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Abstract17

Atmospheric moisture plays a vital role in the hydrological cycle, connecting evap-18

oration sources to precipitation sinks. While high-resolution moisture-tracking19

models offer valuable insight, discrepancies to atmospheric re-analysis data20

emerge. In this study, we reconcile tracked atmospheric water flows with reanal-21

ysis data, using the Iterative Proportional Fitting procedure (IPF). We apply22

IPF to the atmospheric moisture flows from the UTrack dataset (averaged over23

2008-2017), aggregated within countries and ocean boundaries. This reconciled24

dataset ensures that the total tracked atmospheric moisture equals the total25

precipitation at the sink and evaporation at the source on an annual basis.26

Country-scale discrepancies of up to 275% in precipitation and 225% in evapo-27

ration are amended, correcting fluxes by 0̃.07%, on average. We find 45% of the28

total terrestrial precipitation (1̃.5 ·105 km3yr−1) originates from land evapora-29

tion (9.8 ·104 km3yr−1). Our reconciled country-scale dataset offers new ground30

to investigate transboundary atmospheric water flows which connect us globally.31
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Main32

A new view of global freshwater interconnectivity is emerging, where we understand33

that our collective pressure on the climate and biosphere impacts the stability of the34

entire global hydrological cycle [1]. Any aspirations for sustainable water stewardship35

and governance must be based upon an understanding of how hydrological flows inter-36

act at local to global scales to shape the global freshwater cycle [2], and how they37

are affected by cascading effects [3]. Such understanding implies reliable confidence in38

the estimation of freshwater teleconnections, making it crucial to frame atmospheric39

moisture flows within the global hydrological cycle. The last decades have seen many40

improvements in the field of atmospheric moisture tracking and the understanding of41

region- and country-scale connections. Dirmeyer et al. (2009)[4] were the first to pro-42

vide a global dataset of country-to-country flows of atmospheric moisture, building on43

the 3D-QIBT model, based on a quasi-isentropic back-trajectory algorithm [5, 6] forced44

by reanalysis data at 1.9° and 2.5° resolution [7, 8]. Keys et al. (2017)[9] shed new light45

on the transboundary governance of water by developing a typology for moisture flow46

relationships between nations, identifying their characteristics and enabling the classi-47

fication of different possible governance principles. The work by Link et al.(2020)[10],48

based on ERA-Interim reanalysis, presented the first grid cell-to-grid cell dataset of49

moisture flows, with a spatial resolution of 1.5°, including an analysis of the fate of50

evaporation and the origin of precipitation for several countries. Recently, Tuinenburg51

et al. (2020)[11] applied the Lagrangian (trajectory-based) tracking model UTrack,52

which is forced with ERA5 reanalysis data [11], and released a grid cell-to-grid cell53

dataset [12] of monthly multi-annual means of atmospheric moisture flows (for 2008-54

2017) from any evaporation source to all its targets (i.e., precipitation) at a spatial55

resolution of 0.5 degrees with global coverage.56

Despite the growing efforts focusing on tracking atmospheric moisture flows, less atten-57

tion has been given to guarantee the closure of the hydrological balance (i.e. the58

closure of the hydrological balance for its atmospheric component) on an annual scale59

and the consistency of the tracked moisture volumes with reanalysis data of precipita-60

tion (moisture reaching target cells) and evaporation (moisture departing from source61

cells).62

In this study, we propose a framework to reconcile tracked atmospheric moisture63

flows, aggregated into a matrix M of bilateral connections between sources and sinks,64

with reanalysis data (i.e., a combination of past observations with weather forecasting65

models to generate consistent time series of multiple climate variables) through the66

Iterative Proportional Fitting (IPF) approach [13, 14]. The IPF approach is a math-67

ematical method which finds a new matrix MIPF , being the closest to M, but with68

the row and column totals matching the targeted values.69

Here we perform an exemplary case of application of the IPF to the UTrack dataset70

[12], based on the Lagrangian atmospheric moisture tracking model by Tuinenburg71

and Staal (2020) [11]. The model tracks single moisture parcels from a column of water72

vapour at the source in forward direction (from location of evaporation to location of73

precipitation) until 99% of the original water content of the parcel is precipitated. Run-74

ning at high spatial and temporal resolution and forced with ERA5 global reanalysis75

[15], it is currently the state-of-the-art Lagrangian tracking of atmospheric moisture.76
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The proposed IPF method suits any scale of analysis, from cell to any cell-aggregated77

scale (e.g., city, country, region, continent). Here, we apply it to a country/ocean scale78

matrix of flows, aggregated within countries and ocean delineations, and to a sub-79

continent/ocean matrix, built upon sub-continental regions and ocean classification80

(see section 3).81

Our post-processing framework provides a novel dataset of up-to-date bilateral mois-82

ture connections between countries, including oceans, aimed at helping countries83

manage their portion of the global water cycle. This information enhances the explo-84

ration of the role countries and regions play in the international network of atmospheric85

water flows and the global hydrological cycle, thus supporting global water governance86

with consistent and reliable data.87

The dichotomy between hydrologic reanalysis data and tracked88

volumes89

The UTrack dataset provides for any location c (represented through a cell of 0.5°) a90

forward footprint matrix (i.e., the fraction of evaporation in c that reaches the down-91

wind cells) and a backward footprint matrix (i.e., the fraction of precipitation in c92

that comes from evaporation in upwind cells).93

Here, we study the annual atmospheric moisture flows at the national level and94

aggregate the single-cell moisture footprints (both forward and backward) to the coun-95

try/ocean scale, hence obtaining two matrices of bilateral flows. We consider oceans96

as sourcing/receiving entities, thus handling them as countries.97

The bilateral structure of the country/ocean matrix allows us to evaluate the total98

precipitation (as imported volume) and total evaporation (as exported volume) of each99

country/ocean on the average annual scale, on both forward and backward approaches.100

When comparing the tracked volumes with reanalysis data, a dichotomy between the101

latter and the tracked volumes arises for both the backward and forward matrices.102

Specifically, estimated backward volumes result in deviations related to evaporation103

at the sources (Figure 1a,b), whereas estimated forward volumes are associated with104

deviations in precipitation at the sinks (Figure 1c,d).105

Despite scatter plots suggesting a good correlation between the two data sets, signif-106

icant percentage deviations both for evaporation (including transpiration over land)107

ET (from -50% to 225%) and precipitation P (from -50% to 275%) occur at the coun-108

try/ocean scale. Notably, ET and P deviations at the country/ocean scale are typically109

out-of-phase, but with different magnitudes of relative deviations: ET overestimation110

corresponds to P underestimation - e.g., Greenland (+131%, -35%), Russia (+23%,111

-18%), Ecuador (+24%, -16%) - and vice versa, e.g., South Africa (-20%, +50%),112

Oman (-18%, +92%) and Spain (-15%, +34%). We observe deviations particularly113

pronounced in regions characterised by aridity – such as countries in Northern Africa,114

the Middle East, the Arabian Peninsula, and Antarctica – and in the Northern and115

Southern latitudes. Other relevant differences emerge in Eastern Africa and Southern116

Europe, where absolute deviations on evaporation in backward tracking are on average117

-250 mm · yr−1 (Extended Data Figure 2a). Conversely, in these regions, the absolute118

deviations in precipitation in forward tracking are on average +600 mm · yr−1 and119

+200 mm · yr−1, respectively (see Extended Data Figure 2b).120
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Fig. 1 Deviations between ERA5 data and the UTrack estimates at country/ocean scale. (a) Com-
parison between evaporation estimated by backward approach and ERA5 observations in mm per
year, and (b) corresponding geography of the relative errors [%]. (c-d) The same, but referred to
precipitation estimates obtained by forward approach.

