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Abstract

The need to diversify post-quantum cryptographic assumptions has become relevant
after the disruptive attacks to two cryptosystems proposed to NIST’s standardization
call: the third round proposal Rainbow and the fourth round one SIKE. Those attacks
left as a viable option only the lattice and code-based solutions. To provide more
variety, the cryptographic community began to look for new computational hard
problems on which to base new cryptosystems.
Group actions are becoming a viable option for post-quantum cryptography as-
sumptions. The main assumption in group actions-based systems is the hardness of
inverting the map behind the action. In this thesis, we explore the class of group
actions derived from linear and multilinear algebra, concerning the general linear
group and its subgroups. In particular, we focus on the ones behind the code equiva-
lence and the tensor isomorphism problems.
The contribution of this work is three-fold:

1. we present a polynomial time reduction between code equivalence problems
in three different metrics. As an intermediate result, we link these problems to
a special variant of the tensor isomorphism problem, where one acting matrix
has a special structure;

2. using some tools from representation theory, we investigate some crypto-
graphic assumptions regarding the multiple use of the secret in some crypto-
graphic schemes. We use this technique to cryptanalyze actions from linear
and multilinear algebra and their use in some primitives. Moreover, we give
some results about action derived by classic groups;

3. finally, we propose a bit commitment scheme based on a newly introduced
framework on actions, the group actions with canonical element framework.
In short, we use non-transitive actions and distinct orbits to commit to distinct



v

elements, improving the state of the art of group actions-based bit commit-
ments.

This thesis shows how many aspects of group actions can still be explored, from
theory to practice. The field is flourishing, and as a growing topic in recent years, it
still presents many problems and open questions to be explored.
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Chapter 1

Introduction

“Og ég fæ blóðnasir
En ég stend alltaf upp”

Hoppípolla - Sigur Rós

1.1 Post-Quantum Cryptography

In 1994, a breakthrough event changed cryptography: Peter Shor published an
algorithm that, on a quantum computer, solves in polynomial-time all the problems
on which cryptography was relying on at those times [81]. Even if a capable quantum
computer is still not deployed yet, the cryptographic community has tried to find
new hard problems for basing the security of the world’s communications. This gave
birth to the Post-Quantum Cryptography1, a branch of the public-key cryptography
that deals with problems that are assumed to be hard both for classical and quantum
computers.

The two main problems attacked by Shor’s algorithm are the factorization and
the Discrete Logarithm Problem. The first one asks to find the prime numbers in the
factorization of a given large integer n. The second one is a generalization of the
computation of the logarithm, but, instead of being in the rational, real or complex
field, it must be computed in finite fields of q elements, where q is a prime power.

1This term was coined by D. J. Bernstein in 2003 [9].
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For instance, given q = 47, the logarithm of 42 to the base 2 is given by 32, since
232 ≡ 42 mod 47 .

Since the beginning of the 2000s, the cryptographic community has started
looking for quantum-safe assumptions to build cryptographic systems. Various
assumptions have been classified into 5 major groups, based on problems involving
lattices, error-correcting codes, multivariate polynomials, hash functions and elliptic
curves isogenies.

• Lattices. The systems in this category are based on the hardness of finding the
shortest element of a lattice, or, given a vector, the element of the lattice nearest
to it. Historically, the use of lattices in cryptography started as a cryptanalytic
tool [81], to attack the Merkle-Hellman public key encryption system [61].

• Error-correcting codes. This can be seen as the discrete counterpart of
lattices. A linear code is a subspace of a discrete vector space endowed with a
metric. Given a code and a vector, the hard problem here is to find the nearest
element of the code, and this procedure is called decoding. It is known that
decoding random codes is a hard problem [19].

• Multivariate polynomials. While solving linear systems is a rather simple
task, if the degree of the polynomials involved in the system is at least two
and the polynomials look random, the problem becomes intractable. A large
branch of commutative algebra studies the complexity of finding the roots of
these objects and provides some tools for these estimates.

• Hash functions. It is well-known that hash functions, which are maps that
take an (eventually large) string of bits and return a succinct output, are
a fundamental tool in symmetric cryptography, but from the hardness of
inverting them and to finding collisions, several digital signature schemes have
been built since the late 70s [54].

• Elliptic curves isogenies. To build a link with classical elliptic curves cryp-
tography, where the objects involved are the points on the curve, here we
work with curves and maps between them. An isogeny is a map between
two elliptic curves that has some algebraic properties. Given two isogeneous
elliptic curves, the problem of finding the isogeny between them seems hard,
even for a quantum computer.
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Each of the above categories has its advantages and disadvantages. The lattices
category seems to be one of the most promising since it is well-studied, its perfor-
mances are good and it provides some advanced functionalities. On the other hand,
error-correcting codes provide a strong baseline security, but the sizes of the keys
are the worst among all the proposals. From multivariate assumptions, nowadays
one can only build digital signatures. Even if they are promising, there is a delicate
question about the structure of multivariate systems involved, since more structure
guarantees better performance but weakens security. Digital signatures based on hash
functions are reliable and versatile since one can use their favorite cryptographic hash.
However, the huge amount of hash evaluation undermines their performance. The
last and newest category is the isogenies one. Even if some disruptive attacks have
been published [22, 75, 59], today the field is flourishing and many constructions can
be found. If on one hand it provides the shortest keys sizes, it suffers from the fact
that the assumptions are rather new and need some time to gain the cryptographic
community’s trust.

1.2 The Post-Quantum NIST’s calls

In the last 20 years, the advancement of quantum technologies led in 2017 to the
start of the first standardization process by the NIST (the USA National Institute
of Standards and Technology) to select the next cryptographic algorithms that will
replace the ones broken by Shor’s algorithm [65]. This call is aimed at (assumed)
quantum-resistant algorithms and has two categories: public key encryption (or
key encapsulation mechanisms, KEM) and digital signatures. This process is still
ongoing, but the first algorithms have been selected. In the KEM category, the lattice-
based cryptosystem CRYSTALS-Kyber [17] is the new standard (the selection is still
open for a code-based one), while, for digital signatures, there are three proposals:
the two lattice-based ones CRYSTALS-Dilithium [35] and Falcon [39], and the
hash-based SPHINCS+ [8].
Since the majority of the systems standardized are based on lattices and codes2, the
NIST opened a second call for signature schemes diversification in 2023 [66]. We
are still at the beginning of the process, but there are a lot of interesting proposals

2There are many relations between lattices and coding problems to the point that they are both
friendly called “noisy linear algebra” in [21].
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based on multivariate systems, isogenies, and new assumptions about equivalence
problems.

1.3 Group Actions-based Cryptography

A group action is formed by a set and a group that permutes the elements of this set.
The discrete logarithm problem can be generalized to fit in the framework of group
actions cryptography. This branch concerns groups acting on sets where, given two
set elements x and y linked by an element g of the group, it is hard to find g. Its
introduction in public key cryptography came from the 1991 article of Brassard and
Yung [18], but only in the mid-2000s the community started to exploit its potential.
Mainly, the framework has been instantiated with group actions from isogenies, like
in the work of Couveignes [26]. Recently, in [1], a systematic study of the framework
and its assumptions has been proposed.
A subset of cryptographic group actions can be defined based on the commutativity
of the underlying group. This algebraic property is crucial and determines the
cryptographic design space of the action. For instance, from an Abelian action,
one can build a Diffie-Hellman key exchange, following the same steps as the
discrete logarithm-based one. Other primitives needing the commutativity property
are Oblivious Transfer, Dual-mode public key encryption [1] and group signatures
[10]. However, for a generic cryptographic group action, the design space is still
non-trivial. Sigma protocols for the knowledge of the above g can be constructed
[42] and converted into digital signature schemes via the Fiat-Shamir transform [38].
Recently, signatures with more functionality have been proposed, like (linkable) ring
signatures [11], threshold signatures [6] and threshold ring signatures [71].

Apart from the commutativity of the action, other attributes that define the design
space are the weak unpredictability, the weak pseudorandomness and pseudorandom-
ness [1]. These properties are additional assumptions needed to build other protocols
like Updatable Encryption [55] schemes and perfectly binding bit commitments [30].

There is a variety of actions available from a cryptographic point of view. They
range from elliptic curves isogenies [23] to many actions from linear and multilinear
algebra, like the ones modeling equivalence problems between linear codes [5, 74],
tensors [50], polynomial systems, groups and algebras [45].
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1.4 Group Actions from Linear Algebra

In this work, we will focus on cryptographic actions derived from linear and multi-
linear algebra. For instance, those on which the group acting is a subgroup of the
general linear group or direct products of such objects. The first appearance of such
group actions is the one related to Graph Isomorphism, from [42]. Subsequently,
due to Babai’s work [3], this has been shown to be insecure for use in cryptography.
In 2019, with the digital signature LESS [13] the action linked to the linear code
equivalence problem gained a lot of interest.
In the same year, a detailed study on a newly-introduced complexity class was
published: in [44], Grochow and Qiao analyzed the relations between various equiva-
lence problems, proving that they are particular instances of the Tensor Isomorphism
problem, which asks to decide whether two tensors are equivalent under a change
of basis. They defined the TI class, containing all the problems that can be reduced
to Tensor Isomorphism. Surprisingly, the linear code equivalence problem also
falls in this class. Here, we study other code equivalence problems, for instance,
the one related to the rank metric (another view of the 3-Tensor Isomorphism) and
the sum-rank metric, all modeled by certain group actions. Another problem in
TI that has gained a lot of interest in cryptography is the Alternate Trilinear Form
Equivalence (ATFE) [46], on which a signature has been built recently. Moreover,
three proposals of the new NIST’s call for digital signatures base their security on
group actions-related problems: LESS [4], based on linear code equivalence, MEDS
[24], a variant of LESS on the rank metric, and ALTEQ [83], which concerns the
equivalence of trilinear forms. Even if two of them concern linear codes, they do not
really belong to the error-correcting codes category or any other. However, the best
attacks against MEDS and ALTEQ are via algebraic modeling, and, in some sense,
we can include them in the multivariate category.

1.5 Organization and Original Results

This thesis studies some actions derived from equivalence problems concerning
linear codes, matrix codes and tensors. Multiple aspects are analyzed, mainly from a
theoretical point of view, but with some practical implications. The three original
works presented concern three different branches: polynomial reductions from com-
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putational complexity theory, cryptanalysis of problems from group actions and the
design of new cryptographic primitives.
The preliminaries are given in Chapter 2, ranging from cryptographic definitions,
group actions, tensors and linear codes in different metrics. Here we introduce the
cryptographic assumptions needed in the subsequent chapters.
Chapter 3 shows a polynomial reduction from the code equivalence problem in the
sum-rank metric to the same problem in the rank metric. This result is obtained
by introducing an intermediate problem called Monomial Isomorphism, a variant
of the well-known Tensor Isomorphism where one acting matrix is required to be
monomial. The technique adopted is a generalization of the reduction shown in [27],
tailored to the tensor setting, using projections and constrains to the rank in order to
ensure the special structure of the monomial matrix.
Concerning cryptanalysis, Chapter 4 analyzes the weak pseudorandomness and the
weak unpredictability properties for group actions using a newly introduced assump-
tion, the multiple one-way assumption. With the study of this property, some results
are given on some group actions that do not satisfy the former ones. In particular,
a lot of actions from linear algebra are shown to not be weakly pseudorandom and
weakly unpredictable. This analysis is carried out by the use of some tools from
representation theory, the definition of a new concept, the representation of a group
action, and some metrics on it that are used to obtain our results. In short, we
“linearize” the group action embedding the set into a vector space. If the action is
already enough linear, then we can use this linearized version to attack the above
assumptions. Some actions related to the ones behind LESS, MEDS and ALTEQ
are studied and shown to be not weakly psedorandom nor weakly unpredictable, and
hence, not capable of certain cryptographic constructions.
In Chapter 5, it is presented a bit commitment scheme based on a particular class of
group actions, the non-transitive ones. The previous ones from group actions were
interactive, i.e. the party who commit needs a first message from the one who receive
the commitment. Instead, our proposal is a non-interactive bit commitment scheme.
We show its security reducing the hiding property to some known assumptions from
the literature. As a concrete instantiation, we present an example based on tensors.
However, recently, an attack on this construction has been published and we briefly
describe it and its implications.



Chapter 2

Preliminaries

2.1 Notation and Cryptographic Definitions

For a prime power q, Fq is the finite field with q elements, and Fn
q is the n-dimensional

vector space over Fq. The vector space generated by the vectors v1, . . . ,vk is denoted
by ⟨v1, . . . ,vk⟩. We denote the vector space of n×m matrices with coefficients in Fq

by Fn×m
q . Let GL(n,Fq) be the group of invertible n×n matrices with coefficients

in Fq. When the field is implicit, we use GL(n) instead. A monomial n×n matrix
is given by the product of an n× n diagonal matrix with non-zero entries on the
diagonal, with an n× n permutation matrix. The n× n monomial matrices over
the field Fq form a group which is denoted by Mon(n,Fq) or Mon(n), and it is a
subgroup of GL(n). We denote the direct sum of vector spaces W1 and W2 by
W1⊕W2, and its elements are written as (w1,w2), where wi is in Wi. With St , we
denote the symmetric group over a set of t elements. The transpose of a matrix A is
denoted with At , and Iℓ denotes the ℓ× ℓ identity matrix.

In the course of this paper, with Pr [A ] we denote the probability of the event
A. The security parameter is denoted by λ , this means that the parameters of the
cryptographic schemes instantiated with security parameter λ are chosen in such a
way that the best-known attack would break the scheme using at least 2λ operations.
A function µ(λ ) is negligible in λ if, for every positive integer c, there exists a λ0

such that for each λ > λ0 we get µ(λ )< 1
λ c . With f (n) = poly (n), we denote the

fact that there exist two positive integers c and n0 such that, for every n > n0 we have
f (n)< nc. The big-o notation is denoted with the capital letter O.
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Finally, in the pseudocode “←$ ” denotes the random sampling, “←” is a variable
assignment and “=” the equality check.

2.2 Group Actions

This section introduces the algebraic framework of group actions, which can be
used to model many cryptographic assumptions from the literature. Throughout this
thesis, we will always use groups with multiplicative notation.

Definition 2.2.1. A group G is said to act on a set X if there is a map ⋆ : G×X → X
that satisfies the following properties:

• identity: if e is the identity element of the group G, then e⋆x = x for every x in
X;

• compatibility: given g and h in G and x in X, we have that (gh)⋆x = g⋆(h⋆x).

In this case, we say that the triple (G,X ,⋆) is a group action.

Sometimes, when the context is clear, we will denote ⋆ to be the action (of G on
X). The orbit of the element x in X is the set O(x) = {g⋆ x | g ∈ G} ⊂ X .

It can be proven that, if for any g in G we define the map

πg : X → X ,x ↦→ g⋆ x,

we have that πg is in SX , the group of permutations of the elements in X . The
correspondence g ↦→ πg is a group homomorphism from G to SX . If the kernel of
this homomorphism is trivial, the action is said faithful. If, given any two elements
x,y in X there exists g in G such that y = g⋆ x, then the action is said transitive. If
there exists an element x such that g⋆x = x implies g = e, then we say that the action
is free. An action that is both free and transitive is denoted regular. For regular
actions we have that for every x and y in X there is a unique g in G such that y = g⋆x
and we denote it with δ (x,y).
Note that, if the action is regular and the group G is finite, then for every x in X the
map g ↦→ g⋆ x is a bijection and we have that |G|= |X |.
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In the cryptographic settings, as one can see in the following, one property is
more important than the others: the commutativity of the group G. We say that the
action (G,X ,⋆) is abelian if the group G is abelian.

2.3 Cryptographic Group Actions

Now, we explore the use of group action in cryptography. The first explicit appear-
ance can be found in the 1991 work of Brassard and Yung [18], where the authors
studied the use of what they called one-way group actions. With the introduction of
elliptic curves isogenies, the interest in this framework is grown. Initially, it has been
defined in 2006 by Couveignes with the name hard homogenous spaces [26], even if
in this case the author requires the action to be abelian, as in the isogenies setting. A
more formal cryptographic systematization is then presented in 2020 by Alamati, De
Feo, Montgomery and Patranabis [1], and we will follow their exposition.

We start defining the properties that a group action should be suitable for compu-
tations, and hence, for cryptographic purposes. In other words, we want to easily
manipulate the considered objects.

Definition 2.3.1. A group action (G,X ,⋆) is said effective if:

• the group G is finite and there exists a probabilistic polynomial time (PPT)
algorithm for executing each of the following tasks:

1. membership testing: decide if a bit-string represents a valid element of
G;

2. equality testing: given two bit-strings, decide whether they represent the
same element of G;

3. sampling: given a distribution DG on G, sample an element with respect
to DG.

4. operation: for all g1,g2 ∈ G, compute g1g2;

5. inversion: compute g−1 for all g ∈ G.

• The set X is finite and there exists PPT algorithms for executing the following
tasks:
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1. membership testing: decide whether a bit-string represents an element
in X;

2. unique representation: given an element in X, compute a bit-string that
canonically represents it.

• there exists an efficient algorithm to compute g⋆ x, for each g in G and x in X.

This definition can be extended to cover other tasks, like sampling from X or
computing the unique representation of elements in G.

Informally, a group action is said effective if it can be manipulated easily and
it can be computed in practical time. An example of non-effective group actions is
the set of polynomials in m variables of bounded degree n over a finite field, with
the symmetric group Sm, permuting the variables. It can be seen that the unique
representation is given by the algebraic normal form, but it cannot be computed in
polynomial time in n and m.

In the rest of this work, even when not explicitly written, we will consider
effective group actions.

In [1], it is also defined the concept of restricted effective group action, namely
those actions where g⋆x can be performed efficiently only for a subset of elements g
in G. In this thesis, we will not meet these group actions.

2.3.1 Assumptions

The above definitions lead to efficient group actions, which can be used to build
cryptographic protocols. However, in order to use them in cryptography, we need to
define some suitable computational assumptions. In [1], the authors report some com-
putational assumptions on group actions, for example, the next definition embraces
the fact that, given two random elements x,y ∈ X in the same orbit, then it must
be intractable to compute δ (x,y) if it exists. From now on, λ will be the security
parameter and (G,X ,⋆) will be a group action such that log(|G|) = O(poly (λ )) and
log(|X |) = O(poly (λ )).

Definition 2.3.2. Being DG and DX two distributions over G and X respectively, the
group action (G,X ,⋆) is (DG,DX)-one-way if, for all PPT adversaries A , there
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exists a negligible function µ(λ ) such that

Pr [A (x,g⋆ x)⋆ x = g⋆ x ]≤ µ(λ ),

where x is sampled according to DX and g according to DG.

We will refer to this assumption as the one-way group action assumption.

Example 2.3.3. The discrete logarithm problem can be seen as an instance of the
above assumption. Let X = ⟨g⟩ be a cyclic group of prime cardinality p and let
G = (Z∗p, ·). Then, define a ⋆ h = ha for every a ∈ G and h ∈ X. The one-way
assumption states that, given h1 and h2, finding a such that ha

1 = h2 is intractable.

Let Πg be a randomized oracle that, when queried, samples x from DX and
returns (x,g⋆ x).

Definition 2.3.4. Being DG and DX two distributions over G and X respectively, the
group action (G,X ,⋆) is (DG,DX)-weakly unpredictable if, for all PPT adversaries
A having access to the oracle Πg, where g is sampled according to DG, there exists
a negligible function µ such that

Pr
[︂
A Πg(1λ ,y) = g⋆ y

]︂
≤ µ(λ ).

In other words, an action is weakly unpredictable if it is hard to compute g⋆ y
given y and a polynomial number of pairs of the form (xi,g⋆ xi).
Another assumption from [1] that makes use of the oracle Πg is the following.

Definition 2.3.5. Being DG and DX two distributions over G and X respectively, the
group action (G,X ,⋆) is (DG,DX)-weakly pseudorandom if, given the randomized
oracle U such that, when queried samples x from DX , σ uniformly at random from
SX and returns (x,σ(x)), for all PPT adversaries A , there exists a negligible
function µ such that⃓⃓⃓

Pr
[︂
A Πg(1λ ) = 1

]︂
−Pr

[︂
A U(1λ ) = 1

]︂⃓⃓⃓
≤ µ(λ ),

where g is sampled according to DG.

In the above definition, the task of the adversary is to distinguish whether he has
access to the oracle that uses the group element g or not.
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Now, we introduce a slightly more general assumption that uses the oracle Πg. It
is a variant of the one-wayness where the adversary has access to Πg and he must
retrieve g.

Definition 2.3.6. Being DG and DX two distributions over G and X respectively, the
group action (G,X ,⋆) is (DG,DX)-multiple one-way if, for all PPT adversaries A

having access to the oracle Πg, where g is sampled according to DG, there exists a
negligible function µ such that

Pr
[︂
A Πg(1λ ) ∈ gN

]︂
≤ µ(λ ),

where N = {h ∈ G | ∀x ∈ X ,h⋆ x = x} is the kernel of the induced homomorphism
from G to SX .

The request on the coset of the kernel gN in the above definition allows the
adversary to find a different group element g′ acting like g. This is needed in case
the action is not faithful.

Observe that breaking the multiple one-wayness implies breaking both the weak
unpredictability and the weak pseudorandomness. We will use this fact to attack
such assumptions.

When we omit the distributions DG and DX from definitions 2.3.2, 2.3.4, 2.3.5
and 2.3.6, we use the uniform ones.

Remark 2.3.7. A similar but stronger treatment of multiple one-way group actions is
given in [73], under the name of transparent security. The adversary A has access
to a more malleable oracle, called the transparent oracle: it acts as Πg, but, instead
of sampling the set element x from DX , it is queried by A . It can be seen that an
adversary with access to a transparent oracle can trivially simulate Πg sampling x
from DX and then querying it. Therefore, an attack regarding the oracle Πg can be
carried in the context of transparent security while the converse, in general, is not
true.

Observe that particular attention must be given to whether the action is Abelian
or not. For actions that are commutative and transitive, seeing a single sample of
the form (x,g ⋆ x) is equivalent to seeing a polynomial number of them. In fact,
one can produce other random samples picking h1, . . . ,hl from G and computing
(hi ⋆x,hi ⋆(g⋆x)) = (yi,g⋆yi), setting yi = hi ⋆x for every i. For instance, an attacker
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can simulate the oracle Πg from a single sample (x,g⋆ x), this means that breaking
the multiple one-wayness directly implies breaking the one-wayness of the action.
Since we want to investigate the case whether the latter holds, we set ourselves in
the more general non-Abelian scenario.

