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Use of machine learning tools and NIR spectra to estimate residual moisture 
in freeze-dried products 

Ambra Massei a,b, Nunzia Falco b, Davide Fissore a,* 

a Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy 
b Global Pharmaceutical Development Department, Merck Serono SpA, via Luigi Einaudi 11, 00012 Guidonia Montecelio (Roma), Italy   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• NIR spectroscopy was used as a PAT tool 
for the prediction of RM in freeze-dried 
products. 

• Coupling of machine learning tools with 
NIR spectroscopy was used to quantify 
RM. 

• A comparison between a neural network 
and a linear model was done. 

• The effect of the training set size on 
model performances was evaluated.  
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A B S T R A C T   

Residual Moisture (RM) in freeze-dried products is one of the most important critical quality attributes (CQAs) to 
monitor, since it affects the stability of the active pharmaceutical ingredient (API). The standard experimental 
method adopted for the measurements of RM is the Karl-Fischer (KF) titration, that is a destructive and time- 
consuming technique. Therefore, Near-Infrared (NIR) spectroscopy was widely investigated in the last decades 
as an alternative tool to quantify the RM. In the present paper, a novel method was developed based on NIR 
spectroscopy combined with machine learning tools for the prediction of RM in freeze-dried products. Two 
different types of models were used: a linear regression model and a neural network based one. The architecture 
of the neural network was chosen so as to optimize the prediction of the residual moisture, by minimizing the 
root mean square error with the dataset used in the learning step. Moreover, the parity plots and the absolute 
error plots were reported, allowing a visual evaluation of the results. Different factors were considered when 
developing the model, namely the range of wavelengths considered, the shape of the spectra and the type of 
model. The possibility of developing the model using a smaller dataset, obtained with just one product, that 
could be then applied to a wider range of products was investigated, as well as the performance of a model 
developed for a dataset encompassing several products. Different formulations were analyzed: the main part of 
the dataset was characterized by a different percentage of sucrose in solution (3%, 6% and 9% specifically); a 
smaller part was made up of sucrose-arginine mixtures at different percentages and only one formulation was 
characterized by another excipient, the trehalose. The product-specific model for the 6% sucrose mixture was 
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found consistent for the prediction of RM in other sucrose containing mixtures and in the one containing 
trehalose, while failed for the dataset with higher percentage of arginine. Therefore, a global model was 
developed by including a certain percentage of all the available dataset in the calibration phase. Results pre
sented and discussed in this paper demonstrate the higher accuracy and robustness of the machine learning based 
model with respect to the linear models.   

1. Introduction 

Freeze-drying is a crucial step in many drug manufacturing processes 
as it provides long-term stability to formulations containing an active 
pharmaceutical ingredient (API). The aim of the freeze-drying process is 
to remove the water present in a product by sublimation, converting the 
ice into vapour, by operating at low pressure and temperature. The low 
operating temperatures make this process particularly suitable for heat- 
sensitive products, such as pharmaceuticals [1]. 

Pharmaceutical companies must meet standards imposed by regu
latory agencies and pharmacopeia or selected by the manufacturer, so 
final products must meet certain Critical Quality Attributes (CQAs) 
[2,3]. Since water could generate biological and chemical degradation 
processes, the residual moisture (RM) is one of the main CQA to monitor 
in order to assess the quality of the product. 

Currently, CQAs are measured through laboratory testing of samples 
collected from a batch. The most used method to measure RM in freeze- 
dried products is the Karl Fisher (KF) titration, which has a lot of dis
advantages, such as it is a destructive method, so the samples analyzed 
are wasted, turning out as an economic loss for the company income. It is 
time-consuming, since handling of the sample is required, and the in
strument must be calibrated before each analytical session. Moreover, 
safety issues for operators are not negligible, since polluting reactants 
(formamide and methanol) are involved [4,5]. 

For improving pharmaceutical developments and manufacturing, 
new technologies have been encouraged by the regulatory authorities in 
the last years. In particular, FDA published in 2002 the Pharmaceutical 
cGMPs for the 21st Century: A Risk-Based Approach, and in 2004 the PAT – 
A Framework for Innovative Pharmaceutical Development Manufacturing 
and Quality Assurance [6,7]. This new approach introduces the concept 
of Quality-by-Design (QbD) according to which the quality of the product 
has to be embedded in its production process and not just tested at the 
end of the manufacturing. In this framework, Near-Infrared 

Spectroscopy (NIR Spectroscopy) has been investigated a lot as one of 
the most powerful Process Analytical Technologies (PAT) tool in many 
fields, such as the agricultural, food and pharmaceutical industries. In 
fact, it is a rapid, non-invasive method that requires minimal sample 
pretreatments. Moreover, it allows to verify the RM on majority of the 
vials within a batch, instead of a fraction of it, for demonstration of 
batch homogeneity and uniformity. Due to the strong absorption of 
water around 5150 cm− 1, NIR spectroscopy was widely used for the 
determination of RM [8–12]. The main challenging issue is finding a 
reliable model that allows to predict the RM value from the NIR spectra. 
This can be done through the chemometric analysis. 

Chemometrics is the method to extract chemical relevant informa
tion from the available data. Most of the published applications for RM 
determination are focused on the application of Partial Least Squares 
(PLS) as regression method used in the model development step. It 
turned out to be a powerful tool, but it considers only the linear 
dependence between the spectra and the residual moisture content 
[13–16]. 

To address this issue and to try to improve the accuracy of the 
models, machine learning tools could be a suitable alternative for 
dealing with complex data. 

Machine Learning techniques differ from traditional algorithms 
because they have also the ability to learn as well as to apply pre- 
programmed decisions. Traditional software receives input data and 
codes written by the user and generate an output. Machine Learning 
algorithms, on the other hand, are able to find the functional relation
ship that binds the input data with the desired output. Their formulation 
does not require a priori knowledge of the physics governing the system 
or the relationships that link input and output variables [17]. Therefore, 
the main advantages of machine learning tools are the capability of 
nonlinear modelling and to give very good results with little knowledge 
and little training data [18]. 

