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Abstract
The advent of new technologies and their implementation in manufacturing is accelerating the progress of Industry 4.0 (I4.0).
Among the enabling technologies of I4.0, collaborative robots (cobots) push factory reconfiguration and prompt for worker
empowerment by exploiting the respective assets of both humans and robots. Indeed, human has superior dexterity, flexibility,
problem-solving ability. Robot excels in strength, endurance, accuracy and is expendable for risky activities. Therefore, task
assignment problem in a production line with coexisting humans and robots cannot limit to the workload balancing among
workers but should make the most of everyone respective abilities. The outcomes should not be only an increased productivity,
but also improved production quality, human safety and well-being. Task assignment strategy should rely on a comprehensive
assessment of the tasks from the viewpoint of suitability to humans or robots. As there are several conflicting evaluation
criteria, often qualitative, the study defines the set of criteria, their metrics and proposes a method for task classification
relying on Fuzzy Inference System to map each task onto a set of collaboration classes. The outcome of the study is the
formal description of a set of evaluation criteria with their metrics. Another outcome is a Fuzzy Classification procedure that
support production managers to properly consider all the criteria in the assignment of the tasks. The proposed methodology
was tested on a case study derived from a manual manufacturing process to demonstrate its application during the process
planning.

Keywords Human–Robot collaboration · Task allocation · Industry 4.0 · Fuzzy Inference System

Introduction

The advent of Industry 4.0 (I4.0) marked a disruption with
established production management strategies. I4.0 decen-
tralized production control systems and made factories
autonomous and smart (Almada-Lobo, 2015). The novelty
does not consist in new production methods or tools but in
the synergic integration of several technologies belonging
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to different fields. This has led to the definition of a new
paradigm and the identification of key enabling technologies
for I4.0. Bibliographic analysis conducted by Bigliardi et al.
(2020) shows that the technologies most frequently consid-
ered in literature are Smart products, Big Data and Robots. In
particular, Robots, with the support of Artificial Intelligence
(AI), are fundamental to enable the factory of the future.
They make possible a different kind of automation char-
acterized by flexible collaborative cells where humans and
robotswork side-by-side. These new collaborativework cells
are located halfway between manual and fully automated
ones (Michalos et al., 2010). Human-Robot Collaboration
(HRC) allows at the same time flexibility, efficiency and
quality (Chen et al., 2014; Faccio et al., 2019). Nonethe-
less, HRC is an opportunity to exploit the added value of
humans in the value chain in order to guarantee quality and
robustness of the production system (Nardo et al., 2020).
To make the most of human factors, employees’ well-being,
satisfaction, safety, and other needs cannot be ignored either
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when designing work cells or in task allocation (Simões et
al., 2022; Tausch et al., 2022). These aspects become crucial
for the advent of a fruitful collaboration between human and
robot. Indeed, HRC can be declined in several ways, accord-
ing to ISO/TS 15066: co-existence of humans and robots
with spatial or temporal separation, and collaboration in a
shared workplace. The main problem is the conflict between
operational efficiency and safety requirements (Bauer et al.,
2016). There are other obstacles hindering the full applica-
tion of HRC in factory: safety issues, psychological distress
or cognitive overload of humanworker, need for a reorganiza-
tion of the operational procedures. Present study addresses
the last issue, reorganization of operations, with the belief
of also improving the human factors. The work reorganiza-
tion in HRC implies the allocation of tasks to humans and
robots to leverage their reciprocal assets. In turn, task allo-
cation should be based on a preliminary classification of the
tasks that indicates which operator is preferable and whether
the task is to be performed individually or in collaboration
(Gjeldum et al., 2022). Once the tasks have been classi-
fied, their allocation can be performed according to company
goals: cycle time reduction, workload reduction, cost reduc-
tion,workspace layout optimization. Several task assignment
strategies have been proposed in literature, extending stan-
dard methods based on optimization of cycle time. As an
example, Bänziger et al. (2020) propose a genetic algorithm
to optimize the task allocation in HRC. Tasks that can be
performed alternatively by human or robot and their exe-
cution time are calculated using with MTM (methods-time
measurement), after they are brought back to a standardized
description. The underlying hypothesis is that human and
robot are interchangeable and that the task is executed by one
operator per time. Cesta et al. (2018) organize thework to dis-
tribute the workload evenly among operators and to correct
for temporal uncertainties due to human freedom and unpre-
dictable robot breakdowns. Gjeldum et al. (2022) recognize
that the allocation problem is multicriteria and propose a
decision support system to find the best compromise solu-
tion. In last years, some authors started to take into account
the difference between human and robot in executing a task.
Ranz et al. (2017) proposes capability indicators to assist
the task allocation. These indicators are derived by the com-
bination of 25 criteria related to the goals of process time,
additional costs and process quality. Bruno and Antonelli
(2018) propose the allocation of tasks in order to leverage
the respective skills of human or robot, on the basis of 4 per-
formance indicators: dexterity, strength, accuracy, mobility.
El Makrini et al. (2019) sets a framework for task allocation
of human-robot assembly applications based on capabilities
and ergonomics considerations. All the cited studies face the
allocation problem assuming that the tasks are pre-classified
and dealing with the tasks where both robot and human can
alternate in the execution. Indeed, task classification in HRC