A reconciliation framework for atmospheric moisture121

connections122

We solve the dichotomy between country/ocean-scale tracked volumes and the ERA5123

re-analysis shown in Figure 1 by adopting the IPF method on both forward and124

backward matrices. The IPF procedure is a simple and parsimonious methodology125

that, given a low amount of information – i.e. topology of the network, an initial126

guess about the entries and the target row and column sums – assures a reliable127

degree of closeness between the initial and the final adjusted network [16]. Accord-128

ingly, we re-scale the elements of the country/ocean matrix of moisture connections,129

so that the sum of rows and columns in the new matrix meets, respectively, the130

total precipitation and evaporation data provided by ERA5 at the country/ocean131

scale. We separately implement the IPF method on the forward flow matrix (F)132

and backward flow matrix (B) as they are estimated by UTrack, and obtain the133

IPF-reconciled matrices FIPF and BIPF . Due to different initial conditions, each134

single bilateral moisture connection shows a deviation, see Equations 12 – 13 both135

ante-IPF application– with an R2
log of 0.9665 (Extended Data Figure 3a) – and136

post-IPF application despite demonstrating an improved R2
log of 0.9981 (Extended137

Data Figure 3b). To address the remaining discrepancy between the two bilateral138

matrices, we average element-wise FIPF and BIPF and obtain a unified reconciled139

matrix MIPF of moisture connections between countries/oceans.140
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The new mean matrix MIPF shows a good correlation with the mean matrix before141

the IPF application (i.e., (F+B)/2) with an R2
log of 0.997 (Figure 2a). This con-142

sistency demonstrates that the IPF algorithm adjusts the bilateral moisture flow143

matrix to meet ET and P constraints, but does not fundamentally change either144

the network’s topology nor does it significantly impact the largest flows, showing a145

flow-weighted average difference between the two matrices of 0.067%.146

147

Fig. 2 Comparison of bilateral flow changes ante- and post-Iterative Proportional Fitting (IPF)
application for the composite matrix of forward and backward atmospheric moisture connections
sourced from the UTrack dataset and aggregated at the country/ocean scale (a) density scatter plot
of bilateral moisture volumes before (on the x-axis) and after (on the y-axis) the IPF application
(values are plotted in logarithmic scale). (b) Scatter plot of the terrestrial moisture recycling (TMR)
at the country scale before (on the x-axis) and after (on the y-axis) the IPF application. The circles’
size represents the volume of mean annual precipitation (2008-2017), while the circles’ colour indicates
the relative change [%] of TMR before and after the IPF application.

To evaluate the performance of our reconciliation approach on the network struc-148

ture, we assess how country-scale terrestrial moisture recycling (TMR)– i.e., the149

portion of terrestrial precipitation originating from land evaporation– is affected by150

the IPF application (Figure 2b). On a country scale, Figure 3b shows the TMR relative151

change after IPF and its spatial heterogeneity worldwide. Notably, the country-specific152

maximum relative change in TMR does not exceed 9% in absolute values, showing153

that the global balance of each country-specific network is not heavily affected by the154

IPF adjustments. The maximum positive relative change (8 to 9%) shown in Figure 3b155

mainly occurs across countries in East Africa, whereas a maximum relative decrease156

in TMR is applied to Antarctica (-8%). These adjustments on TMR are not surprising157

if comparing the relative change in Figure 2 with overestimation of evaporation and158

underestimation in precipitation shown in Figure 1b and Figure 1d, respectively.159

Reconciled country-scale TMR values in Figure 3a also represent valuable information160

for water and land governance, giving insight into terrestrial evaporation dependencies161
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and self-resilience of a country for its precipitation. On a global scale, we find an aver-162

age TMR of 45%, with highest amounts in Mongolia (95%), Central African Republic163

(CAR) (88%) and Congo (88%), and minimums in Chile (4%, excluding small island164

nations), see Table 2.165

Fig. 3 (a) Terrestrial moisture recycling (i.e., precipitation percentage from terrestrial evaporative
sources, TMR) obtained at the country scale and (b) relative change of TMR [%] at the country
scale after the application of IPF.

Balanced bilateral flows at the country scale166

In this section, we provide evidence of the importance of post-processing and adjust-167

ing the tracked moisture volumes to match ERA5 data for two emblematic examples:168

South Africa and Brazil. South Africa shows a significant difference between the pre-169

cipitation and evaporation estimated with UTrack and the ERA5 data (50%, -20%),170

whereas Brazil represents a well-studied example in the moisture recycling literature171
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and exhibits a UTrack-ERA5 relative error in precipitation and evaporation of just172

9% and -6%, respectively.173

Fig. 4 Major exports (evaporation) (a) and imports (precipitation) (d) and flows for South Africa
after the IPF application. The size of the edges and the colour gradient represent the flows’ weight.
Panels(b) and (e) show the resulting volumes of export and import after the IPF reconciliation,
respectively. Panels (c) and (f) report their relative change [%].

While the South African moisture evaporation is strongly directed to the Indian174

Ocean (453 km3yr−1), the precipitation sources are more evenly distributed i.e., among175

the Indian Ocean (190 km3yr−1), the South Atlantic Ocean (180 km3yr−1), and several176

neighbouring countries. 75% of South Africa’s total precipitation is sourced by just177

ten connections, of which 20% originates from terrestrial evaporation from Botswana178

(58 km3yr−1), Zimbabwe (38 km3yr−1), Mozambique (34 km3yr−1), and Namibia (28179

km3yr−1). Post-IPF volumes of precipitation show a monotonous decrease; the major180

relative changes occur for the Southern Ocean (-59%), Chile (-36%), and the South181

Pacific (-33%) (Figure 4f) while major evaporation volumes (Figure 4b,c) show an182

increasing trend, that peaks in Antarctica (+57%) and in the Southern Ocean (+42%).183
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Despite a former relative error on precipitation and evaporation estimate of 50% and184

-20%, Africa’s key precipitation and evaporation flows are, on average, balanced by185

small adjustments, by -22% and +16%, respectively.186

Fig. 5 Major exports (evaporation) (a) and imports (precipitation) (d) and flows for Brazil after the
IPF application. The size of the edges and the colour gradient represent the flows’ weight. Panels (b)
and (e) show the resulting volumes of export and import after the IPF reconciliation, respectively.
Panels (c) and (f) report their relative change [%].