2.3.2 Non-transitive group actions

Since in Chapter 5 we will focus on cryptographic constructions from non-transitive
group actions, here we state some assumptions that can be useful in this setting.
The first one is the Group Action Pseudo Randomness (GA-PR) problem, defined in
[50]. It can be seen as a generalisation of the Decisional Diffie-Hellman assumption.
For example, in [50], the authors state that it can be applied to the general linear
group action on tensors. Let us now define more formally the problem on which
the GA-PR assumption is based. As in the previous subsection, λ is the security
parameter and (G,X ,⋆) will be a group action such that log(|G|) = O(poly (λ )) and
log(|X |) = O(poly (λ )).

Definition 2.3.8. Denote with pp the group action (G,X ,⋆). The group action
pseudo random game (GA-PR) is given in Figure 2.1. We define the advantage of an
adversary A of GA-PR as

AdvGA-PR(A ) =

⃓⃓⃓⃓
Pr [A wins GA-PR(pp)]− 1

2

⃓⃓⃓⃓
.

The GA-PR assumption states that for all PPT adversaries A , there is a negligible
function µ(λ ), with λ being the security parameter, such that

AdvGA-PR(A )≤ µ(λ ),

For the bit commitment scheme presented in Chapter 5, we will refer to the
GA-PR assumption when the set X consists of only two orbits. We call this new
assumption and the relative game 2GA-PR.

We remark that the adversary of the GA-PR game must be able to distinguish
whether the challenger has picked the element t uniformly at random from the orbit of
s or from the whole set X . However, when t is picked inside X , it is still possible that
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GA-PR(pp)

Adversary A Challenger C
b←$ {0, 1}, s←$ X

if b = 1 then

g ←$ G, t← g ⋆ s

if b = 0 then

s, t t←$ X

Guess b′ b′ A wins if b = b′

Fig. 2.1 Group Action Pseudo Random game.

t is picked inside the orbit of s as well; therefore, even a computationally unbounded
adversary would not be able to win the game with probability 1.

In particular, if we consider the 2GA-PR game, and we suppose that the two
orbits have the same cardinality, the event that t is picked uniformly at random inside
the set X and t results to be an element in the orbit of s is 1

4 . Therefore, even an
adversary with unbounded computational power, who can distinguish whether t lives
in the same orbit of s or not, cannot win the game with a probability greater than 3

4 .

The observation above motivates the introduction of an assumption which we
refer to as decisional Group Action Inversion Problem (dGA-IP). The dGA-IP
problem, also known as Isomorphism Problem [50], is the decisional variant of the
group action inversion problem presented in [82], applied to the case in which the
set X is given by only two orbits. If the restriction on the two orbits is removed, a
large number of similar problems can be found in literature [44, 45, 70].

Definition 2.3.9. The dGA-IP game is presented in Figure 2.2, where pp is given by
the tuple (G,X ,⋆, t0, t1), with t0 and t1 elements that lie in distinct orbits under the
action of G. We define the advantage of an adversary A of dGA-IP as

AdvdGA-IP(A ) =

⃓⃓⃓⃓
Pr [A wins dGA-IP(pp)]− 1

2

⃓⃓⃓⃓
.
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The dGA-IP assumption states that for all PPT adversaries A , there is a negligible
function µ(λ ), with λ being the security parameter, such that

AdvdGA-IP(A )≤ µ(λ ),

dGA-IP(pp)

Adversary A Challenger C
c, b←$ {0, 1}, g, g′ ←$ G

s← g ⋆ tc,

if b = 1 then

t← g′ ⋆ s

if b = 0 then

t← g′ ⋆ t1−c

s, t

Guess b′ b′ A wins if b = b′

Fig. 2.2 decisional Group Action Inversion Problem game.

This game, compared to 2GA-PR, reflects more clearly the fact that it is hard to
distinguish whether two elements in X lie in the same orbit or not, and an adversary
with unbounded computational power would win this game with probability 1.

2.4 Coding Theory

In telecommunications, error-correcting codes are a very useful tool: they allow
to correct random errors occurring in the transmission of a message over a noisy
channel. Once a code is chosen, a message is encoded as a codeword and is sent
over the channel. Once arrived, the receiver applies the decoding procedure to obtain
the original message, even if some errors occurred. The number of errors that a code
can detect and correct depends on the code itself and the decoding procedure.

Linear codes (i.e. codes that are linear subspaces) play a significant role in post-
quantum cryptography: the hardness of decoding a random code is used to ensure
the security of many cryptosystems presented to the first standardization call of the
NIST. However, in this work, we will make large use of codes without talking about
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decoding and errors. We are mainly interested in whether two codes are “essentially
the same”; formally, this means that there is an equivalence between them.

2.4.1 Linear codes

A linear code C of dimension k is a linear space of dimension k. Linear codes can
be embedded in different linear spaces V over Fq, depending on their form. A code
is endowed with a map weight w defined on V

w : V→ N

such that w(x) = 0 if and only if x = 0, i.e it is the zero vector. We can define a
metric d from a weight w

d : V×V→ N, (x,y) ↦→ w(y− x).

Throughout this paper, we will consider three weights with their corresponding
metrics. We highlight that, even if we can endow the same code with two or more
different metrics, we always consider a code with just a metric.

We recall the general problem of deciding whether two linear codes are equivalent.
Given a weight w and a metric d, we say that an invertible linear map f from
the vector space V to itself preserves the metric (or, equivalently, the weight) if
w( f (x)) = w(x) for every x in V. We call such maps linear isometries, and they
form a group with the composition. Two linear codes are linearly equivalent if
there exists a linear isometry between them. The task of checking if two codes are
equivalent is called Linear Code Equivalence Problem. Since in the rest of the paper
we will consider only linear isometries, sometimes we drop the word “linear” when
we talk about isometries or equivalences, in particular, we refer to the problem above
as Code Equivalence (CE). Its hardness depends on which codes and metric we
consider. In the following, we define CE with respect to the three different metrics
we saw in the next subsections.
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2.4.2 Hamming metric

The weight we present is the Hamming weight. Here, we consider linear codes
embedded in Fn

q, and we say that the code C has length n. This weight is defined as
the number of non-zero entries of a vector:

wH : Fn
q→ N, (x1, . . . ,xn) ↦→ |{i | xi ̸= 0}| .

We refer to the distance induced by wH as dH. A useful representation of a k-
dimensional code C of length n in the Hamming metric is given by its generator
matrix, a k× n matrix having a basis {v1, . . . ,vk} of C as rows. Notice that the
generator matrix is not unique since there are many bases for the same linear code.

We can characterize linear isometries in the Hamming metric, reporting a well-
known result from [58].

Proposition 2.4.1. If f : Fn
q→ Fn

q is a linear isometry in the Hamming metric, then
there exists an n×n monomial matrix Q such that f (x) = xQ for all x in Fn

q.

Then two codes C and D are linearly equivalent if there exists a monomial matrix
Q such that

C =
{︁

yQ ∈ Fn
q : y ∈D

}︁
.

The generator matrix G of a code C is not unique, hence, for every invertible matrix
S, the matrix SG generates the same code C . This must be considered since we state
the equivalence problem in terms of generator matrices.

Definition 2.4.2. The Hamming Linear Code Equivalence (CEH) problem is given
by

• input: two codes C and D represented by their k×n generator matrices G
and G′, respectively;

• output: YES if there exist a k× k invertible matrix S and an n×n monomial
matrix Q such that G = SG′Q, and NO otherwise.

The search version is the problem of finding such matrices given two linearly equiva-
lent codes.
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Observe that the matrix S in the above definition models a possible change of basis,
while the monomial matrix Q is a permutation and a scaling of the coordinates of the
code.

2.4.3 Rank metric

The second weight we consider is defined on matrices. This means that our code
C is a space of matrices and usually we refer to it as a matrix code. If we consider
n×m matrices, the code has length n×m. The map

wrk : Fn×m
q → N, M ↦→ rk(M)

is defined as the rank of the matrix M. Hence, the distance drk between M1 and M2

is given by the rank of the difference M2−M1.

From [62], linear isometries for the rank metric can be characterized as follows.

Proposition 2.4.3. If f : Fn×m
q → Fn×m

q is a linear isometry in the rank metric, then
there exist an n×n invertible matrix A and an m×m invertible matrix B such that

1. f (M) = AMB for all M in Fn×m
q , or

2. f (M) = AMtB for all M in Fn×m
q ,

where the latter case can occur only if n = m.

Usually, an isometry can be denoted with a pair of matrices (A,B).

In the literature, for example in [27, 74], the linear equivalence problem for
matrix codes is defined taking into account only the first case given in Proposition
2.4.3, even when we have n = m. In terms of the computational effort to solve the
problem, this is not an issue, since considering both cases requires at most twice the
time of considering only the first one, and hence, just a polynomial overhead that we
can ignore. For simplicity, we continue the approach from [27, 74] in the following
definition.

Definition 2.4.4. The rank Linear Code Equivalence (CErk) problem is given by

• input: two n×m matrix codes C and D of dimension s represented by their
bases;
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• output: YES if there exist matrices A in GL(n) and B in GL(m) such that, for
every M in D , we have that AMB is in C , and NO otherwise.

The search version is the problem of finding such matrices given two linearly equiva-
lent codes.

In the literature, this problem is also called Matrix Code Equivalence (MCE).

Given a matrix code C , an automorphism of C is a linear isometry f such that
f (C ) = C . We say that C has trivial automorphisms if the only automorphisms of
C are of the form M ↦→ (λ In)M (µIm) for some non-zero λ ,µ in Fq.

2.4.4 Sum-rank metric

The last class of codes we consider is embedded into the direct sum (or Cartesian
product) of spaces of matrices. Given positive integers d,n1, . . . ,nd,m1, . . . ,md , we
have that the linear space V defined above is Fn1×m1

q ⊕·· ·⊕Fnd×md
q . We can define

the Sum-rank weight as the sum of the ranks

wsr : Fn1×m1
q ⊕·· ·⊕Fnd×md

q → N,
(M1, . . . ,Md) ↦→ ∑

d
i=1 rk(Mi) .

The distance dsr induced by wsr is called sum-rank metric and we call a code endowed
with this distance a sum-rank code of parameters d,n1, . . . ,nd,m1, . . . ,md .

Observe that the sum-rank metric is both a generalization of the Hamming and
the rank distance. For n1 = · · · = nd = m1 = · · · = md = 1, the sum-rank metric
coincides with the Hamming metric, and sum-rank codes can be seen as linear codes
of length d in Fd

q . If we have d = 1, then dsr is the rank metric, and sum-rank codes
are matrix codes of size n1×m1.

The equivalence problem between sum-rank codes was introduced in 2020 by
Martínez-Peñas [60]. Before stating the problem, we characterize linear sum-rank
isometries. This result is given in [20] and a slightly less general statement can be
found in [64, Proposition 4.26].

Proposition 2.4.5. Let f : Fn1×m1
q ⊕ ·· · ⊕ Fnd×md

q → Fn1×m1
q ⊕ ·· · ⊕ Fnd×md

q be a
linear isometry in the sum-rank metric. Then there exists a permutation σ in Sd
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such that ni = nσ(i) and mi = mσ(i) for every i, and there exist ψi : Fni×mi
q → Fni×mi

q

isometries in the rank metric such that

f (M1, . . . ,Md) =
(︁
ψ1(Mσ(1)), . . . ,ψd(Mσ(d))

)︁
for each Mi ∈ Fni×mi

q .

We are ready to state the linear equivalence problem for sum-rank codes. As in
the case of CErk, we choose to not include the case of transposition of matrices.

Remark 2.4.6. Observe that, even if for CErk the inclusion of the transposition
of matrices has only a polynomial blow-up, this is not the case for CErs. In fact,
from [64] we can see that the transposition can be seen as the action of Fd

2 . This
implies that there is an overhead of O(2d) (at least using a naive approach) between
considering or not the transposition of matrices, for example, see [27, Remark 2] for
the rank case.

Recall that, as linear space, a sum-rank code C of parameters d,n1, . . . ,nd ,
m1, . . . ,md and dimension k admits a basis of the form {C1, . . . ,Ck} where Ci =(︂

C(1)
i , . . . ,C(d)

i

)︂
is a tuple of matrices. In particular, C( j)

i is in Fn j×m j
q for each i and

j.

Definition 2.4.7. The sum-rank Linear Code Equivalence (CErs) problem is given by

• input: two sum-rank codes C and D , of parameters d,n1, . . . ,nd,m1, . . . ,md

and dimension k represented by their bases {Ci} and {Di}, respectively;

• output: YES if there exist matrices A1, . . . ,Ad,B1, . . . ,Bd , where Ai is in GL(ni)

and Bi is in GL(mi), and a permutation σ in Sd such that

C = Span
{︂(︂

A1D(σ(1))
1 B1, . . . ,AdD(σ(d))

1 Bd

)︂
, . . . ,(︂

A1D(σ(1))
k B1, . . . ,AdD(σ(d))

k Bd

)︂}︂
,

and NO otherwise.

The search version is the problem of finding such matrices given two linearly equiva-
lent codes.
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This formulation embraces both the previous linear equivalence problems for
Hamming and rank metric as special cases. Due to this, we can formulate the next
result.

Proposition 2.4.8. Both CEH and CErk polynomially reduce to CErs.

A natural question is about the converse, whether problems in the Hamming
or the sum-rank metric reduce to CErk. It has been shown independently in [27]
and [43] that CEH can be reduced to CErk, using two different approaches. In [43,
Section 5], the reduction uses 3-tensors via an “individualization” argument to force
a matrix to be monomial. In [27], given a linear code of dimension k in Fn

q, the

reduction defines a matrix code in Fk×(k+n)
q . This approach will be generalized in

the setting of d-tensors in Chapter 3, and it will give us some reductions between
tensors problem in dimensions higher than 3.

2.5 Tensor Isomorphism

In computational complexity theory, in particular when we consider problems from
linear group actions, one problem seems “central” in the sense that many ones from
the same field reduce to it. We are referring to the Tensor Isomorphism problem,
which asks, given two 3-tensors, to decide if they are the same, apart from a change
of basis. Other equivalence problems like group, algebra and graph isomorphism,
d-linear form equivalence all reduce to the above one. The centrality of this problem
has prompted the definition of a new complexity class in [45] called TI, containing
all the decision problems reducible to Tensor Isomorphism.

2.5.1 Tensors

Given a positive integer d, a d-tensor over Fq is an element of the tensor space⨂︁d
i=1F

ni
q . If we fix the bases {e(i)1 , . . . ,e(i)ni } for every vector space Fni

q , we can
represent a d-tensor T with respect to its coefficients T (i1, . . . , id) in Fq

T = ∑
i1,...,id

T (i1, . . . , id)e
(1)
i1 ⊗·· ·⊗ e(d)id .
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We say that T has size n1× ·· · × nd . For example, observe that 1-tensors and
2-tensors can be represented as vectors and matrices, respectively.

A rank one (or decomposable) tensor is an element of the form a1⊗·· ·⊗ ad ,
where ai is in Fni

q . Given a d-tensor T , its rank is the minimal non-negative integer
r such that there exist t1, . . . , tr rank one tensors for which T = ∑

r
i=1 ti. In general,

computing the rank of a d-tensor is a hard task for d ≥ 3 [47, 77, 80].

For any a in Fn j
q , the projection to a can be defined. Since we are interested

mainly in projections to an element of the basis e( j)
k of Fn j

q , we define

proj
e( j)

k
: Fn1

q ⊗·· ·⊗Fn j
q ⊗·· ·⊗Fnd

q → Fn1
q ⊗·· ·⊗Fn j−1

q ⊗Fn j+1
q ⊗·· ·⊗Fnd

q ,

∑
i1,...,id

T (i1, . . . , id)e
(1)
i1 ⊗·· ·⊗ e(d)id

↦→ ∑
i1,...,i j−1,
i j+1,...,id

T (i1, . . . , i j−1,k, i j+1, . . . , id)e
(1)
i1 ⊗·· ·⊗ e( j−1)

i j−1
⊗ e( j+1)

i j+1
⊗·· ·⊗ e(d)id .

(2.1)

In other words, we send to zero every component of ∑i1,...,id T (i1, . . . , id)e
(1)
i1 ⊗·· ·⊗

e(d)id which does not contain e( j)
k , obtaining a (d−1)-tensor.

A group action can be defined on the vector space T =
⨂︁d

i=1F
ni
q of d-tensors of

size n1×·· ·×nd from the Cartesian product of invertible matrices G = GL(n1)×
·· ·×GL(nd) as follows

⋆ : G×T →T ,(︄
(A1, . . . ,Ad) , ∑

i1,...,id

T (i1, . . . , id)e
(1)
i1 ⊗·· ·⊗ e(d)id

)︄
↦→ ∑

i1,...,id

T (i1, . . . , id)A1e(1)i1 ⊗·· ·⊗Ade(d)id .

It can be shown that the action defined above does not change the rank of a
tensor1. In particular, this implies that the action of an element in GL(n1)×·· ·×
GL(ni−1)×GL(ni+1)×·· ·×GL(nd) on the projection proj

e(i)k
(T ) of a tensor T has

the same rank as proj
e(i)k

(T ). We summarize these properties in formulas

1However, if we extend the action to non-invertible matrices, this property does not hold: the zero
matrix sends every tensor into the zero tensor (which has rank zero by definition).
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1. rk((A1, . . . ,Ad)⋆T ) = rk(T ),

2. rk
(︃
(A1, . . . ,Ai−1,Ai+1, . . . ,Ad)⋆proj

e(i)k
(T )
)︃
= rk

(︃
proj

e(i)k
(T )
)︃

.

2.5.2 The TI class

The isomorphism problem between tensors has some interesting links and properties
in computational complexity theory. Here we recall the formal definition of the
problem.

Definition 2.5.1. The d-Tensor Isomorphism (d-TI) problem is given by

• input: two d-tensors T1 and T2 in
⨂︁d

i=1F
ni
q ;

• output: YES if there exists an element g of GL(n1)×·· ·×GL(nd) such that
T2 = g⋆T1 and NO otherwise.

The search version is the problem of finding such matrices, given two isomorphic
d-tensors.

If we recall the decision problems d-Colourability (d-COL) and d-SAT, it is
known that the first integer for which these problems are NP-complete is d = 3. In
particular, there are polynomial reductions from d-COL to 3-COL and from d-SAT to
3-SAT. The same happens for d-TI and 3-TI, as shown in the following astonishing
result from [43].

Theorem 2.5.2. d-TI and 3-TI are polynomially equivalent.

Since a lot of different problems can be reduced to d-TI, in the same flavour of
the complexity class GI (the set of problems reducible in polynomial time to Graph
Isomorphism [52]), the authors of [45] define the TI class.

Definition 2.5.3. The Tensor Isomorphism class (TI) contains decision problems
that can be polynomially reduced to d-TI for a certain d. A problem D is said TI-hard
if d-TI can be reduced to D, for any d. A problem is said TI-complete if it is in TI

and is TI-hard.
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It is easy to see that TI is a subset of NP, and we can adapt the AM protocol
for Graph Non-Isomorphism [42] and Code Non-Equivalence [70] to show that TI
is in coAM. This means that no problem in TI cannot be NP-complete unless the
polynomial hierarchy collapses at the second level [16].

2.6 Commitment Schemes

A commitment scheme is a cryptographic scheme that allows one party to commit
to a value m by sending a commitment com, and then to reveal m by opening the
commitment at a later point in time.

Definition 2.6.1. A commitment scheme on a message space M is a triple of PPT
algorithms (PGen,Commit,Open) such that:

1. PGen(1λ ) takes as input a security parameter λ in unary and returns public
parameters pp;

2. Commit(pp,m) takes as input the public parameters pp, a message m in M

and returns the commitment com and the opening material r;

3. Open(pp,m,com,r) takes as input the public parameters pp, the message m,
the commitment com and the opening material r and returns accept if com is
the commitment of m or reject otherwise.

In the rest of this work, we omit the public parameters pp in the inputs of Commit

and Open.

To be suitable in cryptography, commitment schemes must satisfy the hiding
and binding properties. Hiding means that com reveals nothing about m and binding
means that it is not possible to create a commitment com that can be opened in two
different ways. These properties are formally defined.

Definition 2.6.2. Let ΠCom = (PGen,Commit,Open) be a commitment scheme and
let Hiding(ΠCom) be the hiding game represented in Figure 2.3. We define the
advantage of an adversary A of Hiding(ΠCom) as

AdvHiding(ΠCom)(A ) =

⃓⃓⃓⃓
Pr [A wins Hiding(ΠCom)]−

1
2

⃓⃓⃓⃓
.
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A commitment scheme ΠCom is computationally hiding if for all PPT adversaries A

there is a negligible function µ(λ ), with λ being the security parameter, such that

AdvHiding(ΠCom)(A ,Hiding(ΠCom))≤ µ(λ ),

If, for every pair m0,m1, the commitments com0 and com1 have the same distribution,
where (comi,ri) = Commit(mi) for i = 0,1, we say that the commitment is perfectly
hiding.

Hiding(ΠCom)

Adversary A Challenger C

pp pp← PGen(1λ)

Choose m0,m1 ∈ {0, 1}n m0,m1 b←$ {0, 1}

com com← Commit(pp,mb)

Guess b′ b′ A wins if b′ = b

Fig. 2.3 Hiding game for commitment schemes.

Note that, in the case of a bit commitment, the adversary does not send m0 and
m1, and the bit chosen by the challenger is the committed bit in com.

Definition 2.6.3. A commitment scheme ΠCom = (PGen,Commit,Open) is compu-
tationally binding if for all PPT adversaries A there is a negligible function µ(λ ),
with λ being the security parameter, such that

Pr

⎡⎢⎢⎣ pp← PGen(1λ ),

(com,m0,r0,m1,r1)←A (pp)

⃓⃓⃓⃓
⃓⃓⃓⃓ m0 ̸= m1,

Open(m0,com,r0) = accept,

Open(m1,com,r1) = accept

⎤⎥⎥⎦≤ µ(λ ).

If for every adversary A it holds that µ(λ ) = 0, we say that the commitment scheme
is perfectly binding.