is not trivial as there is a multiplicity of aspects involved
by employing workers as different as human and robot. In
the cited papers, task classification is overcome by assuming
that an expert production manager has defined in advance
which operations are only manual and which can be exe-
cuted indifferently by humans or robots. Indeed, advances
in robotics and the adoption of cobots made task classifi-
cation no longer a trivial problem. For this reason, Zhang
et al. (2021) developed a method to minimize the cost of
misclassification in a collaborative workspace. The aspect
to consider in the classification of tasks executed by human
experts is that their evaluation is subjective and based on their
past experience with conventional non-collaborative robots.
To overcome this problem, Evangelou et al. (2021) introduce
a human-centered framework and a decision-making system
based on AI, adapting to unforeseen changes in the work-
flow. Even in this case, task classification still depends on
experts’ evaluation, but it can be questioned again during the
work. Another limit of existing classifications is their binary
nature: a task is suitable to human or to robot or indiffer-
ently to both. The evolution of robotics leads to a situation in
which robots will be able to carry out all the tasks assigned
to humans but with a different degree of skill, sometimes
greater and sometimes less. Therefore it would be useful
to have a classification method for the tasks complemented
with assessing of the suitability level for both human and
robot. This way task allocation can be easily revised during
the operations on the workplace. With the aim of provid-
ing a more objective classification, present paper proposes a
list of formal criteria. As the classification is a multi-criteria
assessment it is useful to have a measure of confidence in the
decision. This outcome can be obtained by adopting a Fuzzy
Inference System (FIS) as a decision support system for
task classification. Human–Robot collaboration, task clas-
sification section introduces the methodology describing the
outcome, the proposed indicators and the rules introduced in
the Fuzzy Inference System. In Practical application section
the developed procedure is applied to a case study. Results
and discussions section discusses the results and Conclusion
section concludes with recommendations for future works.

Human–robot collaboration, task
classification

Methodology used in task allocation

To facilitate the transition from manual assembly to HRC,
Mateus et al. (2018) defines a hierarchical model of the work
obtained by breaking down the assembly sequence. Thework
is broken down into activities, then into operations which are
ultimately broken down into actions. Tasks conventionally
identify the assembly of 2 or more parts, in a complete and
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independent way. Operations are generic assembly actions
and can be used as building blocks in every task. To program
the robot, operations must be further decomposed in specific
robot actions, like open/close the gripper, move to a point in
the workspace, etc. Hierarchical Task Analysis is a method
firstly developed in the context of ergonomic studies (Stan-
ton, 2006). Given the hierarchical model, optimal allocation
strategy and job execution time of the job can be estimated
by using the predetermined time method systems (PTMS)
(Mateus et al. 2018). The assignment of tasks in a collabora-
tive production can be either static, i.e., determined before the
work begins or dynamic, whenever task allocation is deter-
mined during the execution of the work and can be modified
from one job to another. These approaches are both subjected
to drawbacks: in the static case,outages cannot be remedied
and lead to production delays; in the dynamic case, task
allocation could be non-optimal and there are higher safety
risks. In the context of I4.0, technology supports humans,
and cobots serve to perform repetitive, risky activities, or to
improve production quality of work. I4.0 affects also, task
assignment that shouldn’t be oriented to time optimization
alone, but also at reducing ergonomic, cognitive and psycho-
logical stresses on human operator “machines at the service
of humans”. All these factors are objects of the present
study. It is essential to assess the degree of compatibility
of a human/robot operator for a given task because presently
either humans or robots can execute most of the tasks but
with different level of efficiency. Considering the level of
suitability for a task has two immediate consequences: it is
possible to manage collaborations between multiple robots
and individuals in a more efficient way. In a perspective of
dynamic assignment of tasks, itmakes the collaborationmore
flexible and efficient allowing to overcome In perspective,
the collaborative team will have the sufficient flexibility to
cope with most of the outages that occur during production.
In this paper, a specific approach for task classification in
a HRC is described. The main contribution of the proposed
approach is to complement task scheduling goals (coming
from managers) with the regard for human factors: health
and well-being, ergonomic and technical limitations opera-
tors’ skills. Task allocation becomes resilient and capable of
dynamically reallocating tasks according to contingency. The
method is structured as follows: a job is broken down into
tasks and subtasks. For each of them, an information sheet is
filled in to provide the basis for subsequent evaluations.When
task allocation is forced by safety or technical constraints,
veto rules are applied. When allocation is unconstrained,
FIS (Mamdani & Assilian, 1975) a decision method based
on Fuzzy Logic, evaluates the remaining tasks and assigns
them to the most suitable operator , providing an estimate of
salience. The algorithm is structured in several steps to eval-
uate different kinds of tasks, from those requiring specific
and exclusive competences of robot (precision or repeatabil-

