom filter. This
innovative approach enables the maintenance of privacy and security
of the collected data throughout the analysis process. Thanks to the
1-deniability property, the Bloom filter effectively safeguards the pri-
vacy of inserted MAC addresses. Even if an attacker gains access to
the Bloom filter, there remains no discernible evidence regarding the
number of hash functions employed for data insertion. Furthermore, if
the attacker possess knowledge of the hash function count, attempts
at a guessing attack are inherently limited. While the attacker may
observe the presence or absence of various MAC addresses, the conclu-
sive determination is restricted to the probability of a MAC address’s
presence, particularly when all corresponding bits are set to 1. This
limitation arises from the preservation of 1-deniability, ensuring the
existence of at least one uninserted element within the Bloom filter’s
structure. Thus, any attempt to insert such an element would leave the
bitmap unchanged, effectively concealing the actual MAC address from
detection.
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Given a Bloom filter it is possible to compute 𝛾 for the level of
𝛾-Deniability desired according to:

𝛾(𝐵𝐹 (𝑆)) =
(

1 − exp
(

− ℎ𝑘
𝑚(1 − 𝑒−𝑛𝑘∕𝑚)

))𝑘
(1)

where:

• 𝑚 represents the length of the bits array, which is the number of
bits used to construct the Bloom filter.

• 𝑘 denotes the number of independent hash functions employed in
the filter. These functions map an input 𝑥 to one of the 𝑚 bits in
the bit array.

• 𝑛 stands for the count of stored elements within the Bloom filter.
• ℎ corresponds to the average cardinality of the hiding set, given

by the formula ℎ = (|𝑈 | − 𝑛)(1 − 𝑒−𝑛𝑘∕𝑚)𝑘.
• |𝑈 | represents a large set, approximately equal to 248 ≈ 2.8 1014.

Fig. 2 illustrates the evolution of deniability following the insertion
of 𝑛 MAC addresses, as determined by (1), considering a Bloom filter
with 𝑚 = 10,000 bits and 𝑘 = 7 hash functions. It can be demonstrated
that the selection of 𝑘 represents the optimal choice for minimizing
the probability of false positives when storing 𝑛 = 1,000 elements. The
graph indicates that after approximately 30 insertions into the Bloom
filter, the deniability value reaches 1. This signifies the assurance that
there will consistently exist at least one element within the hiding set
capable of refuting the insertion of any given element into the Bloom
filter.

5. Counting framework

This Section, delve into the details of the innovative privacy-
preserving people counting framework, named ARGO. This framework
has been designed to address the critical challenges associated with
preserving user privacy while harnessing the power of IoT and WiFi
technologies for crowd monitoring and device characterization. It is
important to emphasize that in every stage of development and testing
of the framework, the probe request generator played a central role.
The datasets it provided, alongside their corresponding ground truths,
were instrumental in shaping both the design and implementation of
this framework.

5.1. Clustering method

Distinguishing between probe requests based on device features
is challenging because header fields often contain information shared

Fig. 2. 𝛾-deniability value in relation to the number of inserted MAC addresses.
343
among devices of the same model. To maximize the potential benefits, a
clustering for model-based differentiation was employed. The analysis
conducted in [11] has already underlined a set of fields within each
frame that are crucial for discerning the message source. For this
reason, this framework leverages the presence of VHT, HT, Extended
Capabilities and Vendor Specific Data. In this context, probe requests
can be seen as data points in an N-dimensional space, with 𝑁 rep-
resenting the number of these extracted features. To facilitate the
clustering process, it is essential to generate unique model identifiers
for each probe request. These identifiers serve as coordinates within
the space where the clustering method will be subsequently applied.
For other probe requests originating from devices using randomization
techniques, a model identifier is computed as detailed in Algorithm 1.

Algorithm 1 Algorithm to compute the probe requests model
identifiers
Input: .𝑝𝑐𝑎𝑝 file with the capture
Output: 𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟𝑠_𝑙𝑖𝑠𝑡 source model identifiers list
Output: 𝑏𝑙𝑜𝑜𝑚_𝑓𝑖𝑙𝑡𝑒𝑟 ← structure to anonymize the MAC addresses
1: 𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟𝑠_𝑙𝑖𝑠𝑡 ← []
2: 𝑏𝑙𝑜𝑜𝑚_𝑓𝑖𝑙𝑡𝑒𝑟 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑤𝑖𝑡ℎ_𝑛𝑜𝑖𝑠𝑒() ⊳ Noise insertion
3: 𝑏𝑙𝑜𝑜𝑚_𝑓𝑖𝑙𝑡𝑒𝑟 ← 𝑖𝑛𝑠𝑒𝑟𝑡(𝑔𝑙𝑜𝑏𝑎𝑙_𝑀𝐴𝐶_𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠) ⊳ Global MAC