Chapter 3

Monomial Isomorphism for Tensors
and Applications to Code
Equivalence Problems

3.1 Introduction

In this chapter, we investigate the relations between equivalence problems in different
metrics. In particular, we extend the knowledge of previously known polynomial
reductions between the Hamming, the rank and the sum-rank case. As said in the
introduction, this first result has a more theoretical flavor and it is necessary to
understand the hardness of some problems in order to use them in cryptography. The
whole chapter is based on the work [28] published in Designs, Codes and Cryptog-
raphy (Springer). Many thanks to Antonio J. Di Scala and Joshua A. Grochow for
discussions on this work. The author would like to thank the anonymous reviewers
for the valuable comments, which helped to improve the overall quality of this work.

3.1.1 Equivalence problems

An equivalence problem is a computational problem where, given two objects A and
B of the same nature, it asks whether there exists a map with some properties (an
equivalence) sending A to B. Different problems can be stated, depending on the
nature of the considered objects or the properties of the map. One of the most well-
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known equivalence problems is Graph Isomorphism, but in the literature one can find
problems concerning groups, quadratic forms, algebras, linear codes, tensors, and
many other objects. We will focus on the latter, with the Code Equivalence and the
Tensor Isomorphism problems. An interesting fact is that the isomorphism problem
for tensors seems “central” among others. In particular, a large class of equivalence
problems can be polynomially reduced to it. In other words, given a pair of objects
(groups, algebras, graphs, etc.), a pair of tensors can be built such that they are
isomorphic if and only if the starting objects are equivalent. This led to the definition
of the complexity class TI in [45]. Different reductions among these problems can be
found in [27, 43, 46, 70, 74]. In general, there are no known polynomial algorithms
for most of the above problems. Because of this, many public key cryptosystems
base their security on the hardness of solving these kinds of problems, for example,
Isomorphism of Polynomials [68], Code Equivalence [4, 25], Tensor Isomorphism
[50], Lattice Isomorphism [36], Trilinear Forms Equivalence [83], and problems
from isogenies of elliptic curves [12, 32, 33].

3.1.2 Code equivalence

One of the most studied equivalence problems concerns linear codes. In the Hamming
metric, the maps that generate an equivalence were classified in [58], leading to
the Monomial Equivalence Problem, which was studied in [70] in the binary case
and, in general, in [79]. Worth mentioning is the Support Splitting Algorithm [78],
which solves the above problem in average polynomial time for a large class of
codes over Fq for q < 5. For a detailed analysis, the interested reader can refer to
[5]. Recently, the problem of equivalence in different metrics has been studied, and
we will focus on the rank metric and the sum-rank one. Concerning the rank metric,
the classification of equivalence maps is given in [62], while in [27], the authors
analyze the Matrix Code Equivalence, and they reduce the Hamming case to it. The
same result is given in an independent work [43], where the former problem is called
Matrix Space Equivalence. In [74], it is shown that Matrix Code Equivalence is
polynomially equivalent to problems on bilinear and quadratic maps. Moreover, the
link between the rank and the sum-rank metric is studied, leading to a reduction
from the latter to the former in a special case. In this chapter, we extend this analysis
finding an unconditional reduction from the code equivalence in the sum-rank metric
to the rank one.
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3.1.3 Original contribution

We give two results of different nature. The first one concerns some relations between
tensors problems. The d-Tensor Isomorphism Problem (d-TI) asks, given two d-
tensors T1 and T2, if there are d invertible matrices A1, . . . ,Ad sending T1 to T2. We
introduce another problem called d-Tensor Monomial Isomorphism Problem (d-TI∗),
where, instead of having d invertible matrices, we require that one of them must
be monomial. We show that d-TI∗ reduces to 3-TI for every d ≥ 4. To show this,
we use techniques from [27], where the authors exhibit a reduction from Monomial
Code Equivalence to Matrix Code Equivalence. We reformulate this reduction in
terms of tensors, and we generalize it in higher dimensions. In particular, we show
that d-TI∗ is reducible to (2d−1)-TI (Theorem 3.2.7), and then, using a result from
[43], we get as corollary that d-TI∗ reduces to 3-TI.
Our techniques are the following: given the reduction Ψ and the (2d−1)-tensors
Ψ(T1) and Ψ(T2), we project to the vector space W where we expect the action of
the monomial matrix. Then, we consider the projected tensor as a 2-tensor in order
to compute its rank. We show that some constraints on the rank imply that the matrix
acting on W is monomial.
Observe that the techniques from [43] can be adapted and used as well, but they are
less efficient in terms of output dimension since the reduction is looser with respect
to the one given in [27].
Another contribution is about the sum-rank code equivalence. Using the result from
above, we reduce the problem of deciding whether two sum-rank codes are equivalent
to the problem of deciding if two matrix codes are equivalent. Note that a similar
result is given in [74] with the assumption that some automorphisms groups are of
a given form. While such a hypothesis is mostly satisfied for randomly generated
matrix codes (for example the ones used in cryptography [25]), here we give an
unconditional reduction. Unfortunately, our reduction produces matrix codes with
dimensions and sizes that are polynomially bigger than the starting parameters of the
sum-rank codes. In particular, we get a O(x6) overhead. Due to this result, we can
conclude that for the three considered metrics (Hamming, rank, sum-rank), Code
Equivalence problems are in the class TI. Figure 5.5 summarizes new and known
reductions between code equivalence and other problems, showing the path we used.
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CEH

[27, 43]

Cor. 3.3.5
CErk

Th. 3.3.2
3-TICErs

Lem. 3.3.3

4-TI∗Th. 3.2.7 7-TI
[43]

TI-complete

Fig. 3.1 Reduction between problems and TI-completeness. “A→ B” indicates that A
reduces to B. Dashed arrows denote trivial reductions.

3.2 Monomial Isomorphism Problems

In this section, we will examine the relationship between tensor isomorphism prob-
lems when a matrix acting on a specific space is required to be monomial instead
of using the action from the entire group GL(n1)×·· ·×GL(nd). Specifically, there
exists a j such that the action on the j-th space is given by Mon(n j). For simplicity,
we will refer to this special space as the last one throughout the remainder of the
article and in the problems statements. Since Mon(nd) is a subgroup of GL(nd),
the action of the group GL(n1)×·· ·×GL(nd−1)×Mon(nd) on d-tensors is well-
defined. When there exists an element g sending the d-tensor T1 into T2, we say that
they are monomially isomorphic.

Definition 3.2.1. The Monomial d-Tensor Isomorphism (d-TI∗) problem is given by

• input: two d-tensors T1 and T2 in
⨂︁d

i=1F
ni
q ;

• output: YES if there exists an element g of GL(n1)×·· ·×GL(nd−1)×Mon(nd)

such that T2 = g⋆T1 and NO otherwise.

The search version is the problem of finding such matrices given two monomially
isomorphic d-tensors.

We recall that, if the action of the monomial matrix is not on the last vector
space, we can permute the spaces to obtain the problem above. Observe that the
problem 2-TI∗ is exactly CEH and the proof that CEH reduces to CErk from [27] can
be viewed as a reduction from 2-TI∗ to 3-TI. In the following, we generalize this
approach to reduce d-TI∗ to (2d−1)-TI.



30 Monomial Isomorphism for Tensors

Let V1, . . . ,Vd be vector spaces over Fq of dimension n1, . . . ,nd , respectively.
Now let {v( j)

1 , . . . ,v( j)
n j } be a basis for the space V j. We recall that W1⊕W2 is the

direct sum of vector spaces W1 and W2 and its elements are of the form (w1,w2).
The action of an element of GL(dim(W1)+dim(W2)) is block-by-block:(︄

A11 A12

A21 A22

)︄
·

(︄
w1

w2

)︄
=

(︄
A11w1 +A12w2

A21w1 +A22w2

)︄
.

The reduction we use is the following map, going from a space of d-tensors to a
space of (2d−1)-tensors,

Ψ :
d⨂︂

i=1

Vi→

(︄
d−1⨂︂
i=1

Vi

)︄
⊗

(︄
d−1⨂︂
i=1

(Vi⊕Vd)

)︄
⊗Vd,

∑
i1,...,id

T (i1, . . . , id)v
(1)
i1 ⊗·· ·⊗ v(d)id ↦→

∑
i1,...,id ,

j1,..., jd−1

T (i1, . . . , id)T ( j1, . . . , jd−1, id)v
(1)
i1 ⊗·· ·⊗ v(d−1)

id−1

⊗ (v(1)j1 ,0)⊗·· ·⊗ (v(d−1)
jd−1

,0)⊗ v(d)id

+ ∑
i1,...,id

T (i1, . . . , id)v
(1)
i1 ⊗·· ·⊗ v(d−1)

id−1
⊗ (0,v(d)id )⊗·· ·⊗ (0,v(d)id )⊗ v(d)id .

(3.1)

Example 3.2.2 (Running example). As an example, consider d = 3 and a tensors in
F2

2⊗F2
2⊗F3

2. The map Ψ became

Ψ : F2
2⊗F2

2⊗F3
2→ F2

2⊗F2
2⊗
(︁
F2

2⊕F3
2
)︁
⊗
(︁
F2

2⊕F3
2
)︁
⊗F3

2,

∑
i, j,k

T (i, j,k)ei⊗ e j⊗ ek ↦→

∑
i, j,k,
i′, j′

T (i, j,k)T (i′, j′,k)ei⊗ e j⊗ (ei′,0)⊗ (e j′,0)⊗ ek

+ ∑
i, j,k

T (i, j,k)ei⊗ e j⊗ (0,ek)⊗ (0,ek)⊗ ek.

Given the tensor

T1 = e1⊗ e1⊗ e1 + e2⊗ e2⊗ e2 + e1⊗ e2⊗ e3,
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its image under Ψ is given by

Ψ(T1) = e1⊗ e1⊗ (e1,0)⊗ (e1,0)⊗ e1 + e2⊗ e2⊗ (e2,0)⊗ (e2,0)⊗ e2

+ e1⊗ e2⊗ (e1,0)⊗ (e2,0)⊗ e3 + e1⊗ e1⊗ (0,e1)⊗ (0,e1)⊗ e1

+ e2⊗ e2⊗ (0,e2)⊗ (0,e2)⊗ e2 + e1⊗ e2⊗ (0,e3)⊗ (0,e3)⊗ e3

In the following, we show that two tensors T1 and T2 are monomially isomorphic
if and only if Ψ(T1) and Ψ(T2) are isomorphic.

Proposition 3.2.3. If T1 and T2 are two monomially isomorphic d-tensors, then
Ψ(T1) and Ψ(T2) are isomorphic as (2d−1)-tensors.

Proof. Suppose that T1 and T2 are in
⨂︁d

i=1Vi as defined above. Now, since T1 and
T2 are monomially isomorphic, there exist d−1 invertible matrices A1, . . . ,Ad−1 and
a monomial matrix Q such that

(A1, . . . ,Ad−1,Q)⋆T1 = T2.

Let Q be the product of a permutation matrix P corresponding to the permutation σ

in Snd and a diagonal matrix D = diag(α1, . . . ,αnd). More explicitly

∑
i1,...,id

T1(i1, . . . , id)A1v(1)i1 ⊗·· ·⊗Ad−1v(d−1)
id−1

⊗αid v(d)
σ(id)

= ∑
i1,...,id

T2(i1, . . . , id)v
(1)
i1 ⊗·· ·⊗ v(d)id .

(3.2)

Our claim to obtain the thesis is that

(A1, . . . ,Ad−1,A1̃, . . . , Ãd−1, Q̃)⋆Ψ(T1) = Ψ(T2),

where for every i = 1, . . . ,d−2

Ãi =

(︄
Ai 0
0 P

)︄
,

while

Ãd−1 =

(︄
Ad−1 0

0 PD−1

)︄
, and Q̃ = PD2



32 Monomial Isomorphism for Tensors

Consider T2, and, for a k in {1, . . . ,nd}, we write its projection to v(d)k

proj
v(d)k

(T2) = ∑
i1,...,id−1

T2(i1, . . . , id−1,k)v
(1)
i1 ⊗·· ·⊗ v(d−1)

id−1
. (3.3)

Combining Eq. (3.2) and Eq. (3.3), we have

∑
i1,...,id−1

T2(i1, . . . , id−1,k)v
(1)
i1 ⊗·· ·⊗ v(d−1)

id−1

= ∑
i1,...,id−1

ασ−1(k)T1(i1, . . . , id−1,σ
−1(k))A1v(1)i1 ⊗·· ·⊗Ad−1v(d−1)

id−1

(3.4)

We define ι to be the canonic injection of
⨂︁d−1

i=1 Vi into
⨂︁d−1

i=1 (Vi⊕Vd), and we

consider proj
v(d)k

(T2)⊗ ι

(︃
proj

v(d)k
(T2)

)︃
, that is

∑
i1,...,id−1

T2(i1, . . . , id−1,k)v
(1)
i1 ⊗·· ·⊗ v(d−1)

id−1

⊗ ∑
j1,..., jd−1

T2( j1, . . . , jd−1,k)(v
(1)
j1 ,0)⊗·· ·⊗ (v(d−1)

id−1
,0)

and, applying Eq. (3.4) two times, it is equal to

∑
i1,...,id−1,
j1,..., jd−1

α
2
σ−1(k)T1(i1, . . . , id−1,σ

−1(k))T1( j1, . . . , jd−1,σ
−1(k))

A1v(1)i1 ⊗·· ·⊗Ad−1v(d−1)
id−1

⊗ (A1v(1)i1 ,0)⊗·· ·⊗ (Ad−1v(d−1)
id−1

,0).

(3.5)

Observe that, if we tensorize this element with v(d)k and we take the sum over
k = 1, . . . ,nd , we have the first term of (A1, . . . ,Ad−1,A1̃, . . . , Ãd−1, Q̃)⋆Ψ(T1), that
is equal to the first term of Ψ(T2).
To complete the proof we compute the second term of (A1, . . . ,Ad−1,A1̃, . . . , Ãd−1, Q̃)⋆

Ψ(T1), and we show that it is equal to the second one of Ψ(T2). In fact, using Eq.
(3.4), we have

∑
id

∑
i1,...,id−1

T1(i1, . . . , id)A1v(1)i1 ⊗·· ·⊗A1v(d−1)
id−1

⊗ (0,v(d)
σ(id)

)⊗ (0,v(d)
σ(id)

)⊗ (0,α−1
id v(d)

σ(id)
)⊗α

2
id v(d)

σ(id)
=

∑
id

∑
i1,...,id−1

T2(i1, . . . , id)v
(1)
i1 ⊗·· ·⊗ v(d−1)

id−1
⊗ (0,v(d)id )⊗·· ·⊗ (0,v(d)id )⊗ v(d)id .

(3.6)
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The first and the second terms of (A1, . . . ,Ad−1,A1̃, . . . , Ãd−1, Q̃)⋆Ψ(T1) are equal
to the ones of Ψ(T2), and we can conclude that

(A1, . . . ,Ad−1,A1̃, . . . , Ãd−1, Q̃)⋆Ψ(T1) = Ψ(T2).

To complete the proof we observe that matrices A1, . . . ,Ad−1, Ã1, . . . , Ãd−1 and Q̃
are invertible by construction, hence Ψ(T1) and Ψ(T2) are isomorphic as (2d−1)-
tensors.

Example 3.2.4 (Running example). Consider the tensor T1 from Example 3.2.2
under the action of matrices

A =

(︄
1 0
0 1

)︄
, B =

(︄
0 1
1 0

)︄
, C =

⎛⎜⎝0 0 1
0 1 0
1 0 0

⎞⎟⎠ .

We obtain the monomially isomorphic tensor

T2 = (A,B,C)⋆T1 = e1⊗ e2⊗ e3 + e2⊗ e1⊗ e2 + e1⊗ e1⊗ e1

and it can be seen that Ψ(T1) is isomorphic to Ψ(T2) via the matrices (A,B, Ã, B̃,C̃),
where

Ã =

(︄
A 0
0 C

)︄
, B̃ =

(︄
A 0
0 C

)︄
, C̃ =C

as in the proof of Proposition 3.2.3.

Now we show the converse.

Proposition 3.2.5. If Ψ(T1) and Ψ(T2) are isomorphic, then T1 and T2 are monomi-
ally isomorphic.

Proof. Since Ψ(T1) and Ψ(T2) are isomorphic, there exist invertible matrices

A1, . . . ,Ad−1, Ã1, . . . , Ãd−1, Q̃ ∈ GL(n1)×·· ·×GL(nd−1 +nd)×GL(nd)

such that
(A1, . . . ,Ad−1, Ã1, . . . , Ãd−1, Q̃)⋆Ψ(T1) = Ψ(T2).
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We want to exhibit d− 1 invertible matrices A′1, . . . ,A
′
d−1 and a monomial matrix

Q′ such that (A′1, . . . ,A
′
d−1,Q

′) ⋆T1 = T2. In particular, we will show that A′i = A
for every i = 1, . . . ,d− 1. First, we claim that Q̃ is a monomial matrix. Consider
(In1, . . . , Ind−1, In1+nd , . . . , Ind−1+nd , Q̃)⋆Ψ(T1) and use Q̃v(d)id = ∑

nd
j=1 Q̃ j,id v(d)j

∑
i1,...,id ,

j1,..., jd−1

T1(i1, . . . , id)T1( j1, . . . , jd−1, id)v
(1)
i1 ⊗·· ·⊗ v(d−1)

id−1

⊗ (v(1)j1 ,0)⊗·· ·⊗ (v(d−1)
jd−1

,0)⊗
nd

∑
k=1

Q̃k,id v(d)k

+ ∑
i1,...,id

T1(i1, . . . , id)v
(1)
i1 ⊗·· ·⊗ v(d−1)

id−1
⊗ (0,v(d)id )⊗·· ·⊗ (0,v(d)id )⊗

nd

∑
k=1

Q̃k,id v(d)k .

(3.7)

If we project it to v(d)k along the last space Vd we obtain

∑
i1,...,id ,

j1,..., jd−1

Q̃k,id T1(i1, . . . , id)T1( j1, . . . , jd−1, id)v
(1)
i1

⊗·· ·⊗ v(d−1)
id−1

⊗ (v(1)i1 ,0)⊗·· ·⊗ (v(d−1)
id−1

,0)

+ ∑
i1,...,id

Q̃k,id T1(i1, . . . , id)v
(1)
i1 ⊗·· ·⊗ v(d−1)

id−1
⊗ (0,v(d)id )⊗·· ·⊗ (0,v(d)id ).

(3.8)

Now consider Eq. (3.8) as a 2-tensor in
(︂⨂︁d−1

i=1 Vi

)︂
⊗
(︂⨁︁d−1

i=1 (Vi⊕Vd)
)︂

. With
this new view, we obtain
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∑
id

Q̃k,id

[︄(︄
∑

i1,...,id−1

T1(i1, . . . , id)v
(1)
i1 ⊗·· ·⊗ v(d−1)

id−1

)︄

⊗

(︄
∑

j1,..., jd−1

T1( j1, . . . , jd−1, id)(v
(1)
j1 ,0)⊗·· ·⊗ (v(d−1)

jd−1
,0)

)︄]︄

+∑
id

Q̃k,id

(︄
∑

i1,...,id−1

T1(i1, . . . , id)v
(1)
i1 ⊗·· ·⊗ v(d−1)

id−1

)︄
⊗ (0,v(d)id )⊗·· ·⊗ (0,v(d)id ) =

∑
id

Q̃k,id

[︄(︄
∑

i1,...,id−1

T1(i1, . . . , id)v
(1)
i1 ⊗·· ·⊗ v(d−1)

id−1

)︄
⊗(︄

∑
j1,..., jd−1

T1( j1, . . . , jd−1, id)(v
(1)
j1 ,0)⊗·· ·⊗ (v(d−1)

jd−1
,0)+(0,v(d)id )⊗·· ·⊗ (0,v(d)id )

)︄]︄
,

(3.9)

having rank at most the number of non-zero elements of Q̃k,·, the k-th row of
the matrix Q̃, but at least 1 since Q̃ is invertible. Now consider the action of
(A1, . . . ,Ad−1, Ã1, . . . , Ãd−1) on this tensor: the rank remains the same. If we repeat
this process for Ψ(T2), we obtain the following rank-1 tensor in

(︂⨂︁d−1
i=1 Vi

)︂
⊗(︂⨁︁d−1

i=1 (Vi⊕Vd)
)︂

(︄
∑

i1,...,id−1

T2(i1, . . . , id−1,k)v
(1)
i1 ⊗·· ·⊗ v(d−1)

id−1

)︄
⊗(︄

∑
j1,..., jd−1

T2( j1, . . . , jd,k)(v
(1)
i1 ,0)⊗·· ·⊗ (v(d−1)

id−1
,0)+(0,v(d)k )⊗·· ·⊗ (0,v(d)k )

)︄
.

(3.10)

From the equality of the ranks, Q̃k,· must have exactly a non-zero element for each k,
and hence, Q̃ is a monomial matrix of the form PD, where D = diag(α1, . . . ,αnd) is
a diagonal matrix and P is a permutation matrix corresponding to the permutation σ

in Snd .

Without loss of generality, suppose that the permutation σ of the monomial
matrix Q̃ is the identity. This avoids the use of σ on the index of v(d)id . Consider again

Ψ(T2) and its projection to v(d)k along Vd as in Eq. (3.10). We project on elements
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of the basis of
⨁︁d−1

i=1 (Vi⊕Vd). For elements of the form (v(1)ℓ1
,0)⊗·· ·⊗ (v(d−1)

ℓd−1
,0)

we get

proj
(v(1)ℓ1

,0)⊗···⊗(v(d−1)
ℓd−1

,0)

(︃
proj

v(d)k
(Ψ(T2))

)︃
=

T2(ℓ1, . . . , ℓd−1,k) ∑
i1,...,id−1

T2(i1, . . . , id−1,k)v
(1)
i1 ⊗·· ·⊗ v(d−1)

id−1
.

