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Abstract 
Attention deficit hyperactivity disorder (ADHD) is a heterogenous pediatric disorder that affects 
the neurodevelopment of the frontal cortex. ADHD patients exhibit combinations of inattention, 
impulsiveness, and/or hyperactivity. With early treatment and diagnosis, there is potential to 
modify neuronal connections and improve symptoms. However, the heterogeneous nature of 
ADHD, combined with its comorbidities and a global shortage of diagnostic clinicians, means 
diagnosis for ADHD is often delayed. Hence, it is important to consider other pathways to 
improve the efficiency of early diagnosis, including the role of artificial intelligence. In this study, 
we reviewed the current literature on machine learning and deep learning studies on ADHD 
diagnosis and identified the various diagnostic tools used. Subsequently, we categorized these 
studies according to their diagnostic tool as: brain magnetic resonance imaging (MRI), 
physiological signals, questionnaires, game simulator and performance test, and motion data. We 
identified research gaps include the  paucity of publicly available database for all modalities in 
ADHD assessment other than MRI, as well as a lack of focus on using data from wearable devices 
for ADHD diagnosis, such as ECG, PPG, and motion data. We hope that this review will inspire 
future work to create more publicly available datasets and conduct research for other modes of 
ADHD diagnosis and monitoring. Ultimately, we hope that artificial intelligence can be extended 
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to multiple ADHD diagnostic tools, allowing for the development of a powerful clinical decision 
support pathway that can be used both in and out of the hospital. 

Keywords Attention deficit hyperactivity disorder (ADHD) · Deep learning · Machine 
learning  · PRISMA · MRI · EEG · ECG · HRV · Questionnaires · CPT · RST · Accelerometer · Acti
graphy · Pupillometric · Genetic · Social media · Artificial intelligence  

1. Introduction 

Attention Deficit Hyperactivity Disorder (ADHD) is a common childhood-onset 
neurodevelopmental condition. According to a 2016 World Health Organization-World Mental 
Health Surveys for 10 countries, the global prevalence rate of adult ADHD was found to be 2.8%, 
with a higher proportion in high-income countries, and a significant association with low 
education and male gender [1]. Children and adults with ADHD frequently exhibit three key 
symptoms: inattention, impulsivity, and hyperactivity, although symptoms are heterogeneous 
and individuals may display more or less of these individual symptoms, for example being 
classified as having inattention, or hyperactivity/ impulsivity or combined subtypes of ADHD  
[2]. 

There is increasing evidence that there are distinct differences in the structure and function of  the 
brain in individuals clinically diagnosed with ADHD: in particular changes in neuronal 
connections between the specific brain regions, often accompanied by changes in brain volume 
on neuroimaging [3], [4] (Figure 1). These neuroanatomical differences have been linked to 
changes in individual’s cognitive function, regulation of motivation and attention [5]. The brain's 
reward system, which predominantly uses the neurotransmitter dopamine, is altered in 
individuals with ADHD [6]. For example, the prefrontal cortex of an ADHD patient, in particular, 
was discovered to have abnormally low presynaptic dopamine storage  [7], [8]; critically 
impairing the individual’s attention function, cognitive process, and working memory. [7], [9].  

This  reward deficit syndrome has been linked to individuals with a diagnosis of ADHD being 
more prone to engage in behaviors that promote the production of dopamine in the brain, such 
as alcoholism, drug addiction, and even aggressive conduct [2]. Individuals with ADHD are, for 
example, twice as likely to have Substance Use Disorder (SUD) than those without [10]–[13]. For 
those individuals with comorbid conduct disorder, the risk of SUD is even higher - four times the 
rate in the general population [10]. 



 
Figure 1. Schematic drawing of brains in neurotypical individuals and those diagnosed with 

ADHD. Yellow glowing regions represent regions of brain functional connectivity; individuals 
with ADHD have less neuronal connections to the prefrontal cortex as compared to normal 

brain.  

Encouragingly, there is growing evidence that the neuroanatomical and functional changes may 
not be static. With appropriate early identification and treatment of ADHD symptoms, the 
neuroanatomy and function may resemble neurotypical individuals. For example, Mattfeld et al. 
[3] found that adults who had previously recovered from ADHD had restored normal brain 
connectivity while their minds are at rest, compared to adults who remained symptomatic with 
ADHD (Figure 1). Successful ADHD management can result in a significant improvement in 
quality of life and improved societal integration. Therefore, it is critical that ADHD is identified 
as early as possible, and management is evidence based, to optimize long term outcomes [14].  

Currently, the diagnosis of ADHD is primarily a clinical one. An expert in ADHD diagnosis, 
typically a  psychiatrist or specialist pediatricians,  will conduct a series of clinical assessments to 
determine if  an individual has five or more symptoms of inattention or impulsivity/hyperactivity 
and fulfil the DSM-5 diagnostic criteria [15]. However, clinical assessment by specialists takes a 
minimum of an hour, and there is a global shortages of trained specialist, meaning that diagnoses 
after often delayed [16]. For instance, Whitney et al. [17] reported that in Michigan, USA, there 
are only 11 trained psychiatrists to attend to over 100,000 children with likely mental health 
diagnoses. The  ratio of psychiatrist-to-population is 11:100,000 for the United Kingdom, and 
14:100,000 for Australia [18].  

There is also evidence that adjunctive data may be helpful in diagnosing the full spectrum of 
individuals with ADHD, who may be overlooked or underrecognized by current clinical 
assessments [15]. For example, numerous studies had attempted to diagnose ADHD via  
neuroimaging modalities like Magnetic Resonance Imaging (MRI) [19], [20], physiological signals 
like electroencephalogram (EEG) [21], [22] and electrocardiogram (ECG) [23], and other 
modalities like accelerometers [24] and game simulators [25]. These studies aim to reduce the 



workload of clinical diagnosticians by proposing artificial intelligence (AI) techniques, namely 
machine learning (ML) and deep learning (DL), for faster and more cost-effective ADHD 
diagnoses. 