Most of the published studies using machine learning tools refer to 
the food and agriculture field. For example, Parastar et al. demonstrated 
the possibility to discriminate fresh from thawed meat by using different 

Nomenclature 

List of abbreviations 
ANN Artificial Neural Networks 
API Active Pharmaceutical Ingredient 
CQA Critical Quality Attribute 
CV Cross Validation 
FDA Food and Drug Administration 
KF Karl Fischer 
LM Levenberg-Marquardt 
LR Linear Regression 
ML Machine Learning 
MSE Mean Squared Error 
MVA Multivariate Analysis 
NIR Near-Infrared 
PAT Process Analytical Technologies 
PCA Principal Component Analysis 
PLS Partial Least Square 
QbD Quality by Design 
RM Residual Moisture 

RMSE Root Mean Square Error 
RMSEC Root Mean Square Error of Calibration 
RMSECV Root Mean Square Error of Cross-Validation 
SNV Standard Normal Variate 
SOP Standard Operating Procedure 
SR Small Range 
WR Wide Range 

List of symbols 
J number of wavelengths 
M number of samples 
X matrix of NIR spectra (M × J) 
Y matrix of quality attributes (M × 1) 
Xtest matrix of NIR spectra used as test set 
Xtrain matrix of NIR spectra used as training set 
Ytest vector of RM used as test set 
Ytrain vector of RM used as training set 
yi RM value measured by KF titration 
ypred,i RM value calculated by the model  
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machine learning algorithms based on NIR spectra [19]. Coronel-Reyes 
et al. determined the egg storage time at room temperature using an 
artificial neural network (ANN) [20]. Richter et al. used machine 
learning techniques to establish the geographical origin of white 
asparagus [21]. Martins et al. presented a deep learning architecture for 
the prediction of the soluble solids content of fruit. [22] However, very 
few studies have investigated the coupling between NIR spectroscopy 
and machine learning tools in the pharmaceutical industry. An attempt 
in this direction was made by Zhao et al. They developed prediction 
models, coupling machine learning approaches with NIR spectroscopy, 
for a rapid quantification of three active pharmaceutical ingredients 
(API). They also compared the performances with the traditional PLS 
algorithm [23]. Akbar et al. explained strategies toward machine 
learning-based mAb design and the computational and experimental 
steps required. However, the most challenging issue for the application 
of machine learning in biopharmaceutical manufacturing is to demon
strate the robustness of the models for GMP use [24]. 

Here, a linear regression model and a neural network based model 
were developed to predict the RM values in freeze-dried products 
starting from NIR spectra. The performances of the two models were 
compared by calculating the RMSE value and plotting the parity dia
grams. The aim of the present work is to demonstrate the feasibility of 
the application of neural networks for this purpose and their better 
performance with respect to the linear model. Moreover, the proof of the 
robustness and the ability of the neural network based model to predict 
RM values of products not involved in the calibration step is another 
goal of this work. Lastly, the effect of reducing the size of the training 
step on the model performance was investigated. 

2. Materials and methods 

2.1. Machine learning techniques 

The interest in Machine Learning (ML) technique has been continu
ously growing in recent years. Machine learning algorithms use 
computational methods to “learn” information directly from data, 
without relying on predetermined equations, e.g. a first-principle based 
model [25–28]. 

A typical workflow for the building of a machine learning model 
consists of the following steps [29]. Firstly, the starting dataset must 
contain several input properties, called feature, and the outputs, called 
labels or targets. In the present case study, the initial dataset is made up 
of the matrix X of the NIR spectra (input) and the vector Y of residual 
moisture values measured by KF titration of a specific formulation 
(output). The dimensions of the two variables are respectively M × J and 
M × 1. In the X matrix, each column represents a wavelength (J), so a 
variable, and each row is a measurement, so a spectrum (M). The latter 
parameter can also be interpreted as the number of samples analyzed. 
Machine learning algorithms are not smart enough to understand the 
difference between noise and structured information contained into the 
data. Therefore, the next step is the preprocessing of the dataset to 
identify potentially outlier and remove the noise of measurements. In 
this step a scaling or a normalization of the data could be necessary, as 
the Standard Normal Variate (SNV) method [25]. In this preliminary 
phase, the Principal Component Analysis conducted by Bobba et al. was 
exploited for the wavelength range selection, as deeply described in 
their work [30]. Briefly, by looking at the spectra of samples with 
different residual moisture it can be seen that the greatest variation 
occurs at about 5150 cm− 1, which corresponds to the specific peak of 
water. Water is a component that all the datasets used have in common. 
Therefore, the range of wavelengths of interest should encompass this 
value and to obtain a robust model, mostly influenced by water content, 
it might be effective to focus on a narrow range of wavelengths that 
encompassed the water peak. In this way, specific peaks due to product 
specific characteristics were less considered. All these statements are in 
line with the findings of the previous works of Bobba et al. [30]. This step 

was a sort of feature selection, allowing the identification of the most 
relevant variables for building the model, in this case the range of 
wavelengths specific to water. Then, the dataset was split into two parts: 
70 % of the dataset was used as training set (Xtrain and Ytrain) and the 
remaining 30 % as test set (Xtest and Ytest). These percentages were also 
varied during the study, decreasing the size of the dataset up to 40 % for 
training purposes, aiming to identify the minimum size of the dataset 
needed for training. The training set was used in the calibration phase of 
the model, where it processed the spectra with the values of RM ob
tained by KF to find out the model. In this phase the choice of the 
learning algorithm was really important. In the present work two 
different algorithms were compared: a linear regression model and a 
neural network. There is no best method or one size fits. Finding the 
right algorithm is partly just trial and error [18]. Then, the test set 
(Xtest), that the model has never seen before, was projected into the 
trained model to obtain the predicted values of residual moisture 
(Ypred). To assess the predictivity of the model, the Root Mean Squared 
Error (RMSE) value was calculated with Eq. (1) between the RM value 
measured by KF (yi) and the one predicted by the model (ypred,i): 

RMSE =

[∑M
i=1

(
yi − ypred,i

)2

M

]0.5

(1) 

The number of samples in the dataset analyzed was reported as M. 
The lower the RMSE value, the better the model performances. Also, the 
Root Mean Squared Error of Calibration (RMSEC) and of Cross- 
Validation (RMSECV) were calculated to assess the accuracy of the 
model. They were defined as the squared difference between the 
measured and the predicted values of residual moisture divided by the 
number of samples forming, respectively, the calibration set and the 
cross-validation one. If similar values between the two quantities are 
obtained, it means that the model is performing well. 