In comparison to South Africa, the Brazilian network (Figure 5) shows a nar-187

rower adjustment range: relative changes in its major 20 terrestrial connections vary188

from +39% (Brazil ⇌ Southern Ocean, 14 km3yr−1) to -21% (Colombia⇌ Brazil,189

40 km3yr−1). Brazil supports the South American regional moisture recycling, which190

amounts to 1,4 · 104 km3, larger than the strongest bilateral connection between191

oceans (South Pacific Ocean ↔ North Pacific Ocean, 1,36 · 104 km3) (Figure 6a), and192

exports moisture from its rain forest’s evaporation downwind to its western neighbours193

Figure 5a). Its largest annual terrestrial bilateral connections are exports to Peru (780194
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km3yr−1), Bolivia (510 km3yr−1), and Colombia (460 km3yr−1). These three major195

flows are changed by 16%, 8% and 18%, respectively, in contrast with the Brazilian196

export to the Southern Ocean, which reaches about +40% (Figure 5c,e). In general,197

we observe that in the cases of South Africa and Brazil, the largest relative changes198

applied by the IPF re-balancing affect flows to the Southern Pole. This behaviour is199

not surprising, since the polar regions are among the regions mainly affected by pre-200

cipitation/evaporation errors (Figure 1, Extended Data Figure 2) and consequently201

adjusted by the reconciliation framework (Figure 3).202

Reconciled land and ocean flows of atmospheric moisture at203

sub-continental scales204

The adjusted subcontinental matrix of atmospheric moisture connections, consistent205

with ERA5 reanalyses (section 3), is shown in the network in Figure 6, divided into206

terrestrial interactions (panel a) and land-ocean interactions (panel b). Noticeably,207

the domestically recycled moisture – i.e., the volume of precipitation originating from208

terrestrial evaporation within the same regional boundaries – of South America and209

North America (14360 and 6500 km3yr−1, respectively) equals some relevant oceanic210

connections, e.g. those between the South and North Pacific Ocean (14354 km3yr−1),211

and between the South Atlantic and the Indian Ocean (5420 km3yr−1).212

Zooming in on the terrestrial interactions in Figure 6a, absolute net importing and213

exporting hubs of terrestrially-sourced mean annual precipitation are highlighted.214

Among the net importers, Eastern Asia and Eastern Europe are major sinks of net215

imported precipitation from terrestrial sources (1990 and 1844 km3 per year, respec-216

tively), followed by Western Africa with 1000 km3. The major ocean↔ land flows217

are the ones from the South and North Atlantic Oceans to South America (8530 and218

6360km3) and from the Indian Ocean to Southeast Asia (6270 km3), while the largest219

land ↔ ocean flows are from South America to the South Atlantic Ocean (3115 km3),220

from North America to the North Atlantic Ocean (1940 km3) and from Eastern Asia221

to the North Pacific Ocean (1940 km3), see Figure 6b.222

Looking at the domestic moisture recycling (DMR) – measured as domestic precipita-223

tion originating from domestic evaporation proportionally to total precipitation in the224

region– the highest values are exhibited by Central Africa (48%) and South America225

(44%).226
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Fig. 6 Moisture connections between subcontinental land regions (a) and involving oceans (b). The
size and colour of the edges are proportional to the volume evaporated at the source and precipitat-
ing at the sink. In panel (a), the node colour indicates if the region is a net importer or exporter
of atmospheric moisture from other terrestrial regions, excluding its domestic recycling; their size is
proportional to the gross volume domestically recycled i.e., evaporation from the region that precip-
itates within the region boundaries. Insets show the geographical partitions
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Discussion and Conclusion227

Atmospheric moisture tracking is a powerful tool to investigate the role of evaporation228

and precipitation from global to local scales by detecting the source of precipitation.229

Despite having attracted much attention in the last years, little focus has been put230

on the consistency of tracked moisture volumes with re-analysis of atmospheric data231

of precipitation (in target cells) and evaporation (in source cells) nor on guaranteeing232

internal closure of the moisture balance. This clashes with the awareness that water233

balance closure is a pivotal factor in hydrological models for strengthening their234

robustness and enhancing their reliability, especially at global scales [17, 18], and on235

detecting hydrological changes [19]. The errors we observe (see Figures 1– 2) are recog-236

nised by the moisture tracking community; e.g., such deviations are shown in a cell237

grid map of relative (-) and absolute error (mm · d−1) in Tuinenburg et al. (2020)[12].238

To fill this gap, we propose the IPF framework to reconcile moisture tracking out-239

comes with measured (here re-analysed) data. Our IPF approach successfully brings240

moisture flows to a fitted matrix of bilateral connections which is the closest to the241

initial one from a topological point of view, but with the total volumes matching242

the target ones. We here exemplified the capabilities of our approach by referring243

to UTrack (forward and backward) outcomes and working at annual, country/ocean244

and sub-continental/ocean scales. We find confirmation of the UTrack atmospheric245

tracking where IPF applies fewer changes (e.g., Australia, India, Central Europe246

and South America) while where UTrack shows higher errors in precipitation and247

evaporation estimates (Northern and Southern poles, oceans and arid regions), IPF248

introduces significant changes in the total annual water flows (ET and P) in the249

moisture tracking network.250

Estimates in our study shed new light on the global hydrological cycle, closing the251

annual balance to 5.5 · 105 km3 per year over the time window from 2008 to 2017,252

see section 3. From the IPF-balanced matrix of moisture connections, we find that253

precipitation over land generated from terrestrial and ocean evaporation amounts to254

7 · 104 km3 and 9.3 · 104 km3 per year, respectively (Table 1). The contribution of255

terrestrial evaporation to terrestrial precipitation, expressed as TMR, gives useful256

insights into land resilience, inter-dependencies and vulnerabilities. We find global257

annual TMR to be 45%, a percentage in between recent findings: van der Ent et al.258

(2010)[20] report 40% using forward tracking from WAM-2layers model, forced with259

ERA-Interim data at a 1.5° resolution and Tuinenburg et al. (2020)[12] find 51%260

using a backward approach in UTrack.261

262

We analysed the quantitative flow dependencies between subcontinents and263

oceans to ensure the integrity of the global flow network after the IPF reconciliation264

and then assessed countries as either net importers/exporters of moisture as well as265

their TMR and DMR ratios. Our country scale hotspots of high TMR in Figure 3a266

correspond to locations of high-intensity TMR values in grid-based maps presented267

in previous studies based on the UTrack dataset, such as Tuinenburg et al. (2020)[12]268

and Posada-Marin et al. (2023)[21]. Net import and net export information on269

terrestrial flows, as well as TMR and DMR ratios, are useful tools to enhance the270

applicability of inter-regional land use policies to safeguard atmospheric water flows271
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Table 1 Global atmospheric water flows from/to land and oceans based on the
reconciled atmospheric moisture network. Antarctica is considered together with
oceans as one hydrological unit, following Tuinenburg et. al, (2020) [12]

Oceans Land

Area (km2) 3.6 109 1.5 109

Precipitation (km3 year−1) 4 105 1.5 105

Evaporation (km3 year−1) 4.5 105 9.8 104

Precipitation from land evaporation (km3 year−1) 3.3 104 6.53 104

Precipitation from ocean evaporation (km3 year−1) 3.7 105 8.3 104

as a common, public and transboundary good.272

By closing the water balance in a state-of-the-art moisture tracking model output273

dataset, we offer an example of IPF application to hydrological modelling and take a274

step towards limiting the inherent uncertainties associated with large-scale moisture275

flow models and their data inputs.276

To evaluate the sensitivity of the IPF method to the scale of application, we analysed277

the fit of a subcontinent/ocean matrix, aggregated before re-balancing, against a278

subcontinent/ocean matrix aggregated after a re-balancing applied at the country/o-279

cean scale, as shown in Extended Data Figure 5. We find that the two matrices align280

well with the one-one line (R2
l log equal to 0.9998) and that the the mean deviation281

between between bilateral flows in the two matrices is 0.084%. This result enforces282

the general validity of the IPF application and supports further efforts to validate283

it also including the cell scale of analysis. Given IPF’s effectiveness in closing the284

country scale annual balance while weighting the most affected areas by error, future285

efforts could be addressed to extend this mathematical approach to finer spatial and286

temporal scales (e.g., cell scale and month scale).287

Though Tuinenburg and Staal (2020) [11] tested the sensitivity of atmospheric mois-288

ture recycling to different model assumptions and explicitly show model-dependent289

uncertainties in estimates across the globe, addressing these limitations, so far,290

either falls out of scope or goes undetected in UTrack dataset applications (e.g.,291