In this review, we aim to uncover all the different types of modalities that have been adopted by 
previous studies on automated ADHD diagnosis using ML or DL techniques. Machine learning 
is not a fully automated technique as feature extraction of the input information (e.g. MRI images, 
EEG, ECG, etc.) must be carried out manually, followed by feature selection of the most 
significant features which will ultimately be used to train the ML classifiers for automated 
diagnosis of ADHD [26], [27]. The DL model, on the other hand, is a fully automated process 
where input information can be analyzed in its original format. Hence, feature extraction and 
selection procedures are not mandatory in DL models [27].  

2. Methods 

The PRISMA guideline 2020 [28] was used in this systematic review to analyze the most relevant 
studies on ADHD diagnosis using either the ML or DL approach. Using the following Boolean 
search strings as shown in Table 1, all publications were systematically searched through PubMed, 
Google Scholar, IEEE, and Science Direct. All publications up to December 2021, were included 
in the first identification phase of the PRISMA flowchart, as illustrated in Figure 2. As a result, 
we began with 467 publications which was reduced to 298 after removing 165 publications with 
duplicated titles. Subsequently, we screened the title and abstract of the publications, and 
removed 165 articles that were either animal studies, conference papers, non-AI studies, non-
English articles, books, review papers, and non-journal articles. We were left with 133 articles, 
which were downloaded and read thoroughly to assess its eligibility for this review study. Upon 
detailed screening of the article, we further removed more conference papers, non-journal articles, 
non-AI studies, review papers and irrelevant articles. We also removed articles that did not 
provide model accuracy results and articles which we had no access to. Finally, 91 journal articles 
were found eligible for inclusion in this review. 

Table 1. Boolean search string used for all journal article databases. 

 Boolean search string 
Database [Title] AND [Title/Abstract] 

PubMed 

"ADHD" OR "attention 
deficit hyperactivity 

disorder" 

“Machine learning” OR “deep 
learning” OR “artificial intelligence 

Google Scholar 

IEEE 

Science direct 

 



  

Figure 2. PRISMA flow diagram for systematic filtering of articles. 

 

 

3. Results 

In total, there were seven types of ADHD diagnostic tools utilized to develop AI models (Figure 
3). These are discussed in the following results sections:  MRI in subsection 3.1, physiological 
signals in subsection 3.2, questionnaire data in subsection 3.3, game simulation and performance 
tests in subsection 3.4, motion data in subsection 3.5, and all other studies in subsection 3.6.  



 

Figure 3. Pie chart representation of the ADHD assessment tools used in AI studies. 

3.1 MRI 

Brain MRI is the most widely studied modality for automated ADHD diagnosis, with 39 out of 
the 91 studies analyzing brain MRI images of ADHD patients and normal control (Table A.1). 
Most of the studies obtained their MRI images from one public database: the Neuro Bureau 
ADHD-200 Preprocessed repository (ADHD-200) [29] (Figure 4). ADHD-200 is a consortium that 
had collected structural and resting-state functional MRI images from 585 controls and 362 
ADHD children and adolescents. Eight international imaging sites were involved in the data 
collection of ADHD-200, however, two out of the eight sites only provided MRI images of controls 
and not the ADHD individuals (Table 2). Hence, imaging data from these two sites are usually 
excluded from the studies. In this review, a total of 32 out of 39 MRI studies had used MRI images 
from ADHD-200 (Figure 4).  

Table 2. Summary of number of subjects across different study sites in ADHD-200 database. 

Imaging site ADHD Controls 

Kennedy Krieger Institute 25 69 
NeuroIMAGE sample 36 37 
New York University Child Study Center 151 111 
Oregon Health Sciences University 43 70 
Peking University 102 143 
University of Pittsburgh 4 94 
Bradley Hospital/ Brown University - 26 
Washington University at Saint Louis - 61 
Total 361 611 

 

 



 

Figure 4. Sunburst plot of AI studies using MRI data. First level indicates type of AI studies, 
second level indicates type of dataset used, and third level indicates type of features used to 

train the AI models.  

It is also evident in Figure 4 that ML occupied a bigger proportion than DL in the MRI analysis 
for ADHD; where 28 out of 39 studies had implemented ML techniques. In addition, brain 
functional connectivity is the most common input feature for ADHD diagnosis; 12 ML studies 
and 5 DL studies had utilized function connectivity (FC) features for their studies (Figure 4, Table 
A.1). Functional connectivity of the brain is presented in the form on a matrix, illustrating the 
connection between different areas of the brain [30]. Pearson correlation coefficient is commonly 
employed to measure if there is a strong correlation between the different brain regions, hence, 
resulting in a heatmap where strong and weak FC between the brain regions is evident [30].  

3.2 Physiological signals 

Twenty-four studies utilized physiological signals to detect ADHD, most commonly 
electroencephalogram (EEG:  23 studies) and electrocardiogram (ECG: 1 study) (Figure 5, Table 
A.2). We also observed that studies using physiological signals for the detection of ADHD had 
high model performances; all models had accuracy results above 80% for ML and DL (Table A.2). 
Only one [31] out of the 24 studies had used a public EEG database: the National Brain Mapping 
Laboratory of Iran [32]. The rest had used their own private datasets.  



As for the type of feature most extracted from EEG signals, seven ML and three DL studies had 
attempted to obtain power spectral features (Figure 5). Spectral analysis of EEG involves 
decomposing the signal into medically established frequency sub-bands, namely, alpha rhythm 
(8–13 Hz), beta rhythm (13–30 Hz), delta rhythm (1–4 Hz), theta rhythm (4–8 Hz), and gamma 
rhythm (30–80 Hz) [33]. These frequency sub-bands are evidently different between children with 
ADHD and controls. A study by Kamida et al. [34] discovered that children with ADHD have 
higher beta activity in all brain regions except for the occipital region. Another study [35] which 
investigated the power spectral differences between ADHD of the inattentive type and the 
combined type found higher theta and alpha activities in the combined type, while higher 
theta/beta ratio was observed in the inattentive type.  