ity) or of human-operator (flexibility and dexterity), to those
for which both operators can be equally suitable. The infor-
mation sheet consists of several fields, Where possible every
criterium is, corresponding to ameasurable physical quantity
for sake of objectivity. Some criteria have quantitative values,
but their accurate determination is complex or impractical
(e.g., the reflectivity index of surfaces) and unnecessary for
the sake of task classification. Therefore, they are considered
as qualitative criteria. A standard set of task evaluation crite-
ria for HRC has not yet been defined. In Liau and Ryu (2020)
the proposed criteria are: economic performance, ergonomic,
resource mobilization. Malik and Bilberg (2019) propose a
method to differentiate the tasks with higher complexity of
handling, mounting, human safety and part feeding from low
complexity tasks. They define a set of assembling attributes
affecting HRC, that can be grouped as: part complexity, pro-
cess complexity, human safety. Savino et al. (2020) shows
how the ergonomic exposure of workers affect the workforce
allocation making use of a quantitative index named Over-
all Ergonomic Score. Michalos et al. (2018) in a method
for planning human robot shared tasks give one of the most
exhaustive lists of criteria: robot reach, strength, payload,
ergonomic (using NIOSH equation), operation cost, invest-
ment cost, floor space, time saturation, fatigue, handling time.
All of these criteria are quantitative and have been evaluated
in a automotive case study. Unfortunately, in manual produc-
tion most data are missing. These criteria can be evaluated
only approximately. Combining and rearranging all the cri-
teria presented here the following is proposed in Table 1

The choice of these input was made in order to provide
useful indications for the evaluation for the following dimen-
sions:

1. Ergonomics and safety,
2. Technical feasibility,
3. Cognitive load and time,
4. Cost and quality.

The use of FIS together with the major use of quantitative
inputs is also intended to develop an unbiased objective pro-
cedure to determine the task assessment and its allocation.
Notwithstanding, FIS cannot guarantee the rigorous respect
of health and safety (H&S) standards. Therefore Veto rules
have been introduced to enforce current legislation regard-
ing H&S of the worker. Veto rules generate two possible
outcomes: an exclusive assignment of the task to the only
possible operator or, for those tasks where the skills of both
operators are required, a collaborative assignment (HRC).
The veto rules, to be evaluated in this order, are as follows:

1. if ergonomic risk is present, then task is assigned to robot
operator (R)
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Table 1 List of criteria used for task assessment

Input Quantitative Qualitative

Ergonomics (Niosh
index)

X

Safety risk X

Required dexterity X

Technical
feasibility(Room
lighting)

X

Technical
feasibility(Surface
Reflection)

X

Component supply
variability

X

Cognitive load
(CLAM index)

X

Time H (human
execution time)

X

Time R (robot
execution time)

X

Quality: errors in the
sequence of tasks
(TSRE)

X

Quality level X

2. if task execution is dangerous, then task to robot operator
(R)

3. if task execution is too difficult for robots, then task to
human operator (H)

4. if parts recognition is too difficult for robots, then task to
human operator (H)

The meaning of the values used in the evaluation of
the veto rules, dangerous, difficult, etc., are explained in
the Proposed indicators for assessing task allocation sec-
tion. Whenever veto rules aren’t activated, the decision is
demanded to FIS that will generate output in the shape of a
fuzzy set. It allows to deal with imprecise inputs and still
obtain a meaningful response of the system. The indica-
tors used in the evaluation and their FIS implementation are
described in depth in the following paragraphs. The imple-
mentation of the proposed algorithm was done using Matlab
software. Figure 1 provides a graphical interpretation of the
workflow.

Mamdani fuzzy inference system applied to task
allocation

Fuzzy logic is useful when the boundary between two con-
ditions is not clearly defined and ambiguous (Zadeh, 1988):
they could both be true or false at the same time, but with dif-
ferent degrees of significance. Fuzzy logic was implemented

Fig. 1 Flowcahart of the task assignment procedure

for this reason and because of imprecise inputs. Even if data
are not precisely defined, they can still be exploited to identify
the nature of the situation: fuzzy logic evaluates the scenario
with an approximate statement associated to a degree of truth,
similar to human reasoning. In addition, fuzzy logic has sev-
eral advantages: it is easy to implement and balances the
precision and relevance of data. FIS is an inference system
applying Fuzzy Logic. It replaces the usual numerical scales
of the respective inputs and outputs with a set of member-
ship functions (MFs): the fuzzy set. Each MF is denoted by
a linguistic variable, and a corresponding degree of strength.
Rules in FIS are applied using the “if-then” construct, eventu-
ally combined with logical AND/OR operators. An example
of a rule may be as follows:

i f X1isW11ANDX2isW21thenY isZ
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where Xi and Y are the inputs and output of FIS, Wi1 and Z
are input and output linguistic variables/fuzzy sets, respec-
tively. The degree of fulfillment, is defined as the degree to
which the input part of a Fuzzy rule is satisfied. Mamdani
FIS was preferred to Sugeno because it is intuitive and has
a more interpretable rule base, while Sugeno perform bet-
ter in problems with high computational loads (Hamam &
Georganas, 2008).

