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Abstract—Alterations in walking patterns are widespread in
the elderly population due to the motor decline typical of aging
and other comorbidities related to movement disorders, such as
Parkinson’s disease, or the consequences of acute events such
as stroke. Early detection allows promptly activating specific
rehabilitation treatments to reduce the risk of falls, injuries,
and hospitalizations. This paper presents a non-invasive solution
based on Azure Kinect and machine learning to detect gait
alterations (i.e., slow-speed gait, short-step gait, and dangling
gait). The body tracking algorithm captures the 3D skeletal model
during gait on a straight walking path compatible with domestic
environments. Some parameters are estimated from the virtual
skeleton to characterize gait objectively. These parameters are
then fed to supervised classifiers to distinguish between normal
and altered gait (binary classification) and between types of alter-
ations (multi-classes classification). Preliminary results obtained
on healthy volunteers simulating alterations are presented and
discussed.

Index Terms—Azure Kinect, gait analysis, remote monitoring,
fall risk, machine learning

I. INTRODUCTION

The increase in the elderly population of developed coun-
tries creates new and complex challenges related to their health
management: specific needs, both physiologically associated
to aging and to other comorbidities, arise in these subjects.
National healthcare systems are economically burdened and
often unable to satisfy these needs only through outpatient
visits: clinical evaluations are seldom, especially when ac-
cess to hospital facilities is difficult, as demonstrated by the
Covid pandemic. For these reasons, economical and easy-to-
use telemedicine solutions that could support a large number
of patients in the prevention and daily management of dis-
eases are being sought. From this perspective, motor decline

correlated with aging or with other comorbidities has great
relevance in the elderly care. The change in physical abilities,
balance and stability is relevant both in the diagnostic phase
and in the monitoring of pathologies like Parkinson’s Disease
(PD) [1] [2] [3], arthritis [4] or consequences of acute events
such as stroke [5] [6] [7]. It also plays a key role in fall
prevention [8] [9]. Falls are now recognized as a major issue
for subjects over 65 years and their health management, as
well as their quality and length of life [10]. New preventive
approaches are proving their usefulness [11] [12] [13]. In
this framework, gait assessment plays a central role, with
demonstrated discriminatory features in assessing fall risks for
elderly [14]. In particular, the focus has moved from traditional
in-hospital gait analysis toward assessment methodologies that
could be applied also in unsupervised settings (home, patients’
associations) [15] through low-cost instrumentation such as
wearable sensors [16] [17] [18], smartphones [19] [20] optical
sensors [21] [22] [23] [24]. In particular, Kinect-based optical
techniques are widely investigated [25], with promising results
with respect to the gold standard of motion capture (MOCAP)
systems [26]. For rehabilitation or prevention purposes, Kinect
is used to capture movement through a markerless 3D tracking
of human body joints which makes it a suitable tool for
the characterisation of human gait and in the evaluation of
performances during dynamic motor tasks. Examples of this
use are found in physiotherapy [21] [27], post-stroke rehabil-
itation at home [28] [29], neurorehabilitation [30], multiple
sclerosis [31], risk of fall assessment and prevention [8]
[32]. Furthermore, this technology has often been applied
in the evaluation/diagnosis of PD, allowing also the study
of tremor intensity and postural dysfunctions [21] [17] [33].



Gait analysis using Kinect is generally performed through
the estimation of spatiotemporal parameters and kinematic
measures [34] [35] [36] such as the angles formed by leg
swing, speed, and distance of each gait step, with significant
results even in patients with neurological diseases [37] [38].
The last generation device, Azure Kinect, has recently started
to be investigated for such applications. Preliminary results
seem to confirm that this new sensor outperforms previous
models (Kinect v1, v2) in real-time body tracking accuracy
in general [39] and in gait analysis [40] for different viewing
angles [41].

This study proposes an automatic detector of gait alterations
based on Azure Kinect: the camera captures the subject while
performing a 5-m-long straight walk and extracts, through
native body tracking algorithm, a 32-joints 3D skeleton. From
this virtual reconstruction, a set of relevant spatiotemporal
parameters is estimated. Afterwards, multiple supervised clas-
sification methods are used to automatically identify abnor-
malities in walking patterns. The performances of the detector
are tested simulating altered walking patterns typical of elderly
and pathological subjects with gait disorders.

II. MATERIAL AND METHODS

The automatic detector pipeline is organised in two macro-
sections: the first component (hardware and software) is the
data acquisition system, which captures the walking task
performed by the user in front of the camera. The second
component (only software) is responsible for data processing,
i.e., automatic features extraction from collected tracking data,
and classification of gait. Fig. 1 summarises the complete
system.