addresses insertion inside the Bloom filter
4: for 𝑝𝑎𝑐𝑘𝑒𝑡 in 𝑐𝑎𝑝𝑡𝑢𝑟𝑒 do
5: 𝑟𝑎𝑡𝑒 ← 𝑓𝑟𝑎𝑚𝑒_𝑟𝑎𝑡𝑒(𝑝𝑎𝑐𝑘𝑒𝑡) ⊳ Get the frame rate
6: if 𝑟𝑎𝑡𝑒! = 1.0 then
7: 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒
8: end if
9: 𝐻𝑇 ← 0 ⊳ HT parameter initialization

10: 𝑉 𝐻𝑇 ← 0 ⊳ VHT parameter initialization
11: 𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 ← 0 ⊳ Ext parameter initialization
12: 𝑉 𝑒𝑛𝑑𝑜𝑟 ← 0 ⊳ Vendor data initialization
13: 𝑝𝑎𝑐𝑘𝑒𝑡_𝑓𝑖𝑒𝑙𝑑𝑠 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑎𝑙𝑙_𝑓𝑖𝑒𝑙𝑑𝑠(𝑝𝑎𝑐𝑘𝑒𝑡)

⊳ Extract all the Information Elements
14: for 𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 in 𝑝𝑎𝑐𝑘𝑒𝑡_𝑓𝑖𝑒𝑙𝑑𝑠 do
15: if 𝑘𝑒𝑦 == 𝐻𝑇 𝑖𝑛𝑓𝑜 then
16: 𝐻𝑇 ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑣𝑎𝑙𝑢𝑒(𝑣𝑎𝑙𝑢𝑒) ⊳ HT value
17: else if 𝑘𝑒𝑦 == 𝑉 𝐻𝑇 𝑖𝑛𝑓𝑜 then
18: 𝑉 𝐻𝑇 ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑣𝑎𝑙𝑢𝑒(𝑣𝑎𝑙𝑢𝑒) ⊳ VHT value
19: else if 𝑘𝑒𝑦 == 𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑖𝑛𝑓𝑜 then
20: 𝐸𝑥𝑡 ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑣𝑎𝑙𝑢𝑒(𝑣𝑎𝑙𝑢𝑒) ⊳ Ext value
21: else if 𝑘𝑒𝑦 == 𝑉 𝑒𝑛𝑑𝑜𝑟 𝑖𝑛𝑓𝑜 then
22: 𝑉 𝑒𝑛𝑑𝑜𝑟 ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑣𝑎𝑙𝑢𝑒(𝑣𝑎𝑙𝑢𝑒)

⊳ Vendor value
23: end if
24: end for
25: 𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟 ← (𝐻𝑇 , 𝑉 𝐻𝑇 ,𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑, 𝑉 𝑒𝑛𝑑𝑜𝑟)
26: 𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟𝑠_𝑙𝑖𝑠𝑡 ← 𝑖𝑛𝑠𝑒𝑟𝑡(𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟)

⊳ Identifiers list update
27: end for
28: return 𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟𝑠_𝑙𝑖𝑠𝑡

More in detail, the packet processing procedure unfolds as follows:
initially, the Bloom filter is initialized with 𝑛𝑚𝑖𝑛 random MAC addresses
to ensure 1-deniability (line 2), after that, in line 3, all the global MAC
addresses are inserted in the Bloom filter. Subsequently, the frame rate
is extracted for each packet (line 5), and if the packet is not transmitted
at the basic rate, it is promptly discarded (line 7); conversely, if it
adheres to the basic rate, the analysis continues. The initialization
of the four considered identifiers variables occurs within lines 9 to
12. Leveraging the capabilities of Scapy [23], all packet fields are
extracted (line 13). Then, specific packet fields, including HT, VHT,
Extended Capabilities, and Vendor data, are extracted and stored in
their corresponding variables (lines 15 to 22). Upon the completion of
field extraction, a unique device identifier is generated in line 25, as a



Computer Communications 225 (2024) 339–349R. Rusca et al.

m

d
f
r
r
d

5

d
V
t
w
p
t
u
t
s
i
g
T
t

t
c

a

p
p

1
1
1
1

tuple, and subsequently appended to the identifier list in line 26. This
iterative process continues until all captured packets undergo thorough
analysis.