(3.11)

In particular, it is a multiple of ∑i1,...,id−1
T2(i1, . . . , id−1,k)v

(1)
i1 ⊗·· ·⊗v(d−1)

id−1
for every

choice of ℓ1, . . . , ℓd−1. When we consider elements different from (v(1)ℓ1
,0)⊗·· ·⊗

(v(d−1)
ℓd−1

,0), the projection is always zero, except for the case (0,v(d)k )⊗·· ·⊗ (0,v(d)k )

proj
(0,v(d)ik

)⊗···⊗(0,v(d)ik
)

(︃
proj

v(d)k
(Ψ(T2))

)︃
=

∑
i1,...,id−1

T2(i1, . . . , id−1,k)v
(1)
i1 ⊗·· ·⊗ v(d−1)

id−1
.

(3.12)

Hence, every projection of proj
v(d)k

(Ψ(T2)) is a multiple of

∑
i1,...,id−1

T2(i1, . . . , id−1,k)v
(1)
i1 ⊗·· ·⊗ v(d−1)

id−1

and the linear space Vk generated by all the projections is generated by the (d−1)-
tensor in Eq. (3.12). Consider now the projection to v(d)k of (A1, . . . ,Ad−1,A1̃, . . . ,

Ãd−1, Q̃)⋆Ψ(T1), that is the (2d)-tensor

αk

(︄
∑

i1,...,id−1

T1(i1, . . . , id−1,k)A1v(1)i1 ⊗·· ·⊗Ad−1v(d−1)
id−1

)︄
⊗(︄

∑
j1,..., jd−1

T1( j1, . . . , jd−1,k)Ã1(v
(1)
j1 ,0)⊗·· ·⊗ Ãd−1(v

(d−1)
jd−1

,0)+

(︂
Ã1(0,v

(d)
k )⊗·· ·⊗ Ãd−1(0,v

(d)
k )
)︂)︄

.

(3.13)
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Again, if we project to any element of the basis of
⨂︁d−1

i=1 (Vi⊕Vd), we obtain a
multiple of the (d−1)-tensor

αk ∑
i1,...,id−1

T1(i1, . . . , id−1,k)A1v(1)i1 ⊗·· ·⊗Ad−1vd−1
id−1

. (3.14)

By hypothesis, the space generated by these projections is equal to Vk, the space
generated by the same projections of Ψ(T2), that can be written as

Vk = ⟨ ∑
i1,...,id−1

T2(i1, . . . , id−1,k)v
(1)
i1 ⊗·· ·⊗ v(d−1)

id−1
⟩

= ⟨αk ∑
i1,...,id−1

T1(i1, . . . , id−1,k)A1v(1)i1 ⊗·· ·⊗Ad−1v(d−1)
id−1
⟩.

Hence there exists a non-zero λk in Fq such that

∑
i1,...,id−1

T2(i1, . . . , id−1,k)v
(1)
i1 ⊗·· ·⊗ v(d−1)

id−1

= λkαk ∑
i1,...,id−1

T1(i1, . . . , id−1,k)A1v(1)i1 ⊗·· ·⊗Ad−1v(d−1)
id−1

.
(3.15)

Tensorizing Eq. (3.15) with v(d)k and taking the sum on k, we have that T1 and
T2 are monomially isomorphic via (A1, . . . ,Ad−1,Q′), where Q′ = D′P with D′ =
diag(λ1α1, . . . ,λnd αnd), and hence we have the thesis.

Example 3.2.6 (Running example). Recall the tensors T1,T2,Ψ(T1) from examples
3.2.2 and 3.2.4. The tensor

Ψ(T2) = e1⊗ e2⊗ (e1,0)⊗ (e2,0)⊗ e3 + e2⊗ e1⊗ (e2,0)⊗ (e1,0)⊗ e2

+ e1⊗ e1⊗ (e1,0)⊗ (e1,0)⊗ e1 + e1⊗ e2⊗ (0,e3)⊗ (0,e3)⊗ e3

+ e2⊗ e1⊗ (0,e2)⊗ (0,e2)⊗ e2 + e1⊗ e1⊗ (0,e1)⊗ (0,e1)⊗ e1

is isomoprhic to Ψ(T1) via the invertible matrices (A,B, Ã, B̃,C). We want to prove
that T1 is monomially isomorphic to T2 via matrices (A,B,C). In particular, we first
show that C is monomial.
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Let C = (ci j) and consider (I2, I2, I5, I5,C)⋆Ψ(T1)

e1⊗ e1⊗ (e1,0)⊗ (e1,0)⊗ (c1,1e1 + c2,1e2 + c3,1e3)

+ e2⊗ e2⊗ (e2,0)⊗ (e2,0)⊗ (c1,2e1 + c2,2e2 + c3,2e3)

+ e1⊗ e2⊗ (e1,0)⊗ (e2,0)⊗ (c1,3e1 + c2,3e2 + c3,3e3)

+ e1⊗ e1⊗ (0,e1)⊗ (0,e1)⊗ (c1,1e1 + c2,1e2 + c3,1e3)

+ e2⊗ e2⊗ (0,e2)⊗ (0,e2)⊗ (c1,2e1 + c2,2e2 + c3,2e3)

+ e1⊗ e2⊗ (0,e3)⊗ (0,e3)⊗ (c1,3e1 + c2,3e2 + c3,3e3).

Projecting this tensor to e2 from the basis of the last space F3
2 gives

c2,1e1⊗ e1⊗ (e1,0)⊗ (e1,0)+ c2,2e2⊗ e2⊗ (e2,0)⊗ (e2,0)

+ c2,3e1⊗ e2⊗ (e1,0)⊗ (e2,0)+ c2,1e1⊗ e1⊗ (0,e1)⊗ (0,e1)

+ c2,2e2⊗ e2⊗ (0,e2)⊗ (0,e2)+ c2,3e1⊗ e2⊗ (0,e3)⊗ (0,e3).

Now consider the above tensor as a 2-tensor in the space(︁
F2

2⊗F2
2
)︁
⊗
(︁(︁
F2

2⊕F3
2
)︁
⊗
(︁
F2

2⊕F3
2
)︁)︁

.

We have

c2,1 (e1⊗ e1)⊗
(︁
(e1,0)⊗ (e1,0)+(0,e1)⊗ (0,e1)

)︁
+ c2,2 (e2⊗ e2)⊗

(︁
(e2,0)⊗ (e2,0)+(0,e2)⊗ (0,e2)

)︁
+ c2,3 (e1⊗ e2)⊗

(︁
(e1,0)⊗ (e2,0)+(0,e3)⊗ (0,e3)

)︁
.

(3.16)

This 2-tensor has rank at most the number of non-zero elements in the row (c2,1,c2,2,c2,3).
This rank does not change when we apply the remaining part of the action, that is
the element (A,B, Ã, B̃, I3). If we take the same projection to e2 of F3

2 and the same
view as 2-tensor of Ψ(T2), we obtain the following rank-1 tensor

e2⊗ e1⊗ (e2,0)⊗ (e1,0)+ e2⊗ e1⊗ (0,e2)⊗ (0,e2)

=
(︂

e2⊗ e1

)︂
⊗
(︂
(e2,0)⊗ (e1,0)+(0,e2)⊗ (0,e2)

)︂
.

(3.17)

Since (A,B, Ã, B̃,C)⋆Ψ(T1) = Ψ(T2), we have that the rank of Eq. (3.16) is equal
to the rank of Eq. (3.17), hence the row (c2,1,c2,2,c2,3) has exactly one non-zero
element Using the same argument, projecting on different elements of the basis of F3

2,
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we show that every row of C has one non-zero entry. This shows that C is monomial
and we denote with σ be the permutation associated to C.
Now we deal with the last part of the proof, showing that T1 and T2 are monomial
isomorphic. Consider again Eq. (3.17). We can project to elements of the basis
of (F2

2⊗F3
2)⊗ (F2

2⊗F3
2). For example, when we project to (e2,0)⊗ (e1,0), we

have e2⊗ e1. Similarly, projecting to (0,e2)⊗ (0,e2) produces again e2⊗ e1. Other
projections to (0,ei)⊗(0,e j) with i ̸= j, or to mixed elements like (ei,0)⊗(0,e j) give
us the zero tensor. In particular, the non-zero projections are multiples of e2⊗e1. We
denote the vector space generated by all these projections with V2. This space must
be equal to the span of all the same projections (up to σ ) of (A,B, Ã, B̃,C)⋆Ψ(T1).
As an example, we first project to eσ−1(2) of F3

2, and then to (e1,0)⊗ (e2,0). We
obtain a multiple of the 2-tensor

∑
i, j

T1(i, j,2)Aei⊗Be j.

The vector space generated by these projections is exactly V2 since (A,B, Ã, B̃,C)⋆

Ψ(T1) is equal Ψ(T2). In other words,

V2 = ⟨e2⊗ e1⟩= ⟨∑
i, j

T1(i, j,2)Aei⊗Be j⟩.

Hence, there exists a non-zero scalar λ2 (in this case equal to 1) such that

e2⊗ e1 = ∑
i, j

T1(i, j,2)Aei⊗Be j.

We repeat the process with other elements of the basis of F3
2, both for Ψ(T2) and for

(A,B, Ã, B̃,C)⋆Ψ(T1). Then, we tensorise the projections of Ψ(T2) with ek and the
ones of (A,B, Ã, B̃,C)⋆Ψ(T1) with eσ−1(k). Taking the sum on k gives us

T2 =
3

∑
k=1

∑
i, j

T1(i, j,2)Aei⊗Be j⊗ eσ−1(k) = (A,B,C)⋆T1.

Therefore, T1 and T2 are monomially equivalent.

The combination of the two results above gives us the main result of this section.
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Theorem 3.2.7. The problem d-TI∗ polynomially reduces to (2d−1)-TI. Moreover,
d-TI∗ is TI-complete.

Proof. Given an instance (T1,T2) of d-TI∗, we can build an instance (Ψ(T1),Ψ(T2))

of (2d−1)-TI. If we call an oracle for (2d−1)-TI on the latter pair of tensors, then
we can decide the original monomial isomorphism: Proposition 3.2.3 shows that
Ψ(T1) and Ψ(T2) are isomorphic if T1 and T2 are monomially isomorphic. On the
other hand, Proposition 3.2.5 shows that if Ψ(T1) and Ψ(T2) are isomorphic, then T1

and T2 are monomially isomorphic. Since the map Ψ is polynomially computable,
this is a correct and polynomial-time reduction.

Let us analyze the sizes of the reduction Ψ. It takes a d tensor of size n1×·· ·×nd

and returns a (2d−1)-tensor of size n1×·· ·×nd−1×(n1+nd)×·· ·×(nd−1+nd)×
nd . We will use this reduction to link Code Equivalence problems in the following
section, but this result could be of independent interest and shows how powerful is
the TI class [45]. In particular, Theorem 3.2.7 proves that for every d, d-TI∗ is in the
class TI. Moreover, a trivial reduction can be found from d-TI to (d +1)-TI∗ (send
T to T ⊗1), hence for d ≥ 4 we have that d-TI∗ is TI-complete.

3.3 Relations between Code Equivalence Problems

In this section, we show how to reduce the code equivalence problem for sum-rank
codes to the one in the rank metric. A reduction is given in [74], but it assumes
that the automorphism group of the obtained rank code is trivial in the sense of
Subsection 2.4.3. We recall the technique from [74], and we observe how this kind
of reduction (sending a tuple of elements of Fm

q to a block-diagonal matrix) does not
work without the trivial automorphisms assumptions.

Let C be a sum-rank code with basis {C1, . . . ,Ck}, where Ci =
(︂

C(1)
i , . . . ,C(d)

i

)︂
is a tuple of matrices. We denote with Φ the map from the set of sum-rank codes to
the set of matrix codes used in [74]

Φ(⟨C1, . . . ,Ck⟩) = ⟨W1, . . . ,Wk⟩,

where Wi is the (∑i ni)× (∑i ni) block diagonal matrix with the elements of Ci on
the diagonal. We recall that if the automorphisms group of the image of Φ is not
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trivial, then, given an isometry in the rank metric, we cannot retrieve an isometry in
the sum-rank setting since the two codes are not equivalent.

Example 3.3.1. Consider the field F2 and the one-dimensional sum-rank codes C

and D with parameters d = 2,n1 = 3,n2 = 2,m1 = m2 = 2 generated by

C1 =

⎛⎜⎝1 0
0 0
0 0

⎞⎟⎠ , C2 =

(︄
1 0
0 1

)︄
and D1 =

⎛⎜⎝1 0
0 1
0 0

⎞⎟⎠ , D2 =

(︄
0 0
0 1

)︄
,

respectively. It can be seen that C and D are not equivalent since there is not any
sum-rank isometry between them: the permutation must be the identity since n1 ̸= n2

and do not exist invertible matrices (A,B) in GL(3)×GL(2) such that AC1B is in
the space generated by D1 (just look at their ranks). However, if we consider Φ(C )

and Φ(D), we obtain the two one-dimensional matrix codes generated by

C′ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ and D′ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

respectively. We can see that Φ(C ) and Φ(D) are equivalent via the isometry given
by permutation matrices Pσ and Pτ , where σ = (2 4) is in S5 and τ = (2 3) is in S4.
In fact, PσC′Pτ = D′. This happens since the automorphisms groups of Φ(C ) and
Φ(D) are not trivial. For example, for Φ(C ) it contains the isometry (P(4 5),P(3 4)),
where (4 5) and (3 4) are permutations in S5 and S4, respectively.

The 3-TI problem is equivalent to the Code Equivalence in the rank metric CErk

since the former can be stated in terms of matrix spaces, and the admissible maps
between these spaces are exactly the isometries used for CErk (see [43]). A sketch
of the reduction is the following. To a matrix code C generated by C1, . . . ,Ck we
associate the 3-tensor in the space A⊗B⊗C

TC = ∑
i1,i2,i3

(Ci3)i1,i2
ai1⊗bi2⊗ ci3.
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In particular, A and B represent the spaces of rows and columns, respectively, while
C is the space representing the dimension of the code (or the elements in the basis).
Hence, a matrix can be represented as a 2-tensor in A⊗B, and the action (A,B)⋆M is
the matrix multiplication AMBt . The action regarding C is the map sending a k-uple
of matrices into another k-uple. Therefore, given two matrix codes C and D , with
bases C1, . . . ,Ck and D1, . . . ,Dk, equivalent via (A,B) and such that the invertible
matrix M sends the basis AC1B, . . . ,ACkB to D1, . . . ,Dk, the tensors TC and TD are
isomorphic via (A,Bt ,M). The vice versa is obtained similarly and we highlight
that there is no overhead in the sizes of tensors and matrix spaces obtained in both
directions.

Hence, we can resume the above observation in the following result.

Theorem 3.3.2. The problem CErk is TI-complete.

By the TI-hardness of CErk and since it can be reduced to CErs, we get that CErs
is TI-hard. If we want to show its TI-completeness, we need to prove that it is in TI,
presenting a reduction from a TI-complete problem, for instance 4-TI∗.

Lemma 3.3.3. The problem CErs is polynomially reducible to 4-TI∗.

Proof. We model a sum-rank code as a 4-tensor. Given a sum-rank code C with
parameters d,n1, . . . ,nd,m1, . . . ,md and basis {C1, . . . ,Ck}, let N be the maximum
among n1, . . . ,nd and M be the maximum among m1, . . . ,md . For each i from 1 to
d, we can embed an ni×mi matrix into an N×M one, filling it with zeros. Hence,
there are d embeddings gi such that

gi : Fni×mi
q → FN×M

q .

In the rest of the proof, we consider sum-rank codes embedded via the functions
gi, this means that we work with codes having parameters d,ni = N,mi = M for
every i = 1, . . . ,d. Let SR(d,N,M) be the set of sum-rank codes of parameters
d,ni = N,mi = M and let A,B,C,D be vector spaces of dimension N,M,k,d with
bases {ai}i, {bi}i, {ci}i and {di}i, respectively. Here, A and B denotes the row and
column spaces of the matrices, C denotes the dimension of the code, while D models
the factors of the sum-rank code. Hence, the code generated by {C1, . . . ,Ck} can be
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seen as the 4-tensor

∑
i1,...,i4

(︂
C(i4)

i3

)︂
i1,i2

ai1⊗bi2⊗ ci3⊗di4 .

The projection to a factor Fn j×m j
q is a matrix code, which can be seen as the 3-tensor

∑
i1,i2,i3

(︂
C( j)

i3

)︂
i1,i2

ai1⊗bi2⊗ ci3,

where the action of (A,B,M) is intended as the left-right multiplication for A and Bt ,
while M is a change of basis.

Let δi, j be the Kronecker’s delta and define the map

Φ :SR(d,N,M)→

(︄
d⨁︂

i=1

A

)︄
⊗

(︄
d⨁︂

i=1

B

)︄
⊗

(︄
d⨁︂

i=1

C

)︄
⊗D,

⟨C1, . . . ,Ck⟩

↦→ ∑
i1,...,i4

(︂
C(i4)

i3

)︂
i1,i2

(δi4,1ai1, . . . ,δi4,dai1)

⊗ (δi4,1bi2, . . . ,δi4,dbi2)⊗ (δi4,1ci3, . . . ,δi4,dci3)⊗di4 .

(3.18)

Now we show that sum-rank codes C and D , with bases {C1, . . . ,Ck} and
{D1, . . . ,Dk}, are equivalent if and only if Φ(C ) and Φ(D) are monomially isomor-
phic.

“ =⇒ ”. Suppose that C and D are linear equivalent via the matrices A1, . . . ,Ad ,
B1, . . . ,Bd and the permutation σ in Sd . Suppose that, for every i, Mi is the k× k
invertible matrix sending the basis {AiC

(σ(i))
j Bi} j to the basis {D(i)

j } j. Then we
define the matrices

L̃ =

⎛⎜⎜⎜⎜⎝
A1 0 . . . 0
0 A2 . . . 0
...

... . . . ...
0 0 . . . Ad

⎞⎟⎟⎟⎟⎠ , R̃ =

⎛⎜⎜⎜⎜⎝
Bt

1 0 . . . 0
0 Bt

2 . . . 0
...

... . . . ...
0 0 . . . Bt

d

⎞⎟⎟⎟⎟⎠ ,
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S̃ =

⎛⎜⎜⎜⎜⎝
M1 0 . . . 0
0 M2 . . . 0
...

... . . . ...
0 0 . . . Md

⎞⎟⎟⎟⎟⎠ , and Q̃ = Pσ .

We can see that (L̃, R̃, S̃, Q̃)⋆Φ(C ) = Φ(D), in fact

∑
i1,...,i4

(︂
C(i4)

i3

)︂
i1,i2

(0, . . . ,Ai1ai1, . . . ,0)

⊗ (0, . . . ,Bi2bi2, . . . ,0)⊗ (0, . . . ,Mi3ci3, . . . ,0)⊗dσ(i4),

(3.19)

and this, by construction, is exactly Φ(D).

“⇐= ”. Suppose that Φ(C ) and Φ(D) are monomially isomorphic via invertible
matrices L, R, S and the monomial matrix Q = DP. We can see matrices L, R and S
as block matrices, for example, we have

L =

⎛⎜⎜⎜⎜⎝
L11 . . . L1d

L21 . . . L2d
... . . . ...

Ld1 . . . Ldd

⎞⎟⎟⎟⎟⎠ ,

where Li j is an N×N matrix for every i and j. Analogously, R and S have the
same structure, with blocks of dimension M×M and k× k, respectively. Now, for
simplicity, we will focus on the action of L on Φ(C ), but the same argument can be
used for R and S. As in the proof of Proposition 3.2.5, we assume that the matrix
Q is the identity matrix, otherwise we need to take care of the permutation σ in the
indexes and the scalars of D. We write projdk

((L,R,S,Q)⋆Φ(C ))

∑
i1,i2,i3

(︂
C(k)

i3

)︂
i1,i2

(L1kai1, . . . ,Ldkai1)

⊗ (R1kbi2 , . . . ,Rdkbi2)⊗ (S1kci3, . . . ,Sdkci3).

(3.20)

Consider the same projection of Φ(D)

∑
i1,i2,i3

(︂
D(k)

i3

)︂
i1,i2

(0, . . . ,ai1, . . . ,0)⊗ (0, . . . ,bi2, . . . ,0)⊗ (0, . . . ,ci3, . . . ,0), (3.21)
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this tensor is equal to the one of Eq. (3.20), and this holds for every k. Now consider
the tensor

v(k)ℓ2,ℓ3
= (0, . . . , bℓ2⏞⏟⏟⏞

k-th

, . . . ,0)⊗ (0, . . . , cℓ3⏞⏟⏟⏞
k-th

, . . . ,0).

The projection to v(k)ℓ2,ℓ3
of projdk

(Φ(D)) is given by

∑
i1

(︂
D(k)
ℓ3

)︂
i1,ℓ2

(0, . . . ,ai1, . . . ,0), (3.22)

while, for (L,R,S,Q)⋆Φ(C ), we have

∑
i1,i2,i3

(Rkk)ℓ2,i2 (Skk)ℓ3,i3

(︂
C(k)

i3

)︂
i1,i2

(L1kai1, . . . ,Ldkai1). (3.23)

By hypothesis, Eq. (3.22) and Eq. (3.23) are equal. Then, for k̄ ̸= k, we have that
Lk̄k = 0. We can use the same argument for R and S, using the following tensors and
the projections to them

(0, . . . , aℓ1⏞⏟⏟⏞
k-th

, . . . ,0)⊗ (0, . . . , cℓ3⏞⏟⏟⏞
k-th

, . . . ,0) ;

(0, . . . , aℓ1⏞⏟⏟⏞
k-th

, . . . ,0)⊗ (0, . . . , bℓ2⏞⏟⏟⏞
k-th

, . . . ,0).

Finally, we obtain that L, R and S are block diagonal of the form

L =

⎛⎜⎜⎜⎜⎝
L11 0 . . . 0
0 L22 . . . 0
... . . . ...
0 . . . 0 Ldd

⎞⎟⎟⎟⎟⎠ , R =

⎛⎜⎜⎜⎜⎝
R11 0 . . . 0
0 R22 . . . 0
... . . . ...
0 . . . 0 Rdd

⎞⎟⎟⎟⎟⎠ ,

and S =

⎛⎜⎜⎜⎜⎝
S11 0 . . . 0
0 S22 . . . 0
... . . . ...
0 . . . 0 Sdd

⎞⎟⎟⎟⎟⎠ .
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Since the matrices L, R and S are invertible, so are the matrices on their diagonal.
We can conclude that codes C and D are equivalent via matrices L11, . . . ,Ldd ,
Rt

11, . . . ,R
t
dd and the permutation σ .