 

Figure 5. Sunburst plot of AI studies using physiological signals. First level indicates type of AI 
studies, second level indicates type of physiological signal, and third level indicates type of 

feature used to train the AI models. 

There is only one study which utilized ECG signals (Figure 5). Even though ECG does not provide 
direct information on the brain activity, the autonomic nervous system links the brain to body 
interaction, causing fluctuations in physiological signals like ECG when an individual senses 
danger. For instance, an individual under acute stress will have significant increase in the heart 
rate (ECG) and the same phenomenon was also observed in ADHD individuals [23], [36]. Koh et 
al. [23] proposed ensemble ML classifier with entropy features extracted from ECG signals and 
detected ADHD individuals with high classification accuracy of 87.2%. 



3.3 Questionnaires/ rating scales 

There are various types of questionnaires or rating scales that medical professionals use to 
diagnose ADHD. In this section, there are only six studies that analyzed questionnaire/ rating 
scales data and only ML models were proposed (Table 3). It can also be seen in table 3 that 
decision tree (DT) classifier, including random forest classifier, are commonly proposed to 
analyze questionnaire data. We will only cover the questionnaires that studies have utilized to 
develop their best performing models (Table 3).  

 Conners’ Rating Scales are widely implemented to assess the social impact of ADHD, for 
example an individual’s behavior in school or work [37]. Conners’ parent rating scales 
(CPRS) used by Bledsoe et al. [38] is a parentally completed report, while Conners’ adult 
ADHD rating scales (CAARS) used by Christiansen et al. [39], is a self-reported 
questionnaire. 
 

 Diagnostic Interview for ADHD in adults (DIVA) [40] adopted by Tachmazidis et al. 
[41], is a semi-structured interview constructed based on Diagnostic and Statistical 
Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria for ADHD diagnosis. The 
interview aims to assess the symptom of ADHD in five aspects of daily life: social contact; 
hobbies; self-confidence; relationships; work and education.   
 

 Behavior Rating Inventory of Executive Function – Preschool version (BRIEF-P) is a 63-
item questionnaire for parents or teacher to rate the child’s executive functions such as 
emotions control, working memory, organization and planning skills [42]. This 
questionnaire was utilized by Öztekin et al. [43] to develop their ML model.  
 

 Adult ADHD Self-Report Scale (ASRS) used by Kim et al. [44] is created by the World 
Health Organization and it consists of 18 items based on the DSM-IV criteria. ASRS is a 
symptoms checklist for individuals to self-evaluate if they exhibit any symptoms relating 
to ADHD [45]. 
 

 Minnesota Multiphasic Personality Inventory-2 (MMPI-2) is a 567-item questionnaire 
where individuals are only required to answer ‘true’ or ‘false’ [46]. MMPI-2 is also used 
by Kim et al. [44], alongside ASRS to develop their ML model, and it is widely 
implemented to assess various mental health problem apart from ADHD such as 
depression, anxiety, and psychopathy [46].  
 

 Social Responsiveness Scale (SRS) is a 65-item questionnaire that attempts to measure 
the social ability of individuals between ages 4 to 18 years [47]. This questionnaire is 
adopted by  Duda et al. [48] to differentiate ADHD individuals from patient with Autistic 
Spectrum Disorder (ASD).  



Table 3. Summary of AI studies that used questionnaire data to develop AI model. 

Author [ref] Private datasets Questionnaires ML model Accuracy 

Bledsoe et al. [38] 
23 ADHD 
12 normal 

CPRS SVM +DT 100 

Tachmazidis et al. 
[41] 

45 ADHD male 
24 ADHD female 

DIVA DT + 
knowledge 

95.7 

Kim et al. [44] 
5726 college 

students 
MMPI+ASRS 

Random 
forest 

93.6 

Öztekin et al. [43] 87 ADHD 
75 normal 

BRIEF-P SVM 92.6 

Duda et al. [48] 
174 ADHD 

248 ASD 
SRS 

ENet and 
LDA 

82.0 

Christiansen et al. 
[39] 

385 ADHD 
135 Obesity 

517 problematic 
gambling 

592 normal 

CAARS 
DT 

(lightGBM) 
80.0 

 

3.4 Game simulation and performance tests 

This section discusses the use of conventional performance tests and game simulation to diagnose 
ADHD. There are two ML studies each, which utilized performance tests and game simulation 
respectively, to train their model (Table 4). Continuous Performance Test (CPT) and Reverse 
Stroop task (RST) are neuropsychological tests to evaluate the selective and sustained attention 
of an individual [49], [50]. The CPT is a computerized test which requires participants to react 
correctly to a specific stimulus [25]. For instance, participants are told to press the spacebar for all 
letters except for ‘O’. In traditional Stroop task, participants are given words, for example ‘Blue’, 
which can be presented in different colors: ‘Blue’ (incongruent color red), ‘Blue’ (congruent color 
blue), and ‘Blue’ (neutral color black). Participants are then required to provide the color of the 
word, instead of the meaning of the word. Hence, in RST, the task is reversed where participants 
have to read out the meaning of the word regardless of the color it is printed in [51].  

As for game simulations, its main purpose is creating an interactive environment that is 
customizable to best suit the user’s needs [25], [52]. Yeh et al. [52] created a virtual reality (VR) 
classroom and incorporated a series of tests, including CPT, for ADHD diagnosis. In their VR 
system, some ‘distractions’ such as ‘teacher standing up’, ‘door open’, or ‘thunder shower’, were 
also included. They then recorded the test results, reaction time, and focus time for the user to 
complete the test. On the other hand, Heller et al. [25] utilized a videogame known as 
‘Groundskeeper’ that is specially developed by CogCubed [53] for early ADHD detection. They 
extracted 33 game data variables, and trained four different ML classifier: random forest, 



AdaBoost, J48, and JRip. However, they did not specify which classifier provided the best 
performance result.    

Table 4. Summary of list of AI studies that used standard performance test or game simulation 
data to develop their model. 