These model identifiers serve as the data points that represent the
probe requests, and they are input into a clustering algorithm, specifi-
cally DBSCAN [12]. The primary aim is to group probe requests based
on the device models from which they originated. Before applying
the clustering process, a check is performed to ensure that at least a
certain percentage of probe requests (defaulted to 2% of the entire
capture) have locally administered MAC addresses. This threshold is
crucial because it ensures that DBSCAN is applied to a substantial
portion of the received probe requests. If the threshold is not met,
only messages with globally unique MAC addresses are considered
for counting purposes. This approach helps ensure the robustness and
reliability of the clustering result.

To determine the number of devices for each model, two primary
approaches can be employed, each contingent on a thorough under-
standing of the capture area. The first method is applicable when it is
assumed that the environment boasts a diverse array of device models,
assuming each device corresponds to a unique model. In this scenario,
the approach involves simply tallying the number of clusters identified
by the algorithm. The second approach involves a more in-depth anal-
ysis of the clusters’ content. Specifically, probe request rates within the
formed groups are scrutinized. Each device model typically emits probe
requests at a specific frequency, influenced by the user’s interaction
patterns. Rather than segregating clusters based on user interaction
phases, ARGO focuses on the average sending rate for each model.
However, in instances where crowd-monitoring occurs in environments
where a particular phase predominates, analyzing message rates for
each phase individually may prove beneficial.

Considering just the devices within the same cluster, i.e., of the same
model. It holds that 𝑁 = 𝐾 ⋅𝐿⋅𝑇 , where 𝑁 is the total number of probe
requests sent by devices of a certain model, 𝐾 is the number of devices
belonging to the model, 𝐿 is the average probe request rate for the

odel, and 𝑇 is the capturing time window. Now 𝐾 can be estimated
as:

𝐾 = 𝑁
𝐿 ⋅ 𝑇

(2)

While parameters 𝑁 and 𝑇 are readily available, the rate 𝐿 must be
etermined from a source. It is essential to find a specific 𝐿 value
or each formed cluster, as each model exhibits significantly different
ates during the experiments. In [2,17] analyses of numerous devices
evealed distinct rates, influenced in part by user interactions with the
evice.

.2. Counting algorithm

Each probe request corresponds to a model identifier, serving as a
ata point within the DBSCAN algorithm. These identifiers, based on
HT, HT, Extended, and Vendor data, convey information about system

hroughput, indicating the data transmission capacity of a network
ithin a specific timeframe. These model identifiers serve a dual pur-
ose: they aid in clustering probe requests by device models and gauge
he similarity of these clusters to models in the generator database. The
nderlying idea is that when two models possess similar identifiers,
here is a higher likelihood that their probe request rates are also
imilar. The generator database contains multiple models, each with
ts identifiers and rates. This approach enables the comparison of each
enerated cluster with all models in the database using their identifiers.
his facilitates the identification of the most similar model, from which
he rate can be extracted as the 𝐿 parameter.

To gather these values, the probe request generator allows simula-
ions with individual devices from the database, making it possible to
alculate the message rate associated with a specific model.

For each model in the generator database, two types of information
re computed: the quadruplets used for model identification and its
344
robe request rates. With this updated database of models, it becomes
ossible to find and utilize probe request rates to assign a parameter 𝐿

to each formed cluster. However, before searching for a model in the
database, each cluster undergoes a normalization process. Not all probe
requests collected within a group may have identical identifiers; they
are expected to be similar due to the use of a density-based clustering
algorithm, but perfect identity is not guaranteed. Therefore, within
each group, all identifiers are averaged to determine a unique cluster
identifier for pairing with the models in the database.

The pseudo-code for the framework counting procedure using model
rates is reported in Algorithm 2.

Algorithm 2 Algorithm to count the number of devices inside a .pcap
trace
Input: 𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟𝑠_𝑙𝑖𝑠𝑡 identifiers from Algorithm 1
Input: 𝑚𝑜𝑑𝑒𝑙𝑠_𝑟𝑎𝑡𝑒𝑠 probe request rates of device models
Input: 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑢𝑛𝑡 locally administrated unique MAC addresses

counter
Input: 𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑜𝑢𝑛𝑡 globally unique MAC addresses counter
Input: 𝑝𝑎𝑐𝑘𝑒𝑡𝑠_𝑐𝑜𝑢𝑛𝑡 number of packets inside the capture
Output: 𝑑𝑒𝑣𝑖𝑐𝑒_𝑐𝑜𝑢𝑛𝑡 number of detected devices
1: if 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑢𝑛𝑡