Moreover, the parity plots were reported, which correlate the RM 
values calculated by the model (y-axis) with the RM values measured by 
KF (x-axis). Obviously, the best situation is that all points lie on the 
bisector, i.e. the line corresponding to y = x, meaning that the value of 
residual moisture measured through KF is equal to the calculated one 
from NIR spectra, while the farther the point is from the bisector, the 
worse the agreement of the ANN model. 

It has been also useful to report the diagrams that correlate the ab
solute error (%) with the RM values measured by KF. An arbitrary 
threshold for this absolute error (difference between residual moisture 
calculated and measured by KF) equal to 0.5 % (indicated by a red line in 
the following graphs) was chosen. Ideally the value of absolute error 
should be zero, but this is (obviously) quite impossible. Therefore, a 
slightly little discrepancy between the two instruments (NIR and KF) had 
to be set, and the value of 0.5 % was considered adequate in this study. 
In this framework it has to be considered that also KF titration is affected 
by an error, that may be considered equal to 0.3 %. Therefore, when 
using NIRs for RM in line estimation we do not know if the error is due 
just to the ANN model or also to KF: we can take into account this 
occurrence by setting a lower target value of RM. 

2.2. Linear regression model 

Linear models make a prediction using a linear function of the input 
features. These models are simple to interpret and easy to fit, so usually 
they are used as a baseline for evaluating other, more complex, regres
sion models [25]. 

In a linear model the output, the RM value in this case, is the 
weighted sum of the input features, so the matrix of NIR spectra, plus the 
bias term (that is the constant intercept term). For multivariate regres
sion, the general prediction formula for a linear model is reported in Eq. 
(2): 

ypred,i = θ0 • xi
0 + θ1 • xi

1 +⋯+ θp • xi
p + b (2) 
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The input variables are denoted with x0 to xp and i refers to the rows 
of the X matrix. θ and b are parameters of the model that are learned and 
ypred,i is the prediction the model makes. Training the model means 
setting its parameters so that it best fits the training set. Therefore, the 
aim of the model is to find the parameters that minimize the cost 
function, that is the Mean Squared Error (MSE), defined as the sum of the 
squares of the residuals [27]. 

Spyder (Python 3.9) was used to create the linear regression model 
by using machine learning exploiting the module Scikit-learn. This 
module includes a number of libraries that must be installed, such as 
NumPy, SciPy and matplotlib. NumPy is essential because any data will 
have to be converted to a NumPy array. SciPy provides advanced linear 
algebra routines, mathematical function optimization and statistical 
distribution. Matplotlib allows the visualization of the data, line charts, 
histograms or scatter plots. All these libraries were installed and im
ported in Spyder. The command train_test_split was used to split the 
dataset into the training and the test set [31]. 

2.3. Neural network 

Neural networks, also known as artificial neural network (ANN), are 
used in machine learning field and are at the heart of deep learning [17]. 
The main limitation of the linear models is the resolution of nonlinear 
problems, so characterized by very different features as input. Neural 
networks can be a powerful tool to overcome this issue. Their structures 
are inspired by the human brain, mimicking the interaction of biological 
neurons with each other [28]. 

A neural network consists of neurons connected between each other 
that relate the inputs to the desired outputs [32]. They are characterized 
by three main parts: the input layer, one or more hidden layers and the 
output layer. It can be seen as a generalization of linear models that 
performs multiple stages of processing to come to a decision. In fact, 
each layer is made up of a certain number of nodes or neurons that have 
an associated weight [25]. The input layer is characterized by a number 
of neurons equal to the number of inputs: so, in the presented case, the 
values of absorbances at specific wavelengths. The number of neurons of 
the hidden layer were chosen by trials and errors, since there is no 
specific rule to follow. The best combination was found to be two hidden 
layers with respectively 10 and 5 neurons, found by trials and errors. 
The output layer consists of one single neuron since it is a regression task 
and the aim was the determination of the residual moisture content in 
the final product. The values of the input layer are collected and sent to 
each neuron of the next hidden layer. Here, all inputs are multiplied by 
their respective weights and then summed up. These weights help the 
network to determine which variables contribute in a more significant 
way to the output. To make this model more powerful than a linear one, 
a nonlinear function is applied to the result, also known as activation 
function. Afterward, the result is used in the weighted sum that com
putes the output. This allows neural networks to learn much more 
complex functions than a linear model could. The main activation 
functions are the logistic regression, the rectified linear unit (ReLU) and 
the hyperbolic tangent. It has been found in literature that logistic 
regression is primarily used for classification tasks. Making several at
tempts it was evident that the hyperbolic tangent was the function that 
generates the best results. Neural networks models have a lot of co
efficients (weights and bias) to learn with respect to the linear model: 
one between every input and every hidden layer and one between every 
neuron in the hidden layer and the output [25,27]. The output of each 
neuron in each hidden layer is given by Eq. (4): 

out(r)j = f

(

br− 1 +
∑nr− 1

i=1
w(r− 1)

i,j out(r− 1)
i

)

(4) 

The first term, out(r)j , is the output of the jth neuron in the r layer and 

out(r− 1)
i represents the output of the ith neuron of the previous layer. The 

weights are reported as wi,j and are referred to the neuron of the previous 
layer, as the bias [29,33]. The activation function is indicated with f and 
is given by f = tanh().

MATLAB (R2019b) was used to create the neural networks used in 
the present work exploiting the Neural Net Fitting toolbox. It is a toolbox 
allowing the building of the neural network by setting several parame
ters. Firstly, it was essential to define the percentages of training and test 
set of the initial dataset. After the construction of the network a training 
function must be selected. In this work the Levenberg-Maqruardt algo
rithm was used, by selecting trainlm in the associated setting, which has 
been found to be much more efficient than other techniques. As transfer 
function, the hyperbolic tangent was used by selecting tansig for all the 
hidden layers. The preprocessing of the data was applied both to the 
input and the output data by processing PCA with the command proc
esspca and by normalizing them to fall in the range [− 1,1] with the 
command mapminmax. Further details on the Levenberg-Marquardt al
gorithm may be found in [34–36]. 