Example 3.3.4. Let C be the sum-rank code with parameters d = 2,n1 = 3,n2 =

m1 = m2 = 2 generated by {C1,C2}, where

C(1)
1 =

⎛⎜⎝1 1
0 0
1 0

⎞⎟⎠ , C(2)
1 =

(︄
0 0
0 1

)︄
, and C(1)

2 =

⎛⎜⎝1 0
0 0
0 0

⎞⎟⎠ , C(2)
2 =

(︄
0 0
1 0

)︄
.

After applying the embeddings gi from above, we can see C as a sum-rank code with
parameters d = 2,n1 = n2 = 3,m1 = m2 = 2 and we have

C(1)
1 =

⎛⎜⎝1 1
0 0
1 0

⎞⎟⎠ , C(2)
1 =

⎛⎜⎝0 0
0 1
0 0

⎞⎟⎠ , and C(1)
2 =

⎛⎜⎝1 0
0 0
0 0

⎞⎟⎠ , C(2)
2 =

⎛⎜⎝0 0
1 0
0 0

⎞⎟⎠ .

Using the notation from the previous proof, define A = F3
2, B = F2

2, C = F2
2 and

D= F2
2. The image of C under Φ is the following 4-tensor in (A⊕A)⊗ (B⊕B)⊗

(C⊕C)⊗D

Φ(C ) = (e1,0)⊗ (e1,0)⊗ (e1,0)⊗ e1

+(e1,0)⊗ (e2,0)⊗ (e1,0)⊗ e1

⎫⎪⎬⎪⎭C(1)
1

+(e3,0)⊗ (e1,0)⊗ (e1,0)⊗ e1

+(e1,0)⊗ (e1,0)⊗ (e2,0)⊗ e1

}︂
C(1)

2

+(0,e2)⊗ (0,e2)⊗ (0,e1)⊗ e2

}︂
C(2)

1

+(0,e2)⊗ (0,e1)⊗ (0,e2)⊗ e2.
}︂

C(2)
2

Using the same strategy adopted in the proof of Theorem 3.2.7, and since the
map Φ is polynomial-time computable, the above result implies that CErk reduces
to 4-TI∗. This fact, combined with Theorem 2.5.2 and Theorem 3.3.2 leads to the
following corollary.

Corollary 3.3.5. The problem CErs is TI-complete. In particular, it is polynomially
reducible to CErk.



3.3 Relations between Code Equivalence Problems 47

A “proof” of the above result can be seen in Figure 5.5, showing the path of the
reduction from CErs to CErk.



Chapter 4

Representations of Group Actions
and their Applications in
Cryptography

4.1 Introduction

Now, we want to answer the following question, tailored to the group actions-based
cryptography.

How many times can I use my secret key?

In the group actions scenario, the secret key is an element g, and the problem of
retrieving g from x and g ⋆ x is assumed hard for certain actions. However, some
constructions need to exhibit more than one pair of the form (x,g⋆ x), for the same
g. Does the security still hold? We show that some well-known actions linked
to cryptography are not safe in this setting, and we provide some tools to analyze
this fact. This chapter is based on a joint work with Antonio J. Di Scala and it is
currently under review [29]. However, the authors would like to thank the anonymous
reviewers for their comments, which helped to improve the overall quality of this
work.
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4.1.1 Group actions in cryptography

In recent years, the topic of cryptographic group actions has received a lot of attention.
One of the main motivations of its study is the fact that this framework provides post-
quantum assumptions. The topic was introduced by the seminal articles of Brassard
and Yung [18] and Couveignes [26]. Moreover, the work of Couveignes had a focus
on elliptic curves isogenies, on which more recent works rely [23, 1]. In the last years,
many other cryptographic group actions have been proposed, concerning the general
linear group [50, 74, 83], multivariate polynomials [68], lattices [37] and linear codes
[5]. This framework enables the design of a lot of primitives; the most famous ones
are key exchanges [76, 26, 23] and digital signatures [26, 82, 33]. Notably, the 2023
NIST’s call for digital signatures [66] lists three candidates based on group actions
in round 1 (MEDS [24], LESS [4] and ALTEQ [83]). The design space provided
by these objects is huge, and it depends on the features of the employed action: for
general actions in literature, we can find PRFs [1], ring signatures [11], updatable
encryption schemes [55] and commitments [18]; with the additional requirement of
having a commutative action, we can also build oblivious transfers [1], oblivious
PRFs [48], group signatures [10] and verifiable random functions [53].

4.1.2 Original contribution

Given a group action (G,X ,⋆), it is called one-way if the map ⋆ is non-invertible:
given y and x = g⋆ y, it is hard to find g. This is the main assumption at the core of
the majority of the cryptographic constructions. However, many primitives require
stronger assumptions than the previous one to prove their security. For example, the
weak unpredictability (Definition 2.3.4) and the weak pseudorandomness (Definition
2.3.5) properties are introduced in [1]. The former can be seen as the impossibility,
for a probabilistic and polynomial time (PPT) adversary, to compute a set element x
such that g⋆ y is equal to x for a given y, whenever he sees a polynomial number of
pairs (xi,g⋆xi), for random xi. On the other hand, an action is weakly pseudorandom
if an adversary cannot distinguish whether its input contains a polynomial number of
pairs (xi,g⋆ xi) or (xi,yi), for random xi and yi.

In this work, we analyze when the above properties hold introducing a more
general assumption called multiple one-wayness (Definition 2.3.6), and we give
some tools to estimate their validity. This assumption is a relaxation of the one-way
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one, where a polynomial number of pairs of the form (x,g ⋆ x) are given to the
adversary, whose goal is to find g. We recall that in this setting, the commutativity
of the action is crucial. For actions that are commutative and transitive, seeing a
single sample of the form (x,g ⋆ x) is equivalent to seeing a polynomial number
of them. In fact, one can produce other random samples picking h1, . . . ,hl from G
and computing (hi ⋆ x,hi ⋆ (g⋆ x)) = (yi,g⋆ yi), setting yi = hi ⋆ x for every i. This
means that breaking multiple one-wayness directly implies breaking one-wayness
of the action. Since we want to investigate the case whether the latter holds, we set
ourselves in the non-Abelian scenario.

To study this new assumption, the main idea is that, if we linearize the group
action, with non-negligible probability the set {xi}i forms a basis of a certain linear
space. Using the knowledge of elements {g ⋆ xi}i, we can retrieve the secret g.
With tools from representation theory, we introduce the concept of group action
representation, which is given by a classical representation ρ : G→GL(Fn

q) endowed
with an injective map ι : X → Fn

q such that they are compatible with the group action,
i.e. it must hold that ρ(g)(ι(x)) = ι(g⋆ x). The integer n is called the dimension of
the representation. Then, we report some theoretical results on representations of
group actions and we introduce the q-linear dimension of a group action, denoted
with LinDimFq , given by the minimal integer such that there exists a representation
of such dimension

LinDimFq(G,X ,⋆) = min
{︁

dimFq(ρ, ι) | (ρ, ι) is a representation of (G,X ,⋆)
}︁
.

We show that, under some hypothesis on the representation and if the q-linear
dimension of the group action is polynomial in the security parameter, multiple
one-wayness, and hence the weak unpredictability and the weak pseudorandomness
assumptions, do not hold. In the Abelian case, this implies that, if this attack is
doable, an action that has small linear dimension is not even one-way.
One can see that the requirements of our attack are satisfied by a group action where
X is a vector space and ⋆ acts linearly. This implies that a large class of well-known
cryptographic group actions are not weakly unpredictable nor weakly pseudorandom.
In particular, we present some attacks to the above assumptions for the group actions
on linear codes related to the ones underlying the LESS and the MEDS signature
schemes, even if this does not impact their security since they rely only on the
(non-multiple) one-wayness of the actions. In particular, the actions used in those
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schemes involve a systematic form SF. These variants are equivalent to the ones
without SF in the case of just one oracle call, while, for more calls, they are not.
More generally, since we show that the action on d-tensors does not satisfy the
above assumptions, all the actions linked to isomorphism problems in the class TI
introduced in [43] are not weakly unpredictable nor weakly pseudorandom. As a
practical result, such non-commutative group actions cannot be used in the design of
Naor-Reingold PRFs [1], updatable key encryption schemes [55] and primitives that
expose an oracle that returns samples of the form (x,g⋆ x), with a secret g.

As a strictly mathematical result, we provide some bounds on the action of
classical groups like the permutation group, the general linear group acting on a
vector space, and the cyclic group Zn acting on itself. The latter leads to an interesting
closed formula that can be of independent interest.

Concurrent works. In [7], the authors model the lattice isomorphism problem
as a group action and study its properties. Their approach is similar to ours, even
if it is less general and they focus on a particular action. For instance, they define
that a distribution on the set X induces linear independence whenever the sampled
elements, under a certain function, are linearly independent with high probability. We
generalize this property in the setting of group actions representations in Definition
4.3.1. Moreover, it is shown that the lattice isomorphism action is not weakly
unpredictable nor weakly pseudorandom like we do with the code equivalence and
other actions.

4.2 Representations and the Linear Dimension of a
group action

In this section, we explore the concept of representations of finite groups when we
endow them with an injection of the set X into a vector space. Such injection must
be “compatible” with the map ⋆, as we see in the following definition.

Definition 4.2.1. The pair (ρ, ι) is a representation of the group action (G,X ,⋆)

over F if ρ : G→ GL(Fn) is a homomorphism of groups, ι : X → Fn is injective and
ρ(g)(ι(x)) = ι(g⋆ x) for every g in G and x in X. The integer n is said dimension of
the representation and is denoted with dimF(ρ, ι).
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Given a group action (G,X ,⋆) and a representation of G, it is natural to ask
whether a compatible injection ι is admitted. In the following, we look for necessary
and sufficient conditions for the existence of an injection ι given a representation ρ

of G.

Proposition 4.2.2. Let (G,X ,⋆) be a group action, let N be the kernel of the ho-
momorphism G→SX and let O = X/G be the space of orbits of the action of G
on X i.e. the quotient of X by the action of G. Let ρ : G→ GL(Fn

q) be a linear
representation. The following are equivalent

(i) there is an injection ι : X → Fn
q such that ρ(g)(ι(x)) = ι(g⋆ x) for every g in

G and x in X,

(ii) there is a ρ-invariant subspace V⊂ Fn
q such that

{g ∈ G : ρ(g)|V = Id}= N

and maps τ : O → X, υ : O → V such that for all o ∈ O:⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ(o) ∈ o,

ρ(G)υ(o) = ρ(Gτ(o)),

if o ̸= o′ ∈ O then ρ(G)υ(o)
⋂︁

ρ(G)υ(o′) = /0.

Proof. (i) =⇒ (ii). Let V = spanFq
(ι(X)) be the linear subspace generated by the

image of ι . If g ∈ N then ρ(g)(ι(x)) = ι(x) for all x ∈ X . So

N ⊂ {g ∈ G : ρ(g)|V = Id} ,

and hence N = {g ∈ G : ρ(g)|V = Id} because ι is injective.

For each o ∈ O choose any element τ(o) ∈ o and define υ as follows:

υ(o) = ι(τ(o)) .
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By construction, we have that τ(o) is in o. The second condition is as follows:

ρ(G)υ(o) = {ρ(g) : ρ(g)(υ(o)) = υ(o)}=
= {ρ(g) : ι(g⋆ τ(o)) = ι(τ(o))}=
= {ρ(g) : g⋆ τ(o) = τ(o)}=
= ρ(Gτ(o))

The third condition follows from the injectivity of ι since

ρ(G)υ(o)
⋂︂

ρ(G)υ(o′) = ι(G⋆ τ(o))
⋂︂

ι(G⋆ τ(o′)) .

(ii) =⇒ (i). Here we show how to define the injection ι : X → Fn
q. Let π : X →

X/G = O be the projection to the space of orbits. Let x ∈ X be any point and let
o = π(x) its projection. Let g ∈ G such that g⋆ τ(o) = x and define

ι(x) = ρ(g)(υ(o)) .

First of all notice that ι(x) is well defined. Indeed if for another g′ ∈ G we have
g′ ⋆ τ(o) = x then g′ = g ·h with h ∈ Gτ(o). So

ρ(g′)(υ(o)) = ρ(g ·h)(υ(o)) =
= ρ(g)(ρ(h)(υ(o))) =

= ρ(g)(υ(o))

since ρ(h) ∈ ρ(G)υ(o). Notice that ι is injective by the third condition. Indeed,
assume ι(x) = ι(y) where

x = gx ⋆ τ(o) and y = gy ⋆ τ(o′) .

So ι(x) = ι(y) means
ρ(gx)(υ(o)) = ρ(gy)(υ(o′)) ,

and then by the third condition, we get o= o′. Moreover, ρ(g−1
y gx) is in ρ(G)υ(o) and

hence ρ(g−1
y gx) is in ρ(Gτ(o)). Then there is h ∈ Gτ(o) such that ρ(g−1

y gx) = ρ(h)
and so ρ(h−1g−1

y gx) = Id. Thus h−1g−1
y gx is in N, which gives gx ⋆ τ(o) = gy ⋆ τ(o)

hence x = y and our ι is indeed injective. Finally, we check that ρ(g)(ι(x)) = ι(g⋆x)
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holds for every g in G and x in X . Let x = gx ⋆ τ(o) and let g be arbitrary in G, then

ρ(g)(ι(x)) = ρ(g)(ρ(gx)(υ(o)))

= ρ(ggx)(υ(o))

= ι(ggx ⋆ τ(o))

= ι(g⋆ (gx ⋆ τ(o)))

= ι(g⋆ x).

This completes the proof of the proposition.

For our analysis, the following metric gives a useful tool in the study of crypto-
graphic assumptions based on group actions.

Definition 4.2.3. Let (G,X ,⋆) be a group action. For every finite field Fq, the
q-linear dimension of (G,X ,⋆) is the integer

LinDimFq(G,X ,⋆) = min
{︁

dimFq(ρ, ι) | (ρ, ι) is a representation of (G,X ,⋆)
}︁
.

Remark 4.2.4. Observe that the q-linear dimension is well-defined since the set

SFq,(G,X ,⋆) =
{︁

dimFq(ρ, ι) | (ρ, ι) is a representation of (G,X ,⋆)
}︁

is non-empty for every finite field Fq and every group action (G,X ,⋆).
Indeed, let X = {x1, . . . ,x|X |} and define Fq[X ] as the vector space of linear combi-
nations of the elements of X

Fq[X ] =

{︄
∑

j
c jx j : c j ∈ Fq

}︄
.

It can be shown that the dimension of Fq[X ] over Fq is |X |. Let ι be the map that
sends x j ∈ X to x j ∈ Fq[X ]. Moreover, let ρ be the map from G to GL(Fq[X ]) such
that ρ(g) is the permutation matrix associated to the invertible map

x ↦→ g⋆ x.

Hence, ρ(g)(ι(x))= ρ(g⋆x) and since Fq[X ]∼=F|X |q , we have that |X | is in SFq,(G,X ,⋆).



4.2 Representations and the Linear Dimension of a group action 55

The above remark tells us that the cardinality of |X | is an upper bound for the
linear dimension of a group action. Moreover, we can prove the following lower
bound.

Proposition 4.2.5. Let (G,X ,⋆) be a group action and N the kernel of the homomor-
phism G→SX . For every finite field Fq it holds that

LinDimFq(G,X ,⋆)≥

√︄
logq

(︃
|G|
|N|

)︃
.

In particular, when the action is faithful, LinDimFq(G,X ,⋆)≥
√︂

logq (|G|).

Proof. Consider the action of the quotient G/N on X

⋆/N : (gN,x) ↦→ g⋆ x.

It can be shown that it is indeed a group action and it is faithful. Moreover, if ρ is a
representation of G to Fn

q and ι an injection of X to Fn
q, then ρ can be extended to

ρ̃ : G/N→ GL(Fn
q), gN ↦→ ρ̃(gN) = ρ(g).

It holds that ρ̃(gN)(ι(x)) = ι(gN ⋆/N x) holds for every gN in G/N and x in X .
Since the action of G/N is faithful, ρ̃ is injective. Now we have that |G/N| =
|ρ̃(G/N)| ≤

⃓⃓
GL(Fn

q)
⃓⃓
. The cardinality of GL(Fn

q) is given by ∏
n−1
j=0 qn−q j and it

is upper bounded by qn2
. This implies |G/N| ≤ qn2

and hence n≥
√︂

logq(|G/N|),
leading to the thesis.

Moreover, whenever the set X is a vector space of dimension n on the field Fq

and the action of G is linear, i.e. g⋆ (λ1x1+λ2x2) = λ1(g⋆x1)+λ2(g⋆x2), we have
that

LinDimFq(G,X ,⋆)≤ n.

As we will see in the next sections, many group actions used in cryptography follow
the above structure, and hence, a practical upper bound of the linear dimension is
known.
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4.3 On Multiple One-Way Group Actions

Here we propose an attack on the assumptions presented in Subsection 2.3.1, and
a relation to the linear dimension. In particular, we will attack the multiple one-
wayness, and, as a direct consequence, this leads to an attack on both the weak
unpredictability and the weak pseudorandomness.

We need the following known combinatorial fact. Given v1, . . . ,vk uniformly
sampled from Fk

q, it is known that they form a basis with probability

k

∏
i=1

(1−q−i) = O(1−q−1).

This means that, for the uniform distribution on Fk
q, we have that the sampled

elements are linearly independent with non-negligible probability (with respect to
k). We need to generalize this fact for a group action (G,X ,⋆) and a representation
(ρ, ι).

Definition 4.3.1. Given a group action (G,X ,⋆), a distribution DX on X and a
representation (ρ, ι) of dimension n over Fq, we say that (ρ, ι) induces linear
independence with respect to DX if, given {x1, . . . ,xQ} sampled according to DX ,
with Q = poly (n), then there exists a negligible function µ(n) such that

Pr
[︁
⟨ι(x1), . . . , ι(xQ)⟩ ̸= Fn

q
]︁
≤ µ(n).

In particular, if X is a vector space, the uniform distribution over X induces
a linear independence. Due to the above definition, we can analyze whenever an
attacker can retrieve the secret g from a tuple of the form {(xi,g⋆ xi)}i.

Definition 4.3.2. Given the group action (G,X ,⋆), the representation (ρ, ι) is ad-
missible if the following hold

1. ι is polynomial time computable;

2. a preimage of ρ(g) can be found in polynomial time for every g in G.

Example 4.3.3. Let X = ⟨g⟩ be a cyclic group of prime cardinality p and let G =

(Z∗p, ·). Then, define a⋆h = ha for every a ∈ G and h ∈ X. We can define a group
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action representation of p-linear dimension equal to 1 as follows.

ρ : Z∗p→ Z∗p ∼= GLp(1), a ↦→ a

ι : ⟨g⟩ → F1
p, ga ↦→ a.

We can see that, even if finding a preimage of ρ is easy, computing ι means solving
the discrete logarithm problem, and hence, this is not an admissible representation
for the above action.

Now we are ready to state the attack to the multiple one-way assumption.

Proposition 4.3.4. Let λ be the security parameter. Given the group action (G,X ,⋆)

and two distributions DG and DX over G and X respectively, if there exists a field
Fq and an admissible representation (ρ, ι) which induces linear independence with
respect to DX with dimFq(ρ, ι) = poly (λ ), then the group action is not (DG,DX)-
multiple one-way.

Proof. Let A be the adversary having access to the oracle Πg. If n=LinDimF(G,X ,⋆),
then there exist ρ : G→ GL(Fn) and ι : X → Fn such that (ρ, ι) is admissible by
hypothesis. The strategy of the adversary is the following.

1. A performs a number of queries Q to the oracle Πg until he obtains the set
Y = {(xi,g⋆ xi)}i=1,...,n such that {ι(x1), . . . , ι(xn)} is a basis of Fn.

2. A evaluates ι on the set Y

{(ι(xi), ι(g⋆ xi))}i = {(ι(xi),ρ(g)(ι(xi)))}i.

3. Since {ι(x1), . . . , ι(xn)} is a basis of Fn, A can find the invertible matrix ρ(g)
and then inverting ρ , obtaining an element h in G such that ρ(h) = ρ(g).

Let us analyse this strategy. Since n = poly (λ ) and the representation induces
linear independence, A requires a polynomial number of queries to retrieve a set
Y with non-negligible probability in step 1. Step 2 is polynomial-time since the
representation is admissible and ι is evaluated at most 2Q times. Moreover, since
finding a preimage of ρ(g) is a polynomial-time task, the adversary A finds an
element h of G such that ρ(g) = ρ(h). This implies that the action of h on all the
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elements of X coincides with the one of g and h is in the coset gN. Therefore, the
action cannot be multiple one-way.

As a corollary, we easily get the following result.

Corollary 4.3.5. Let λ be the security parameter. Given the group action (G,X ,⋆)

and two distributions DG and DX over G and X respectively, if there exists a field
Fq and an admissible representation (ρ, ι) which induces linear independence with
respect to DX with dimFq(ρ, ι) = poly (λ ), then the group action is not (DG,DX)-
weakly unpredictable nor (DG,DX)-weakly pseudorandom.

Even if the requirements of the previous propositions are non-trivial, in the next
section we show how a large class of group action used in cryptography satisfy them.

4.3.1 Analysis of some group actions from cryptography

Here we propose some representations of known cryptographic group actions, start-
ing from the one concerning linear codes.

The hardness of the code equivalence problem has been used to build different
primitives [4, 24]. However, in practice, a slightly different action from the one
we define in the following is used, involving the systematic form of matrices. In
the rest of the section, we will always refer to the non-systematic form variant. We
refer to (Linear) Code Equivalence Problem as the following one: given two linearly
equivalent linear codes C and C ′, find an isometry between them. This problem can
be rephrased in the setting of group actions.

Definition 4.3.6. Let G = GL(Fk
q)×Mon(Fn

q), where Mon is the group of monomial
matrices, and let X = Fk×m

q be the set of k×m matrices with coefficients in Fq. The
(Linear) Code Equivalence Problem asks, on inputs M,M′ in X, to find (S,R) in G
such that M′ = SMR.
The action underlying this problem is given by (G,X ,⋆), where

⋆ : G×X → X , ((S,R),M) ↦→ SMR.