𝑝𝑎𝑐𝑘𝑒𝑡𝑠_𝑐𝑜𝑢𝑛𝑡 < 2% then
2: 𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑣𝑖𝑐𝑒𝑠 ← 𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑜𝑢𝑛𝑡
3: return 𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑣𝑖𝑐𝑒𝑠 ⊳ If clustering can not be done
4: end if
5: 𝑙𝑎𝑏𝑒𝑙𝑠 ← 𝐷𝐵𝑆𝐶𝐴𝑁(𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟𝑠_𝑙𝑖𝑠𝑡) ⊳ DBSCAN clustering
6: 𝑙𝑎𝑏𝑒𝑙𝑠 ← 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑜𝑖𝑠𝑒(𝑙𝑎𝑏𝑒𝑙𝑠) ⊳ Remove -1 labels
7: 𝑙𝑎𝑏𝑒𝑙𝑠_𝑢𝑛𝑖𝑞𝑢𝑒 ← 𝑠𝑒𝑡(𝑙𝑎𝑏𝑒𝑙𝑠) ⊳ Unique labels
8: 𝑇 ← 𝑔𝑒𝑡_𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤() ⊳ Capture time window
9: 𝑐𝑜𝑢𝑛𝑡_𝑑𝑒𝑣𝑖𝑐𝑒𝑠 ← 0

10: for 𝑙 in 𝑙𝑎𝑏𝑒𝑙𝑠_𝑢𝑛𝑖𝑞𝑢𝑒 do
11: 𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟 ← 𝑔𝑒𝑡_𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟(𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟𝑠_𝑙𝑖𝑠𝑡, 𝑙)
12: 𝐿 ← 𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑟𝑎𝑡𝑒(𝑚𝑜𝑑𝑒𝑙𝑠_𝑟𝑎𝑡𝑒𝑠, 𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟) ⊳ Rates match
13: 𝑁 ← 𝑐𝑜𝑢𝑛𝑡_𝑃𝑅𝑠(𝑙𝑎𝑏𝑒𝑙𝑠, 𝑙)
14: 𝐾 ← 𝑁

𝐿⋅𝑇 ⊳ Apply Eq. (2)
5: 𝑐𝑜𝑢𝑛𝑡_𝑑𝑒𝑣𝑖𝑐𝑒𝑠 ← 𝑐𝑜𝑢𝑛𝑡_𝑑𝑒𝑣𝑖𝑐𝑒𝑠 +𝐾 ⊳ Count update
6: end for
7: 𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑣𝑖𝑐𝑒𝑠 ← 𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑜𝑢𝑛𝑡 + 𝑐𝑜𝑢𝑛𝑡_𝑑𝑒𝑣𝑖𝑐𝑒𝑠
8: return 𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑣𝑖𝑐𝑒𝑠 ⊳ Return the number of devices

Analyzing Algorithm 2 in detail, the process begins in line 1 by
evaluating the percentage of packets with locally administrated MAC
addresses among the total number of packets. If this percentage falls
below 2%, indicating insufficient data for clustering, the total number
of devices is set equal to the number of distinct global MAC addresses
(line 2). Conversely, if the percentage exceeds 2%, clustering is per-
formed in line 5, followed by noise removal, eliminating all labels with
‘‘-1’’. Subsequently, in line 7, the remaining labels are inserted into
a set to obtain a list of distinct labels. Then, in lines 11 and 12, for
each label, its identifier is extracted from the identifiers_list, generated
by Algorithm 1, and the closest rate is retrieved from the model rates
database created by the probe request generator. Finally, in line 14,
Eq. (2) is applied to calculate the value of 𝐾, representing the number
of devices within the considered cluster. Ultimately, the total number
of devices is determined by the sum of the global count and the count
derived from the clustering algorithm.

An open-source repository for this framework is available to the
research community1, fostering collaboration and advancing the de-
velopment of this innovative crowd monitoring strategy. Beyond the
comprehensive codebase, the repository includes detailed documenta-
tion, facilitating a deeper understanding and seamless utilization of the
framework for researchers and developers alike.

1 https://github.com/Diegomangasco/ARGO

https://github.com/Diegomangasco/ARGO
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6. Architecture

In this Section, the main attention is directed towards showing the
architecture developed for the purpose of people counting. Insights
will be provided into the hardware components utilized, as well as the
counting pipeline developed for this study, including details on the total
cost of the hardware.