During the training step, neural networks learn by repeating the 
process of forward and backpropagation for every input variable several 
epochs updating the values of the parameters. The training of the neural 
network stops when the maximum number of epochs (equal to 1000) is 
reached, the performance gradient falls below the minimum value, or 
the validation performance has increased more than the maximum 
failures selected (equal to 6). The most challenging step is the validation 
of the network with the test set. Once the neural network has fit the data, 
it forms a generalization of the input–output relationship and is ready to 
predict new input variables that has never been seen [32]. 

2.4. Experimental procedures 

Freeze-drying cycles were conducted in the laboratories of the Gui
donia Montecelio (Italy) site of Merck Serono S.p.A using a lab-scale 
freeze-drier (Lyostar3, SP Scientific, Warminster, USA). Specifically, 
the dataset acquired by Bobba et al. was expanded carrying out addi
tional tests in the same operating conditions. Other experimental data 
were acquired from the previously published study [30]. Seven different 
aqueous solutions, freeze-dried into 2R glass vial (Nuova Ompi, Piom
bino Dese, Italy) with a filling volume of 1 mL, were considered for 
samples preparation:  

- sucrose 6 %w aqueous solution, labelled as S6;  
- sucrose 3 %w aqueous solution, labelled as S3;  
- sucrose 9 %w aqueous solution, labelled as S9;  
- sucrose 6 %w + arginine 0.5 %w aqueous solution, labelled as SA05;  
- sucrose 6 %w + arginine 1 %w aqueous solution, labelled as SA1;  
- sucrose 3 %w + arginine 3 %w aqueous solution, labelled as SA3;  
- trehalose 6 %w aqueous solution, labelled as T6. 

Sucrose and arginine were supplied by Merck Life Science (Darm
stadt, Germany), while trehalose by Sigma-Aldrich (Saint Louis, USA). 
Ultra-pure water was obtained by a Millipore water system (IQ 7000, 
Merck Millipore, Burlington, USA). Vials were placed in a honeycomb 
layout and surrounded by metal frames, in direct contact with the 
shelves of the freeze-dryer. The process conditions of the freeze-drying 
cycle conducted were the same used by Bobba et al. [30] and here re
ported for the sake of clarity:  

- freezing at − 45 ◦C for 6 h, with an annealing step at − 15 ◦C for 2 h;  
- primary drying at − 25 ◦C and 5 Pa for 30 h;  
- secondary drying at 35 ◦C and 5 Pa for 10 h. 

All the cooling / heating rates were set at ± 2 ◦C/min, except for the 
heating rate in the transition from the primary to the secondary drying, 
set at +1 ◦C/min. In order to explore a wide range of moisture in the 
samples, an already implemented manual humidification was made to 
get a range of residual moisture in the sample between 1 and 5 %. The 
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amount of water to be added (in the order of μL) in each vial was 
calculated by multiplying the weight of the cake by the target moisture 
content to reach, by assuming an initial RM of 0.5 %. Then, the small 
amount of water was inserted into the stopper and vials were closed 
upside-down. They were left in the upside position over-night, leading 
the diffusion of water [37]. The number of samples making up each 
dataset is summarized in Table 1. 

2.5. NIR spectra acquisition 

After freeze-drying and humidification, all the samples were 
analyzed by a Fourier Transform NIR spectrometer (Antaris MX FT-NIR, 
Thermo Fischer Scientific, Waltham, USA), equipped with an InGaAs 
detector and a halogen NIR source. The acquisition of the spectra was in 
diffuse reflectance mode in the full wavelength range 10,000–4000 
cm− 1. The spectrum of each sample was the result of the average be
tween 96 scans to reduce the noise of measurement and increase its 
quality. The NIR probe pointed on the side of the freeze-dried cake [30]. 

2.6. Karl-Fisher titration 

After the acquisition of the spectra, all the samples were analyzed by 
KF titrations following the Standard Operative Procedure (SOP) of the 
company. A coulometric titrator was employed (C30S Mettler Toledo, 
Columbus, USA). The equipment was calibrated before each analytical 
session with the titration of a standard solution (Honeywell HYDRANAL 
Water Standard 1.0, Fisher Scientific, Milano, Italy). The solvent used 
included formamide and methanol and the percentage of water content 
was calculated [30]. The KF titration was used as reference method to 
build the regression model. Being a standardized analytical procedure, 
the reference values contain an analytical error and a limit of detection. 
The expected error from a KF analysis may be up to ±0.3 % [38–40]. A 
such high error with respect to the NIR measurements is justified by the 
handling and variability of the sample preparation. 

2.7. Pretreatment of spectra 

Preprocessing is a general term for methods to go from “raw” 
instrumental data to “clean” data for the processing step. In fact, due to 
the working principle of instruments of measurement, many physical 
and chemical phenomena can cause a deviation from the linear rela
tionship given by the Beer’s law. This results in noise and offset in the 
plot of the spectra and the aim is to remove it and make all the samples 
comparable with each other [41,42]. The must-have preprocessing 
technique used with NIR spectra is the Standard Normal Variate (SNV) 
correction. It is a row-wise method that allows to highlight better the 
actual differences between samples. By looking at the full wavelength’s 
spectra, the trend appeared flat for wavenumber values higher than 
7000 cm− 1. Therefore, the wavelength range used for model develop
ment was reduced to 7000 − 4250 cm− 1, according to the findings of 
Bobba et al. [30]. Moreover, some spectra were very noisy and different 
from the expected ones and so they were removed by PCA or manually. 