The map ⋆ for the above definition is given by the left-right multiplication of the
two matrices S and R.
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Remark 4.3.7. Observe that, even if for one sample (M,SMR) the code equivalence
problems with and without the systematic form are equivalent, the scenario changes
when more samples are involved and it is not known if this equivalence still holds.
In practice, the version with the systematic form is adopted for efficiency reasons:
the group that acts on the set is only Mon(Fn

q), and hence, it has a shorter bit
representation.

Corollary 4.3.8. The group action of the Code Equivalence Problem is not weak
unpredictable nor weak pseudorandom.

Proof. We will show that this action is not multiple one-way and consequently, we
get the thesis.
Since the space of k×n generator matrices is a vector space of dimension kn, we can
see it as Fkn and ι is the natural bijection. Since G is the product GL(Fk)×Mon(Fn),
we define the representation ρ as follows

ρ : G→ GL(Fkn), (S,R) ↦→ S⊗RT ,

where ⊗ denotes the Kronecker product. It can be seen that ρ(g)(ι(x)) = ι(g⋆ x)
for every g in G and x in X . Moreover, the computation of ι is polynomial time and
such is finding a preimage of ρ(S,R). Indeed, let A = S⊗RT and divide A in n×n
blocks. Let (i, j) be such that the block A(i, j) is non-zero and set R′ = AT

(i, j). Now
compute S′ as follows. Let u and v be two indexes such that R′uv is non-zero. Then,
for every i, j = 1, . . . ,k

S′i j =
A(i, j)uv

R′uv
.

In this way, we found a pair (S′,R′) such that the image through ρ is the same as
ρ(S,R) and, observing that computing S′ and R′ is a polynomial time task, we can
apply Proposition 4.3.4 and Corollary 4.3.5 to get the thesis.

Another problem having a linked group action that raised interest is the Tensor
Isomorphism Problem. It received a lot of attention both from a theoretical point of
view [43] and from a cryptographic point of view [50, 30].

Definition 4.3.9. Let d be a positive integer. Let G = Πd
i=1 GL(Fni

q ) and let X =⨂︁d
i=1F

ni
q be the set of d-tensors with coefficients in Fq. The map ⋆ : G×X → X is
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defined as

⋆ :

(︄
(A1, . . . ,Ad), ∑

i1,...,id

Ti1,...,id e1⊗·· ·⊗ ed

)︄
↦→ ∑

i1,...,id

Ti1,...,id A1e1⊗·· ·⊗Aded.

The d-Tensor Isomorphism Problem asks, on inputs T,T ′ in X, to find (A1, . . . ,Ad)

in G such that T ′ = (A1, . . . ,Ad)⋆T .

Corollary 4.3.10. The action of the d-Tensor Isomorphism is not weak unpredictable
nor weak pseudorandom.

Proof. The set of d-tensors in Fn1⊗·· ·⊗Fnd is a vector space of dimension N =

n1 · · ·nd . Therefore, ι is the natural bijection. The representation ρ is the Kronecker
product of matrices

ρ : G→ GL(FN), (A1, . . . ,Ad) ↦→ A1⊗·· ·⊗Ad

and it can be inverted iteratively with the computation from the proof of Corol-
lary 4.3.8; consider A1⊗ (A2⊗·· ·⊗Ad) and find matrices A′1 in GL(Fn1) and B1

GL(FN/n1) such that
A′1⊗B1 = A1⊗·· ·⊗Ad.

Then, we find A′2 in GL(Fn2) and B2 GL
(︂
F

N
n1n2

)︂
for which the following holds

A′2⊗B2 = B1.

Proceeding in this way, we find A′1, . . . ,A
′
d such that

A′1⊗·· ·⊗A′d = A1⊗·· ·⊗Ad.

Hence, we have the thesis using Proposition 4.3.4 and Corollary 4.3.5.

Due to the TI-completeness of d-Tensors Isomorphism [43], all the group actions
derived from problems in TI cannot be multiple one-way. In particular, the action
on matrix codes from [24] and the one on trilinear forms from [83]. This is easy to
see and we analyze the reductions between equivalence problems arising from group
actions.
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Suppose we have two group actions (G,X ,⋆) and (G′,X ′,⋆′) and a polynomial
time reduction Φ : X → X ′ such that, for every x,y in X

∃g ∈ G such that g⋆ x = y ⇐⇒ ∃g′ ∈ G′ such that g′ ⋆′Φ(x) = Φ(y). (4.1)

Even if these kinds of reductions concern decision problems, most of the time they
can be viewed as reductions between search problems, for instance like the ones in
[43, 41]. If so, we define

RΦ = {(g,g′) ∈ G×G′ | g⋆ x = y ⇐⇒ g′ ⋆′Φ(x) = Φ(y) , ∀x,y ∈ X}

and we denote with G′
Φ

the projection of RΦ to the second coordinate. Then, there
is a pair of maps

fΦ : G→ G′Φ, g ↦→ fΦ(g)

and
f ′Φ : G′Φ→ G, g′ ↦→ f ′Φ(g

′)

such that both (g, fΦ(g)) and ( fΦ(g′),g′) are in RΦ. With this notation, we can
conclude that the reduction Φ induces the following equation

Φ(g⋆ x) = fΦ(g)⋆′Φ(x).

Let us go back to group actions representations. Given a polynomial reduction Φ

between (G,X ,⋆) and (G′,X ′,⋆′) as in Eq. (4.1) and given a representation (ρ ′, ι ′)

for (G′,X ′,⋆′), we have that the tuple {xi,g ⋆ xi} is sent to {Φ(xi), fΦ(g) ⋆′Φ(x)}.
Using Proposition 4.3.4, we retrieve fΦ(g) in G′, and this implies the following
result.

Theorem 4.3.11. Let (G,X ,⋆) and (G′,X ′,⋆′) be two group actions. Suppose that
there exist two polynomial-time computable maps Φ : X→ X ′ and f ′

Φ
: G′

Φ
→G, with

G′
Φ
⊆ G′, such that g′ ⋆Φ(x) = Φ(y) if and only if f ′

Φ
(g′)⋆ x = y. Then if (G′,X ′,⋆′)

is not multiple one-way then neither (G,X ,⋆) is multiple one-way. As an application,
group actions derived from equivalence problems in the class TI for which there
exists a polynomial reduction Φ to the d-Tensors Isomorphism Problem having a
polynomial-time f ′

Φ
cannot be weakly unpredictable nor weakly pseudorandom.
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Proof. Assuming that (G′,X ′,⋆′) is not multiple one-way, we show that the action
(G,X ,⋆) is not multiple one-way. Calling the oracle Πg for (G,X ,⋆) multiple times,
we can apply the map Φ to the samples {xi,g⋆ xi} to obtain {Φ(xi),g′ ⋆′Φ(x)}, for
a certain g′ in G′. In this way, we can retrieve g′ and, after applying f ′

Φ
, we can

recover h = f ′
Φ
(g′) the coset gN of the kernel N. This breaks the multiple one-way

assumption for (G,X ,⋆).

Since the d-Tensor Isomorphism problem is TI-complete, Corollary 4.3.10 im-
plies that any group actions derived from equivalence problems in the class TI for
which there exists a reduction Φ to the d-Tensors Isomorphism Problem having a
polynomial-time f ′

Φ
cannot be weakly unpredictable nor weakly pseudorandom.

Observe that many reductions from [43, 41] satisfy the hypotheses of Theorem
4.3.11, hence, it is safe to avoid any of these group actions in the design of primitives
requiring weak unpredictability or weak pseudorandomness.

4.4 On the Linear Dimension of some Classical Groups

4.4.1 The symmetric group Sn

Let Sn be the symmetric group in n letters x1, · · · ,xn, i.e. it is the group of all
bijections of the set Xn = {x1, · · · ,xn}. The action is the trivial one, let τ be in Sn

and x j be in Xn. We define τ ⋆ x j = xτ( j).

Surprisingly, the n− 2 dimensional representation ρ : Sn → GL(Fn−2
p ) of the

symmetric group Sn, when p divides n, stated by L.E. Dickson in [34, Theorem, page
123] does not admit a compatible injection ι . We show that, in general, the linear
dimension of the symmetric group is n−1.

Proposition 4.4.1. For n > 2 we have

LinDimFq(Sn,Xn) = n−1 .

For n = 2:
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LinDimFq(S2,X2) =

⎧⎨⎩2 if 2 |q,

1 otherwise.

Proof. First we show that LinDimFq(Sn,Xn) ≥ n− 1. Indeed, assume that d =

LinDimFq(Sn,Xn) ≤ n− 2. Let ρ be a representation ρ : Sn → GL(Fd
q) and let

ι : X → Fd
q be an injective map such that

ρ(τ)(ι(x j)) = ι(τ ⋆ x j)

for all τ ∈Sn,x j ∈ Xn.

We have that the vectors of the set B = {ι(x1), · · · , ι(xd)} are either linearly
independent or one of them is a linear combination of the others. Assume that ι(x j)

is a linear combination of the other vectors of B. Namely,

ι(x j) = ∑
s ̸= j,1≤s≤d

csι(xs),

where the coefficients cs are in Fq.

Let τ from Sn be the transposition between x j and xn. Then

ρ(τ)(ι(x j)) = ρ(τ)

(︄
∑

s ̸= j,1≤s≤d
csι(xs)

)︄
= ∑

s̸= j,1≤s≤d
csρ(τ)ι(xs)

= ∑
s ̸= j,1≤s≤d

csι(τ ⋆ xs)

= ∑
s ̸= j,1≤s≤d

csι(xs)

= ι(x j).

So ρ(τ)(ι(x j)) = ι(τ ⋆ x j) = ι(xn) = ι(x j) which is a contradiction. Then, the
vectors of B are linearly independent and they form a basis of Fd

q . But then ι(xn−1)

is a linear combination of vectors of B and we can use a transposition between xn−1

and xn to get a contradiction as above. So LinDimFq(Sn,Xn)≥ n−1.
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Now let ρn : Sn→ GL(Fn
q) be the standard representation. Namely,

ρn(σ)(ei) = eσ(i)

where {e1, . . . ,en} is the canonical basis of Fn
q. Observe that the vector u = ∑

n
j=1 e j

is invariant by ρn, so we get a representation

ρñ : Sn→ GL(Fn
q/Fqu)

on the quotient linear space Fn
q/Fqu∼= Fn−1

q :

ρñ(σ)(π(v)) := π(ρn(σ)(v))

where π : Fn
q → Fn

q/Fqu is the projection to the quotient. Let us define ι : Xn →
Fn

q/Fqu as
ι(x j) := π(e j) .

Then ι(x j) = ι(xs) if and only if e j = es+λu, with λ in Fq. Thus, for n≥ 3 the map
ι is injective. Let us check that

ρñ(τ)(ι(x j)) = ι(τ ⋆ x j)

for all τ in Sn and x j in Xn. We have

ρñ(τ)(ι(x j)) = π(ρn(τ)(ι(x j)))

= π(ρn(τ)(e j))

= π(eτ( j))

= ι(xτ( j))

= ι(τ ⋆ x j)

Finally, for n = 2 the map ι is still injective for p ̸= 2. For p = 2 our map ι

fails to be injective. Actually, any 1-dimensional representation of S2 is trivial in
characteristic p = 2. So LinDimF2k (S2,X2) = 2 since the standard representation
and the inclusion ι(x1) = e1, ι(x2) = e2 satisfies

ρ2(τ)(ι(x j)) = ι(τ ⋆ x j)
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for all τ in S2 and x j in X2.

An application to n-bit permutations. It is well-known that any 2-bit permutation
is given by an affine map. Namely, that the boolean functions components of any
bijection f : F2

2→ F2
2 are affine:

f (x,y) = (ax+by+ c,a′x+b′y+ c′)

where a,b,c,a′,b′,c′ ∈ F2.

Here we give a proof of this fact together with a generalization to permutations
of n-bit.

Let P(Fn
2) be the group of bijections of Fn

2 and let aff(Fn
2) be the subgroup of

affine maps i.e. g ∈ aff(Fn
2) if and only if g(x) = ax+b where b ∈ Fn

2, a ∈ GL(Fn
2).

Proposition 4.4.2. There is a group monomorphism α : P(Fn
2)→ aff(F2n−2

2 ) and an
injection ι : Fn

2→ F2n−2
2 such that

ρ(g)(ι(x)) = ι(g(x))

for all g ∈ P(Fn
2), x ∈ Fn

2.

Proof. This is a consequence of Proposition 4.4.1. To see why, notice that we can
identify the symmetric group S2n with the group of permutations P(Fn

2) of Fn
2. That

is to say,
S2n ∼= P(Fn

2) .

Such identification can be done by using the binary representation of the subindex j
of the letter x j ∈ X2n . Namely,

x j←→ (dn−1,dn−2, . . . ,d1,d0) ∈ Fn
2

where j = ∑
n−1
i=0 d j2 j.

Now by Proposition 4.4.1 there is a representation ρ : S2n → GL(F2n−1
2 ) and

map ι : X2n → F2n−1
2 such that

ρ(g)(ι(x)) = ι(g(x))
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for all x ∈ X2n , g ∈S2n .

Now let H⊂ F2n−1
2 be the affine hyperplane generated as follows

H = {c0 · ι(x0)+ · · ·+ c2n−1 · ι(x2n−2) :
2n−2

∑
i=0

ci = 1} .

It is clear that ι(x j) is in H for j = 0, · · · ,2n − 2. Notice that, for j = 2n − 1,
ι(x2n−1) = ι(x0)+ · · ·+ ι(x2n−2) and ∑

2n−2
i=0 1 = 1; hence, also ι(x2n−1) is in H. So

ι(X2n)⊂ H. Now, since the linear maps of ρ(S2n) permute ι(X2n), they preserve
the affine hyperplane H and hence, they act on H as affine maps. Keeping in mind the
above identification of S2n ∼= P(Fn

2), we get a monomorphism α : P(Fn
2)→ aff(H)

such that
α(g)(ι(x)) = ι(g(x))

for all g in P(Fn
2) and x in Fn

2. Finally, being H an affine hyperplane of F2n−1
2 , it has

dimension 2n−2, hence H∼= F2n−2
2 and we are done.

This shows that 2-bit permutations are affine 2-bit maps. The 3-bit permutations
can be regarded as 6-bit affine maps and so on.

4.4.2 The general linear group GL(Fn
q)

For g in GL(Fn
q) and v in Fn

q, let us define ⋆ as g⋆ v = g(v). Set Yn := Fn
q.

Proposition 4.4.3. We have that LinDimFpk (GL(Fn
q),Yn)≥ n.

Proof. Since the action of the symmetric group Sn on Xn is equal to the action of
ρn(Sn)⊂ GL(Fn

q) on ι(Xn)⊂ Fn
q we have

LinDimFpk (GL(Fn
q),Yn)≥ n−1 .

Assume that there is a representation ρ : GL(Fn
q)→ GL(Fn−1

pk ) and an injective map

ι : Fn
q→ Fn−1

pk such that
ρ(g)(ι(v)) = ι(g⋆ v)
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for all g in GL(Fn
q) and v in Yn. One of the vectors ι(e j), for j = 1, . . . ,n, must be a

linear combination of the others. Namely, there is a j such that

ι(e j) = ∑
s ̸= j,1≤s≤n

csι(es),

where the coefficients cs are in Fpk . From the action of the permutations, it follows
that all coefficients cs are equal. Then, swapping e j with any of the other vectors
implies cs =−1. Hence, we get

n

∑
j=1

ι(e j) = 0.

Now let g be an element of GL(Fn
q) such that g(e1) = λe1, λ ̸= 1, and g(e j) = e j

for 1 < j ≤ n. Then

0 = ρ(g)

(︄
n

∑
j=1

ι(e j)

)︄

=
n

∑
j=1

ρ(g)ι(e j)

=
n

∑
j=1

ι(g⋆ e j) = ι(λe1)+
n

∑
j=2

ι(e j).

So ι(λe1) = ι(e1) which contradicts the fact that ι is injective.

4.4.3 The cyclic group (Zn,+) acting on itself

In this subsection, we compute the linear dimension for the action of the additive
group Zn acting on itself. For instance, let G = Zn, X = Zn and ⋆=+.

To state our main theorem we need the following definitions.
Let q be a prime power and n a positive integer such that gcd(q,n) = 1, the order of
q modulo n is denoted by ordn(q). For n = 1 we set ord1(q) = 0.
Let LD(n,q) be defined as

LD(n,q) = min

{︄(︄
ℓ

∑
j=1

ordn j(q)

)︄
: n =

ℓ

∏
j=1

n j , gcd(ni,n j) = 1 , i ̸= j

}︄
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For example LD(15,2) = 4 = ord15(2) and LD(21,2) = 5 < ord21(2) = 6. Notice
that LD(1,q) = 0 for every q.

Theorem 4.4.4. Fix a prime power pk and let n = pmr, with gcd(p,r) = 1. Then

LinDimFpk (Zn,Zn) =

⎧⎨⎩LD(r, pk) if m = 0,

LD(r, pk)+(pm−1 +1) if m > 0 .

For the proof of the theorem, we need the following facts from linear algebra.

Let w = LinDimFpk (Zn,Zn) and let A be a matrix in GL(Fw
pk). Denote with n

the order of A, i.e. the order of the cyclic subgroup of GL(Fw
pk) generated by A, and

write n = pmr with gcd(p,r) = 1.

Set q = pk and let f (X) ∈ Fq[X ] be the minimal polynomial of Apm
and let

f (X) = ∏
l
i=1 fi(X) be its factorization in irreducibles fi(X)’s. Since P(X) = X r−1

has simple roots and P(Apm
) = 0, we get that fi(X) ̸= f j(X) for i ̸= j. Then Apm

decomposes in s blocks A1, . . . ,As as follows

Apm
=

⎡⎢⎢⎢⎢⎣
A1 0 0 0
0 A2 0 0

0 0 . . . 0
0 0 0 As

⎤⎥⎥⎥⎥⎦ , (4.2)

where the minimal polynomial of the block A j is f j(X). Let ri be the order of the
block Ai. Then r = LCM(r1,r2, . . . ,rs) i.e. r is the least common multiple of the ri’s.

The characteristic polynomial χi of each block Ai is the di-th power of fi, i.e.
χi(X) = f di

i (X). Moreover, each block Ai is itself a matrix block of size di associated
with the multiplication for α in the vector space Fq(α)di . In particular, α has order
ri in the multiplicative group Fq(α)∗.

Now let N = Ar− Id. Since

(N + Id)pm
= N pm

+ Id = (Ar)pm
= Id,
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we have that N pm
= 0 and hence, N is nilpotent. Now observe that N commutes with

Apm
, so also N decompose in nilpotent blocks as

N =

⎡⎢⎢⎢⎢⎣
N1 0 0 0
0 N2 0 0

0 0 . . . 0
0 0 0 Ns

⎤⎥⎥⎥⎥⎦ .

The following lemma is a direct consequence of the above decompositions.

Lemma 4.4.5. Let w = LinDimFq(Zn,Zn) and let n = pmr. Let ρ : (Zn,+) →
GL(Fw

q ) and ι : (Zn,+)→ Fw
q such that

ρ(g)(ι(x)) = ι(g⋆ x)

for all g,x in Zn. Then the matrix A = ρ(1) has order n and w.r.t the above decom-
position (4.2):

• fi ̸= X−1 =⇒ di = 1,

• fi ̸= X−1 =⇒ Ni = 0,

• for f j = X−1, the block A j = Id.

Proof. (of Theorem 4.4.4) By the above Lemma 4.4.5 we see that just one block of
N j is different from zero. Assume that it is N1, and so A1 = Id. Then, the minimum
size for N1 to be nilpotent of order pm but not of order pm−1 is pm−1 +1.

For i > 1, let ni be the order of each block Ai. To obtain the minimum size for Ai,
we have to minimize over deg( fi) where fi ∈ Fq[X ] is irreducible such that

ni = ord(α)|qdeg( fi)−1 .

where ord(α) is the order of α in the multiplicative group Fq(α)∗. Thus

deg( fi) = ordni(q) ,
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since there is an irreducible fi ∈ Fq[X ] with deg( fi) = ordni(q). By the Chinese
Remainder Theorem, we can assume gcd(ni,n j) = 1 and so

r = lcm(n2, · · · ,ns) =
s

∏
j=2

n j .

We have shown the inequality

LinDegFq
(Zn,(Zn,+))≥

⎧⎨⎩LD(r,q) if m = 0,

LD(r,q)+(pm−1 +1) if m > 0 .
.

To show the equality, we need to construct the injective function

ι : (Zn,+)→ Fw
q

and the representation
ρ : (Zn,+)→ GL(Fw

q ),

where

w =

⎧⎨⎩LD(r,q) if m = 0,

LD(r,q)+(pm−1 +1) if m > 0 .
.

We will assume m > 0 since for the case m = 0, it is enough to avoid the nilpotent
block.

The previous proof shows us how to construct a matrix A in GL(Fw
q ) of order n

by using blocks. Let A be in GL(Fw
q ) defined as

A =

⎡⎢⎢⎢⎢⎣
N + Id 0 0 0

0 A2 0 0

0 0 . . . 0
0 0 0 As

⎤⎥⎥⎥⎥⎦ ,

where Id is the (pm−1+1)×(pm−1+1) identity and N is the well-known (pm−1+

1)× (pm−1 +1) lower diagonal nilpotent matrix. Then

(N + Id)pm
= Id,
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but (N + Id)pm−1 ̸= Id.

For each j > 1 let Fq(α j) be the extension of degree ordn j(q) such that α j has
order n j. The existence of such α j is well-known, see e.g. [56, Theorem 2.46, page

65]. The extension Fq(α j) is a vector space over Fq isomorphic to F
ordn j (q)
q . So let

A j be the ordn j(q)× ordn j(q) matrix corresponding to the multiplication by α j in

Fq(α j). Moreover, let v j ∈ F
ordn j (q)
q be a vector corresponding to 1 ∈ Fq(α j) w.r.t.

the isomorphism Fq(α j)∼=Fq F
ordn j
q . Finally, let v1 = [1,0, · · · ,0] ∈ F(pm−1+1)

q and let
v = v1 + v2 + · · ·+ vs ∈ Fw

q .
Define ρ : (Zn,+)→ GL(Fw

q ) as

ρ( j) := A j

and ι : Zn→ Fw
q as

ι( j) = A j · v .