6.1. Hardware description

The primary objective is to develop a cost-effective, sustainable
solution for tracking people’s movements across various environments
and conditions. To achieve this, a strong emphasis is placed on min-
imizing the cost of hardware components while ensuring sufficient
processing power for real-time analysis. After careful consideration, the
ideal hardware solution was found in the form of a Raspberry Pi (RP).
In contrast to alternative solutions like Meshlium by Libellium [26],
the proposed solution boasts a hardware cost that is an order of
magnitude lower. Despite this cost reduction, the solution maintains
comparable performance and detection range, making the Raspberry
Pi the perfect solution for this use case. Specifically, the proposed
architecture relies on a RP 4 Model B, which boasts a 1.8 GHz 64-
bit quad-core ARM Cortex-A72 CPU, onboard 802.11ac WiFi interface,
Bluetooth capabilities, up to 8 GB of RAM, an Ethernet connection,
and plenty of USB ports. It runs the Linux OS, providing a versatile
platform for the use case considered. To enable monitor mode for
WiFi frame capture, the RP was supplemented with a basic USB WiFi
dongle equipped with an external antenna. Additionally, the RP offers
flexibility by supporting both traditional power source and Power over
Ethernet (PoE), simplifying deployment considerations. Furthermore,
to facilitate interaction with the Raspberry Pi once it is installed, a USB
LTE antenna with a SIM card was included. This configuration not only
enables the Raspberry Pi to access the network and send data to the
server but also grants the capability to SSH into the Raspberry Pi. This
SSH access allows for data collection, modification of running scripts,
and perform other necessary tasks when needed.

The hardware solution setup is illustrated in Fig. 3, showcasing the
components essential for the crowd-monitoring system.

6.2. Capturing procedure and probe request analysis

Fig. 4 presents the architecture deployed as part of the participation
in the TrialsNet EU project [27]. Specifically, the setup consists in two

Fig. 3. Hardware solution composed of a Raspberry Pi 4 Model B, a USB WiFi dongle
with an external antenna, a USB LTE antenna, all inside an IP67 waterproof box.
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Fig. 4. Architecture for crowd-monitoring analysis. Each AP scanner sends periodically
its counting and the Bloom filter to the server, where all the data are stored and
visualized in an interactive dashboard.

Raspberry Pi 4B (RPs) devices, as the one illustrated in Fig. 3, deployed
in a large park in Turin, Italy. These RPs are equipped with USB WiFi
dongles configured in monitor mode, allowing them to capture all data
transmitted by smart devices in the covered area. Once the captured
data is processed through the onboard sniffer pipeline, it is transmitted
over the network using the UDP protocol and received by a central
server situated at the network’s edge. The primary role of the server
is twofold: first, if the incoming data originate from a single scanner,
it stores the data in a database for future visualization. Secondly, if
the data includes Bloom filters, it stores and processes them as needed.
Furthermore, the server hosts an interactive web visualization platform
that facilitates the presentation of time-series data in an engaging,
interactive fashion. To achieve this, the Grafana visualization tool [28]
is employed.

The counting pipeline is depicted in Fig. 5. To delve into the details,
the system initialization process begins by configuring all the necessary
environment variables and executing a wireless interface configuration
script via the rc.local file. This script serves the purpose of deactivating
the onboard WiFi interface of the Raspberry Pi and activating the one
associated with the USB WiFi dongle. This is essential because the
embedded WiFi interface cannot be placed in monitor mode. Once all
configurations are in place, the main sniffing script is initiated. Utilizing
tshark [29], probe request messages are captured for a two-minute
time window. Subsequently, the resulting .𝑝𝑐𝑎𝑝 file is passed to the
next stage of the processing pipeline, while the tshark script restarts
to initiate another capturing cycle.

Every time a new .𝑝𝑐𝑎𝑝 file is generated a script begins analyzing all
the probe requests detected. All messages are divided into two groups
based on the value of the second-least-significant bit of the first octet
of their MAC addresses. Subsequently, for each probe request with a
locally administered MAC address, the creation of model identifiers
takes place. In particular, the throughput capabilities are leveraged
to generate four-dimensional data points that are input into the DB-
SCAN clustering algorithm, as explained in Section 5.1. Following this
clustering process, two operations are performed.