2.8. Models developed 

Three models were developed in two different wavelengths ranges. 
The signals specific to water were observed in the band of O–H 
stretching and H–O–H bending at around 5150 cm− 1. Also, an over
tone of O–H stretch was observed at around 6900 cm− 1. As pointed out 
above, most of the spectral information was observed in the region be
tween 4250 and 7000 cm− 1. Here, signals specific to the analyzed 
product were noticed. For instance, in the region between 4000 and 
4500 cm− 1 the sucrose presented a peak corresponding to the C–H 
stretching. The same situation was almost noticed for the trehalose. 
Instead, by looking at the spectra of the sucrose-arginine mixtures it 
appears that as the concentration of arginine increases (in terms of 
percentage of the total solid fraction), the peak in the water region tends 
to decrease and another peak, specific to the arginine product, appeared 
at around 4900 cm− 1. The spectra of the different formulations in the 
smaller region were reported in Fig. S1 and in Fig. S2 of the Supple
mentary Information. 

Taking into account all these considerations, two different wave
lengths ranges were examined:  

- Small Range (SR): it considered the 5290–4787 cm− 1 region and 
focused on the most significant peak of water at around 5150 cm− 1, 
the one with the highest loading value. According to previous liter
ature works, in this way specific peaks in product characteristics 
were less considered and the model would be more robust and 
generalized [30].  

- Wide Range (WR): it considered the 7100–4250 cm− 1 region and also 
included the peaks characteristics of the different products contained 
in the individual formulations. 

In this framework, three different models were developed:  

1) Model S6: dataset S6 was used (as reference product) as to build and 
internally validate the model and all the remaining datasets (S3, S9, 
SA05, SA1, SA3 and T6) were used as external validation set. The 
percentages of the training and test set were changed during the 
analysis from 70 % up to 40 %. The purpose of this model was to 
obtain a robust model in the perspective of reducing the experi
mental effort for model development and laboratory testing. The 
term “robust” refers to the ability of the model to predict with good 
accuracy the RM value of formulations not included in the calibra
tion step. This may be possible if the inputs given to the model are 
similar, that is, if the formulations have comparable spectra. In 
addition, the use of neural networks greatly improved the analysis 
and can handle even small differences in the input data. The dataset 
used as reference product (S6 in this case) to build the model was 
chosen arbitrarily, based on the fact that a larger amount of data was 
available for this product, although, in principle, any other dataset 
could have been chosen.  

2) Ad – Hoc Models: two ad hoc models were developed for the sucrose- 
arginine mixture at different percentages and for the trehalose so
lution. This step was done to assess the quality of the dataset con
taining an amino-acid (arginine) and a different excipient (trehalose) 
with respect to the dataset used for the calibration step in the 
development of the model. In fact, very bad results were obtained 
with sucrose-arginine mixture as external dataset with the Model S6. 
The key reasons will be explained in the following section.  

3) Global Model (GM): a single dataset, including a certain percentage 
of all the datasets shown in Table 1, was used in the calibration 
phase. Also, in this analysis, the percentages of the training set were 
changed from 70 % to 40 % to see if any worsening in performance 
occurred. Many trials were done in this direction by previous liter
ature works, but very few have used neural networks. Being 
nonlinear tools, they have the advantage to better handle the huge 

Table 1 
Number of samples in each dataset and description of the corresponding 
formulation.  

Data set Formulation N◦ Samples 

S6 Sucrose 6 %w 91 
S3 Sucrose 3 %w 63 
S9 Sucrose 9 %w 36 
SA05 Sucrose 6 %w + arginine 0.5 %w 30 
SA1 Sucrose 6 %w + arginine 1 %w 28 
SA3 Sucrose 3 %w + arginine 3 %w 31 
T6 Trehalose 6 %w 45  
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and so different dataset, used as input, with respect to the linear 
model. 

3. Results and discussion 

The performances of the two algorithms, based on the linear model 
and on neural network, were compared for the prediction of residual 
moisture in freeze-dried products. The performances are summarized in 
Table 2 and in Table 3, where the RMSE is shown for Model S6 and the 
Global model (Table 2) and for the Ad-Hoc Models (Table 3), both in the 
small range and in the wide range, used for the various datasets. 

Neural network and linear regression turned out in comparable 
performances in the case of the two ad hoc models, as confirmed by the 
RMSE values in Table 3. For example, in the case of SA05 dataset the 
RMSEs were respectively 0.288 (LR) and 0.233 (NN). On the contrary, 
neural network was more accurate in the prediction of dataset different 
from the ones used in the calibration phase to develop the model, i.e. 
Model S6. In fact, by considering for example the T6 dataset the RMSE of 
the neural network was much lower than the one calculated by the linear 
model (0.199 against 0.334). Also in the Global Model, neural network 
was better performing thanks to its non-linearity. Especially, its main 
advantage is the capacity of dealing well with the presence of arginine or 
trehalose. The RMSE values in Table 2 confirmed these findings. A 
detailed discussion is provided in the following sections. 

3.1. Model S6 

Model S6 was developed and tested considering both wavelength 
ranges, SR and WR. The model was developed splitting the S6 dataset 
into two portions: 70 % was used as training set (64 samples) and the 
remaining 30 % as test set (27 samples) in a random way, so in a way 
that all RM values would be explored by both sets. The dataset S3, S9, 
SA05, SA1, SA3 and T6 were used as external dataset to assess the 
robustness of the model. The parity plots are reported in Fig. 1 and 
compare the RM values calculated by the model with the ones measured 
by the reference method, the KF titration. In the upper part of the graph, 
on the left, results obtained using the linear model are reported (graph a) 
and on the right, those obtained with the neural network (graph b). 
Obviously, the best situation is that all points lie on the bisector, but 
small deviations are permitted for technical limitations of the analytical 
technique and issues with the models. In this case, since S6 dataset was 
included in the calibration step, the trend fitted perfectly the points as 
shown in Fig. 1, graphs a and b. Also, the graphs of the absolute error as 
a function of the RM value measured by KF were reported in Fig. 1, 
graphs c and d. The absolute error was calculated as the absolute dif
ference between the calculated and the measured value of RM (in %). 
The red line at 0.5 % was assumed as the limit to assure the applicability 
of the model. In Fig. 1, graphs c and d, it is clearly visible that both the 
developed models are characterized by a very good accuracy, with 100 
% of the points lying below the acceptance threshold (red line). 