Proposed indicators for assessing task allocation

Adopting the terminology proposed by Bruno and Antonelli
(2018), the following indicators were used to classify activ-
ities in the context of HRC. Each indicator outcome des-
ignates the most suitable operator for the specific activity:
human-only execution (H), robot-only execution (R), human-
preferred execution (H/r),robot-preferred execution (h/R),
and human–robot collaboration (HRC). Robots are known
to be inexhaustible machines; they can perform tasks with
greater accuracy and repeatability than humans, even when
transporting heavy loads. Humans, on the other hand, have
unmatched dexterity, adaptability and flexibility. These dif-
ferences must be considered when planning tasks in a
collaborative cell, but just because a job is “suitable” for
one player does not mean it is not suitable at all for the other.
To classify the activities, the indicators need to be defined
using their own rating scale. The indicators “Ergonomics &
Safety” and “Technical Feasibility” are used in the veto rules
as they hinder task execution to humans (due to safety and
ergonomics issues) or to robots (due to technological lim-
itations) Other indicators are “Time & Cognitive Load” to
quantify the human cognitive load and the working time,
“Quality” to express the expected process the indicators are
considered in the assessment and classification of the task
from the viewpoint of HRC. Table 2, presents the overview
of all the criteria employed and where they are described in
the paper.

Ergonomics and safety index

Assembly workers are prone to musculoskeletal disorders
and at risk of injuries due to the nature of the activities per-
formed. Ergonomics and safety risks have a negative impact
on worker health and life quality as well on company eco-
nomic results and reputation (Wongwien & Nanthavanij,
2017). For this reason, ergonomics and safety in industry are
strictly regulated. The technical standard ISO 11228-1 is the
reference benchmark and includes the revised NIOSH lifting
equation (RNLE) for assessing the suitability of a task for
human performance (Waters et al., 1993). The main outcome
of the revised NIOSH lifting equation is the recommended
weight limit (RWL). The RWL is specified as the maximum
weight that a healthy worker can lift without an increased

risk of developing lifting-related musculoskeletal disorders.
It depends in particular on RWL, whose equation is the fol-
lowing (1):

RWL = LC ∗ HM ∗ V M ∗ DM ∗ AM ∗ FM ∗ CM . (1)

where,

• LC is the load constant
• HM is the Horizontal Multiplier
• VM is the Vertical Multiplier
• DM is the Distance Multiplier
• AM is the Asymmetric Multiplier
• FM is the Frequency Multiplier
• CM is the Coupling multiplier

More details are provided in Waters et al. (1993). The
RWL is used to assess the physical stress associated with
a particular manual lifting task calculating the lifting index
(LI) as in Eq. (2):

L I = L

RWL
. (2)

L stands for the load to lift in the specific task. If the ratio in
Eq. (2) is much lower than 1 there are no risks related to the
task, if it is slightly lower than 1 the risk of lower back pain is
a possibility, if the value is above 1 the risk is a certainty, the
reconfiguration of the task or of the workstation is necessary.
The ISO 11228-1 standard does not prescribe any risk bands.
They are instead indicated in local regulations, those adopted
by UNI EN 1005-2 which are the same used in present study:

1. If L I < 0.85: the situation is acceptable, and no specific
action is required.

2. If 0.86 < L I ≥ 0.99: the situation is close to the limits; a
percentage of the population may be at risk and therefore
caution is needed, no immediate intervention is required.

3. If L I > 1: the situation represents a risk and therefore
requires primary prevention intervention. The higher the
index, the higher the risk. There is a need for immediate
preventive intervention for situationswith an indexgreater
than 3.

In the worst case (L I > 3) a veto condition is imposed,
and the work must be performed by the robot. In addition to
ergonomics, a risk assessment of the task has been carried
out. The legislation that governs human safety in the work-
place varies by country (for instance, European States use
different local rules based on EU-OSHA guidelines, while
the United States follow the OSHA standards), and several
methods to perform risk assessment are available ranging
from expert to participatory methodologies and from simple
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Table 2 Overview of employed criteria

Classification criteria Description

NIOSH index Ergonomic evaluation (see Ergonomics and Safety index section)

Safety Risk Safety evaluation (see Ergonomics and Safety index section)

Required dexterity Dexterity requirement for the task (see Technical feasibility index section)

Room lighting Feasibility index ( see Technical feasibility index section)

Surface reflection Feasibility index ( see Technical feasibility index section)

Components supply variability Feasibility index ( see Technical feasibility index section)

CLAM Cognitive evaluation index (see Cognitive load index section)

timeH Task completion time by human (see Cognitive load index section)

timeR Task completion time by robot (see Cognitive load index section)

TSRE Risk of task sequence error (see Cost and Quality index section)

Required quality Quality index (see Cost and Quality index section)

Fig. 2 The 3-level risk estimator matrix used

to complex methods (Guidance, 2022). Even though the reg-
ulations implemented may change, the assessment methods
are comparable and most of them perform a qualitative risk
evaluation rather than quantitative evaluation. Since the for-
mer approach is commonly applied in practice (OSHWiki,
2022), also in this paper was decided to adopt the same
methodology: the likelihood of injury and the potential sever-
ity of the harm has been combined according to a risk matrix,
such as the one proposed in British Standard 8800 (British,
2004) and showed in Fig. 2. In this case, three levels of risk
are present, but they can vary depending on the application
or the needs.