[22–25]). Further studies can take advantage of our framework to potentially apply292

it as a post-processing step to reconcile tracked flow (eventually sourced from any293

other tracking model) with reanalysis data, to any scale of application. In addition,294

this post-processing approach can help bring more clarity to the uncertainty in and295

between the different moisture tracking methods, the uncertainty of which still poses296

an issue for the moisture tracking community, though is currently being addressed297

through a model intercomparison initiative [26].298

Estimates balanced by IPF application, offer a pathway towards a more accurate299

and reliable understanding of water flows between major geographical and polit-300

ical boundaries, which is crucial for governance, policy and safeguarding of water301

resources [9, 25, 27–29], showing different insights into the reliance on either terres-302

trial evaporation from external or internal sources or on oceanic evaporation. Future303

studies can use our reconciled bilateral network to assess green water resources304

availability and resilience, and their role in human-ecological systems, delving into305

the economic importance of green water flows. Enhancing the evaluation of the306
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amounts of atmospheric moisture across these scales can yield important geopolitical307

implications by analysing the network globally, and investigating its relation to other308

socio-hydrological flows, such as the virtual water trade [30].309

310

Methods311

Framework312

To reconcile the hydrological balance of atmospheric moisture connections — from313

sources to sinks, considering annual evaporation and precipitation volumes — we314

employ the Iterative Proportional Fitting (IPF) algorithm. This algorithm operates315

on the tracked precipitation (forward direction) and evaporation (backward direction)316

volumes, facilitating adjustments among sources and sinks. This method ensures that317

the total tracked atmospheric moisture equals the total precipitation at the sink and318

evaporation at the source on an annual basis.319

The proposed approach can be applied to any scale of aggregation (from cell, to coun-320

tries, regions and continents). In particular, here we chose the country/ocean and321

subcontinent/ocean scales.322

Our framework entails five major steps: (i) Pre-processing and correction of input pre-323

cipitation and evaporation data to achieve a closed 10-year water balance (Extended324

Data Figure 1), (ii) Evaluation of forward and backward tracked moisture flows for325

an average year in the period 2008-2017 as annual imports of precipitation (P) and326

exports of evaporation (ET) at the country/ocean scale (Figure 1), (iii) Application of327

the IPF method on the import-export matrices to adjust the discrepancy with ERA5328

country/ocean scale data of total annual precipitation and evaporation Figure 2, (iv)329

Aggregation of country/ocean matrices to subcontinental/ocean scale and IPF appli-330

cation at this scale of analysis, and (v) Validation of the IPF adjustment at the scale331

of application (Extended Data Figure 5).332

Data333

The atmospheric moisture connection dataset used in the study is the UTrack dataset334

[12], available at https://doi.pangaea.de/10.1594/PANGAEA.912710 and accessi-335

ble through sample scripts provided by the authors. The dataset is based on the336

Lagrangian atmospheric moisture tracking model UTrack [11].337

For each mm of evaporation, the model tracks 100 parcels of moisture throughout338

the atmosphere from their locations of evaporation to those of precipitation. The339

tracking is based on ERA5 hourly evaporation and precipitation, wind speed and340

the three-dimensional wind directions for 25 atmospheric layers in the troposphere341

at 0.25° horizontal resolution (Copernicus Climate Change Service, C3S) [12]. The342

moisture tracking runs among all global grid cells including the oceans at 0.25° spatial343

resolution and consists of three steps: (1) the release of moisture evaporated from344

the land surface into atmospheric moisture parcels, (2) the calculation of trajectories345

through the atmosphere for each parcel and (3) the allocation of moisture present in346

the parcels to precipitation events at the location of the parcel. In addition to the347
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horizontal transport component, the model includes a probabilistic vertical transport348

scheme that distributes the moisture parcels vertically over 25 atmospheric layers.349

The parcels are tracked for up to 30 days or until only 1% of the original moisture350

remains. We refer to the original model development paper by Tuinenburg and Staal351

(2020)[11] for a more in-depth model description.352

353

The UTrack dataset is available for a reference average year y over the period354

2008-2017, on a monthly basis (m) and at grid-cell resolutions of 0.5° and 1°. Here,355

we source the dataset at a spatial resolution of 0.5°. In the dataset, the selection of a356

source cell s (location of evaporation) gives a global matrix of the monthly forward357

footprint, pf(s, t,m) of atmospheric moisture (i.e., the fraction of evaporation from358

the selected cell s to each target cell t, in the month m) and in reverse, selecting359

a target cell, t, (location of precipitation) gives the monthly backward footprint of360

atmospheric moisture, pb(s, t,m) (i.e., the fraction of precipitation in the cell t origi-361

nating from the upwind evaporation in each source cell s).362

363

Here, we reconstruct the bilateral moisture flows in cubic meters between any364

sources and sinks using (i) the UTrack monthly forward and backward footprint data365

of atmospheric moisture connections, i.e., pf(s, t,m) and pb(s, t,m)– described above366

– (ii) the monthly-averaged data of precipitation and evaporation at 0.25° in the cell367

c for each year y from 2008 to 2017, namely PERA5(c,m, y) and ETERA5(c,m, y),368

expressed in meters per day from the ERA5 Climate Data Store (Copernicus Climate369

Change Service, C3S), and (iii) the cells areas a(c).370

For consistency with the UTrack dataset, available at 0.5° spatial resolution,371

PERA5(c,m, y) and ETERA5(c,m, y) are re-gridded at 0.5° with bilinear interpolation372

through the CDO operator remapbil on a grid [(90,-90),(0,360)].373

We calculate the area of the cell grid a(c) through the gridarea operator from the374

Climate Data Operators (CDO) software, a collection of many operators for standard375

processing of climate and forecast model data [31]. The reference grid to calculate the376

area of each cell is the input data from the UTrack dataset at the spatial resolution377

of 0.5°.378

379

ERA5 data pre-processing380

The ERA5 dataset is constrained by observations and represents the most detailed381

available representation of the atmosphere [12]. Hersbach et al. (2020) show that the382

ERA5 balance between precipitation and evaporation is relatively good for a twenty-383

year period from the mid-1990s [15], yet the annual balance is not well closed in384

more recent years. Indeed, Tuinenburg et al. (2020) [12] acknowledge the non-closure385

between precipitation and evaporation data from the global reanalysis as a source of386

error in the UTrack dataset itself [12]. To address the non-closure of the hydrolog-387

ical balance, we first analyse the difference between the ERA5 global precipitation388

and evaporation over the period 2008-2017, namely PERA5,g(y) and ETERA5,g(y),389

calculated as:390
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PERA5,g(y) =

[

Nc
∑

c=1

12
∑

m=1

PERA5(c,m, y) · a(c) · d(m)

]

[m3yr−1] (1)

ETERA5,g(y) =

[

Nc
∑

c=1

12
∑

m=1

ETERA5(c,m, y) · a(c) · d(m)

]