A. Data Acquisition System

To collect walking data, an acquisition system was devel-
oped that includes three elements: an RGB-Depth sensor (i.e.,
Microsoft Azure Kinect DK [42]), an elaboration unit (mini-pc
or laptop), and a monitor to display the graphical user interface
(GUI). The system acquisition software running on the elab-
oration unit is primarily based on the Software Development
Kits (SDKs) of Azure Kinect: these allow accessing the color
and depth streams of camera at approximately 30 frames per
second and estimating from them 3D human movements, using
Azure Body Tracking algorithm. The ouput is a time-based
evolution of a skeletal model composed of 32 virtual joints.

Moreover, the system is also equipped with custom-written
software, implemented in Unity, to manage the acquisition
procedure, collect data and save the skeletal model evolution
over time at the end of the acquisition. Data are saved in
JSON files, containing the position, rotation, and confidence
of each 3D body joint, for the subsequent gait analysis
and characterization. The GUI is thought for a supervised
scenario where the data acquisition is managed by a caregiver,
therapist/clinician, or technician. Nevertheless, it consists of a
few interactive buttons, audio and textual messages to be as
easy to use as possible.

Fig. 1. Pipeline of the proposed automatic detector

B. Participants and acquisition protocol

To evaluate the ability of the system to detect alterations in
walking patterns, we enrolled ten healthy volunteers (average
age: 50.2 ± 15.8; age range: 45-66; five males and five
females). Each subject was preliminarily instructed on the
system and the experimental procedure. Then, each subject
performed the required trials under the supervision of technical
staff. All the subjects performed the trials under the same
system setup [43]: since the system is thought for home mon-
itoring of gait alterations, we considered a domestic scenario.

The acquisition protocol included three sessions for each
subject separated by a 5-minutes pause: normal pace walk-
ing session (NPS), low-speed and short-step walking session
(RPS), dandling walking session (DPS). The last two sessions
(RPS and DPS) were included in the acquisition protocol
to simulate altered walking patterns typical in elderly and
pathological subjects with gait disorders, such as parkinsonian
and post-stroke individuals with hemiplegia. For each session,
three walking trials were performed. According to the acquisi-
tion protocol, each subject started 5-meters-away and walked
toward the RGB-Depth sensor along a straight path (Fig. 2).
In this way, the subject entered the virtual gait analysis path
(VGAP, approximately from 4.5m to 2m from the RGB-Depth
sensor) fully operational, allowing the correct detection of each
step and estimation of gait parameters.

C. Gait parameters

The gait analysis procedure relies on the 3D trajectories
of the skeletal model collected during walking sessions. In
particular, joints related to ankles, which are more stable than
foot joints [44], are used to estimate some spatiotemporal
parameters, as in [43]. In addition, since lateral and forward
sways during walking could indicate a potential risk of fall
in dynamic conditions, some parameters related to the 3D
trunk center of mass (COMT ) are also estimated. COMT

is computed from the skeletal model as the average of two
body segments: neck-to-chest (i.e., NECK and SPINE-CHEST
joints) and chest-to-pelvis (i.e., SPINE-CHEST and PELVIS
joints). Table I shows the list of the estimated gait parameters.

Before estimating gait parameters, the 3D trajectories of
joints are pre-processed using resampling (50 Hz) and filtering
(low-pass Butterworth filter, third order) methods to remove
jittering and high noise frequencies. The COMT is used to
automatically detect when the subject enters and leaves the
VGAP. Inside the VGAP, left and right steps are segmented



Fig. 2. Scheme of the acquisition protocol

from ankles 3D trajectories [43] to estimate spatiotemporal
parameters. The COMT trajectory is also used to evaluate
lateral and vertical sways inside the same area. While gait
parameters estimated for the left and right sides are maintained
separated for statistical analysis, they are averaged to obtain
a single value for gait classification purposes to reduce the
number of features to consider for each trial.