When the tasks are too dangerous to be performed by
humans, they are assigned to the robot by default: this is
another veto condition. Table 3 summarises the input and the
output functions for FI, in Fig. 3 are depicted themembership
functions in input and output.

Technical feasibility index

Cobots nowadays have several technical limitations if com-
pared with conventional robots (Michaelis et al., 2020).
Commercial cobots are slower than conventional robots and
have a lower payload. Most of them cannot be equipped with
tool changers. Workspace is limited by the limited extension
of the arm. In this paper it was decided to not consider these
limitations because it is reasonable to assume that, when-
ever cobots cannot be employed, there is no need for a task
classification procedure. Furthermore,most of the limitations
cited here will be released in the future thanks to the contin-
uous developments in the automation industry. Therefore,
it is assumed that the tasks subjected to classification be
executable by the cobot and that the technical issue, when
working with a human, consists in the variable positioning
of workpieces. A number of innovative technologies have
been proposed to allow cobots to work in a partially unstruc-
tured environment: vision systems, laser scanners, LIDARs,
etc. The use of such tools increases the flexibility and effi-
ciency of the robot, but requires specific environmental and
working conditions to ensure a reliable functioning. Vision
systems for cobots are spreading (Matheson et al., 2019) and
they likely will become a standard equipment in future gen-
eration of cobots. This assumption also implies issues linked
to known limits of vision systems. If the vision system is
not enough reliable or if the task requires a level of dexter-
ity unattainable by the robot it may be necessary to activate
a veto condition that assigns the task to the human. Tak-
ing account previous assumptions, present study assesses
the technical feasibility index only considering the vision
system as auxiliary device to cobots. However, in advanced
workcells when other devices and technologies are applied,
technical limits for cobots can be partially or totally removed.
The technical feasibility problem was broken down into two
parts: one concerning dexterity and the other concerning the
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Table 3 Fuzzy set for
“Ergonomics & Safety” index

Input Input fuzzy set Output fuzzy set of Ergonomics and Safety index

NIOSH index Low H

Medium h/R

High R*

Safety Risk Low H

Medium h/R

High R*

*A veto rule forces the outcome of the algorithm in order to ensure the fulfilment of H&S standards

Fig. 3 Fuzzy set and membership functions: input and output representation for “Ergonomics and Safety index”

vision systems. Dexterity in the execution of a task can be
estimated only qualitatively, while vision system allows for a
semi-quantitative evaluation. Robot vision is biased by envi-
ronmental factors such as room lighting or light reflection
on surfaces. For this purpose a fuzzy inference is applied
to determine the difficulty of part detection; the inputs used
are the following: the level of illumination of the room (too
low does not allow the objects to be distinguished, too high
triggers phenomena of reflection and overexposure of the
images), the manipulation of reflective objects (difficult to
identify) and the way in which they are supplied in the work

area (if piled up in crates or orderly disposed). Room lighting
could be determined by means of sensors, that provide the
actual value in lux, but the exactmeasure of lighting is unnec-
essary for the sake of present evaluation. The advantage of
fuzzy inference is that it is not necessary to be accurate in
defining parameters. For this reason, those which cannot be
objectively determined can be evaluated qualitatively by indi-
viduals without affecting the results: the surface reflection
of objects is determined using a scale from 0 (opaque) to 1
(reflective) as it is the variability for the supply of components
(for which 0 stands for low variability and 1 for high variabil-
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ity). The identification operation can be easy, challenging or
impossible. The detection is classified as “impossible” when
all the inputs are against the artificial vision features. Table 4
and Fig. 4 summarize the input and the output for this assess-
ment.

The output provided by the object detection assessment
becomes an input for the corresponding veto condition and, if
it is not fired, for the technical feasibility evaluation. Techni-
cal feasibility index is assessed considering previous results
and the dexterity required to accomplish the task. Even in
this case the dexterity is evaluated qualitatively using a scale
from 0 -low- to 1 -high-. The inputs and output of the tech-
nical feasibility index can be found in Table 5, in Fig. 5 are
depicted the membership functions for this index.