Author [ref] Private 
datasets 

Mode Tests ML models Accuracy 

Slobodin et 
al. [54] 

213 ADHD  
245 normal  

Performance CPT Random 
Forest 

87.0 

Yasumura et 
al. [55] 

108 ADHD  
108 normal 

Performance RST SVM 86.3 

Yeh et al. [52] 37 ADHD  
31 normal 

Game VR system SVM 83.2 

Heller et al. 
[25] 

26 ADHD  
26 normal 

Game Groundskeeper 
(CogCubed) 

- 78.0 

 

3.5 Motion data (actigraphy & accelerometer) 

Motion activity can also be a diagnostic marker for ADHD. In this section, two types of motion 
activity measure - actigraphy and accelerometer - are covered along with the four studies that 
utilized these motion data as listed in Table 5. Both actigraphy and accelerometer data are 
recorded via an accelerometer device that is usually worn on the wrist of the dominant arm and  
ankle of the dominant leg [56], [57]. The difference between the studies that analyzed the two 
types of motion data is the type of activity the subject is doing; actigraphy studies the subject's 
sleep efficiency [56], whereas accelerometer analyzes the subject's motion during normal daily 
activities [57]. As such, there are some studies that reported ADHD patients exhibited more 
movement than the controls during sleep [58] which correlates to increased daytime sleepiness 
[59]. This demonstrates that increased activity level is a well-known feature of ADHD, which is 
also reflected in their daily routine, and can be easily monitored with wrist-worn accelerometer 
devices [60], [61].  

In either case, the accelerometer device used to record the motion data is designed to be 
unobtrusive, allowing the participants to be natural in their own environment. This would not be 
possible with EEG or polysomnography recording procedures because data collection takes place 
in a laboratory that the participants are unfamiliar with, and they are also required to attach a 
large number of electrodes, which can be very uncomfortable [62]. This, in turn, may have an 
impact on the quality of data collected. 

Table 5. Summary of AI studies that used actigraphy or accelerometer data. 

Author [ref] Private datasets Mode Features Models Accuracy 



Faedda et 
al. [56] 

44 ADHD 
21 

ADHD+depression 
48 bipolar 
42 controls 

Actigraphy 28 metrics ML (SVM) 83.1 

Amado-
Caballero et 

al. [57] 

73 ADHD 
75 normal 

Accelerometer end-to-end DL (CNN) 98.6 

O’Mahony 
et al. [24] 

24 ADHD 
19 normal Accelerometer 

inertial 
measurement 

units 
ML (SVM) 95.1 

Muñoz-
Organero et 

al. [63] 

11 ADHD 
11 normal 

Accelerometer 
Acceleration 

image 
DL (CNN) 93.8 

 

3.8 Miscellaneous (pupillometric, twitter and genetic)  

In this section, we cover the least common modalities of ADHD diagnosis that ML studies have 
used. Two ML studies had utilized pupillometric data while only one study had analyzed twitter 
data (Table 6).  

Interestingly, studies have shown that the brain norepinephrine system which is associated to 
pupil-size dynamics, is found to be impaired in ADHD patients [64]. Another study has also 
demonstrated that ADHD patients (off-medication) have decreased pupil diameter when  
performing visuo-spatial working memory task as compared to the controls [65]. This could be 
due to the difficulty in suppressing saccadic eye movements in ADHD patients who need to fixate 
[66]. Hence, uncontrollable eye movement in ADHD patients can be a potential biomarker for 
diagnosis, as Varela Casal et al. [66] and Das et al. [64] have implemented in their ML studies. 

With the rise of social media, Twitter has become a potential platform of ADHD detection among 
the Twitter users [67]. A majority of the mentally ill are reluctant to seek help from mental health 
care professionals, which results in gradual accumulation of suicidal thoughts in the absence of 
professional help [68]. Hence, social media platform like Twitter, has become a source of comfort 
for these individuals to discuss mental health issues openly, as they seek connection and support 
from people of the same community [69]. Therefore, social media platform can be utilized for 
early detection of various mental illnesses and intervene suicidal actions [69]. In the study by 
Guntuku et al. [70], they identified highly correlated topics in Twitter and used it as a learning 
feature for their support vector machine (SVM) classifier (with 76% accuracy).  

Table 6. Summary of AI studies that used pupillometric or Twitter data to develop their model. 

Author [ref] Private 
datasets 

Modality Feature ML model Accuracy 



Varela Casal 
et al. [66] 

21 ADHD 
21 normal 

Pupillometric Eye Vergence SVM 96.3 

Das et al. [64] 28 ADHD  
22 normal 

Pupillometric pupil-size 
dilation 
velocity and 
acceleration 
feature 

SVM 76.1 

Guntuku et 
al. [70] 

1032 ADHD  
1029 normal 

Twitter Topic SVM 76.0 

 

There is a known genetic influence  on the likelihood that an individual will be diagnosed with 
ADHD [71], [72]. Numerous twin studies have reported a high heritability estimate of 
approximately 80% for both monozygotic and dizygotic twins [73]. ML and DL have recently 
been applied in seven studies to help identify ADHD genetic biomarkers. A summary on the four 
ML and three DL studies for ADHD are listed in Table 7. However, it is important to note that 
the genetic biomarkers identified [74]–[78] in Table 7 did not follow the standard genome-wide 
association studies (GWAS), which identify risk genetic variants via its significant P-values (i.e. 
not be lower than 5×10−8 ) [75].  

Table 7. Summary of AI studies that used genetic data to develop their model and identify ADHD 
genetic variant. 

Author [ref] Dataset Model Findings 
Sokolova et al. [74]  87 ADHD  

77 normal 
ML (Bayesian 
Constraint-based 
Causal Discovery 
algorithm)  

DAT1 risk haplotype 
only has direct 
influence on the 
ADHD inattentive 
type. 

Liu et al. [75] 1033 ADHD 
950 normal 

DL (CNN) EPHA5 is identified 
as a potential risk 
gene of ADHD.  
 