According to the data reported in Table 2, the neural network 
resulted in lower RMSE values than the linear model for small wave
length ranges (SR). In particular, its better performance was confirmed 

by the RMSE values of the arginine-sucrose mixture: for SA05 the neural 
network showed an RMSE value of 0.554 against 0.873 for the linear 
model; for SA1 the RMSE values were respectively 0.351 and 0.707. The 
parity diagrams and the absolute error plots were reported in the Sup
plementary Information in Fig. S3 and Fig. S4. For the reasons explained 
in the Materials and Methods section, a RMSE value not greater than 0.5 
was acceptable. So, the neural network demonstrated a very good ac
curacy, comparable to the intrinsic error of the analytical method. 
Instead, both algorithms, neural network and linear model, failed in the 
prediction of the SA3 dataset, characterized by the highest percentage of 
arginine in solution (50 % of the total solid fraction), with RMSE values 
respectively equal to 0.572 and 0.519. The spectra of the sucrose solu
tion, the product used in the calibration of the model, is, in fact, very 
different from the one of sucrose-arginine mixture at high percentage. 
The plots of the different spectra are reported in Fig. S2 of the Supple
mentary Information. The presence of arginine led to the disappearance 
of the peak specific of water at 5150 cm− 1. Since the model was analyzed 
in the SR wavelength range, specific for the highest peak of water, these 
results were considered reasonable. The bad performances of the models 
were also confirmed by the absolute error plots shown in Fig. 2, graphs c 
and d, where almost half of the points are above the acceptance 
threshold (red line). 

Neural network described better also the dataset characterized by a 
different percentage of sucrose, S3 and S9 (for SR). In the first case the 
RMSE value calculated was 0.446 against 0.519 of the linear model. The 
parity diagrams and the absolute error plots were reported in Fig. S5 of 
the Supplementary Information. The largest difference was found for the 
prediction of the dataset with the highest percentage of sucrose, S9, 
resulting in RMSE values respectively equal to 0.305 and 0.774. The 
spectra of S6, S3 and S9 were similar, as reported in Fig. S1 of the 
Supplementary Information. However, some small differences, due to 
the different percentages of sucrose in water, led the linear model to give 
a worse prediction than the neural network. These findings were 
confirmed by the absolute error plots reported in Fig. 2, graphs a and b. 
Here, in the case of neural network only the 9 % of the samples exceeded 
the acceptance threshold (red line); while, in the case of linear regres
sion model 40 % of the samples were above the acceptance threshold, 
index of the poor predictivity of the linear model. 

The same considerations were done for the trehalose formulation, T6 
(SR). The shape of the spectrum is similar to the one of S6 dataset. 
Therefore, the prediction turned out in accurate values of RMSE (0.199) 

Table 2 
RMSE obtained when using the Model S6 and the Global Model in the wavelength range SR or WR, and using the linear model (LR) or the neural network (NN).  

Dataset Model S6 SR Global Model SR Model S6 WR Global Model WR 

RMSE 
LR 

RMSE 
NN 

RMSE 
LR 

RMSE 
NN 

RMSE 
LR 

RMSE 
NN 

RMSE 
LR 

RMSE 
NN 

S6  0.122  0.172  0.358  0.213  0.066  0.156  0.133  0.167 
S3  0.519  0.446  0.493  0.295  0.509  0.681  0.269  0.298 
S9  0.774  0.305  0.444  0.309  0.539  0.296  0.249  0.259 
SA05  0.873  0.554  0.658  0.356  0.765  0.643  0.426  0.367 
SA1  0.707  0.351  0.436  0.387  0.583  0.803  0.269  0.573 
SA3  0.519  0.572  0.352  0.173  0.514  0.963  0.367  0.318 
T6  0.334  0.199  0.325  0.181  0.773  0.338  0.283  0.249  

Table 3 
RMSE obtained when using the LR and the NN models in case of ad hoc models 
for arginine-sucrose and for trehalose formulations. All the results reported were 
obtained for SR.  

Dataset Ad-hoc Model for Arginine-Sucrose Ad-hoc Model for Trehalose 

RMSE LR RMSE NN RMSE LR RMSE NN 

SA05  0.288  0.233  –  – 
SA1  0.336  0.229  –  – 
SA3  0.227  0.115  –  – 
T6  –  –  0.334  0.199  
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for the neural network. A worse prediction, but still acceptable, was 
obtained for the linear regression, with a RMSE value equal to 0.334. 
The parity diagrams and the absolute error plots are reported in the 
Supplementary Information in Fig. S6. It has to be highlighted that the 
RMSE value found was slightly equal to the one obtained for S6 dataset 
(equal to 0.172), involved in the calibration step. This means that the 
model, which was calibrated only with sucrose as excipient, can 
perfectly predict the RM value of a formulation containing a different 
excipient, such as trehalose. This was made possible by the application 
of neural networks, which are nonlinear algorithms that can handle even 
more complex and challenging problems, and by focusing in the region 
specific of the peak of water. 

The application of the model to a wider range of wavelengths yielded 
in worst performances for the neural network, as shown in Table 2. 
Obviously, the prediction of dataset S6, also included in the calibration 
step, resulted in good accuracy. For all the other datasets, the RMSE 
values found were above the acceptable error given by the experimental 
method. This was considered as legitimate, since by enlarging the range 
of wavelengths, more peaks specific of the formulations were included. 

3.2. Ad-Hoc models 

The poor results obtained with the Model S6 for the prediction of SA3 
dataset suggested to develop an ad hoc model for the sucrose-arginine 
mixtures. The model was developed by including a certain percentage 
of SA05, SA1 and SA3 datasets in the calibration step, so that all the 
three different formulations containing the arginine were involved in 
the training phase of the model. Only the small range was analyzed. Also 

in this case, 70 % of the dataset was used as training set (62 samples) and 
the remaining 30 % as test set (27 samples). The results are shown in 
Table 3. For the SA3 dataset the RMSE values were 0.227 (for linear 
model) and 0.146 (for neural network); for SA1 they were respectively 
0.336 and 0.229 and for SA05 they were equal to 0.287 and 0.233. The 
performances of the linear model and the neural network appeared to be 
comparable. This was reasonable since only few samples were involved 
in the calibration step and they had pretty similar spectra. The parity 
diagrams and the absolute error plots are reported in the Supplementary 
Information in Figs. S7–S9. 