Cognitive load index

Humans encounter difficulties when they are not completely
free to perform a task but must follow strict guidelines or
must pay attention for long time. According to recent studies
on this topic (Bäckstrand, 2009), excessive human cognitive
load can affect productivity and/or quality of work. For this
reason, the tasks to beperformed in a collaborative cell should
be appropriately distributed to avoid burdening human oper-
ators. A valid computational method to determine cognitive
load was developed by Thorvald et al. (2019), called CLAM
(Cognitive Load Assessment in Manufacturing), which is
implemented here. The method allows the assessment of
both the task and the work environment based on eleven fac-
tors: task-related factors (saturation, flora of variants, level
of difficulty, production awareness, difficulty in using tools)
and workplace-related factors (number of available tools,
mapping of the workstation, identification of parts, quality
of instructions, cost of information, poke-a-yoke and con-
straints). The result of the procedure determines the degree
of complexity of the task. Time pressure leads to a conflict
between the imposed completion time for a task and the time
actually needed to perform it. More specifically, it leads to
increased anxiety, causing more attention resources to be
allocated to the task and thus increasing the cognitive load.
More specifically, time pressure has been shown to be one of
the most common stressors in the work environment (Galy et
al., 2012). Based on these considerations, for the assessment
of cognitive load, it is reasonable to consider the margin of
time taken by each operator to complete the task with respect
to the average completion time. If the human execution time
is significantly longer than the robot’s, to avoid consequent
states of emotional stress, the task should be assigned to the
robot. The robot’s advantage margin (�time) was calculated
according to Eq. (3b), and a preferential task assignment to
the robot (h/R) is expected whenever its value exceeds the
10% threshold. The fuzzy sets used to implement the proce-
dure in the algorithm are described in Table 6, in Fig. 6 the

input membership functions are shown.

Tmean = TRobot + THuman

2
. (3a)

�t ime = Tmean − TRobot
Tmean

∗ 100. (3b)

Cost and quality index

In industrial environments, continuous improvement of pro-
cess and product quality is pursued. The “Cost and Quality”
indicatorwas introduced to allow the task to be assigned to the
most suitable operator to meet certain quality and cost objec-
tives. For the sake of task classification, the cost of execution
does not consider the overall process cost but the loss due to
mistakes (quality cost), e.g., the need for reworking a part.
The desired quality level is expressed as “high”, “medium”
or “poor” and is based on the numerical value assigned to the
activity during the definition of the objectives. The unrivalled
dexterity of humans makes them the most suitable candi-
date to perform activities requiring a high level of quality.
The enormous flexibility of humans’ approach in performing
tasks distinguishes them from robots.Conversely humans are
less repetitive and their performance is subjected to variabil-
ity because of fatigue.While overall quality level is evaluated
qualitatively, it is possible to estimate the expected frequency
of mistakes. As an example of quantitative quality index it
is reported here the risk of error in the sequence of tasks
(TSRE), that is calculated as the composite probability of
dependent events (Eq. 4):

T SRE = 1 − P(A) · P(B | A). (4)

where P(A) is the probability of performing task A, P(B |
A) is the probability of performing task B when task A has
already been performed. The fuzzy sets for each correspond-
ing input and output are described in Table 7. Figure 7 shows
the membership functions of the index.

Output of fuzzy inference system

The advantage of the proposed procedure is that it is able to
allocate tasks to theworkers involved inHRC in a similarway
to what would happen in a human-to-human collaboration.
The presence of normative constraints, different workers’
skills and specific production needs, as well as the existence
of “simple” tasks (which do not require special skills for their
execution) and complex tasks (where the necessary skills
cannot be found in a single operator), imply the adoption of
multiple assignment types. The assignment types adopted in
this analysis differ between:
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Table 4 Fuzzy set for “Object
detection using vision system”

Input Input fuzzy Output fuzzy set for Object
set detection using vision systems

Room lighting Poor Challenging

Good Easy

Surface reflection Matt Easy

Reflective Challenging

Components supply Low Easy

variability High Challenging

Fig. 4 Fuzzy set and membership functions: input and output representation for “Object detection using vision system”

Table 5 Fuzzy set for
“Technical Feasibility” index

Input Input fuzzy set Output fuzzy set of Technical Feasibility index

Object detection using Impossible H*

Challenging H/r

Visual system Easy R

Dexterity required Low h/R

Medium H/r

High H*

*A veto rule forces the outcome of the algorithm in order to ensure the accomplishment of the task
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Fig. 5 Fuzzy set and membership functions: input and output representation for “Technical Feasibility index”

Table 6 Fuzzy set for
“Cognitive load” index

Input Input fuzzy set Output fuzzy set of Cognitive load index

CLAM Very Low H

Low H/r

Moderate h/R

High R

�time Negative H/r

Zero h/R

Positive R

Table 7 Fuzzy set for “Cost &
Quality” index

Input Input fuzzy set Output fuzzy set of Cost and Quality index

TSRE Low H

Medium h/R

High R

Quality Low R

Medium h/R

High H
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Fig. 6 Fuzzy set and membership functions: input and output representation for Cognitive load index section

• Exclusive: one or more results of the indicator analy-
sis indicate that the task in question must necessarily be
performed by a specific operator. If this operator is not
available during the execution of the task, it cannot be
replaced.

• Collaborative (HRC): the analysis of indicators returns
the need to have the same task performed by different
operators, for different reasons. During the execution of
the task, both workers must be available.

• Collaborative (hrc): the analysis of the indicators does
not force the operators to collaborate but advises it for an
optimal management of the resources.

• Commutative: the analysis of indicators presents only
assignment preferences. Optimal resource management
is achieved if the activity is completed by the indicated
operator but, if not available, the non-preferred operator
would also be adequate.

Combining the evaluation results, the following options
are provided: human-only execution (H), robot-only execu-
tion (R), human-preferred execution (H/r), robot-preferred
execution (h/R), human-robot collaborationmandatory (HRC),
and human–robot collaboration suggested (hrc). Figure 8
shows the inputs and outputs of the FI “Task assignment”.