TABLE I
LIST OF GAIT PARAMETERS

Spatiotemporal and COMT Parameters
Parameter Unit Meaning
STEPL [m] Length of stepa

STEPT [s] Duration of stepa

STANCED [%] Stance phase duration (% of Gait Cycle)a

SWINGD [%] Swing phase duration (% of Gait Cycle)a

GCL [m] Length of Gait Cyclea

GCT [s] Duration of Gait Cyclea

GAITSP [m/s] Gait Speed
CADENCE [step/min] Number of steps/minute
MLRANGE [m] Range of COMT mediolateral sway
VRANGE [m] Range of COMT vertical sway

aParameters that are estimated for left and right side

D. Statistical Analysis
For statistical analysis, we have considered parameters

related to the left and right sides separately; the other spa-
tiotemporal features and COMT parameters have been treated
as a single value for each trial. Due to the reduced dataset
size, the Shapiro-Wilcoxon test has been considered to check
the normality of each parameter: since parameters showed a
non-normal distribution, a non-parametric analysis has been
considered. The Mann-Whitney U test (significance level 95%)
has been used to determine the significance of parameters in
discriminating between groups of trials (i.e., NPS vs. RPS;
NPS vs. DPS; RPS vs. DPS).

In addition, to support the analysis with a correlation metric,
Spearman’s rank-order correlation coefficient has been used to
verify the correlation between parameters and type of sessions
(“normal” vs “altered” walking patterns, thus considering RPS
and DPS as unique category), to select the most significant pa-
rameters for gait alterations assessment. The statistical analysis
has been performed using Jamovi, an open-source statistical
spreadsheet built on R statistical language.

E. Automatic Gait Alterations assessment
For the automatic assessment of gait alterations, we have

considered three supervised classifiers that are available in

MATLAB 2019b toolbox: k-Nearest Neighbours (kNN), Dis-
criminant Analysis (DA), and Support Vector Machine (SVM).
For each classifier, several configurations have been con-
sidered: SVM with a linear kernel (LSVM), SVM with a
quadratic kernel (QSVM), SVM with a cubic kernel (CSVM),
kNN with k=1 (1NN), kNN with k=3 (3NN), kNN with
k=5 (5NN), linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA). The first test concerned a binary
classification problem (two classes), where the gait trials were
classified into ”normal” or ”altered” walking patterns; the
second test concerned a multiple classification problem (three
classes), where the gait trials were classified according to
a more precise type of alteration (i.e., NPS, RPS, DPS).
Initially, classifiers were trained using all the estimated gait
parameters (10 features). Then, the training procedure was
repeated selecting only the parameters with |ρ| > 0.6 (8
features) and finally only the most relevant parameters with
|ρ| > 0.8 (5 features) resulting from the statistical analysis to
remove potentially confounding and irrelevant gait parameters.
The k-fold (k=5) cross-validation procedure was applied to test
the classifier’s performance on the available dataset.

III. RESULTS

A. Data Collection

All the subjects were able to perform the sessions as
required. Nevertheless, some trials for RPS and DPS have been
discarded during the processing of the 3D trajectories due to
external factors that interfered with body tracking. Table II
resumes the number of sessions and valid trials that make up
the dataset used for statistical analysis.

TABLE II
COLLECTED SESSIONS AND TRIALS

Number of sessions and trials
Session Type Session Number Valid Trials

NPS 10 30
RPS 10 26
DPS 10 28

B. Gait Parameters and Statistical Analysis

In this subsection, the statistical analysis results on spa-
tiotemporal and COMT parameters are presented. As pre-
viously mentioned, non-parametric statistics have been con-
sidered due to the non-normal distribution of parameters:
so median (with first and third quartiles) and Spearman’s
coefficient (ρ) are shown in Table III. Parameter values are
grouped according to the session type. The results in Table III
concerning correlation indicate a significant statistical differ-
ence between parameters, which are so able to discriminate
“normal” and “altered” walking patterns. The only exceptions
are related to cadence and vertical sway of COMT . The sign
of Spearman’s coefficient (ρ) denotes the parameter’s trend
according to the type of session. In particular, a negative sign
indicates an inverse relationship, so a parameter that reduces
its value with an increasing level of alteration (e.g., STEPL).



On the contrary, a positive sign denotes a direct relationship,
so a parameter that increases its value with an increasing
level of alteration (e.g., STANCED). The Mann-Whitney U
test was used to deepen and complete the previous results by
identifying the most significant parameters in discriminating
between the types of sessions. The sessions were considered
in pairs for this analysis, as shown in Table IV. Table IV
confirms the significant statistical difference in comparing
NPS vs. RPS and NPS vs. DPS for all parameters, except
CADENCE and VRANGE . However, only MRANGE is able
to discriminate between RPS and DPS: this could indicate
that dandling walking patterns impact other gait features, thus
resulting in similar spatiotemporal parameters.