Model diagnostic 
accuracy = 90.2% 

Liu et al. [76] 116 ADHD 
408 normal 

DL (MLP) GRM1 and GRM8 
genes are identified 
to have the highest 
weight in ADHD 
diagnosis  
 
Model diagnostic 
accuracy = 78.0% 



Esteller-Cucala et al. 
[79] 

20,000 ADHD 
35,000 normal 

DL (Approximate 
Bayesian 
Computation 
coupled + deep 
learning framework) 

Frequency of ADHD-
risk alleles decreased 
since ancient time 
and have become 
maladaptive in 
today’s society. 

Cervantes-Henríquez 
et al. [77] 

408 ADHD ML (ensemble) The proposed model 
identifies ADGRL3, 
DRD4, and SNAP25 
genes as contributing 
to the severity of 
ADHD. 

Sudre et al. [80] 362 ADHD ML (Random Forest) Participants with the 
highest polygenic 
risk score for ADHD 
usually have 
worsening 
symptoms. 

Jung et al. [78] 39 ADHD 
34 normal 

ML (SVM) The proposed model 
identified the COMT 
gene as having an 
impact on the 
abnormal 
development of the 
frontal cortex in 
ADHD patients. 

 

4. Discussion 

The ‘gold standard’ to diagnose ADHD usually relies on a combination of neuropsychological 
tests, rating scales, behavioral observations, examinations, and evaluation of the impact of 
treatment trials [81]. This is time consuming and limited by the number of trained diagnostic 
specialists globally. We reviewed the accuracy of the application of ML and DL to a range of well-
established diagnostic tools, such as questionnaires/ rating scales, as well as more innovative 
diagnostic tools, including MRI and EEG, as summarized in Table 8. All but three ML studies 
adopted single modality approaches for ADHD diagnosis, however a multimodal approach may 
be well suited to ADHD, due to its heterogeneous clinical nature.  

Table 8. Summary of AI studies using multiple modalities to develop their model. 

Author 
[ref] 

Private 
datasets 

Modality Feature ML model Accuracy 



Yoo et al. 
[82] 

191 ADHD  
78 normal 

fMRI+genetic cortical thickness 
and volume 
features 

RF 85.1 

Kautzky et 
al. [83] 

16 ADHD  
22 normal 

Genes+PET+MRI SNPS+ROI RF 82.0 

Crippa et 
al. [84] 

22 ADHD  
22 normal 

blood+EEG+ 
cognitive test 

neuropsychological, 
FA profiles, and 
deoxygenated-
hemoglobin 
features 

SVM 81.0 

 

It is estimated that 60 to 100% of ADHD children will develop one or more comorbid mental 
health or behavioral disorders as they reach adulthood [85], [86] including conduct disorder, 
depression, autism spectrum disorder (ASD) and bipolar disorder. The presence of comorbidities 
can make accurate diagnosis even more challenging [87]. An accurate diagnosis is required in 
order to tailor appropriate therapies. The preliminary evidence reviewed in this study suggests 
that  AI can play a helpful role in diagnosing individuals with ADHD with and without 
comorbidities. There are nine ML studies in this review that had attempted to differentiate ADHD 
from other mental disorders or diagnose ADHD in individuals with a range of comorbidities 
(Table 9).  

Table 9. Summary of AI studies that had considered other comorbidities of ADHD. 

Author [ref] Dataset Modality Comorbid 
condition 

ML 
Model 

Accuracy 
(%) 

Tor et al. [88] 
45 ADHD 

62 ADHD+CD 
16 CD 

EEG Conduct 
disorder 

kNN 
 97.88 

Vaidya et al. 
[89] 

307 ADHD 
240 ASD 

465 Control 
MRI 

ASD 
 SVM 88.9 

Koh et al. [23] 
45 ADHD 

62 ADHD+CD 
16 CD 

ECG 
Conduct 
disorder 

bagged 
tree 

classifier 
87.2 

Jun et al. [90] 
86 ASD 

83 ADHD 
125 normal 

MRI ASD SVM 84.1 

Faedda et al. 
[56] 

44 ADHD 
21 ADHD+depression 

48 bipolar 
42 controls 

Actigraphy 
Bipolar 

depression 
SVM 83.1 

Duda et al. 
[48] 

174 ADHD 
248 ASD 

Questionnaire ASD 
ENet and 

LDA 82.0 



Christiansen 
et al. [39] 

385 ADHD 
135 Obesity 

517 problematic 
gambling 

592 normal 

Questionnaire 
Obesity, 

problematic 
gambling 

DT 
(lightGBM) 80.0 

Heller et al. 
[25] 

26 ADHD  
26 normal 

Game 

Depression, 
ASD, anxiety, 

disruptive 
behavior 
disorder 

- 78.0 

Guntuku et al. 
[70] 

1032 ADHD  
1029 normal 

Twitter 
Depression 

Bipolar 
Anxiety 

SVM 76.0 

 

In total, we report on 68 ML studies and 23 DL studies for ADHD diagnosis. SVM is the most 
commonly used classifier in ML research, while convolutional neural network (CNN) is the most 
commonly proposed model in DL research (Figure 6). This is not to say that SVM or CNN are 
superior to other ML or DL models. The suitability of an ML or DL model is determined by the 
type of dataset and feature used to train the classifier, while the practicality of the ML or DL 
model is determined by a well-structured clinical trial in which their models are tested in real 
clinical settings with direct interaction with ADHD patients [27]. There is definitely scope for 
improvement with AI methodology for ADHD diagnosis before it can be considered for clinical 
use. From Figure 7, we can see that DL research started only in 2017 and has yet to reach maturity 
in its technological advancement, whereas the percentage of ML studies has declined with the 
rise of DL research. This is not surprising given the large number of ML studies in ADHD 
diagnosis, which has made it extremely competitive and difficult for new studies to outperform 
previous ones. The average model accuracy reported by these ML and DL studies has remained 
stable between 80 and 90% since 2013. Nonetheless, the rapid increase in AI studies in recent 
years, as technology advances, indicates that computer-aided ADHD diagnosis is improving. As 
such, we hope to encourage more DL studies in ADHD diagnosis so that its feasibility can be 
demonstrated, and a clinical trial can be conducted. 