In the first operation, the counting algorithm, outlined in Sec-
tion 5.2, is applied. In the second operation, the resulting MAC ad-
dresses are stored within a Bloom filter. This filter is specifically
initialized with 𝑛𝑚𝑖𝑛 random MAC addresses to satisfy the 1-deniability
property, a requirement for ensuring GDPR compliance. As a result,
the first timestamp of the time window, a numerical value representing
the counting within that window, and the populated Bloom filter are
obtained.
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Fig. 5. Counting pipeline onboard the scanner.
7. Counting results

This Section provides an in-depth account of the tests carried out
to validate the developed crowd-monitoring framework. To commence,
the experimental setup is described, followed by the datasets utilized in
the experiments, with descriptions of the specific environments under
consideration. Following this, the effectiveness of the entire system
pipeline in accurately counting the number of devices within a desig-
nated area is demonstrated. Finally, insights into the data collected in
the newer real-world deployment are provided.

7.1. Experimental setup

Every test executed using ARGO meticulously followed a specific set
of parameters concerning both the capturing area, the packet process-
ing, and the DBSCAN clustering algorithm.

Table 1 reports a comprehensive overview of the primary parame-
ters along with their respective values.

Table 1
Experimental setup.

Parameter Value

Frequency 2.4 GHz
Channel 1
Time window 2 min
Minimum samples (DBSCAN) 3 samples
Epsilon (DBSCAN) 0.001
Distance metric (DBSCAN) Euclidean
Sniffing Software TShark
Packet Processing Library Scapy [23]

7.2. Datasets used

The primary objective of these studies is to conduct a compre-
hensive analysis of the performance exhibited by crowd-monitoring
systems within different environmental situations. Through the uti-
lization of the probe request generator, a list of scenarios can be
generated, encompassing situations that emphasize the presence of a
limited number of devices but with a wide variety of distinct models,
as well as scenarios that exhibit the inverse condition, and additionally,
scenarios characterized by mixed situations.

Furthermore, the algorithms have undergone rigorous testing uti-
lizing authentic .𝑝𝑐𝑎𝑝 traces. However, in these instances, a distinct
challenge emerges: the inherent difficulty in establishing a precise
ground truth. This particular challenge was addressed by deriving
an estimate, formulated by the person responsible for data collec-
tion, of the rough number of individuals or devices believed to be
present. Below is an enumeration of the datasets adopted during the
experimentation:

• Simulated traces:

– Dataset A: 60 devices, all of which exclusively pertain to a
single vendor-model.
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– Dataset B: 6 devices, each representing a distinct vendor-
model.

– Dataset C: contains only one device.
– Dataset D: medium-crowded situation, with 70 devices of

various vendor-models.
– Dataset E : large-crowded situation, with 120 devices of

various vendor-models.

• Real Traces:

– Dataset F : contains the captures conducted within an ane-
choic chamber as part of the research detailed in [15].

– Dataset G: comprises a collection of 10 two-minute captures
collected in a lecture hall at Politecnico di Torino, during a
class of the 2023/2024 academic year.

As previously hinted at, each dataset is the result of a unique
environment, characterized by its own distinctive attributes.

7.3. Crowd-monitoring results

In the clustering part of the framework, the DBSCAN [12] algorithm
is deployed to process probe requests with locally administered MAC
addresses. The algorithm is configured with the following parameters:

• Metric: the metric to use when calculating the distance between
instances in a feature array.

• Epsilon: the maximum distance at which two samples can be
considered each other’s neighbors.

• Min samples: the number of samples in a neighborhood such that
a point can be considered as a cluster centroid.

After a thorough analysis of probe requests and their behaviors,
the parameter settings listed above were fine-tuned. Specifically, the
Euclidean distance is employed as the metric because the identifiers
computed for each message are treated as data points within a 4-
dimensional space. The epsilon parameter was consistently set to a
constant value of 0.001, a choice made after observing the relationship
between probe requests originating from the same device and those
from different devices. Lastly, it was determined that the min sample
parameter is influenced by environmental conditions and the duration
of data capture. In scenarios with short time windows and devices
generating a limited number of messages, clusters may contain fewer
data points. Therefore, it is important to customize this parameter to
align with the specific requirements of the use case, ensuring optimal
cluster identification.

The results of the experiments have been tabulated in Table 2,
where each row represents a specific set of tests conducted using a .𝑝𝑐𝑎𝑝
file that simulates an environment. The table columns provide various
details, including the dataset identifier, ground truth, the count of
detected devices, and the accuracy. To calculate the accuracy, a method
that considers the difference between the result and the ground truth
is adopted. Specifically, the counting error is determined by taking the
absolute difference between the ground truth and the obtained result,
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Table 2
Crowd-monitoring results.