TABLE III
MEDIAN, QUARTILES, SPEARMAN’S CORRELATION

Parameter Median (1° quartile, 3° quartile) ρa

NPS RPS DPS “normal” vs
“altered”

STEPL
0.55

(0.52, 0.60)
0.39

(0.30, 0.41)
0.32

(0.28, 0.35) -0.81 ***

STEPT
0.68

(0.63, 0.73)
0.92

(0.81, 0.96)
0.87

(0.78, 1.08) 0.66 ***

STANCED
57.1

(53.2, 59.4)
70.5

(66.8, 74.2)
70.5

(65.7, 74.0) 0.81 ***

SWINGD
41.4

(39.6, 44.5)
27.0

(23.5, 29.2)
26.5

(24.0, 31.0) -0.81 ***

GCL
1.13

(1.05, 1.22)
0.80

(0.61, 0.84)
0.67

(0.61, 0.74) 0.81 ***

CGT
1.37

(1.27, 1.55)
1.79

(1.63, 1.98)
1.82

(1.62, 2.15) 0.63 ***

GAITSP
0.80

(0.68, 0.89)
0.36

(0.33, 0.45)
0.34

(0.30, 0.44) -0.81 ***

CADENCE
66.0

(64.0, 69.1)
66.1

(56.3, 74.0)
65.6

(53.3, 76.2) -0.06

MLRANGE
0.07

(0.05, 0.09)
0.10

(0.09, 0.11)
0.15

(0.12, 0.18) 0.64 ***

VRANGE
0.04

(0.04, 0.05)
0.04

(0.03, 0.04)
0.04

(0.04, 0.05) -0.19
a *** (ρ < 0.001), ** (ρ < 0.01), * (ρ < 0.05)

TABLE IV
MANN-WHITNEY U TEST FOR PAIRED SESSIONS

Parameter U test results and significancea
NPS vs RPS NPS vs DPS RPS vs DPS

STEPL 0.00 *** 4.50 *** 215.00
STEPT 58.50 *** 51.50 *** 261.00
STANCED 1.50 *** 1.50 *** 286.00
SWINGD 1.50 *** 6.00 *** 274.00
GCL 0.00 *** 3.00 *** 214.00
CGT 70.00 *** 59.00 *** 265.00
GAITSP 6.50 *** 1.00 *** 233.00
CADENCE 283.00 254.00 274.00
MLRANGE 101.00 *** 26.00 *** 107.00 ***
VRANGE 186.00 * 258.00 206.00
a *** (ρ < 0.001), ** (ρ < 0.01), * (ρ < 0.05)

C. Automatic Gait Alterations Assessment

Table V and Table VI report the accuracies of selected su-
pervised classifiers for binary and multi-classes classification
problems, respectively. For each classifier, the accuracies are
reported for the three investigated methods: training using all
the estimated features (10 features); training using features

with |ρ| > 0.6 (8 features); training using the most significant
features with |ρ| > 0.8 (6 features). The three subsets were
considered in order to reduce the number of features necessary
to discriminate between gait patterns. Another relevant metric
for the analysis of classification performance is the number of
classification errors, thus it was included in the tables.

Regarding binary classification (Table V), the highest accu-
racies are related to all SVMs and 1NN using all the features:
all the trials were correctly classified as “normal” or “altered”
walking patterns. The other classifiers show reduced perfor-
mance, due to some misclassifications. When classifiers were
trained with only eight features (|ρ| > 0.6), accuracies slightly
worsen due to the misclassification of one “normal” gait trial:
discard of the VRANGE parameter affected the classification of
this normal trial. Further reduction of the number of features
seems not to affect the classifiers’ performance under a binary
condition. The only performance improvement is related to
linear discriminating classifiers, even though they show, in
general, the worst accuracies.

More interesting are the results related to multi-classes
classification. In this case, overall performance is worse than
binary classification, an expected behavior when the number
of classes increases. The best classification performance is
related to the 1NN classifier with all parameters. Reducing
the features during the training phase degrades the overall
classification performance for all classifiers. The number of
misclassifications increases. However, the analysis of the con-
fusion matrices reveals that the classification errors are associ-
ated only with RPS and DPS trials, denoting the difficulties of
classifiers in fine discriminating the two classes. Nevertheless,
this is consistent with the statistical analysis results where no
relevant statistical difference between the parameters of the
two classes was identified.