[m3yr−1] (2)

where Nc is the total number of cells, 720x1440, namely 1’036’800, a(c) the area of391

the cell and d(m) the number of days in the month m.392

393

Extended Data Figure 1 shows that the annual balance between PERA5,g(y) and394

ETERA5,g(y) is not met along the reference period. Table 1 reports the ratio and the395

relative error between PERA5,g(y) and ETERA5,g(y) for each year of our period of396

interest. In these ten years of reference, the relative difference between global evapo-397

ration estimates and precipitation ranges from -0.4% in 2008 to -1.8% in 2017.398

The yearly relative difference is evaluated as:399

ETERA5,g(y)− PERA5,g(y)

PERA5,g(y)
· 100 [%] (3)

Since UTrack data are given as a multi-year average between 2008 and 2017, we400

calculate the average global volumes of PERA5,g(y) and ETERA5,g(y) in the reference401

period as:402

P t
ERA5,g =

10
∑

y=1

PERA5,g(y) [m3] (4)

ET t
ERA5,g =

10
∑

y=1

ETERA5,g(y) [m3] (5)

where the apex t recalls the time-average over the years 2008-2017.403

404

We impose P t
ERA5,g and ET t

ERA5,g equal their 10-year average (equal to 5.50 ·105 km3
405

yr−1), obtaining the scaling factors αP and αET as:406

αET =
P t
ERA5,g + ET t

ERA5,g

2
·

1

ET t
ERA5,g

[−] (6)

αP =
P t
ERA5,g + ET t

ERA5,g

2
·

1

P t
ERA5,g

[−] (7)

407
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Obtaining αP=0.9971 and αET=1.0029 Scaling factors are used to re-scale the408

data of monthly precipitation and evaporation in the year, PERA5(c,m, y) and409

ETERA5(c,m, y) as:410

P c
ERA5(c,m, y) = αP · PERA5(c,m, y) [m3yr−1] (8)

ET c
ERA5(c,m, y) = αET · ETERA5(c,m, y) [m3yr−1] (9)

411

Finally, the corrected yearly volumes P c
ERA5(c,m, y) and ET c

ERA5(c,m, y) are412

averaged over the number of reference years Ny:413

P
c

ERA5(c,m) =
1

Ny

·

Ny
∑

y=1

P c
ERA5(c,m, y) [m3yr−1] (10)

ET
c

ERA5(c,m) =
1

Ny

·

Ny
∑

y=1

ET c
ERA5(c,m, y) [m3yr−1] (11)

414

UTrack atmospheric moisture flow reconstruction between415

source and sink cells416

We reconstruct annual atmospheric moisture forward and backward flows (m3) sourc-417

ing for each month the forward footprint pf(s, t,m) and the backward footprint418

pb(s, t,m). Since the footprint of atmospheric moisture is dimensionless and ET
c
(c)419

and P
c
(c) are sourced in meters per day, we consider the area of each cell a(c), as in420

section 3, in squared meters, and the days in each month d(m) to obtain the cumu-421

lated atmospheric moisture volumes in cubic meters. Hereafter the generic cell c is422

referred to as s when it acts as a source cell, t when it acts as a target cell.423

In the forward approach, we evaluate the average annual atmospheric moisture flow,424

ff(s, t), from a cell s (evaporation) to a matrix of cell t (precipitation) as:425

ff(s, t) =

12
∑

m=1

ET
c
(s,m) · pf(s, t,m) · d(m) · a(s) [m3yr−1] (12)

426

In the backward approach, we evaluate the average annual atmospheric moisture427

flow, fbs,t, from a target cell t to a matrix of source cells s as:428

fb(s, t) =

12
∑

m=1

P
c
(s,m) · pb(s, t,m) · d(m) · a(t) [m3yr−1] (13)

where pb(s, t,m) is previously multiplied for the evaporation of each source cell s, as429

suggested in Tuinenburg et al., (2020) [12, 32], thus reading:430
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pb(s, t,m) = ET
c
(s,m) · pb(s, t,m) [−] (14)

431

Comparing the reconstructed flows in the two cases, we find that a deviation exists,432

namely:433

ff(s, t) ̸= fb(s, t) (15)

434

Integration to the country-scale435

The spatial scale of this study is primarily set on national boundaries, thus we define436

a forward matrix F and a backward matrix B of size C× C, where C is the total num-437

ber of countries and oceans (C=272). Each element of the forward (backward) matrix438

F (or B) represents the atmospheric moisture flow between an exporting country e439

and an importing country i, aggregated from the source-sink flows at the cell scale440

ff(s, t) and fb(s, t) defined in Equation 12 and Equation 13.441

However, the conceptual framework and methodologies developed in this research are442

adaptable and meant to be applied across various scales, ranging from grid cells to443

other chosen geographical aggregations.444

For the geographical delineation of the countries, we access the Administrative Units -445

Dataset from European Commission Eurostat (ESTAT) GISCO (2020)[33]. Addition-446

ally, we choose to include major water bodies (oceans and seas) in the source/target447

mask to enable a more precise analysis of the oceanic sources of precipitation. The448

delineations of oceans and seas are taken from the Global Oceans and Seas Dataset449

of the Flanders Marine Institute (2021)[34] and a delineation of the Caspian Sea from450

the SeaVoX Salt and Fresh Water Body Gazetteer (v19) of the British Oceanographic451

Data Centre (2023)[35]. Alterations to the shapefiles, namely the separation of Alaska452

and Hawaii from the US, the French overseas regions from France and mainland China453

from Taiwan, are performed in QGIS. Each of the vector shapefiles is rasterized and454

reformatted into a NetCDF raster masking the geographical delineations with a spe-455

cific numeric ID for each delineated area using the gdal rasterize and gdal translate456

operators of the Geospatial Data Abstraction software Library (GDAL)[36]. Subse-457

quently, the three masks are combined while giving priority to the country mask by458

not overwriting cells with an existing country attribution. Finally, the country-ocean459

mask is re-gridded using nearest neighbour interpolation through the CDO operator460

remapnn to align with the coordinates of the UTrack dataset.461

To allocate each forward and backward flow (i.e., ff(s, t), fb(s, t)) to a country/o-462

cean scale bilateral connection in the matrices F (e, i) and B(e, i), we query in both463

cases if each source cell s falls in the boundaries of e and if the target cell t falls in464

the boundaries of i, and aggregate the flows as follows:465
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F (e, i) =

S
∑

s∈e=1

T
∑

t∈i=1

ff(s, t) [m3yr−1] (16)

B(e, i) =

S
∑

s∈e=1

T
∑

t∈i=1

fb(s, t) [m3yr−1] (17)

466

where S is the total number of source cells located in the country/ocean e and T is467

the total number of target cells located in the country/ocean i.468

469

The structure of the bilateral matrix, allows us to compare element-wise the recon-470

structed flows in the two cases. By comparing the bilateral connections element-wise471

in F (e, i) and B(e, i), we find a deviation with an R2
log of 0.9965 (Extended Data472

Figure 3a), due to Equation 15.473

We also compare the gross precipitation (import) and evaporation (export) flows474

for each country/ocean both in the forward and backward case. Summing row-wise475

both F (e, i) and B(e, i) we get the export flow ETU (e) from the exporting country/o-476

cean e, which represents its annual tracked evaporation the UTrack dataset. Summing477

column-wise we obtain the import flow PU (i) of the importing country/ocean i, which478

represents its annual tracked precipitation from the UTrack dataset. This reads in the479

forward case:480

ET
f
U (e) =

C
∑

i=1

F (e, i) [m3yr−1] (18)