We have that ρ(g)(ι( j)) = ι(g⋆ j) holds for all g, j in Zn and so, to complete the
proof, we need to check that ι is injective.
Assume that for 0≤ a < b≤ n−1 we have i(a) = i(b). Then Ah · v = v for 0 < h =

b−a < n. Then ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(N + Id)h · v1 = v1

Ah
2 · v2 = v2

...

Ah
s · vs = vs

,

then the equalities Ah
j · v j = v j for j = 2, · · · ,s imply that r|h. Moreover, the first

equality implies that (N+ Id)h = Id since the vectors {N0 ·v1,N1 ·v1, . . . ,N pm−1 ·v1}
form a basis of F(pm−1+1)

q , and

(N + Id)h ·N j · v1 = N j · v1

for all j = 0, . . . , pm−1. So pm |h and n = pmr |h. This is a contradiction with
0 < h = b−a < n. This completes the proof.



Chapter 5

Non-interactive Commitment from
Non-transitive Group Actions

5.1 Introduction

Using ideas from Tensor Isomorphism, this chapter tries to model the relations
between the orbits of a non-transitive group action. In the case of tensors, two
elements in the same orbit share the same rank (while it is not true the converse).
Hence, we wonder if such a property can be used for cryptographic applications,
i.e. the existence of an invariant function f that gives information on the orbits,
and hence, when two set elements are linked by a group element. One of the basic
cryptographic primitives is the bit commitment: we build such a functionality using
the fact that the bit b is hidden into an element x having f (x) = vb. However, the
computation of f is intractable in general (e.g. the tensor rank), and this ensures
the security of the commitment scheme. This chapter is based on a joint work with
Andrea Flamini and Andrea Gangemi [30], presented at Asiacrypt 2023.

5.1.1 Commitment schemes

A commitment scheme is a cryptographic protocol between two parties, a sender
and a receiver. The sender wants to commit to a value b without revealing it to the
other party. To do this, he binds b to a commitment C that is sent to the receiver.
In a second moment, the sender wants to reveal b and the receiver must be able to



5.1 Introduction 73

verify that it was the committed value behind C. A commitment must satisfy two
security properties: it must not reveal any information about the committed value
(hiding property), and the sender cannot reveal a different b′ ̸= b that opens to the
same commitment (binding property).
Commitment schemes are widely used, both as stand-alone protocols and as atomic
parts of more involved mechanisms. For example, they are used in Zero-Knowledge
proofs [57], digital auctions [67], signature schemes [51], multi-party computation
[40], e-voting [31] and confidential transactions [72]. In this work, we will mainly
focus on bit commitments, where the committed value b can be 1 or 0.

5.1.2 Commitment schemes from group actions

Previous commitments were known from cryptographic group actions. Brassard and
Young [18] propose two kinds of bit commitments from what they call certified and
uncertified group actions. A certified group action is an action from the group G
over the set X such that checking that two elements are in the same orbit is an easy
task. On the contrary, the same verification could not be polynomial-time for an
uncertified group action. Since the problem of deciding whether two elements of X
are in the same orbit is assumed to be hard in this work, we will focus on the latter
case. Given a group action from G on X , the computationally binding and perfectly
hiding bit commitment presented in [18] is as follows.

• The receiver randomly generates x0 from X and g from G. Then sets x1 as
g⋆ x0. He sends to the sender the pair (x0,x1) and a proof π that they are in
the same orbit.

• The sender wants to commit to the bit b. First, he checks that the proof π is
valid, then he picks h from G and sends com= h⋆ xb to the receiver, keeping
secret h.

• To open the committed bit b, the sender reveals b and h to the receiver, which
checks that com is equal to h⋆ xb.

The first thing to notice is that this is an interactive bit commitment since the sender
needs the receiver’s cooperation for the creation of the commitment. Secondly, the
communication cost is at least as big as the proof of the statement that x0 and x1 are in
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the same orbit. This is an NP-statement (the witness is given by g) and hence admits
an interactive proof (even a non-interactive one, using the Fiat-Shamir heuristic and
the Random Oracle Model), but it can be very large in communication.

In [50], Ji, Qiao, Song and Yun propose two bit commitment protocols. The first
is a slight generalization of the protocol from [18], using non-abelian group actions.
The obtained protocol has the same drawbacks noticed above: it is interactive and has
a large communication cost. The second proposal concerns the use of the following
pseudorandom function

f : X×G→ X×X , (x,g) ↦→ (x,g⋆ x)

and, after applying the Blum-Micali amplification [15], the authors build an interac-
tive bit commitment scheme using the construction from [63]. In this construction,
it is needed that |X | ≥ |G|, and the obtained bit commitment is statistically binding
and computationally hiding.

5.1.3 Original contribution

We present a bit commitment scheme that is non-interactive, perfectly binding and
computationally hiding in the standard model. This scheme is based on a group
action framework that makes use of certain invariant functions. One of the innovative
aspects of our proposal is that it concerns non-transitive group actions, while known
cryptographic applications use transitive actions or they restrict to one orbit. The
non-transitivity of the action used in this paper is crucial and necessary; in fact, we
need to be able to exhibit two elements that are in two different orbits. Such elements
are generated with the aid of the new group action framework, in which we endow
the group action with a function that is constant inside the orbits. Given the group G
acting on the set X via the action ⋆, an invariant function f : X → T , with T be a set,
has the following property

f (g⋆ x) = f (x), ∀x ∈ X ,g ∈ G.

The key point is that evaluating this function on a randomly chosen element
is hard, while, for a particular subset of elements that we call canonical elements,
it is easy to compute. Also, the fact that the function is constant inside the orbits
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guarantees that, if we consider two elements with distinct images, they must live
in (and generate under the action of G) distinct orbits. This observation is crucial
to prove our commitment scheme is perfectly binding. We call Group Action with
Canonical Elements (GACE) a group action with the above properties. Moreover,
the existence of decision problems about whether an element is randomly picked
from a specific orbit or not enables us to prove that our commitment scheme is
computationally hiding.
The structure of our construction enables an additional property that is shared with
the Pedersen commitment. An honest sender generating two commitments of the
same value b can prove to the receiver that they are in fact linked to the same
message, without revealing it. We call this scheme a linkable commitment and we
formally define the security properties that enable the adoption of such a primitive in
cryptography. However, using some techniques from ring signature schemes [11],
we show how to extend this property to the case of a possibly malicious sender in
the Random Oracle Model.

Finally, we propose an example of GACE based on tensors: the action is the
usual one from GL(n), while the invariant function f is the rank, which is invariant
under the proposed action. However, there are no known constructions of high-order
tensors, hence, we instantiate the bit commitment with ranks n and n−1.

Update. After the publication of [30] to Asiacrypt 2023, the proposed instantiation
based on tensors of this framework has been attacked in [69]. The authors show
that the choice of low-rank tensors is not safe since there is an efficient way to
distinguish tensors of rank n and n− 1. This means breaking the hiding property
of the commitment. Moreover, they repair the scheme obtaining a slightly lower
security level, even if this has no impact on many practical constructions. However,
finding a practical GACE remains an open problem.

5.2 Our Framework

The goal of this section is to design a non-interactive commitment scheme using
assumptions from cryptographic group actions. We will focus on non-abelian and
non-transitive actions. To develop such a commitment scheme, we first analyze the
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issues arising from an initial construction, then we define a framework that we use to
circumvent these problems.

5.2.1 A first attempt

Based on the non-transitivity of the group action (G,X ,⋆), we can make a first
attempt at building a non-interactive bit commitment scheme. We give its description
using a trusted third party (TTP), and then we analyze how to remove it.
Given the action (G,X ,⋆), the TTP chooses and publishes two elements x0 and x1 of
X lying in different orbits. The sender, to commit a bit b, generates a random g in G
and sets as the commitment of b the value com= g⋆ xb. The opening material is g.
In other words, the sender picks a random element in the orbit of xb. In the opening
phase, given b, com and g, the receiver accepts if com is equal to g⋆ xb and rejects
otherwise. Informally, the hiding property is given by the fact that checking whether
com is in the orbit of x0 or x1 is hard, while the binding property follows from the
impossibility of going from an orbit to another via the action of G.
In the following, we try to remove the TTP and analyze some possible scenarios.

1. The sender generates and publishes x0 and x1. In this case, we can see that
a malicious sender can generate x0 and x1 in the same orbit via x1 = h⋆ x0. He
commits to g⋆ x0 and, during the opening phase, he could open to both 0 and
1 using g or gh−1. In this case, the binding property does not hold.

2. The sender generates and publishes x0, x1 together with a proof π that
they are in different orbits. Given a proof π that x0 and x1 are not in the same
orbit, we obtain that the protocol is hiding and binding, under the assumption
that deciding whenever two elements share the orbit is hard. In this scenario,
the hard task is the generation of the proof π . In fact, the language

L = {(y0,y1) ∈ X×X | y0 and y1 are in different orbits}

is in coNP. Unless we have a computationally unbounded prover [42] (and
this is not the case), it means that known techniques fail to generate a short
non-interactive proof for L which would enable the design of a non-interactive
commitment scheme. Since interactive bit commitments based on group
actions are known [18, 50], we do not further study this case.



5.2 Our Framework 77

3. The receiver generates and publishes x0 and x1. We are again in the case of
interactive bit commitments, and we remand to the known schemes based on
group actions.

With such techniques, we have seen that there are some tricky aspects that are hard
to deal with. For example, we need to build a proof for a language in coNP, and the
absence of a witness (as we are used to, when we work in NP) is the first obstacle.
To overcome such difficulties, we introduce a general framework on group actions
that eases the design of the non-interactive bit commitment sketched above. The
trick is the definition of an invariant function that is constant inside the orbits and
hard to compute for a randomly chosen element. However, we assume that there is a
set of representative elements for which the computation of such a function is easy.
This avoids the need for a proof for the above language L. These concepts will be
formalized in the next subsection.

5.2.2 Group Actions with Canonical Elements (GACE)

In this section, we introduce the concepts of invariant functions and canonical
elements, and we present the cryptographic assumptions linked to them.

Definition 5.2.1. Given a group action (G,X ,⋆) and a function f : X → T , we say
that f is invariant under the action of G if f (g⋆ x) = f (x) for every g in G and every
x in X. We say that f is fully invariant if f (x) = f (y) if and only if there exists g in
G such that y = g⋆ x.

In the following, we can assume that f is surjective, restricting the set T to
the image f (X). To exploit the properties of invariant functions while keeping the
dGA-IP hard, we want the function f to be hard to compute on a large class of
elements of X . At the same time, we want to define particular elements of X on
which the computation of f is feasible.

Definition 5.2.2. Let f : X → T be a surjective invariant function for the action
(G,X ,⋆) and let T ′ ⊂ T . Suppose that there exists a polynomial-computable map

⟨·⟩ : T ′→ X , t ↦→ ⟨t⟩

such that the function f ◦ ⟨·⟩ is the identity on the subset T ′ of T . We call ⟨·⟩ the
canonical representation of T ′ in X and ⟨t⟩ the canonical t-element (with respect to f
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and ⟨·⟩). If T ′ = T , we say that ⟨·⟩ is complete. Moreover, we say that (G,X ,⋆, f ,⟨·⟩)
is a Group Action with Canonical Element (GACE) if the following hold:

1. if O(z) is the orbit of z in X, then for any PPT adversary A there is a
negligible function µ such that

Pr [A (x) = f (x)]≤ 1
|T ′|

+µ(|x|),

where x is sampled uniformly random from
⨆︁

t∈T ′O(⟨t⟩);

2. there is a PPT algorithm that for any t in T ′ computes f (⟨t⟩).

In other words, the definition above says that, for every t in T ′, we have f (⟨t⟩) = t
and the function f is hard to compute in general, but is instead easy to calculate on
canonical elements. Moreover, the construction of such ⟨t⟩ is a polynomial-time
task.

In the following constructions, whenever a random element of X is needed, we
pick a random canonical element ⟨t⟩, a random g from G and compute g⋆ ⟨t⟩. In this
way, instead of using the whole X , we always work with the union of the orbits of
the canonical elements. In other words, the set on which the group G acts becomes

X ′ =
⨆︂

t∈T ′
O(⟨t⟩).

This implies that the GACE (G,X ′,⋆, f ,⟨·⟩) has a fully invariant function f and
the canonical representation ⟨·⟩ is complete. Given a fully invariant function f ,
the problem of determining whether two elements have the same image under f is
equivalent to deciding whether they lie in the same orbit (dGA-IP).

5.3 The Commitment Scheme

5.3.1 Bit commitment scheme from a GACE

The first application of our framework is a bit commitment scheme. Given a Group
Action with Canonical Elements, we design the commitment scheme described in
Figure 5.1, following the attempts shown in Subsection 5.2.1. The bit commitment
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PGen
(︂

1λ

)︂
1 : choose (G,X ,⋆, f ,⟨·⟩)
2 : t0←$ T ′

3 : t1←$ T ′ \{t0}
4 : return (G,X ,⋆, f ,⟨·⟩, t0, t1)

Commit(b)

1 : g←$ G

2 : c← g⋆ ⟨tb⟩
3 : return (c,g)

Open(b,c,g)

1 : if g−1 ⋆ c = ⟨tb⟩
2 : return accept
3 : else return reject

Fig. 5.1 Bit commitment scheme from a GACE.

is proven secure under both the dGA-IP assumption that we have introduced in this
paper and the 2GA-PR assumption.

Theorem 5.3.1. The bit commitment scheme in Figure 5.1 is perfectly binding.

Proof. Without loss of generality, we can assume m0 = 0 and m1 = 1. Suppose
there exists an adversary A that on input pp= (G,X ,⋆, f ,⟨·⟩, t0, t1) returns the tuple
com,r0,r1 such that

Open(0,com,r0) = Open(1,com,r1) = accept

with positive probability. This means that r0 ⋆ ⟨t0⟩ = com = r1 ⋆ ⟨t1⟩, and then
r−1

1 r0 ⋆ ⟨t0⟩ = ⟨t1⟩. Therefore, ⟨t0⟩ and ⟨t1⟩ are in the same orbit, but this is a
contradiction and such an adversary A cannot exist.

Theorem 5.3.2. The bit commitment scheme in Figure 5.1 is computationally hiding
under the decisional Group Action Inversion Problem assumption.

Proof. The dGA-IP assumption states that every adversary of the dGA-IP game has
at most negligible advantage. We prove that the existence of an adversary of the game
Hiding(ΠCom) with advantage at least ε(λ ), where ε(λ ) is a non-negligible function,
implies the existence of an adversary A of the dGA-IP game with advantage 2ε2(λ ),
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which is non-negligible.
The proof is divided into 3 parts: firstly, we describe our adversary A of the dGA-IP
game. It will exploit two instances of an adversary of the Hiding(ΠCom) game,
therefore we must show that it correctly simulates the challenger of such a game.
Finally, we quantify a lower bound to the advantage of the adversary A .

1. Reduction description.
The adversary A of the dGA-IP game (see Figure 5.2) receives from the
challenger two set elements s and t, generated according to the dGA-IP game.
A creates two instances of the adversary of Hiding(ΠCom) game having non-
negligible advantage, namely A1 and A2. Then, the adversary A provides
A1 with s and A2 with t separately. The two hiding commitment adversaries
A1 and A2 return respectively the bits b0 and b1 as outputs of their internal
routine. Finally, the dGA-IP adversary A returns to the challenger the bit b′

which is set to 1 if b0 = b1, otherwise it is set to 0.

2. A correctly simulates the Hiding(ΠCom) challenger.

We show that A correctly simulates the challenger of the Hiding(ΠCom) game
so that it is possible to quantify the probability of success of the adversaries
A1 and A2. The elements s and t which A uses as input to A1 and A2 are
generated as follows:

• s is a random element in the orbit generated by ⟨tc⟩, with c chosen
uniformly at random in {0,1};

• when b = 1, t is chosen uniformly at random in the same orbit of s (note
that g′ ⋆ s = g′g⋆ ⟨tc⟩ is random as long as g′←$ G), otherwise, if b = 0,
t is chosen at random in the orbit of ⟨t1−c⟩.

In particular, the orbit of s is chosen uniformly at random via the selection
of c; then, given c, the orbit of t is chosen uniformly at random via b. This
guarantees that A correctly simulates the challenger of the Hiding(ΠCom)

game, who must choose, in the first step, whether to create a commitment to
0 or 1. Therefore, the adversaries A1,A2 win their games with probability
greater than 1

2 + ε(λ ).

3. Measurement of A ’s advantage.
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Finally, we compute a lower bound to the probability of success of A that we
have described in the dGA-IP game.

We observe that the adversaries A1 and A2 do not interact, so the events that
they win their games can be considered independent as long as their inputs are
also independent.

It is possible to show that the selection of the inputs is independent since
the selection process of s and t is performed by picking at random the orbit
O(s) of s by sampling the bit c, and the orbit O(t) of t by sampling the bit b
(actually the bit that determines the orbit of t is interpreted according to the
value of s, but this is not relevant as long as the bit b is chosen at random).
Then, the canonical elements of the sampled orbits are randomized by sam-
pling two random group elements g,g′ ∈ G and computing the action of such
elements (or of the element g′g instead of g′, if b = 1, which is a random
element as long as g′ is random) on the canonical elements.

Given that the inputs to A1 and A2 are independent and that the two adversaries
perform their operations regardless of the existence of each other, the events
that A1 wins its game and A2 wins its game are independent.

For the sake of brevity, we refer to the event that A1 wins or loses its game as
(A1 wins) or (A1 loses) and we do the same for A2 and A : the game they
are playing will be clear from the context.

Finally, we compute the lower bound of the probability of advantage of A . To
do that, we observe that A wins the game when b′ = b and this happens either
when both A1 and A2 win, or when they both lose.
In fact, when b = 0 then O(t) ̸= O(s); therefore, b0 ̸= b1 happens if and only
if both A1 and A2 win or when they both lose. The same holds when b = 1.
Therefore,

Pr [A wins] =

Pr [(A1 wins∧A2 wins)∨ (A1 loses∧A2 loses)] =

Pr [(A1 wins∧A2 wins)]+Pr [(A1 loses∧A2 loses)] =

Pr [(A1 wins)]Pr [(A2 wins)]+Pr [(A1 loses)]Pr [A2 loses)]≥(︃
1
2
+ ε(λ )

)︃2

+

(︃
1
2
− ε(λ )

)︃2

=
1
2
+2ε(λ )2.
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Since ε(λ ) is a non-negligible function, we have defined an adversary A of the
dGA-IP game that has a non-negligible advantage. This contradicts the dGA-IP
assumption, therefore the adversary of Hiding(ΠCom) with non-negligible advantage
does not exist and the commitment scheme ΠCom satisfies the hiding property.

Adversary A(pp) Challenger C(pp)
c, b←$ {0, 1}, g, g′ ←$ G

s← g ⋆ ⟨tc⟩,
if b = 1 then

t← g′ ⋆ s

if b = 0 then

t← g′ ⋆ ⟨t1−c⟩
Hiding(ΠCom) Adversaries

Guess b0

A1
pp, s

b0

s, t

Guess b1

A2
pp, t

b1

if b0 = b1 then

b′ ← 1

if b0 ̸= b1 then

b′ ← 0

b′

A wins if b = b′

Fig. 5.2 Reduction from dGA-IP(pp) to the hiding game for the bit commitment scheme.

The two previous results can be summarized in the following corollary.

Corollary 5.3.3. The bit commitment scheme in Figure 5.1 is secure under the
decisional Group Action Inversion Problem assumption.

We also have expanded the security analysis of the hiding property of the com-
mitment scheme under the 2GA-PR assumption requiring that the two orbits O0 and
O1 used to instantiate the bit commitment have similar size, i.e.

|Pr [x ∈ O0 ]−Pr [x ∈ O1 ]|= ν(λ )
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for a randomly chosen x in O0∪O1 and a negligible function ν(λ ).

We obtain the following theorem.

Theorem 5.3.4. If the bit commitment scheme in Figure 5.1 is instantiated using two
orbits of similar size, it is secure under the 2GA-PR assumption.

Proof. The commitment scheme satisfies the property of perfect binding, as shown
in Theorem 5.3.1.
Now, we show the computationally hiding property. For simplicity, we assume that
the cardinality of the two orbits is the same, that is, the probability of picking an
element at random inside any orbit is 1

2 . The proof can be easily generalized to the
case where the probability of falling into one orbit is negligibly greater than the
probability of falling into the other. In other words, the proof holds whenever there
exists a negligible function ν(λ ) such that, given the two orbits O0 and O1,

|Pr [x ∈ O0 ]−Pr [x ∈ O1 ]|= ν(λ )

for a randomly chosen x in O0∪O1. This assumption seems admissible and not too
strict for cryptographic purposes.

We show that, given an adversary of the Hiding(ΠCom) game with non-negligible
advantage, we can build an adversary of the 2GA-PR game with non-negligible
advantage (recall that the advantage of A is defined as Adv(A ,2GA-PR(pp)) =
Pr [A wins 2GA-PR(pp)]− 1

2 ).

1. Reduction description.
To define A , we use two independent instances of the same adversary A1,A2

of the hiding game as we did in the proof of Theorem 5.3.2; then, we perform
the same reduction, as it is presented in Figure 5.3.

2. A correctly simulates the Hiding(ΠCom) challenger.
The adversary A correctly simulates the challenger of Hiding(ΠCom) with
respect to the adversaries A1 and A2 separately, in fact, both s and t are
uniformly sampled from the set of commitment to 0 and 1. Therefore, A1 and
A2 will output the right bit with advantage ε(λ ).

3. Measurement of A ’s advantage.
From now on, when we consider the orbits O(s) and O(t) of s and t respec-
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Adversary A Challenger C
b←$ {0, 1}, s←$ X

if b = 1 then

g ←$ G, t← g ⋆ s

if b = 0 then

t←$ X

Guess b0

A1
s

b0

s, t

Guess b1

A2
t

b1

if b0 = b1 then

b′ ← 1

if b0 ̸= b1 then

b′ ← 0

b′

A wins if b = b′

Fig. 5.3 Reduction from 2GA-PR to the hiding game for the bit commitment scheme.

tively, with abuse of notation, they will assume binary values according to the
relation used in the bit commitment scheme ΠCom: O(s) = 1 if s lies in the
orbit of commitments to 1, and O(s) = 0 if s lives in the orbit of commitments
to 0. The same holds for O(t).