 



 

Figure 6. Sunburst plot of AI studies analyzed in this review. First level indicates type of AI 
studies, and second level indicates type of classifier proposed by AI studies. 

 

 

Figure 7. Bar chart representation of the number of AI studies in ADHD diagnosis published 
across the years from 2010 to 2021. Line graph represents the average model accuracy of AI 

studies across the years.  



 

In summary, the significance of this review is as follows: 

 We have followed PRISMA guideline and gathered 91 AI studies for this review.   
 From the 91 studies, we have categorized them according to the type of modality or 

dataset used to train their model for ADHD diagnosis. Namely, MRI, physiological signals, 
questionnaires, game simulation, performance test, motion data, and miscellaneous 
which includes pupillometric, twitter and genetic data.  

 For modalities like MRI and EEG signals, which are adopted by a large number of studies 
in this review, we have identified the most commonly used features for ADHD diagnosis, 
which is functional connectivity features and power spectral features for MRI and EEG 
respectively.   

 For studies that have used questionnaire/ rating scales data, we have listed the standard 
ADHD assessment questionnaires that have successfully helped ML models to achieve 
high diagnostic performance.  

 We have also identified ML studies that have utilized parameters from computerized 
neuropsychological tests like RST and CPT for ADHD diagnosis. This could reduce the 
burden on clinical diagnosticians if AI can analyze the performance result in their place. 

 Two studies had attempted to create a customizable environment for ADHD diagnosis. 
One study had also created a virtual reality environment to conduct a CPT test [52]. 
Another study had used game parameters for ADHD diagnosis [25].  

 We identified a small number of studies that used motion data from accelerometers and 
actigraphy- they prioritized subjects’ comfort and collected motion data in the subjects' 
natural environment. 

 Lastly, we identified a small number of studies using  pupillometric and Twitter data. We 
also found a few studies that used both ML and DL on genomic sequencing data to help 
identify genetic biomarkers for ADHD. 

This review also has some limitations: 

 Apart from the popular ADHD-200 MRI database, the scarcity of large publicly available 
ADHD databases for the rest of the modality category caused majority of the studies in 
this review to use private datasets. 

 For private datasets, the number of subjects and the methods used to collect data varied 
greatly. 

 Even for study that had used ADHD-200 database, the number of subjects included in 
their studies varied greatly as well. 

 It is difficult to compare the results of ADHD studies as different datasets were used, 
and there was a great variation in the number of subject and data acquisition methods. 

5. Future direction for AI in ADHD diagnosis.  



There are several future research pathways that could be followed to further explore the use of 
AI as a clinical decision support tool for ADHD. One optimal pathway could be the use of a cloud 
system, as depicted in Figure 8, that has unified data covering all ADHD diagnostic tools. As a 
result, clinicians could have ready access to all the information needed to confirm a diagnosis. 
For example, parents, teachers, or ADHD patients could complete the questionnaires on their 
own and have the AI models in the cloud system analyze the questionnaire data for psychiatrists 
or pediatricians. Questionnaires have the potential to be open to bias, and somewhat subjective 
interpretation, whereas wearable devices, on the other hand, may be able to provide objective 
measurements that provide a useful adjunct to ADHD diagnosis. There is also scope for 
researchers to apply AI not only as part of a diagnostic pathway, but also as a precision medicine 
clinical decision support system to help with tailoring and monitoring treatments. 

Firstly, it is critical that more publicly accessible ADHD databases are available. Other than the 
publicly available MRI ADHD-200 database, which was used by 32 studies in this review, other 
studies needed to utilize private datasets. Since ADHD is a heterogenous disorder, it is important 
that databases of different types of ADHD diagnostic tools are available. In particular 
physiological signals (ECG) and motion data (accelerometer), would be highly desirable, as these 
were the biological tools that have shown more effectiveness representing the inattentiveness, 
impulsiveness, and hyperactivity symptoms of individuals during their daily routines.  

Secondly, further exploration of the utility and effectiveness of wearable devices for ADHD 
diagnosis and monitoring would be warranted. Currently, only ECG signals and motion signals 
gathered from accelerometers are suitable to be collected from wearable devices. However, very 
few AI studies have attempted to use these data to diagnose ADHD; only one study used ECG 
signals, while four studies used motion data. There is also another study that had used heart rate 
variability (HRV) for ADHD diagnosis, but no accuracy data was reported hence this study was 
not included in this review [91]. Nonetheless, this shows that HRV is also another possible 
parameter for ADHD diagnosis. Another parameter that could be explored is 
photoplethysmography (PPG) signals which can easily be acquired from smartwatches, 
smartphones and oximeters [92]. An advantage of PPG signals is that they have low bandwidth 
requirements which do not deplete battery’s capacity excessively [93], making them excellent 
candidates for signals storage in a cloud system, as shown in Figure 8.  Ambulatory signal 
collection is also very helpful in telehealth situations, which is increasingly being used clinically 
since the COVID-19 pandemic.  

Furthermore, despite the large amount of AI research in MRI and EEG for ADHD diagnosis found 
in this review, it is important to note that neither diagnostic tool is currently used by psychiatrists 
or pediatricians to diagnose ADHD in routine clinical settings [94], [95]. As both diagnostic tools 
can only be used in hospital settings or laboratories, gathering data from individuals with a 
diagnosis of ADHD is a time-consuming and expensive process [95], [96]. MRI requires patients 
to be still, which can be particularly challenging for people with ADHD, resulting in a higher 
chance of motion artifacts that render interpretation very difficult [97], [98]. Therefore, wearable 



devices such as PPGs or accelerometers may be better suited as data acquisition devices for 
ADHD patients and should be investigated further for future AI studies. 