P
f
U (i) =

C
∑

e=1

F (e, i) [m3yr−1] (19)

481

482

and in the backward case:483

ET b
U (e) =

C
∑

i=1

B(e, i) [m3yr−1] (20)

P b
U (i) =

C
∑

e=1

B(e, i) [m3yr−1] (21)

484

485

Comparing the flows of evaporation ET
f
U (e) and ET b

U (e) obtained in Equation 18 and486

Equation 20 we observe that:487

ET
f
U (i) ̸= ET b

U (i) [m3yr−1] (22)

488

489
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while comparing the flows of precipitation P
f
U (e) and P b

U (e) obtained in Equation 19490

and Equation 21 we find:491

P
f
U (i) ̸= P b

U (i) [m3yr−1] (23)

492

493

To further understand the nature of this dichotomy, we assess the deviation of the494

tracked flows at the country/ocean scale ET
f
U (e), ET b

U (e), P
f
U (i) and P b

U (i) to ERA5495

corrected data on precipitation and evaporation – i.e., P
c

ERA5(c,m) and ET
c

ERA5(c,m)496

(Equation 10, Equation 11). To this aim, we integrate the cell-scale monthly data at497

the country/ocean and annual scales to obtain P
c

ERA5,C(i) and ET
c

ERA5,C(e), that498

reads499

P
c

ERA5,C(i) =

C
∑

c∈i=1

12
∑

m=1

P
c

ERA5(c,m) [m3yr−1] (24)

ET
c

ERA5,C(e) =

C
∑

c∈e=1

12
∑

m=1

ET
c

ERA5(c,m) [m3yr−1] (25)

500

501

Where subscript C recalls country/ocean aggregation.502

Comparing Equation 24 with Equation 19 and Equation 21, it emerges:503

P
c

ERA5(i) ̸= P
f
U (i) (26)

Conversely, comparing Equation 25 with Equation 18 and Equation 20:504

ET
c

ERA5(e) ̸= ET b
U (e) (27)

These deviations are reported in Figure 1.505

Iterative Proportional Fitting (IPF) on the country/ocean506

scale bilateral atmospheric moisture flow matrix507

To correct Equation 26 and Equation 27 we separately apply an IPF procedure and508

bi-proportionally adjust the import-export matrices F and B, re-scaling the rows509

and the columns by the minimum amount necessary, to respect the sum constraints510

ETERA5(e) and PERA5(i) until they converge toward a balanced matrix ([13, 16]).511

512

The initial bilateral moisture matrix, F (or B), is adjusted with two coefficients,513

a row factor (r(e)) and a column factor (s(i)), which are obtained with an iterative514

procedure that progressively updates the initial matrix to obtain the final bilateral515

moisture matrix, FIPF (or BIPF ), that satisfies the equations516

C
∑

i=1

FIPF (e, i) = ET
c

ERA5(e) and

C
∑

e=1

FIPF (e, i) = P
c

ERA5(i) (28)

19



517

and518

519

C
∑

i

BIPF (e, i) = ET
c

ERA5(e) and

C
∑

e

BIPF (e, i) = P
c

ERA5(i) (29)

The iterative procedure alternatively evaluates the row and the column factors as520

follows. For example, for the matrix F, at step n=1, s(i)n−1=1 while r(e) is calculated521

to satisfy the row constraint, namely522

r(e)n=1 =
ET

c

ERA5(e)
∑C

e=i s(i)
n−1 · F (e, i)

(30)

At step n=2, r(e) = r(e)n−1 and s(i) is equal to523

s(i)n =
P

c

ERA5(i)
∑C

e=1 r(e)
n−1 · F (e, i)

. (31)

Once the full iteration is completed, it is possible to determine the final row (R(e))524

and column (S(i)) coefficients, namely525

R(e) =
∏

n

r(e)n and S(i) =
∏

n

s(i)n (32)

Hence, the generic adjusted bilateral moisture flow reads

FIPF (e, i) = R(e) · F (e, i) · S(i) and BIPF (e, i) = R(e) ·B(e, i) · S(i) (33)

Where R(e) and S(i) are matrix-specific and, therefore, they will be different for526

matrix F and matrix B. At this point, Equation 28 and Equation 29 are satisfied and527

the dichotomies in Equation 26 and Equation 27 are solved.528

The IPF application demonstrates an improved matching between each correspond-529

ing bilateral connection in FIPF (e, i) and BIPF (e, i), with R2
log of 0.9981 (Extended530

Data Figure 3b), especially for larger flows, with respect to ante-IPF matrices F (e, i)531

and B(e, i). However, due to different initial conditions for the bi-proportional fitting,532

still a weak discrepancy between FIPF (e, i) and BIPF (e, i) remains.533

To address the remaining discrepancy between the two bilateral matrices, we eval-534

uate the IPF performance in the two cases, comparing the F (e, i) with FIPF (e, i) and535

B(e, i) with BIPF (e, i), proving a similar behaviour in the two cases, as shown in536

Extended Data Figure 3a,b. In light of the similar performance of the IPF application537

on F and B, we average element-wise FIPF and BIPF and obtain a unified reconciled538

matrix MIPF of moisture connections between countries/oceans, as follows:539

MIPF (e, i) =
F (e, i)IPF +B(e, i)IPF

2
(34)
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To compare MIPF (e, i) with ante-IPF flows, we perform the same average in540

Equation 34 also for F (e, i) and B(e, i), obtaining a mean matrix ante-IPF application541

namely M(e, i), as:542

M(e, i) =
F (e, i) +B(e, i)

2
(35)

543

The new mean matrix MIPF (e, i) shows a good correlation with the ante-IPF544

matrix M(e, i) (Figure 2a) with R2
log of 0.997.545

Integration at the sub-continental scale546

Both F and B matrices are aggregated to sub-continent/ocean scale matrices Fr and547

B
r and adjusted as in section 3, by separately applying the IPF algorithm on both F548

and B and assess the performance of the application.549

550

The integration to the sub-continental/ocean scale refers for lands to the regions551

scheme from the United Nation Statistics Division (UNSD, [37]), though with respect552

to this classification, we aggregate Caribbeans to Central America for consistency of553

flows in the network. The classification for oceans refers to the Global Oceans and554

Seas Dataset of the Flanders Marine Institute (2021)[34] and a delineation of the555

Caspian Sea from the SeaVoX Salt and Fresh Water Body Gazetteer (v19) of the556

British Oceanographic Data Centre (2023)[35], identically to the country/ocean case557

analysis (section 3).558

559

To allocate each country/ocean forward and backward flow (F (e, i), B(e, i)) to a560

subcontinent/ocean scale bilateral connection in the matrices F r(re, ri) and Br(re, ri),561

we query in both cases if each exporter country/ocean e falls in the boundaries of562

the exporter subcontinent/ocean re and if the import country/ocean i falls in the563

boundaries of the importer subcontinent/ocean ri, and aggregate the flows as follows:564

F r(re, ri) =

R
∑

e∈re=1

R
∑

i∈ri=1

·F (e, i) [m3yr−1] (36)

Br(re, ri) =

R
∑

e∈re=1

R
∑

i∈ri=1

·B(e, i) [m3yr−1] (37)

where R is the total number of regions and oceans (equal to 33).565

566

The same aggregation procedure applied to the cell scale ERA5 corrected data in567

