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Abstract: This paper presents a novel unscented Kalman filter (UKF) implementation with adaptive
covariance matrices (ACMs), to accurately estimate the longitudinal and lateral components of vehicle
velocity, and thus the sideslip angle, tire slip angles, and tire slip ratios, also in extreme driving
conditions, including tyre–road friction variations. The adaptation strategies are implemented on
both the process noise and measurement noise covariances. The resulting UKF ACM is compared
against a well-tuned baseline UKF with fixed covariances. Experimental test results in high tyre–road
friction conditions show the good performance of both filters, with only a very marginal benefit of the
ACM version. However, the simulated extreme tests in variable and low-friction conditions highlight
the superior performance and robustness provided by the adaptation mechanism.

Keywords: unscented Kalman filter; sideslip angle estimation; vehicle speed estimation; slip ratio
estimation; state estimation; covariance matrix adaptation

1. Introduction

The latest generation of vehicle dynamics controllers, including stability, traction,
active steering, and active suspension controllers, as well as automated driving systems,
demands increasing amounts of data from the vehicle and its surroundings [1–5]. However,
specific vehicle variables, such as the sideslip angle, tyre slip ratios and slip angles, vehicle
speed, and tyre–road friction level, cannot be robustly and cost-effectively measured
for mass production implementations, and therefore must be estimated. While the data
measurements and estimations used since the 1990s for vehicle stability control (VSC) [6] are
sufficient for rather simple rule-based algorithms, operating only in emergency scenarios,
the progress in high-performance vehicle controllers, implying more frequent and smooth
interventions, has increased the demand for more accurate information on the vehicle
variables [7,8]. For example, reliable vehicle speed and slip ratio estimations are crucial
for effective wheel slip control through actuators capable of continuously and seamlessly
modulating the wheel torque levels [9].

In this context, machine learning methods have gained significant attention [10–16].
These algorithms offer enhanced adaptability to unpredictable situations as they are not
based on predefined models, and tend to exhibit increased robustness in scenarios where
the accurate modelling of the system dynamics is challenging. Although the resulting
agents typically demand less computational power than model-based approaches, their
practical implementation requires a very substantial amount of training data [16–18]. As
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mentioned in [18], ‘constructing a complete dataset that can cover all driving conditions
is extremely difficult if not impossible’. As a consequence, although machine learning
approaches are likely to be more diffusely implemented for state estimation in the near
future, Kalman filters are still widely adopted tools to achieve the real-time estimation
of vehicle dynamics variables, starting from the measurements from multiple on-board
sensors [19].

Several algorithmic solutions have been proposed to account for the vehicle system
nonlinearities in the internal model of the filter. This can be typically achieved through
extended Kalman filters (EKFs), which imply a linearisation at each time step, or unscented
Kalman filters (UKFs), which directly use nonlinear models. Comparative studies of
EKF and UKF performance for the same vehicle model, e.g., see [16,20–24], highlight the
superiority of UKFs, towards which there has been a progressive shift [17].

In terms of vehicle models embedded in the filters, the literature has assessed a wide
range of options. For instance, within a complex estimation architecture for automated
vehicles, reference [25] implemented a Kalman filter for sideslip angle estimation, using a 2-
degree-of-freedom (2-DoF) linear bicycle model, considering the yaw and sideslip dynamics.
This setup performed well during normal driving; however, it lost accuracy at high lateral
accelerations or in critical transients. A possible solution to such limitation is the adoption
of a double-track vehicle model (DTM), which has become rather widespread [26]. For
example, the DTMs within the filters in [21,27,28] include the lateral tyre force nonlinearities,
which are modelled through the Pacejka magic formula or the Dugoff formulation. The
EKF implementation in [29] and the UKFs in [30–32] augmented the DTM by including
the longitudinal vehicle dynamics and wheel dynamics, which resulted in 7-DoF vehicle
models, enabling tyre slip ratio estimation.

In general, there are limited studies assessing Kalman filter performance on low-
friction surfaces. References [29,32] are rare exceptions, but their setups are constrained
by fixed settings of the filter parametrisation. Additionally, the tests in [29,32] omitted
high wheel slip cases, such as wheel spinning and locking, analysing only the sideslip
angle estimation.