AI methodologies like ML and DL can suffer from poor interpretability [99], [100]. Because of the 
complicated algorithm used to derive the result, DL models are referred to as a "black box”, and 
clinicians find it hard to understand their outputs. The poor interpretability of AI algorithms has 
hampered their adoption in healthcare as a clinical decision support tool [101]. Therefore, future 
work for DL models should focus on the explainability of the model. For instance, there are a few 
techniques such as LIME, SHAP or integrated gradients, that can improve the interpretability of 
ML or DL models [102]. We hope to encourage the development of a practical AI model for 
ADHD diagnosis and monitoring, which will be an important component of the cloud system 
depicted in Figure 8. 

 

Figure 8. Cloud system designed for ADHD diagnosis and monitoring.  

6. Conclusion 

This review surveyed various ADHD diagnostic tools and included studies that used ML and DL 
AI techniques to perform the diagnosis. Ninety-one studies were determined to be eligible for 
this review, and they were further subdivided into their respective modalities for critical analysis. 
As a result, we notice that the majority of the studies were inclined towards hospital settings 
modalities like MRI and EEG, while the rest of the modalities were reported by very few studies. 
In addition, there was lack of publicly available dataset for the majority of the modalities except 
for MRI. There were limited studies using data acquired from wearable devices like ECG and 
accelerometer, and there were no studies that attempted to use PPG signals. Therefore, we 
propose that future research should focus on developing more publicly available datasets for the 



other modalities in ADHD assessment and develop AI models that utilized data from wearable 
devices for ADHD diagnosis and monitoring. We also suggest future AI studies in ADHD to 
improve the interpretability of their models to encourage adoption in healthcare. With more 
robust research in AI techniques, a cloud system capable of reaching out to various ADHD 
diagnostic tools could become a reality and serve as an indispensable clinical decision support 
tool for clinicians. 
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Appendix table A.1. Summary of list of AI studies that used MRI data to develop their model. 

Author Year Dataset Subjects Feature extracted Classifier 
Accuracy 

(%) 
 

Deep learning (DL) 

Zhang et 
al. [103] 

2020 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

422 ADHD  
597 normal 

time-series signals CNN 54.1 

Zou et al. 
[104], 2017 

2017 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

285 ADHD 
491 normal 

 functional connectivity + 
morphology feature 

CNN 69.2 

Mao et al. 
[105], 2019 

2019 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

359 ADHD  
429 normal 

preprocessed fMRI scans CNN 71.3 

Zhao et al. 
[106] 

2021 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

260 ADHD  
343 normal 

functional connectivity 
features 

dGCN 72.0 

Peng et al. 
[107] 

2021 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

351 ADHD  
430 normal 

functional connectivity 
features 

CNN 72.9 



Riaz et al. 
[108] 

2020 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

351 ADHD  
430 normal 

fMRI time-series signals CNN 73.1 

Chen et al. 
[109] 

2019 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

362 ADHD 
children 

585 normal 
children 

combination of imaging 
and personal 

characteristic data 
mcDNN 78.3 

Shao et al. 
[110] 

2019 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

310 ADHD  
359 normal 

functional connectivity 
features 

gcForest 82.7 

Khullar et 
al. [111] 

2021 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

351 ADHD  
430 normal 

Raw images 
CNN-
LSTM 

98.2 

Preetha et 
al. [112] 

2021 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

260 ADHD-
C children 

173 ADHD-
I children 

744 normal 
children 

- DELM 98.2 

Tang et al. 
[20] 

2021 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

- 
functional connectivity 

features 
AE 99.6 

 
Machine learning (ML) 

Colby et al. 
[113] 

2012 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

285 ADHD  
491 normal 

functional connectivity 
features, Structural and 
morphological features 

SVM-RBF 55.0 

Qureshi et 
al. [114] 

2016 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

67 ADHD-
C children 
67 ADHD-I 

children 
67 normal 
children 

Cortical Thickness and 
volume features 

ELM 60.8 

Brown et 
al. [115] 

2012 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

192 ADHD-
C children 

124 ADHD-
I children 

523 normal 
children 

characteristic data  Logistic 62.5 

Zhou et al. 
[116] 

2021 Private 
116 ADHD  
116 normal 

macrostructural property, 
Morphometric measures, 
Image intensity measures  

MKL 64.3 



Itani et al. 
[117] 

2019 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

146 ADHD  
105 normal 

gender and 26 ROI DT 66.6 

Anderson 
et al. [118] 

2014 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

276 ADHD  
472 normal 

Phenotypic, Independent 
Components, motion, 
structural, functional 
connectivity features 

DT 66.8 

Sato et al. 
[119] 

2012 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

249 ADHD  
122 ADHD-

I 

functional connectivity 
features 

Logistic 67.0 

Tan et al. 
[120] 

2017 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

117 ADHD  
98 normal 

FV and demographic 
variables 

SVM 68.6 

Sidhu et al. 
[121] 

2012 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

141 ADHD-
C children 
98 ADHD-I 

children 
429 normal 

children 

phenotypic + imaging 
data 

SVM 72.9 

Chaim-
Avancini 
et al. [122] 

2017 Private 
52 ADHD  
44 normal 

ROIs SVM 73.8 

Wang et al. 
[123] 

2018 private 
36 ADHD  
35 normal 

interregional 
morphological patterns  

SVM-RFE 74.6 

Liu et al. 
[124] 

2020 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

351 ADHD  
430 normal 

Deep learning model 
extracted features  

AdaDT 75.6 

Luo et al. 
[125] 

2020 Private 
36 ADHD  
36 normal 

Features of nodal 
efficiency 

Ensemble 76.6 

Hart et al. 
[126] 

2013 Private 
30 ADHD  
30 normal 

inhibition networks GPC 77.0 

Khan et al. 
[127] 

2021 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

295 ADHD  
364 normal 

functional connectivity 
features 

SVM 81.0 

Miao et al. 
[128] 

2019 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

308 ADHD  
361 normal 

Principle Components 
and Entropy-Based 

Features 
DT 81.8 

Jun et al. 
[90] 

2018 

public 
(ABIDE and 
ADHD200 

dataset) 

86 ASD 
83 ADHD 

125 normal 

ROI-to-ROI functional 
connectivity feature 

SVM 84.1 



Sun et al. 
[129] 