Equations 24 – 25, is here performed to ERA5 country/ocean corrected data for the568

average year in the period 2008-2017, namely P
c

ERA5(i) and ET
c

ERA5(e), as follows:569
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P
c

ERA5,R(ri) =

R
∑

i∈ri=1

P
c

ERA5(i) [m3yr−1] (38)

ET
c

ERA5,R(re) =

R
∑

e∈re=1

ET
c

ERA5(e) [m3yr−1] (39)

570

571

Where the subscript R recalls the subcontinent/ocean regional aggregation. At this572

point, the gross import (precipitation) and export (evaporation) are assessed for each573

subcontinent/ocean element of Fr and B
r, as follows:574

ET
f
U (re) =

R
∑

ri=1

F r(re, ri) [m3yr−1] (40)

P
f
U (ri) =

R
∑

re=1

F (re, ri) [m3yr−1] (41)

575

576

and:577

ET b
U (re) =

R
∑

ri=1

Br(re, ri) [m3yr−1] (42)

P b
U (ri) =

R
∑

re=1

B(re, ri) [m3yr−1] (43)

578

579

Applying IPF to subcontinent/ocean scale bilateral580

atmospheric moisture flow matrix581

The IPF procedure is applied at the subcontinent/ocean scale, following Equations582

(30), (31), (32), (33), applied to the region/ocean matrices Fr and B
r.583

IPF is applied separately on the two matrices, to get in one case the adjusted F
r
IPF584

which satisfies equations585

R
∑

ri=1

F r
IPF (re, ri) = ET

c

ERA5(re) and

R
∑

re=1

F r
IPF (re, ri) = P

c

ERA5(ri) (44)

and in the other case the adjusted B
r
IPF , which satisfies equations586

587
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R
∑

ri

Br
IPF (re, ri) = ET

c

ERA5(re) and

R
∑

re

Br
IPF (re, ri) = P

c

ERA5(ri) (45)

Post-IPF matrices F
r
IPF and B

r
IPF are compared against ante-IPF matrices F

r
588

and B
r, to assess the changes brought by the IPF to the network at this scale of589

analysis. Panels c and d in Extended Data Figure 3 show that also at the subconti-590

nent/ocean scale, the IPF works likewise in the forward and backward cases. In light591

of this result, we calculate the mean matrix M
r ante-IPF and M

r
IPF post-IPF, as in592

Equations (35) and (34). Results shown in Figure 6 refer to the adjusted mean matrix593

M
r
IPF .594

Inter-scale validation595

The subcontinental scale analysis also serves as a validation procedure to evaluate the596

sensitivity of the IPF method to the scale of application. To this aim, we aggregate the597

post-IPF country/ocean matrixMIPF , at a subcontinent/ocean scale matrix,Maggr,r
IPF ,598

and analyse its fit with the adjusted subcontinental-ocean matrix M
r
IPF obtained in599

the previous section (see Equations 44 –45).600

The subcontinent/ocean matrix M
aggr,r
IPF is aggregated from the adjusted country/o-601

cean matrix MIPF as follows:602

M
r,post
IPF (re, ri) =

R
∑

e∈re=1

R
∑

i∈ri=1

·MIPF (e, i) [m3yr−1] (46)

603

Matrices Mr
IPF and M

aggr,r
IPF are compared element-wise as:

ϵ(ri, re) =
Mr

IPF (ri, re)−M
r,post
IPF (ri, re)

Mr
IPF (ri, re)

[−] (47)

604

The mean relative deviation reads

ϵ =

∑

ri=1

∑R

re=1 ϵrel(ri, re)
∑R

r=1 M
r
IPF (ri, re)

· 100 [%] (48)

605

and gives ϵ=0.084%.606

Estimates of bilateral flows in M
r
IPF and M

aggr,r
IPF are plotted against each other in607

Extended Data Figure 5.608
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Extended Data624

Extended Data Figure 1 Ten-years time series (2008-2017) of ERA5 total precipitation (P, blue
line) and evaporation (ET, magenta line) at the global scale. The light-blue line represents the yearly
mean between P (y) and ET (y), while the yellow line is the ten-year average between P and ET .
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Extended Data Table 1 Ten-years (2008-2017)
annual volumes of ERA5 total precipitation (P) and
evaporation (ET), their ratio (precipitation over
evaporation) and their relative percentage difference
drel(y) [%]

Year P ET P/ET drel(y)
[105 km3] [105 km3] [-] [%]

2008 5.48 5.46 1.004 -0.4
2009 5.49 5.48 1.001 -0.2
2010 5.55 5.56 0.999 0.2
2011 5.51 5.50 1.001 -0.2
2012 5.47 5.46 1.001 -0.2
2013 5.50 5.47 1.005 -0.54
2014 5.50 5.49 1.002 -0.18
2015 5.53 5.48 1.008 -0.9
2016 5.57 5.48 1.016 -1.7
2017 5.56 5.46 1.019 -1.8

Extended Data Figure 2 Absolute deviations [mm · yr−1] between ERA5 data and the UTrack
estimates at country/ocean scale, referred to the average year in the interval [2008-2017]. Comparison
between ERA5 reanalysis and (a) evaporation estimated by backward approach and (b) precipitation
estimates obtained by forward approach.
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Extended Data Figure 3 Comparison of bilateral flows between the forward and backward matri-
ces at the country/ocean scale sourced from the UTrack dataset ante- and post- Iterative Proportional
Fitting (IPF) application. (a) density scatter plot of bilateral moisture volumes forward-reconstructed
(on the x-axis) and backward-reconstructed (on the y-axis) (a) ante- and (b) post-IPF application
(values are plotted in logarithmic scale). R squared values in the two cases show the increased fitting
to the one-one line achieved with the IPF application.
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Extended Data Figure 4 Comparison of bilateral flow changes ante- and post-Iterative Propor-
tional Fitting (IPF) application for the forward and backward matrices of atmospheric moisture
connections at the country/ocean scale and subcontinental/ocean scale sourced from the UTrack
dataset. (a), (b) density scatter plot of bilateral moisture volumes at the country/ocean scale before
(on the x-axis) and after (on the y-axis) the IPF application (values are plotted in logarithmic scale)
in the forward and backward case, respectively. (c), (d) density scatter plot of bilateral moisture
volumes at the subcontinent/ocean scale before (on the x-axis) and after (on the y-axis) the IPF
application (values are plotted in logarithmic scale) in the forward and backward case, respectively.
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Extended Data Figure 5 Density scatter plot of bilateral flow post-Iterative Proportional Fitting
(IPF) application for the composite matrix of forward and backward atmospheric moisture connec-
tions sourced from the UTrack dataset in the case (on the x-axis) of a region/ocean matrix aggregated
before the IPF application and (on the y-axis) after the IPF application to a country/ocean matrix
(values are plotted in logarithmic scale).
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Extended Data Table 2 Comparison of major and minor
country-specific terrestrial moisture recycling (TMR) ante- and
post-Iterative Proportional Fitting (IPF). The table presents the
percentage values of ante-IPF (TMRUTrack ) and post-IPF
(TMRUTrack(IPF )

) for selected countries with the highest and

lowest TMR. Small island states are not reported in this table.