Another ad hoc model was developed, for the trehalose containing 
mixtures. The training set was made of 32 samples (70 %) and the test 
set of 13 samples (30 %). The comparison between the two models is 
given in Table 3, with a RMSE value equal to 0.155 for the linear model 
and 0.128 for the neural network. As in the previous case, the perfor
mance of the two models was comparable for the reasons discussed 
above. These findings were confirmed by the parity diagrams shown in 
Fig. 3a and 3b, indicating no or little difference between the two plots. 
The absolute error plots were reported in Fig. S10 of the Supplementary 
Information. 

3.3. Global model 

For the global model evaluation, the whole dataset made up of S6, 
S3, S9, SA05, SA1, SA3 and T6, was split into two independent cali
bration and validation sets. The calibration set was composed of 70 % of 
the dataset (228 samples) and the validation set of the remaining 30 % 
(97 samples). 

Fig. 1. Parity diagrams (a, b), comparing the RM measured (%) and the RM calculated (%), and absolute error plots (c, d), obtained using the linear regression (a, c) 
and the neural network (b, d) models for dataset S6 for SR. 
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Firstly, the focus was on the application of the global model to the 
small range wavelengths. Obviously, the performance of the Global 
Model S6 dataset was worse than the first model, Model S6, since a lower 
percentage of that dataset was included into the calibration set to reach 
a homogeneity between all the formulations. The term homogeneity 
refers to having the same percentage of each formulation in the training 
set. In fact, the RMSE value in this case was 0.213 with the neural 
network and 0.358 with the linear model, higher than the previous 

model (respectively 0.172 and 0.122). The performance of dataset S3 
globally improved with lower values of RMSE in both cases, respectively 
equal to 0.295 (for neural network) and 0.493 (for linear model). For S9 
dataset, the situation remains the same for the neural network, while an 
improvement was observed for the linear model with a RMSE value of 
0.444. These findings were expected, since both datasets were involved 
in the training set to build the model. However, the differences in the 
performance of the two models were not so marked. Therefore, it can be 

Fig. 2. Comparison between the absolute error plots obtained for S9 dataset (a, b) and for SA3 dataset (c, d) in case of linear regression (a, c) and neural network (b, 
d) models developed with S6 database are used for SR. 

Fig. 3. Parity diagrams comparing the RM measured (%) vs the RM calculated (%) using the linear regression (a) and the neural network (b) models developed for 
dataset T6 for SR. 
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concluded that it is not necessary to build a global model to predict the 
RM value of S3 and S9, but the model S6 is sufficient to obtain a very 
good accuracy (comparable with the one obtained by the global model). 
Another evidence of the good performance of the model was displayed 
in the parity diagrams shown in Fig. 4 and Fig. 5. In Fig. 4, graphs a and 
b, the observations were more spread out than in the previous case, but 
they had similar distributions among the two models, an index of similar 
performances. The same observation can be made for the T6 dataset, 
with RMSE values equal to 0.181 (neural network) and 0.325 (linear 
model), values comparable with the ones obtained with the Model S6. 
The plots are reported in the Supplementary Information in 
Fig. S11–S13. 

The situation appeared to be different for the sucrose-arginine mix
tures. In this case, the performance was improved with respect to Model 
S6. In fact, arginine-based formulations were included in the training 
set, leading to an improved prediction for the three datasets (SA05, SA1 
and SA3). In this way the specific peaks characteristic of arginine, which 
were different from the ones containing in the sucrose formulations, 
were considered. The better performance was confirmed by the RMSE 
values reported in Table 2. It is evident that neural network always 
turned out in lower values of RMSE than the first model. For example, 
for SA3 the RMSE value is 0.173 against 0.572 for the previous model. 
So, it could be necessary to develop a model including samples of the 
new formulation (containing arginine in this case) in the training phase 
to take into account the very large variability in the spectra of the 
different formulations. Moreover, neural network was more suitable to 
deal with a huge dataset in input and to take into account their vari
ability for the prediction of RM values of freeze-dried products. In fact, 

all the RMSE values were lower than the ones calculated by the linear 
regression model. The key reason is the non-linearity of the neural 
network. It is apparent from Fig. 5, graphs a and b, where a more spread 
distribution is observed for the linear model with respect to the neural 
network. Also, the absolute error plots, in Fig. 5, graphs c and d, showed 
the best performance of the neural network, with no observation above 
the acceptance threshold. 

The global model was also applied to a wider range of wavelengths 
(WR) and the results obtained are reported in Table 2. In this case, the 
performance of the two models seemed to be quite comparable, with 
similar RMSE values between each other. All the values were on the 
order of the intrinsic error of the analytical method. 

3.4. Comparison of performances between the neural network and the 
PLS model 

The better performance of the presented models with respect to the 
PLS model (developed by Bobba et al. [30]) was observed both for the 
product-specific and the global model. 

A comparison was made between the neural network and the PLS 
model for the Model S6. The higher difference was found for the dataset 
including the arginine product. In fact, for the SA05 dataset the neural 
network gave an RMSE value of 0.554 against 0.65 for the PLS model; 
for SA1 the values were respectively 0.351 and 0.974 and for SA3 they 
were equal to 0.572 (NN) and 2.412 (PLS). These results allowed to 
emphasize again the improved ability of the neural network to deal with 
nonlinear problems, such as the prediction of a product not included in 
the calibration set. In this case, the tested product was arginine (an 

Fig. 4. Parity diagrams comparing the RM measured (%) and the RM calculated (%) for dataset S6 (a, b) and for dataset S9 (c, d), obtained using the linear regression 
(a, c) and the neural network (b, d) global models for SR. 
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amino acid), which was characterized by specific features very different 
from those of sucrose. Also, for the dataset with a different percentage of 
sucrose, an improved prediction was reached. In fact, for S3 dataset the 
RMSE value calculated by the neural network was 0.446 against 0.562 
calculated by the PLS model. For S9 dataset the RMSE values were 
respectively 0.305 (NN) and 0.741 (PLS). The same consideration could 
be done for the T6 dataset (0. 199 for NN and 0.578 for PLS), thus 
pointing out the higher accuracy of the neural network method based. 