Dataset Ground truth ARGO iABACUS [30]

A 60 52 (86.66%) 36 (60%)
B 6 7 (83.33%) 88 (−1266.70%)
C 1 1 (100%) 45 (-4400%)
D 70 58 (82.85%) NA
E 120 110 (91.66%) NA
F 22 23 (95.45%) NA
G up to 121 overall 91.48% overall 27.63%

and then normalizing it relative to the ground truth. Accuracy can
be easily obtained by subtracting this error from 1. The mathematical
expressions for these calculations are the following:

𝐸𝑟𝑟 =
|𝐺𝑇 − 𝑅|

𝐺𝑇
(3)

𝐴𝑐𝑐 = 1 − 𝐸𝑟𝑟 (4)

In these equations, Err represents the error, GT stands for the
ground truth, R is the obtained result, and Acc denotes the accuracy.
The accuracy value is indicated alongside the number of detected
devices in parentheses.

Table 2 presents the results obtained from ARGO and compare
them to those obtained using an implementation of the framework
proposed in [30]. It is worth noting that the authors of [30] introduced
a de-randomization framework known for its high accuracy in their
experiments. This framework uses multiple if-then-else constructs and
several levels of recursion to assess the likelihood that multiple MAC
addresses belong to the same device.

For the experiments, an implementation of the iABACUS framework
was executed, starting from the flow chart available in [30], on an
Apple MacBook Pro laptop equipped with the M1 Pro CPU. However,
despite the considerable computational power available, difficulties
were encountered when processing datasets D, E, and F. The script
failed to complete its execution due to recursion errors, exceeding the
maximum recursion depth.

While Eq. (4) provides a viable method for assessing the framework
performance, it fails to consider a critical factor: the variability in the
number of devices present in different environments. Some datasets
contain numerous devices, while others have very few. For instance,
Dataset E comprises over 100 simulated elements, whereas Dataset C
includes only a single device. It becomes evident that an error of 1
device has a more significant impact in sparsely populated environ-
ments but may be deemed insignificant in densely populated ones.
This underscores the importance of not solely relying on accuracy as
an isolated metric but rather evaluating it within the context of the
simulation.

Thanks to the combination of clustering and time-related features,
ARGO has exhibited remarkable effectiveness in crowd monitoring. The
number of devices estimation reached a high level of precision with
respect to the ground truth, as demonstrated by the high accuracy
obtained.

7.3.1. Real-life indoor scenario
To evaluate ARGO within a real-life indoor scenario, Dataset G has

been considered. This dataset is composed by a collection of traces
comprises a twenty-minute recording, with capturing windows span-
ning two minutes each. The recording took place in Room 14 at the
University of Politecnico di Torino, Italy, during the first day of the
academic year 2023/2024.

What distinguishes this dataset is its ever-changing character. In-
stead of a ‘‘static’’ use case, the traces have been collected to capture
the scene a few minutes before the start of a lesson and continued
recording for a few minutes afterward. Consequently, at the beginning
of the scenario, a few individuals were already present in the room.
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Fig. 6. Dataset G counting results between the ground truth and the results obtained
from ARGO and an implementation of iABACUS.

Over the next twelve minutes, more people entered the room, seeking
seats. In the final three capturing windows, the lesson began, with only
a handful of additional individuals arriving. This dynamic recording
scenario allows for the simulation of the gradual entry of people into
the room, reflecting a real-world situation.

An overall accuracy is provided in Table 2 for both the frame-
works considered. While Fig. 6 shows a detailed version of the results
obtained.

The incremental presence of people in the room is readily apparent
when examining the ground truth line in blue in Fig. 6. The results ob-
tained with ARGO are represented in red, while those obtained with the
implemented version of the iABACUS framework are shown in green.
On the 𝑥-axis, various captured windows are displayed, while the 𝑦-axis
indicates the number of detected people/devices. In particular, ARGO
demonstrates superior performance when compared to the iABACUS
framework. The latter tends to significantly underestimate the number
of detected devices. ARGO demonstrates great capacity in following
the growing flow of people who gradually entered the room. On the
other hand, iABACUS tends to underestimate the presence of people
and it does not even recognize the increasing trend of the ground truth,
resulting in a substantially flat line.