Country TMRUTrack [%] TMRUTrack(IPF )
[%]

ante-IPF post-IPF
Mongolia 97 95
CAR 84 88
Congo 84 87
Chad 84 87
Kyrgyzstan 87 85
Cameroon 79 83
Sudan 80 84
Gabon 78 82
Paraguay 79 79
Tajikistan 79 79
United Kingdom 18 16
Nicaragua 15 15
Guyana 12 13
Iceland 16 13
Ireland 14 11
New Zealand 12 12
Suriname 11 11
Portugal 9 9
French Guiana 7 7
Chile 4 4

30



Extended Data Table 3 Subcontinental annual precipitation and evaporation flows [km3] and subcontinental
annual precipitation and evaporation flows per area (Area), [m]. Net precipitation (NetP ) is the absolute difference
between annual precipitation and evaporation, expressed both as a difference in volume difference [km3] and in
volume per unit of surface area [m], when referred to the area Area of the subcontinent or ocean. Values refer to the
average year between 2008 and 2017.

Subcontinent/Ocean P ET Net P P/Area ET/Area Net P/Area
[km3] [km3] [km3] [m] [m] [m]

Antarctica 3.17· 10 3 4.05· 10 2 2.77· 10 3 0.2 0.0 0.2
Arctic Ocean 6.24· 10 3 3.57· 10 3 2.67· 10 3 0.5 0.3 0.2
Australia and New Zealand 5.39· 10 3 5.92· 10 3 -5.28· 10 2 11 12 -1.1
Caspian Sea 7.79· 10 1 2.85· 10 2 -2.07· 10 2 0.3 1.1 -0.8
Central Africa 6.72· 10 3 5.73· 10 3 9.94· 10 2 5 4.0 0.7
Central America 4.60· 10 3 4.04· 10 3 5.64· 10 2 508 446 62
Central Asia 1.30· 10 3 1.43· 10 3 -1.33· 10 2 2.2 2.4 -0.2
Eastern Africa 7.20· 10 3 6.79· 10 3 4.10· 10 2 490 462 28
Eastern Asia 1.09· 10 4 7.18· 10 3 3.72· 10 3 124 82 42
Eastern Europe 1.20· 10 4 7.52· 10 3 4.45· 10 3 136 85 50
Indian Ocean 7.98· 10 4 9.87· 10 4 -1.89· 10 4 1.2 1.4 -0.3
Mediterranean Sea 9.27· 10 2 2.50· 10 3 -1.57· 10 3 0.5 1.2 -0.8
Melanesia 5.34· 10 3 2.33· 10 3 3.01· 10 3 50 22 28
Micronesia 1.26· 10 3 9.51· 10 2 3.08· 10 2 35 26 9
North Atlantic Ocean 4.67· 10 4 5.90· 10 4 -1.24· 10 4 1.2 1.5 -0.3
North Pacific Ocean 1.16· 10 5 1.09· 10 5 7.74· 10 3 1.6 1.5 0.1
Northern Africa 7.69· 10 2 1.20· 10 3 -4.31· 10 2 45 70 -25
Northern America 1.79· 10 4 1.00· 10 4 7.92· 10 3 9 4.9 4
Northern Europe 2.45· 10 3 1.16· 10 3 1.29· 10 3 6 2.8 3
Polynesia 1.03· 10 3 1.24· 10 3 -2.10· 10 2 12 14 -2
South America 3.27· 10 4 1.95· 10 4 1.32· 10 4 260 155 105
South Atlantic Ocean 3.17· 10 4 4.92· 10 4 -1.75· 10 4 0.8 1.2 -0.4
South China & Easter Arch. Seas 1.06· 10 4 7.08· 10 3 3.55· 10 3 2.2 1.5 0.7
South Pacific Ocean 9.44· 10 4 1.17· 10 5 -2.25· 10 4 1.1 1.4 -0.3
South-eastern Asia 1.85· 10 4 9.09· 10 3 9.38· 10 3 3310 1628 1682
Southern Africa 1.44· 10 3 1.47· 10 3 -2.92· 10 1 1 1.02 -0.02
Southern Asia 6.45· 10 3 4.81· 10 3 1.63· 10 3 31.5 23 8
Southern Europe 1.56· 10 3 1.63· 10 3 -6.98· 10 1 672 702 -30
Southern Ocean 1.53· 10 4 5.49· 10 3 9.77· 10 3 0.7 0.3 0.5
Western Africa 5.02· 10 3 3.82· 10 3 1.20· 10 3 268 204 64
Western Asia 1.10· 10 3 1.58· 10 3 -4.73· 10 2 1.8 2.6 -0.8
Western Europe 1.14· 10 3 7.43· 10 2 3.94· 10 2 16 10 5

1.4·103 1.5·103 7.1·101 2 2 0
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Extended Data Table 4 Major ten annual volumes of atmospheric
moisture flows between terrestrial sources and sinks at the
subcontinental scale ([km3]).

Source Sink Volume [km3]
Eastern Africa Central Africa 1.67·103

Southern Asia Eastern Asia 1.12·103

Southeast Asia Eastern Asia 9.81·102

Central Africa Western Africa 9.58·102

Central America Northern America 8.11·102

Eastern Asia Eastern Europe 6.24·102

Central Asia Eastern Europe 5.87·102

Australia and New Zealand Southeast Asia 4.50·102

Southern Europe Eastern Europe 4.36·102

Southern Asia Southeast Asia 4.12·102

Extended Data Table 5 Precipitation volumes originated from terrestrial evaporation
(Pterr) and evaporation precipitating on other lands (ETterr) at the subcontinent scale.
The flag indicates whether the region is a net importer or exporter of terrestrial
atmospheric moisture flow and to which degree [%]. The degree of net import (or net
export) is calculated as the ratio between the net flow and the total import (or total
export) from (or to) other terrestrial regions. The terrestrial moisture recycling ratio
(TMR) for each subcontinental region indicates the weight of precipitation from terrestrial
sources over the total precipitation from both oceanic and terrestrial evaporation volumes.

Subcontinent Pterr ETterr TMR Flag Degree
[km3] [km3] [%] [%]

Australia and New Zealand 1.65·103 2.12·103 31 net exporter 8
Central Africa 5.31·103 4.71·103 79 net importer 9
Central America 1.20·103 1.79·103 26 net exporter 14
Central Asia 9.60·102 1.37·103 74 net exporter 28
Eastern Africa 3.35·103 5.29·103 46 net exporter 29
Eastern Asia 6.94·103 4.94·103 64 net importer 18
Eastern Europe 7.89·103 6.04·103 66 net importer 15
Melanesia 9.80·102 9.75·102 18 net importer 0
Micronesia 5.41·101 1.08·102 4 net exporter 6
Northern Africa 4.47·102 9.62·102 58 net exporter 43
Northern America 7.61·103 6.84·103 42 net importer 4
Northern Europe 6.55·102 7.51·102 27 net exporter 8
Polynesia 5.00·101 9.35·101 5 net exporter 4
South America 1.47·104 1.46·104 45 net importer 0
South-eastern Asia 5.14·103 4.97·103 28 net importer 1
Southern Africa 8.16·102 6.58·102 57 net importer 11
Southern Asia 2.71·103 3.53·103 42 net exporter 17
Southern Europe 5.52·102 1.25·103 35 net exporter 43
Western Africa 3.16·103 2.16·103 63 net importer 20
Western Asia 5.65·102 1.39·103 51 net exporter 52
Western Europe 3.60·102 5.93·102 32 net exporter 31
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