A comparison for the global model was done. Also, in this case, the 
results demonstrated the better accuracy of the neural network with 
respect to the PLS model. In fact, some examples are here reported: for 
dataset S3 the values were 0.295 (NN) and 0.578 (PLS); for S9 they were 
0.303 (NN) and 0.555 (PLS) and for T6 they were respectively 0.181 
(NN) and 0.703 (PLS). 

3.5. Effect of training set size on the performances 

The effect of the training set size on model performance was tested by 
calculating the RMSE values in each case. The results are summarized in 
Table 4 for both models used. 

The RMSE values were calculated for both models by varying the size 
of the training set, expressed as percentage of the available data, from 
70 % to 40 %, allowing also to point out problems of overfitting or 
underfitting. The results obtained by processing data with Model S6 are 
reported in Table 4. The highest values of RMSE were obtained for the 
sucrose-arginine mixture. In particular, the higher was the percentage of 
arginine in solution and the higher was the value of RMSE. Globally, the 
RMSE values obtained with the linear model were higher than the ones 
obtained with the neural network for all the percentages used. A close 
inspection of Table 4 indicates that the RMSE values remained slightly 

Fig. 5. Parity diagrams (a, b), comparing the RM measured (%) and the RM calculated (%), and absolute error plots (c, d) obtained using the linear regression (a, c) 
and the neural network (b, d) global models for SR. 

Table 4 
Effect of training set size on model performance. In the first row the type of model is specified. In the second row the percentage of available dataset (from 40% up to 
60%) used for training purposes is reported. All the values in the Table are the RMSE values corresponding at each dataset for each value of the size of the training set. 
The results are reported for SR.  

Dataset Model S6 LR Model S6 NN Global Model LR Global Model NN 

40 % 50 % 60 % 40 % 50 % 60 % 40 % 50 % 60 % 40 % 50 % 60 % 

S3  0.427  0.375  0.392  0.408  0.352  0.283  0.757  0.598  0.681  0.422  0.294  0.334 
S9  0.574  0.558  0.412  0.252  0.333  0.189  0.691  0.689  0.468  0.286  0.212  0.304 
SA05  0.877  0.415  0.909  0.593  0.419  0.644  0.969  0.559  0.669  0.426  0.323  0.330 
SA1  1.998  0.544  0.993  0.506  0.349  1.061  1.352  0.495  0.631  0.384  0.354  0.401 
SA3  0.599  1.880  1.169  0.952  0.868  1.219  1.229  0.723  0.430  0.632  0.397  0.400 
T6  0.494  0.479  0.479  0.491  0.291  0.358  1.363  0.465  0.473  0.660  0.487  0.578  
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constant at the different sizes of training set analyzed for the datasets S3, 
S9 and T6. This is a really good result, since it allows a reduction in the 
experimental effort for developing the model. A moderate increase has 
been observed for the dataset SA05, while a huge increase is observed 
for the dataset with higher percentage of arginine, so SA1 and SA3. In 
these cases, in fact, the RMSE values ranges from 0.6 up to 2 for very low 
percentages of training set. The same situation can be observed for the 
neural network, but all the curves are shifted down, index of its better 
performance. 

A different situation was observed for the global model in Table 4. 
For the linear regression model, the performances were bad at 40 % of 
training set with very high values of RMSE ranging from 0.7 up to 1.4. 
The remaining trend was approximately constant, with minimal changes 
for the 60 % of training set. For the neural network, it was clearly visible 
that the performances were better with very low values of RMSE 
whatever the percent of training set. This Table could be helpful in 
reaching a compromise between the accuracy of the model and the 
experimental effort done to develop it. Also, a confirmation of the results 
could be obtained by considering other statistical parameters, such as 
the Root Mean Square Error of Calibration (RMSEC) and the one of 
Cross-Validation (RMSECV). In fact, as an example, by focusing on the 
neural network-based model developed using the 70 % of dataset as 
calibration set, in the case of the product-specific model for S6, their 
values were respectively equal to 0.131 and 0.094; while in the case of 
the global model, values equal to 0.105 and 0.177 have been obtained. 

4. Conclusions 

In summary, NIR spectroscopy was coupled with machine learning 
techniques to quantify the residual moisture content in freeze-dried 
products. The first goal of the present work was the development of a 
model able to estimate the residual moisture in a certain reference 
product, the S6 dataset. Then, the robustness of this model was tested 
using the other different products as external validation dataset. Two 
different models were developed: a linear regression model and a neural 
network. This study clearly demonstrates that the coupling of NIR 
spectroscopy with chemometric techniques is a powerful tool for the 
quantitative prediction of RM values as an alternative to KF titration in 
the context of process development. 

By comparing the developed models, the neural network turned out 
in more accurate and reliable performance than the conventional linear 
models. Its better performance was assessed both for the prediction of 
products non-involved in the calibration step and for dealing with large 
dataset, as in the case of global model. So, the robustness of the neural 
network was demonstrated with RMSE values lower than the intrinsic 
error of the analytical method (KF). On the contrary, the performances 
of linear model and neural network were comparable for the two ad hoc 
models. Also, the results obtained with both models were compared with 
the PLS model developed by Bobba et al. [30] As highlighted from the 
RMSE values, the performance of the neural network was remarkably 
better. It was assessed that the introduction of a new component, like 
arginine, that gives a different contribution in the analyzed spectral 
region, required for the development of a global model, while the 
product-specific model for S6 revealed accurate in the prediction of 
dataset containing sucrose at different percentage and trehalose (having 
a similar spectra). 

Obviously, machine learning tools require a higher computational 
cost than linear models. Hence, based on the needs, a compromise be
tween computational cost and accuracy of the method is needed. 
However, in pharmaceutical processes, high accuracy is mandatory for 
quality control of the products. Therefore, a suitable machine learning 
algorithm could be more robust and powerful for this purpose. 
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