It is important to highlight that during the initial seven capture
windows, people were often in motion, using their phones, or engaged
in conversations while their smartphones were in a locked state. In
these cases, the average rate is considered the most suitable to factor
both the locked, awake, and active phases. However, starting from the
eighth capture, which corresponds to the beginning of a lesson, using
the average rate is no longer an accurate choice, as it tends to under-
estimate the counting. This trend is underlined by the dotted orange
line that, starting from the eight capture, leads Argo’s predictions to
deviate significantly from the ground truth. Instead, if the framework
is set to focus solely on the locked rate, a greater accuracy is achieved,
and the trend of the framework continues to strictly follow the ground
truth line. This emphasizes another important point emerged from this
analysis: the significance of considering the context in which captures
are conducted, as it is of paramount importance to get even better
results. Knowing in advance the characteristics of the environment in
which ARGO is working is crucial to set correctly the rate type that
could lead to a better accuracy in crowd estimation.

ARGO consistently achieves over 90% accuracy for nearly every
time window, resulting in an impressive overall accuracy of 91.48%.
This demonstrates the effectiveness of this innovative approach in
accurately detecting and tracking the presence of people/devices in the
room, especially during dynamic scenarios like the one presented in
Dataset G.
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Fig. 7. Counting values with an aggregation window of 10 min, data spanning the week from 14/11/23 to 22/11/23.
Fig. 8. Hourly heatmap of counted devices, data spanning the week from 14/11/23 to 22/11/23.
7.3.2. Real-life outdoor scenario
To assess the efficacy of ARGO in a real-world outdoor setting,

the entire pipeline detailed in Section 6 has been implemented, at a
public park located in the heart of Turin. Two sensors were strategically
placed near one of the park entrances, known for hosting concerts and
events. Captures were scheduled every two minutes, providing valuable
data for analysis. The framework analysis yielded essential information,
including the capture timestamp, the count of detected devices, and the
MAC addresses stored in the bloom filter. These outputs were stored in
a database on a server, facilitating easy access and monitoring.

To visualize and comprehend the trends, an interactive dashboard
was created using Grafana [28], a tool enabling the extraction of
raw data from a database and the creation of insightful graphs and
views. Figs. 7 and 8 showcase the results of the analysis spanning a
sample week, i.e., from 14/11/2023 to 22/11/2023. In Fig. 7, a graph
illustrates the temporal progression of device counts, with timestamps
plotted on the 𝑥-axis. The results reveal distinct patterns at various
times of the day and week. Notably, park visits steadily rise from early
morning to an afternoon peak, followed by a gradual decline towards
the evening. Weekends exhibit increased counts, as one would expect.

In addition to the temporal trends, a heatmap is provided in Fig. 8,
representing the distribution of data points across specified time inter-
vals. Each cell in the grid corresponds to a specific combination of day
and time intervals, with color gradients indicating the magnitude of
the counts. The color scale ranges from deep green for lower numbers
to a red scale for higher counts. The hours from mid-morning to
mid-afternoon consistently show increased counts compared to other
periods. Further analysis of cells highlighted in dark red on November
18, 2023, and November 19, 2023 (Saturday and Sunday) corresponds
to peaks in park visits during weekends.

8. Conclusions

This study introduced an innovative framework designed for precise
people/device detection and tracking across various scenarios. The de-
veloped framework consistently delivered an outstanding performance,
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achieving accuracy rates exceeding 90% for the real traces analyzed
and consistently surpassing 80% for all other cases. In direct compar-
ison with the iABACUS framework [30], ARGO demonstrated superior
performance by effectively avoiding significant underestimations. This
highlights the challenge that older frameworks face in adapting to the
dynamic nature of probe request behavior and the continuous updates
of operating systems.

One notable advantage of ARGO lies in the flexibility of the probe
request generator, which enables easy adaptation to future changes
in probe request behavior. This adaptability is achieved because the
generator is easily expandable, accommodating the addition of new
devices and updates to existing ones. This facilitates the development
of newer iterations of the machine learning model to maintain accuracy
over time. It is worth to point out that ARGO places a strong emphasis
on privacy compliance. No data is stored on the sniffer device, and after
the processing pipeline is completed, all data is promptly discarded.
Only the Bloom filters and counting values are transmitted over the
network, ensuring data security and privacy.

In future endeavors, there exists considerable potential to enhance
the performance of the counting algorithm by integrating temporal
analysis and considering network congestion dynamics. By integrating
temporal analysis, the system could account for variations in probe
request patterns over time. While, conducting an analysis of network
congestion could serve to further enhance the algorithm’s accuracy.
By dynamically adjusting counting parameters based on prevailing net-
work traffic conditions, the algorithm can effectively adapt to varying
levels of crowd congestion, thereby refining its accuracy.
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