TABLE V
CLASSIFICATION RESULTS (2-CLASSES)

Classifiers Accuracies (misclassifications)
All parameters |ρ| > 0.6 |ρ| > 0.8

LSVM 100.0 % (0) 98.6 % (1) 98.6 % (1)
QSVM 100.0 % (0) 98.6 % (1) 98.6 % (1)
CSVM 100.0 % (0) 98.6 % (1) 97.2 % (2)
1NN 100.0 % (0) 98.6 % (1) 98.6 % (1)
3NN 95.8 % (3) 98.6 % (1) 98.6 % (1)
5NN 98.6 % (1) 98.6 % (1) 98.6 % (1)
LDA 97.2 % (2) 97.2 % (2) 100.0 % (0)
QDA 95.8 % (3) 88.9 % (8) 94.4 % (4)

IV. CONCLUSION

The paper presents a non-invasive and easy-to-use solution
for detecting and characterizing gait alterations in clinical
and home environments, which could be used as a tool for
preventing the risk of falls in elderly subjects or subjects
with movement disorders caused by neurological pathologies
or acute events. The system is implemented by combining
an RGB-Depth optical sensor (in particular, Microsoft Azure
Kinect DK) and its body-tracking algorithm with machine



TABLE VI
CLASSIFICATION RESULTS (3-CLASSES)

Classifiers Accuracies (misclassifications)
All parameters |ρ| > 0.6 |ρ| > 0.8

LSVM 79.2 % (15) 77.8 % (16) 68.1 % (23)
QSVM 77.8 % (16) 77.8 % (16) 66.7 % (24)
CSVM 75.0 % (18) 77.8 % (16) 70.8 % (21)
1NN 86.1 % (10) 81.9 % (13) 69.4 % (22)
3NN 69.4 % (22) 75.0 % (18) 66.7 % (24)
5NN 70.8 % (21) 72.2 % (20) 66.7 % (24)
LDA 77.8 % (16) 83.3 % (12) 66.7 % (24)
QDA 65.3 % (25) 62.5 % (27) 68.1 % (23)

learning methods and supervised classifiers to detect normal
or altered walking patterns along a straight walking path
suitable for domestic settings. To this end, some volunteers
were recruited for preliminary experimental tests involving
only healthy subjects. However, they were asked to simulate
slow and dangling gaits, typical patterns in walking disorders
that healthy individuals can easily mimic. Each participant
performed several walking trials grouped into three sessions,
as established by the experimental protocol: normal, slow,
and dangling. Each trial was analyzed to extract space-time
and center-of-mass parameters of the trunk starting from the
3D trajectories of the joints of the skeletal model collected
during walking. Statistical analysis was applied to identify the
most relevant parameters to distinguish between normal and
altered gait patterns and, in addition, to discriminate the type
of alteration. This information was subsequently used to train
some supervised classifiers and identify the best-performing
ones in binary and multiclass classifications.

Preliminary results show that the system is able to capture
differences between the types of gait patterns, as demonstrated
indicatively by the average values of the estimated parameters.
Moreover, this trend is confirmed by the statistical analysis
results, from which it emerges that most of the estimated
parameters (8 out of 10) are able to discriminate between
normal and altered patterns (Spearman’s correlation coefficient
|ρ| >0.6). A more in-depth analysis, considering pairs of
categories, has shown that the same parameters allow discrimi-
nation of ”NPS vs. RPS” and ”NPS vs. DPS” gait patterns. On
the contrary, there is no statistically significant difference in
the ”RPS vs. DPS” comparison, except for lateral trunk sway
as expected. This result could indicate that the dangling gait
impacted the overall kinematic walking profile, resulting in
very similar parameters. The classification results reflect this
trend, where the accuracies in the multiclass case are lower due
to a more relevant number of misclassifications belonging to
the RPS and DPS categories: none of the classifiers examined
is able to perfectly discriminate the two types of alterations
due to an overlap between categories. Conversely, very high
accuracies are obtained for the binary case, confirming the
statistically significant differences between normal and altered
gait. The results on binary classification are in line with
other studies investigating various methodological approaches
to detect differences in gait patterns for healthy controls and

pathological subjects, generally achieving high classification
accuracy [45] [46] [47] [48] [49]. However, only a few
studies report results on in-depth analysis [50] [51] to detect
a more refined classification of the type of alterations, which
could be relevant, for example, to activate more specialized
rehabilitation treatments. The study has been conducted only
on a few healthy subjects and simulations of impaired gaits.
Nevertheless, we are planning a further acquisition and anal-
ysis campaign on subjects with ”real” walking disorders: the
preliminary results obtained make us confident of being able
to reproduce and improve these findings on a broader spectrum
of gait profiles.
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