2020 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

351 ADHD  
430 normal 

functional connectivity 
features 

SVM 85.3 

Shao et al. 
[130] 

2020 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

35 ADHD  
32 normal 

Principle Components 
and Entropy-Based 

Features 
T-R-SVM 86.4 

Riaz et al. 
[131] 

2017 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

59 ADHD  
93 normal 

functional connectivity 
features 

SVM 86.8 

Chen et al. 
[132] 

2020 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

272 ADHD  
361 normal 

functional connectivity 
features 

SVM 88.1 

Vaidya et 
al. [89] 

2019 private 
307 ADHD 

240 ASD 
465 Control 

3 behavioral profiles SVM 88.9 

Deshpande 
et al. [133] 

2015 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

260 ADHD-
C children 

173 ADHD-
I children 

744 normal 
children 

linear/nonlinear 
directional/nondirectional 

functional connectivity 
features 

FCC 
ANN 

90.0 

Peng et al. 
[134] 

2013 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

59 ADHD  
93 normal 

brain structure features  ELM 90.2 

Qureshi et 
al. [135] 

2017 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

67 ADHD-
C children 
67 ADHD-I 

children 
67 normal 
children 

functional connectivity 
features 

ELM 92.9 

Johnston et 
al. [136] 

2014 private 
34 ADHD 
34 control 

white matter images (m) SVM 93.0 

Tang et al. 
[137] 

2020 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

59 ADHD  
93 normal 

functional connectivity 
features 

Decision 
model 

97.6 

Bohland et 
al. [19] 

2012 

public 
(Neuro Bureau 

ADHD-200 
dataset) 

- 

Gender, Non-Imaging 
Phenotypic, Anatomical, 

and functional 
connectivity features  

SVM 98.0 

 



Appendix table A.2. Summary of list of AI studies that used physiological signals to develop 
their model. 

Author Year Dataset Subjects 
Feature 

extracted 
Sampling 
frequency 

Classifier 
Accuracy 

(%) 
 

EEG – Deep learning (DL) 
Vahid et al. 

[138] 
2019 private 

48 ADHD  
44 normal 

end-to-end 500 CNN 83.0 

Dubreuil-
Vall et al. 

[139] 
2020 private 

20 ADHD  
20 normal 

EEG 
spectograms 

500 CNN 88.0 

Chen et al. 
[140] 

2019 private 
50 ADHD  
57 normal 

Grad-CAM 1000 CNN 90.3 

Tosun et al. 
[141] 

2021 private 

1088 
ADHD 
sample 

1088 
normal 
sample 

Power spectral 
features 

500 LSTM 92.2 

Chen et al. 
[142] 

2019 private 

50 ADHD 
children 

51 normal 
children 

connectivity 
matrix 

1000 CNN 94.7 

Moghaddari 
et al. [31] 

2020 

public 
(National 

brain 
mapping 

laboratory 
of Iran) 

31 ADHD  
30 normal 

Power spectral 
band separation 

Making RGB 
images 

128 CNN 98.5 

Ahmadi et 
al. [22] 

2020 private 

13 ADHD-
C children 
12 ADHD-I 

children 
14 normal 
children 

spatial and 
power spectral 

features 
250 CNN 99.5 

 
EEG – Machine learning (ML) 

Müller et al. 
[143] 

2019 private 
181 ADHD  
147 normal 

Power spectral 
features, ERP 

peak 
amplitudes and 

latencies 

500 SVM 80.0 

Kim et al. 
[144] 

2021 Private 
34 ADHD  
45 normal 

MMN source 
activity features 

1000 SVM 81.0 



Tenev et al. 
[145] 

2014 private 
67 ADHD  
50 normal 

eye close, eye 
open, ECPT and 

VCPT 
256 Ensemble 82.3 

Khoshnoud 
et al. [146] 

2018 private 
12 ADHD  
12 normal 

nonlinear 
power spectral 

features 
256 SVM 83.3 

Chen et al. 
[147] 

2019 private 
50 ADHD  
58 normal 

Power spectral 
features 

1000 SVM 84.6 

Mueller et al. 
[148] 

2011 private 
75 ADHD  
75 normal 

ERP 
components 

250 SVM 91.0 

Altınkaynak 
et al. [149] 

2020 private 
23 ADHD  
23 normal 

Morphological, 
nonlinear, and 

wavelet 
features 

2500 MLP 91.3 

Mueller et al. 
[150] 

2010 private 
74 ADHD 
74 control 

ERP 
components 

- SVM 92.0 

Ahmadlou et 
al. [151] 

2010 private 
40 ADHD  
7 normal 

Power spectral 
features 

256 RBFNN 95.6 

Tor et al. [88] 2021 private 

45 ADHD 
62 

ADHD+CD 
16 CD 

nonlinear 
features 

500 kNN 97.9 

Guney et al. 
[152] 

2021 private 
27 ADHD  
38 normal 

event-related 
potentials 

(ERPs) 
1000 ANN 98.4 

Rezaeezadeh 
et al. [153] 

2020 private 

12 ADHD 
children 

12 normal 
children 

non-linear 
power spectral 

features 
256 

SVM 
(RBF) 

99.6 

Joy et al. 
[154] 

2021 private 
5 ADHD  
5 normal 

nonlinear 
power spectral 

features 
256 ANN 99.8 

Kaur et al. 
[155] 

2019 Private 
47 ADHD  
50 normal 

PSR-PSO 256 NDC 100.0 

Bashiri et al. 
[156] 

2018 private 
15 ADHD-

HI 
30 ADHD-I 

Power spectral 
features 

250 ANN 100.0 

Öztoprak et 
al. [21] 

2017 private 
70 ADHD  
38 normal 

Power spectral 
features 

1000 SVM-RFE 100.0 

 
ECG – Machine learning (ML) 

Koh et al. 
[23] 

2021 private 

45 ADHD 
62 

ADHD+CD 
16 CD 

entropy 
features 

500 Ensemble 87.2 
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