Practical application

To test the task assignment technique, the assembly process
of a two-stage snow plough mill (see Fig. 9) was used. Due
to the limited production numbers of the factory where it
is carried out, the assembly in question is not automated but
relies solely on human power. Observation of the actual man-
ual work during assembly provided the basis for the process
description. The processing time was recorded in order to
compare the manufacturing process with the simulated pro-
cess. Several considerations are possible when evaluating the
fullymanual process: an overhead crane is required due to the
heavy parts that need to be handled, the shape of the blades
and their bending process are dangerous and arc welding
poses additional safety risks. The above aspects suggest that
there are several activities that could be carried out with the
help of the robot. Nonetheless, in the case study, many activ-
ities require a high-level dexterity, so human involvement is
necessary. The process can be divided into 9 main phases
and 23 tasks. The phases are sequences of tasks that must
be performed in a precise order according to the diagram in
Fig. 10. Phases arranged in parallel can be performed in any
order as long as the previous phase is completed before the
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Fig. 7 Fuzzy set and membership functions: input and output representation for “Cost and Quality index”

next one is started. Table 8 represent the information sheet
used for the case study.

Tasks assessment in snow ploughmill assembly
process

After completing the conceptual analysis of the process,
which includes its partition into phases and tasks, it is impor-
tant to evaluate them using the criteria outlined in the proper
section. The crisp values used in the first FIS to extract the
scores for the four categories analysed are discussed in the
following paragraphs.

Ergonomics and safety assessment

Niosh index has been calculated according to the formulation
provided by Waters et al. (1993). Regarding the safety risk
assessment, the amount ofmassmoved and the use of sharp or
potentially harmful tools defined the severity of the possible
damage. Using the risk-matrix reported in Fig. 2, the level of
safety risk for each subtask was identified:

• the movement of parts that could cause potentially fatal
injuries to humans (due to pinching or cutting of human

limbs), or the usage of tools that could cause burns or
other injuries to humans (welders, grinders, etc.) are clas-
sified as hazardous (25);

• large but non-critical masses are moderately hazardous
(12);

• activities with an acceptable operational risk are classi-
fied as not hazardous (2).

Technical feasibility assessment

The technical feasibility was assessed according to the crite-
ria described above, evaluating the environmental factors of
the place where the assembly is carried out and the require-
ments for each sub-activity. In order to determine theworking
conditions of the vision system, the illuminance value of the
working area was measured: this value complies with the
standard in force (UNI-EN 12464) which foresees a value
between 200 and 1000 lx formechanical assembly processes.
The position and orientation of theworkpieces are influenced
by the design of the work cell and the feeding mode. In the
case study, the values were assigned according to the follow-
ing criteria:

• maximum variability (1) when picking from loose parts;

123



Journal of Intelligent Manufacturing

Fig. 8 Fuzzy set and membership functions: input and output representation for “Final Assignment”

Fig. 9 Snow plough mill whose
assembly is considered as case
study
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Fig. 10 Snow plough mill
assembly workflow

• minimum variability (0) when using jigs and automated
equipment for part positioning;

• otherwise, bulky parts are allocated to dedicated work
areas with relatively constant position and orientation
(0.5).

The surface finish value is assigned in relation to the
materials of the parts, their surface roughness, and their
dimensions:

• largemetal surfaces aremore prone to light reflection (1);
• smaller parts with burnished surfaces or a rough finish
are considered non-reflective (0).

Processing the above inputs with FI allows determin-
ing the level of difficulty in part detection. This result is
post-processed in combination with the required dexterity to
determine the technical feasibility of the task. The required
dexterity is considered:
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Table 9 FISs crisp output values and final assignment

TASK Cost and
quality

Cognitive
load

Technical
feasibility

Ergonomics
and safety

Final assign-
ment

Components and workstation setup H/r (0.33) h/R (0.57) H/r (0.38) h/R (0.67) hrc (0.47)

Base and headstock placement R (1) h/R (0.66) h/R (0.55) h/R (0.67) R (1)

External disc positioning R (1) h/R (0.66) h/R (0.55) h/R (0.67) R (1)

Inner cross positioning R (1) h/R (0.66) h/R (0.59) h/R (0.67) R (1)

Outer cross positioning R (1) h/R (0.66) h/R (0.59) h/R (0.66) R (1)

Internal blades bending H/r (0.33) H (0) H/r (0.33) h/R (0.67) H (0)

Brackets bending H/r (0.33) H (0) H/r (0.33) h/R (0.66) H (0)

Inner blades assembly H/r (0.33) h/R (0.66) h/R (0.58) h/R (0.67) hrc (0.65)

Brackets positioning for blades attachment R (1) H (0) h/R (0.53) H/r (0.33) HRC (0.50)

Brackets welding for blades attachment R (1) h/R (0.66) R (1) H/r (0.33) R (1)

Outer disc and headstock welding R (1) h/R (0.66) R (1) H/r (0.33) R (1)

Outer disc brackets positioning and welding R (1) H (0) R (1) H/r (0.37) HRC (0.50)