Before computing the lower bound of the advantage of the adversary A , we
state the following remark.

Remark 5.3.5. The outcomes of the games performed by A1 and A2 in the
reduction of Figure 5.3 are not independent since the values given as inputs to
them are dependent (note that t is in the same orbit of s with probability 3

4).
However, it is still true that the outcomes of the adversaries A1 and A2 are
independent if conditioned to fixed input values.

For the sake of generality, we need to consider the case in which the advantage
of the adversaries A1 and A2 in playing Hiding(ΠCom) game is not uniformly
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distributed on the possible outputs. That is, it is possible that

Pr [A1 wins | O(s) = 1 ] =
1
2
+ ε(λ )+∆,

Pr [A1 wins | O(s) = 0 ] =
1
2
+ ε(λ )−∆,

with ∆ possibly a negative value. The same holds for Pr [A2 wins | O(t) = b ],
with b ∈ {0,1}.

Now, we can start with the computation of the lower bound of the advantage
of A in winning the 2GA-PR game.

The probability that A wins the 2GA-PR game can be computed as follows,
partitioning the event into three disjoint events:

Pr [A wins] = Pr
[︁
b′ = b

]︁
=

Pr

⎡⎣(b = 0∧O(s) ̸= O(t))∧b′ = b⏞ ⏟⏟ ⏞
Event A

⎤⎦+
Pr

⎡⎣(b = 0∧O(s) = O(t))∧b′ = b⏞ ⏟⏟ ⏞
Event B

⎤⎦+
Pr

⎡⎣b = 1∧b′ = b⏞ ⏟⏟ ⏞
Event C

⎤⎦ .
We now separately quantify the three probabilities as follows. We recall that
according to the event we are considering, the event b = b′ can be translated
in terms of the success of the adversaries A1 and A2

• Event A: when b = 0 and O(s) ̸= O(t), then b = b′ when both A1 and
A2 win or when both of them lose. Therefore, it holds that

Pr
[︁
b = 0∧O(s) ̸= O(t)∧b′ = b

]︁
=

Pr [b = 0∧O(s) ̸= O(t)∧A1 wins∧A2 wins]+

Pr [b = 0∧O(s) ̸= O(t)∧A1 loses∧A2 loses] .

(5.1)



86 Non-interactive Commitment from Non-transitive Group Actions

We can compute this probability by considering the general case
Pr [b = 0∧O(s) ̸= O(t)∧A1 outcome∧A2 outcome] and then sub-
stituting outcome with wins or loses accordingly with the formula
above.

It holds that

Pr [b = 0∧O(s) ̸= O(t)∧A1 outcome∧A2 outcome] =
1

∑
c=0

Pr [b = 0∧O(s) = c∧O(t) = 1− c∧A1 outcome∧A2 outcome] =

1

∑
c=0

(︂
Pr [A1 outcome∧A2 outcome | b = 0∧O(s) = c∧O(t) = 1− c ] ·

·Pr [b = 0∧O(s) = c∧O(t) = 1− c]
)︂
.

Since the outcomes of A1 and A2 are independent once their input values
are fixed, we have that

Pr [A1 outcome∧A2 outcome | b = 0∧O(s) = c∧O(t) = 1− c] =
2

∏
i=1

Pr [Ai outcome | b = 0∧O(s) = c∧O(t) = 1− c] ,

with c ∈ {0,1}.
Since the outcome of A1 only depends on the value of O(s) and the
outcome of A2 depends only on O(t), then

Pr [A1 outcome∧A2 outcome | b = 0∧O(s) = c∧O(t) = 1− c] =

Pr [A1 outcome | O(s) = c]Pr [A2 outcome | O(t) = 1− c ]

Therefore, since Pr
[︁
b = 0∧O(s) = b̄∧O(t) = 1− b̄

]︁
= 1

8 with b̄∈{0,1}
then

Pr [b = 0∧O(s) ̸= O(t)∧A1 outcome∧A2 outcome] =

1
8

(︃
Pr [A1 outcome | O(s) = 1] ·Pr [A2 outcome | O(t) = 0]+

Pr [A1 outcome | O(s) = 0 ] ·Pr [A2 outcome | O(t) = 1 ]
)︃
.
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We can finally compute the initial probability given in Eq. (5.1), by
substituting outcome with wins and loses and obtaining

Pr
[︁
b = 0∧O(s) ̸= O(t)∧b′ = b

]︁
=

1
8
+

1
2

ε
2(λ )− 1

2
∆

2. (5.2)

• Event B: when b = 0 and O(s) =O(t), then b = b′ when either A1 wins
and A2 loses or when A1 loses and A2 wins. Therefore, it holds that

Pr
[︁
b = 0∧O(s) = O(t)∧b′ = b

]︁
=

Pr [b = 0∧O(s) = O(t)∧A1 wins∧A2 loses]+

Pr [b = 0∧O(s) = O(t)∧A1 loses∧A2 wins] .

(5.3)

Since in this case the input of A1 and A2 are in the same orbit, then we
can state

Pr
[︁
b = 0∧O(s) = O(t)∧b′ = b

]︁
=

2Pr [b = 0∧O(s) = O(t)∧A1 wins∧A2 loses] =

2
1

∑
c=0

Pr [b = 0∧O(s) = c∧O(t) = c∧A1 wins∧A2 loses] .

Using arguments similar to the ones used for Event A, that is the condi-
tional independence of the outcomes of the adversaries once the inputs
are fixed, the fact that the output of A1 (resp. A2) depends only on O(s)
(resp. on O(t)) and finally that Pr [b = 0∧O(s) = c∧O(t) = c] = 1

8 , for
c ∈ {0,1}, we can write the Eq. (5.3) as follows

Pr
[︁
b = 0∧O(s) = O(t)∧b′ = b

]︁
=

1
8
− 1

2
ε

2(λ )− 1
2

∆
2. (5.4)

• Event C: when b = 1, O(s) = O(t), then b = b′ when both A1 and A2

win or when both of them lose. Therefore, it holds that

Pr
[︁
b = 1∧b′ = b

]︁
=

Pr [b = 1∧A1 wins∧A2 wins]+

Pr [b = 1∧A1 loses∧A2 loses] .

(5.5)
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As in the computation of the probability of Event A, we must compute
Pr [b = 1∧A1 outcome∧A2 outcome]. Using similar arguments as
before, and noticing that Pr [b = 1∧O(s) = c∧O(t) = c ] = 1

4 with c ∈
{0,1}, it can be shown that

Pr [b = 1∧A1 outcome∧A2 outcome] =

1
4

1

∑
c=0

Pr [A1 outcome | O(s) = c]Pr [A2 outcome | O(t) = c]

Therefore, substituting outcome with loses and wins, and using the
probabilities of success of adversaries A1 and A2, from Eq. (5.5) we
obtain

Pr
[︁
b = 1∧b′ = b

]︁
=

1
4
+ ε

2(λ )+∆
2. (5.6)

Combining the partial results derived analysing Event A, Event B and Event
C from Equations (5.2),(5.4) and (5.6) respectively, we obtain the final result

Pr [A wins] =
1
2
+ ε

2(λ ),

which proves that we have built an adversary for the 2GA-PR game which
wins with non-negligible advantage. Therefore, an adversary who wins the
hiding game with non-negligible advantage does not exist due to the 2GA-
PR assumption. This means that the binary commitment scheme we have
described results to be perfectly binding and computationally hiding.

Moreover, we can show that Hiding(ΠCom) reduces to dGA-IP. This allows us to
describe the relation between the dGA-IP and 2GA-PR assumptions.

Corollary 5.3.6. The 2GA-PR problem reduces to dGA-IP when it is instantiated
with two orbits of similar size.

Proof. From previous results, we only need to show that the Hiding(ΠCom) game
reduces to the dGA-IP game.
We show how the existence of an adversary of the dGA-IP problem with non-
negligible advantage allows the creation of an adversary of the Hiding(ΠCom) game
with non-negligible advantage.
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1. Reduction description.

The adversary A of the Hiding(ΠCom) game (see Figure 5.4) receives from
the challenger a commitment c to a randomly generated bit b. A generates a
commitment c′ to a random bit b′ and sends c,c′ to A ′, the adversary to the
dGA-IP game with non-negligible advantage. A receives a response b0 from
A ′ and returns to the Hiding(ΠCom) challenger the bit b′ if b0 = 1 (i.e. A ′

has guessed that c and c′ are in the same orbit), otherwise A returns 1−b′.

Adversary A Challenger C
b←$ {0, 1}, g ←$ G

c← g ⋆ ⟨tb⟩

c

b′ ←$ {0, 1}
g′ ←$ G

c′ ← g′ ⋆ ⟨tb′⟩

Guess b0

A′ c,c’

b0

if b0 = 1 then

b̄← b′

if b0 = 0 then

b̄← 1− b′

b̄

A wins if b = b̄

Fig. 5.4 Reduction from the hiding game for the bit commitment scheme to dGA-IP.

2. A correctly simulates the dGA-IP challenger.

The adversary A receives a commitment to a random unknown bit b. There-
fore, in order to simulate the dGA-IP challenger, it generates a random bit
b′ and a commitment to such bit. In this way, A generates couples of ele-
ments in X that live in the same orbit with probability 1

2 as it does the dGA-IP
challenger.

3. Measurement of A ’s advantage.
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dGA-IP
Th. 5.3.2

Th. 5.3.4

Hiding(ΠCom)

2GA-PR

Cor. 5.3.6

Fig. 5.5 Reductions between games and problems. “A→ B” means that solving B implies
solving A. The reductions represented by a dashed line require the extra hypothesis about the
similarity of the orbits.

The adversary A wins exactly with the same probability of A ′, since every
time A ′ guesses the right answer to the dGA-IP game, A learns the orbit in
which the element c lies since it knows the orbit of c′. Therefore, if A ′ wins the
dGA-IP game with non-negligible advantage, also A wins the Hiding(ΠCom)

game with non-negligible advantage.

We summarize the reductions between the hiding game of the commitment
scheme and the two assumptions in Figure 5.5.

5.4 Linkable Commitments

The proposed bit commitment has the following additional feature. Given two
commitments com0 and com1, if we suppose that the sender is honest, there is a way
to prove that their committed value is the same. Based on this notion, we define
the concept of linkable commitment. We require that the sender is honest to be
assured that the commitments lie either in the orbit of ⟨t0⟩ or ⟨t1⟩. To the best of our
knowledge, this property has not been formally defined before. However, it is well
known that, for example, Pedersen commitments enjoy this property which is used,
among other things, in the Monero’s RingCT protocol [72].

Definition 5.4.1. Let ΠCom = (PGen,Commit,Open) be a commitment scheme. Let
m0 and m1 be two messages and let (com0,r0) = Commit(m0) and (com1,r1) =

Commit(m1). We say that ΠCom is linkable if there exist the two following PPT

algorithms:
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1. LinkMaterial(r0,r1), whose output is a value rL;

2. Link(com0,com1,rL), that returns 1 if m0 = m1 and 0 otherwise.

In order to be secure, a linkable bit commitment must satisfy some security
properties for these two additional algorithms Link and LinkMaterial as well. First,
we want that the linking material rL does not reveal any information about the
committed value. This means that an adversary that has access to two commitments
of m and the linking material rL does not learn anything about m. We call this
property linkable-hiding. Then, it must not be possible to link two commitments
that are obtained starting from two distinct values. A linkable commitment with
this property is said linkable-binding. Finally, we focus on how the value rL can
be generated. We want that, if a user (somehow) knows that two commitments are
linked without knowing their opening material, he can not generate a proof of that
(via the linking material). In other words, being m a message, and being (com0,r0) =

Commit(m) and (com1,r1) = Commit(m), no one can generate a value rL such
that Link(com0,com1,rL) = 1 without knowledge of any information regarding the
opening materials r0 and r1. This additional property is called link secrecy.
We formalize these new properties in the following definition.

Definition 5.4.2. Let HidingLink(ΠCom) be the game described in Figure 5.6. We
define the advantage of an adversary A of the game HidingLink(ΠCom) as

Adv(A ,HidingLink(ΠCom)) =

⃓⃓⃓⃓
Pr [A wins HidingLink(ΠCom)]−

1
2

⃓⃓⃓⃓
.

Let λ be the security parameter. A linkable bit commitment
ΠCom = (PGen,Commit,Open,LinkMaterial,Link) is said

• computationally linkable-hiding if for all PPT adversaries A there is a negli-
gible function µ(λ ) such that

Adv(A ,HidingLink(ΠCom))≤ µ(λ );

• computationally linkable-binding if for all PPT adversaries A there is a
negligible function µ(λ ) such that

Pr

[︄
pp← PGen(1λ ),

(m0,com0,m1,com1,rL)←A (pp)

⃓⃓⃓⃓
⃓ m0 ̸= m1,

Link(com0,com1,rL) = 1

]︄
≤ µ(λ );
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• computationally link secret if for all PPT adversaries A there is a negligible
function µ(λ ) such that

Pr [A wins LinkSecrecy(ΠCom)]≤ µ(λ ),

where LinkSecrecy(ΠCom) is the linking secrecy game in Figure 5.7.

In the above definitions, whenever µ(λ ) = 0, we say that the property is perfect.

HidingLink(ΠCom)

Adversary A Challenger C

pp pp← PGen(1λ)

Choose m0,m1 ∈ {0, 1}n m0,m1 b←$ {0, 1}

(com0, r0)← Commit(mb)

(com1, r1)← Commit(mb)

com0, com1, rL rL ← LinkMaterial(r0, r1)

Guess b′ b′ A wins if b′ = b

Fig. 5.6 Linkable-hiding game.

LinkSecrecy(ΠCom)

Adversary A Challenger C
pp← PGen(1λ)

m←$M
(com0, r0)← Commit(m)

pp, com0, com1 (com1, r1)← Commit(m)

Choose rL rL A wins if

Link(com0, com1, rL) = 1

Fig. 5.7 Link secrecy game.
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LinkMaterial(m,r0,r1)

1 : return r0r−1
1

Link(com0,com1,rL)

1 : if rL ⋆com1 = com0

2 : return 1

3 : else return 0

Fig. 5.8 Algorithm for linking commitment from a GACE.

5.4.1 Linkable bit commitment from GACE

Using the bit commitment shown in Subsection 5.3.1, we can endow the scheme to
obtain a linkable bit commitment. This extension is natural since the commitments
of a chosen message are in the orbit of that message, and showing that they are linked
reduces to exhibit a group element which sends one into the other.

Theorem 5.4.3. The bit commitment scheme in Figure 5.1 endowed with the algo-
rithms in Figure 5.8 is a secure linkable bit commitment scheme under the One-Way
Group Action and dGA-IP assumptions.

Proof. We have already proven in Theorem 5.3.3 that the bit commitment in Figure
5.1 is secure under the dGA-IP assumption. Now, we prove that the linkable com-
mitment scheme is secure, namely it is computationally linkable-hiding, perfectly
linkable-binding and computationally link secret.

• Linkable-hiding. We show that the Hiding game reduces to the HidingLink
game. The idea is to let the adversary of the Hiding(ΠCom) game to simulate
the HidingLink game challenger by creating a new random commitment (and
the linking material) to the same message of the commitment it has received
from its challenger. Now we explain it in greater detail.

Let A ′ be an adversary that wins the HidingLink game with non-negligible
advantage ε(λ ). We can define an adversary A for the Hiding game that
wins with a non-negligible advantage. Since we are in the binary case, the
challenger C picks a message b and sends to A the commitment com of b.
Now A picks a random element g in G and computes com′ = g⋆com, which
is a valid and randomly generated commitment to b. A queries to A ′, the
adversary of the HidingLink game, the commitments com, com′ and the linking
material g. Note that A correctly simulates the challenger of the HidingLink
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game since the bit b and com are chosen at random from C , com′ is chosen at
random from A and the linking material is valid.

A ′ returns a bit b′ which A sends to C as its guess. If A ′ correctly guesses the
bit committed to in com and com′ then clearly also A wins its game. Therefore
the advantage of A is the same as the one of A ′ and is non-negligible.

We can conclude that, since the commitment ΠCom is computationally hiding
under the dGA-IP assumption, it is also computationally linkable-hiding.

• Perfectly linkable-binding. Suppose that an adversary returns with positive
probability a tuple (m0,m1,com0,com1,rL) such that m0 ̸= m1 and

Link(com0,com1,rL) = 1.

By construction, there exist two elements g0 and g1 in G such that

com0 = g0 ⋆ ⟨m0⟩ and com1 = g1 ⋆ ⟨m1⟩

From Link(com0,com1,rL) = 1 we have that rL ⋆com1 = com0, and hence com0

and com1 are in the same orbit. Since m0 = f (com0) = f (com1) = m1, where
f is the invariant function in the GACE, we have a contradiction. Hence, there
are no adversaries that can output such a tuple with positive probability.

• Computationally link secret. We show that, if a PPT adversary A , on
input com0 and com1, can find rL such that Link(com0,com1,rL) = 1, then it
contradicts the One-way group action assumption. Essentially, if com0 and
com1 are commitments to m0, then they are in the same orbit of ⟨m0⟩. Finding
an rL in G such that Link(com0,com1,rL) = 1 means finding an element of G
sending com1 to com0, and this is intractable by hypothesis.

Remark 5.4.4. Observe that, if an inadmissible value is committed, for instance, an
element x that is not in the orbit of ⟨t0⟩ nor ⟨t1⟩, then the linkability continues to
work. In fact, two commitments of the above x can be linked. Therefore we refer
to the above scheme as a honest sender linkable commitment. To cover even the
case where the sender may commit to an inadmissible value, some techniques from
ring signature schemes can be used. Using the framework of Beullens, Katsumata
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and Pintore [11], a proof of the legitimacy of the commitment can be generated in
the random oracle model. In the commit phase, the sender generates (com,r) from
Commit(b), then attaches to com a non-interactive proof of the OR-relation

{(com,g) | com= g⋆ ⟨t0⟩ or com= g⋆ ⟨t1⟩}.

We refer to [11] for the details. However, this proof needs many repetitions to achieve
a reasonable security level, leading to a huge cost in communication.

5.5 An Instantiation with Tensors

5.5.1 GACE and bit commitment from tensors

Recall that, given a tensor T in Fn
q⊗Fn

q⊗Fn
q, its rank is the smallest r such that T

can be written as sum of rank-one tensors (see Subsection 2.5.1). Moreover, the
action of GL(n)×GL(n)×GL(n) does not change the rank of the tensors. Starting
from this group action , we want to build a Group Action with Canonical Element.
Since the computation of the rank is supposed to be hard, we set T = N and

f : V→ N, M ↦→ rk(M).

In order to define the function ⟨·⟩, we need to do some observations. From Eq. (??),
we see that the rank of a tensor is at most n3 and with a simple trick it can be shown
that it is at most n2. Actually, the maximal rank is strictly less than this value. As
shown in [49], the maximal rank attainable by a tensor in V is between 1

3n2 and
3
4n2. Moreover, an open problem in this field is to exhibit the explicit construction
of a high-rank tensor. Even if there are some results [14, 84, 2], we are not able to
construct a tensor of any given rank. Luckily, there is a set of integers for which we
can easily exhibit tensors of a given rank. Let T ′ = {1, . . . ,n} and we can define the
function

⟨·⟩ : T ′→ V,

r ↦→
r

∑
i=1

ei⊗ ei⊗ ei.
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We can see that f (⟨r⟩)= r for any r in T ′= {1, . . . ,n}, hence the tuple (G,V,⋆, f ,⟨·⟩)
is a GACE. In fact, computing the rank of a random tensor of promised rank between
1 and n is hard, while recognizing the rank of ⟨r⟩ is easy.

The non-interactive bit commitment scheme we present is based on the general
one in Figure 5.1. During the parameter generation phase, we choose n−1 and n as
elements of T ′ encoding the bits 0 and 1, respectively.

Concretely, given a security parameter λ , a prime power q, an integer n and the
tensor space V = Fn

q⊗Fn
q⊗Fn

q, the public parameters are

(G,V,⋆, f ,⟨·⟩,n−1,n).

Let us analyze the assumptions on this particular group action. The dGA-IP assump-
tion for tensors is related to the Tensor Isomorphism problem [44, 45], which is
complete for a large class of problems and it is conjectured hard even for a quan-
tum computer. The One-Way assumption on tensors is linked to the computational
version of the dGA-IP problem: given two tensors in the same orbit, find the group
element that links them. This problem is believed to be hard and it is directly used in
various cryptosystems [25, 50], while other constructions use polynomially equiv-
alent problems [83]. When we consider just the orbits of rank n and n− 1, these
assumptions seem to remain intractable.

Summarizing, to commit to a bit b, the sender picks a random g in G and obtains
the commitment com equal to g ⋆ ⟨n−1⟩ if b = 0 or g ⋆ ⟨n⟩ if b = 1. The opening
material is given by g. To open the commitment com, the sender communicates to
the receiver b and g and the latter checks that g−1 ⋆com is equal to ⟨n− 1⟩ or ⟨n⟩.
There is one additional check to take care of during the opening phase: the receiver
must verify the membership of g to G. In fact, if g = (A,B,C) and A, B or C are
non-invertible, then g can send a tensor of rank n to a tensor of rank n−1, breaking
the binding property.
Analogously, a linkable bit commitment can be designed on tensors with the con-
structions given in Subsection 5.4.1.
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5.5.2 An attack

At the conference CRYPTO 2024, Gilchrist, Marco, Petit and Tang presented an
attack to the above instantiation with 3-tensors [69]. The proposed attack exploits
the use of low-rank tensors and the fact that they admit low-rank points. Moreover,
the article proposes an algorithm for the decisional and computational Tensor Iso-
morphism problem on low-rank elements, on which the commitment scheme bases
its security, in particular, the hiding property does not hold.
On the theoretical side, they present an efficient way to compute the rank of a low-
rank tensor, investigating both the Tensor Rank problem and the Tensor Isomorphism
problem in some special cases. On the practical side, they show that the presented ex-
ample of GACE is not secure and capable of cryptographic constructions. However,
the authors propose a fix to the commitment scheme: the GACE framework is not
needed anymore, but the binding property became statistical instead of the previous
perfect. This downgrade is ineffective for a lot of cryptographic applications that use
bit commitments.

Hence, after this attack, the problem of finding suitable group actions with
canonical elements remains open.
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