External disc brackets bending H/r (0.33) H (0) H/r (0.33) h/R (0.67) H (0)

Outer blades bending H/r (0.33) H (0) H/r (0.33) h/R (0.62) H (0)

Outer blades assembly H/r (0.33) h/R (0.66) h/R (0.67) h/R (0.66) h/R (0.66)

Welding R (1) h/R (0.66) R (1) H/r (0.37) R (1)

Central cross supports bending H/r (0.33) H (0) H/r (0.33) h/R (0.62) H (0)

Footprint template picking R (1) H (0) h/R (0.63) h/R (0.62) HRC (0.50)

Central cross brackets assembly R (1) H (0) h/R (0.66) H/r (0,33) HRC (0.50)

Grinding R (1) h/R (0.57) h/R (0.54) h/R (0.66) R (1)

Spacers assembly R (1) H (0) h/R (0.64) H/r (0.37) HRC (0.50)

Outer ring assembly H/r (0.33) h/R (0.66) h/R (0.64) h/R (0.67) h/R (0.66)

Footprint template removing R (1) h/R (0.66) h/R (0.61) h/R (0.67) R (1)

• low (0) when the task can be completed easily with the
proper tool;

• medium (0.5) when the task can be completed with a
single tool, but requires extra effort;

• high (1) when tasks require complicated movements
and/or several tools to be completed;

Cognitive load assessment

Following the guidance provided by Thorvald et al. (2019),
CLAM values were calculated. The duration of the task is
significant for this evaluation because of the time pressure
that pushes the human operator to concentrate more to per-
form the task faster. The task is more stressful because the
human compares himself with the robot.

Cost and quality assessment

The task allocation procedure must prevent possible produc-
tion problems and organise the process in the best possible
way. In assessing costs, it was considered appropriate not to
judge the operator solely on the timing of task execution;
in order to give more value to the activities performed by

humans, it was considered appropriate to judge the possible
costs arising from tasks performed incorrectly that force the
addition of unscheduled processing steps in order to finish
the job correctly. In particular, the possibility of performing
a task with the wrong schedule (TSRE) defines this deci-
sion basis. The quality requirements are 0 for picking up
and handling objects, 0.5 for guided assembly and position-
ing activities for subsequent technological operations, 1 for
welding and other activities with functionality purposes.

Results and discussions

The values reported in Table 9 indicate in a quantitative way
the level of suitability of the operator for the given assign-
ment.

The numerical values vary on a continuous scale from 0 to
1 to distinguish the assignment types described in the output
section. When the index assumes the value of 0 or 1 it means
that the task must be assigned the task categorically to the
human or to the robot. Conversely, values close to 0 indicate
tasks that are more suitable to be performed by a human,
close to 1 by a robot. The value 0.5 expresses the collabo-
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rative task, where the label HRC specifies that collaboration
is necessary while hrc that collaboration is suggested. The
final assignment is influenced by the type of membership
function used and the imposition of veto rules. The algo-
rithm was set up in this study to ensure equality for each of
the four indicators. It would be possible to adjust the form
of the membership functions in the last FI assessment or to
assign a weight to the rules governing the FI, to emphasize
the relevance of one indicator over the others. The results of
the suggested classification are consistent with the specifica-
tions and requirements and are easy to interpret.What ismore
important, from the viewpoint of the process scheduler, is that
when the suitability level is different from 1 or 0, it is possible
to choose a different assignment. This research demonstrates
the feasibility of successfully implementing a task classifi-
cation algorithm that meets both regulatory standards and
the flexibility required in manufacturing environments. The
application canbe executed indifferently during the taskplan-
ning phase, or dynamically when production has started.

Conclusion

The study defines a set of evaluation criteria, theirmetrics and
proposes a method for task classification in assembly work
cell. The new task classification approach uses FIS to max-
imise the assets of both the human and robot working in the
team. The feasibility assessment, implemented in the paper,
is based on formal definition of criteria, derived by a com-
bination of existing regulations about safety and ergonomics
and industrial requirements of quality, productivity and cost
efficiency. Furthermore, the proposed methodology allows
the introduction of new or modified assessing indexes when-
ever required by technology advancement. Several evaluation
parameters are analyzed, involving difficulty in determining
the assessing rule. The scalability of the number of param-
eters is therefore the major limitation of the method as is in
general for every FIS. For this reason, the choice of rules
follows a simplified approach for which the single param-
eters are evaluated individually and, only afterwards, the
results are used as input for the final assignment. The gen-
eralized version of this algorithm provides a strong basis
for task assignment in a wide range of industrial applica-
tions with ambiguous scenarios. As a result of the flexibility
of assigning the same duty to multiple players, ambiguities
may arise (Zhu & Zhou, 2006). To overcome this issue, the
tool’s robustness could be improved by the support of arti-
ficial intelligence (AI) allowing the machine to recognize
human actions. Furthermore, AI could be also used as an
aid to predict more precisely the levels for the criteria. The
current study can lead to further research, such as compar-

ing its effect on production performance in a human-robot
collaborative factory.
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