In most vehicle dynamics filters, vehicle and tyre parameters are assumed to remain
constant over time. However, some implementations deal with parametric uncertainties
by embedding parallel estimators for the main vehicle parameters, or by concurrently
estimating vehicle states and parameters. For example, the Kalman filter in Wenzel et al. [33]
was supported by a second Kalman filter, which enabled the update of the vehicle mass, yaw
mass moment of inertia, and longitudinal position of the centre of gravity. The algorithms
in [30–32,34,35] varied the peak tyre–road friction coefficient and/or the cornering stiffness
during their operation.

Similarly to the vehicle and tyre parameters, the EKF/UKF covariance matrices usually
remain constant over time, and can be tuned through Bayesian optimisations [36] to find
desirable trade-offs for a catalogue of manoeuvres. However, the effectiveness of the
resulting filter is limited to specific conditions, and significant issues can occur during
real-world operation. An effective approach to improve predictability and handle situations
where the uncertainty characteristics of the system change over time is to employ adaptive
covariance matrices [37–44]. The adaptation approaches can either be based on theoretical
algorithms, e.g., using fading factors to give higher weight to the last filter iterations, or on
covariance definition rules, e.g., imposed through fuzzy logic algorithms or other heuristics
benefitting from the understanding of vehicle dynamics.

References [37–40] present adaptation strategies for the measurement noise covari-
ances. Specifically, an adaptation scheme limited to the wheel speed measurement noise
covariances was used in the EKF in [37], to target high wheel slip conditions, based on
empirical rules. In such conditions, although the wheel speed and longitudinal acceleration
measurements processed by the typical vehicle stability control unit are accurate, reliable,
and without outliers, it is usually better to vary the weight associated with the angular
wheel speed and longitudinal acceleration measurements, to prioritise the latter for vehicle
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speed estimation. Among the theory-based algorithms, references [38,39] used the moving
window estimation method, while reference [40] relied on a maximum a posteriori algo-
rithm. However, the assessment was limited to high-friction conditions, and no adaptation
was applied to the process noise covariances.

By employing a comparable method to [40], reference [41] adapted the process and
measurement noise covariances. Although this algorithm can offer stability in scenarios
with noisy or incomplete data, its complexity could become critical when applied to fil-
ters characterised by vehicle models with higher number of degrees of freedom (DoFs).
Reference [42] discusses a normalized innovation squared (NIS) algorithm to adaptively
change both process and measurement noise covariances, by comparing the difference
between predicted and observed measurements to the predicted covariance of measure-
ment noise. However, alongside its computational complexity, the NIS approach requires
precise tuning, and lacks robustness when encountering model inaccuracies. Reference [43]
proposes an exponential decay adaptive unscented filter, in which the exponential decay
factor helps assign different weights or decay rates to older and newer measurements,
allowing the filter to adaptively weigh recent information more heavily than older data.
Nevertheless, the algorithm lacks flexibility in accommodating rapid variations in state
variables, resulting in compromised estimation accuracy, as shown for a sinusoidal steering
manoeuvre. The authors conclude that “. . .however, the average weighting method and the
general exponential weighting method are not flexible enough. As a result, when the state
variable changes rapidly, the noise cannot be accurately estimated, and the state variable
cannot be evaluated more accurately. . .. The proposed method has some improvement
effect compared with the original method, but the effect is not significant enough in some
conditions, which is a defect of the proposed method”. In summary, the adaptation solu-
tions in [41–43] primarily relied on the measurement noise level, and were not particularly
effective for swift variations of states or tyre–road friction parameters, or for incorporat-
ing physics-based heuristics. Additionally, the proposed filters used simplified models,
neglecting the wheel dynamics, which are of the essence for tyre slip dynamics estimation
in extreme conditions. Finally, the evaluation was limited to simulations with constant or
slowly varying torque demands, without significant wheel slip events.

Interestingly, van Aalst et al. [44] combined parameter and covariance adaptations.
In fact, the cornering stiffness values are adapted with a random walk model, while the
filter covariances are adjusted according to the operating conditions of the vehicle, by using
vehicle-dynamics-derived heuristics. The resulting scheme can thus effectively account
for uncertainties and nonlinearities across a wide range of excitation inputs. However, the
algorithm, based on an EKF approach, is not designed for longitudinal speed and slip ratio
estimation, and is assessed only in high-friction conditions.

A recent trend is the use of combinations of state estimators, e.g., through so-called
fusion architectures that embed both kinematic and dynamic vehicle models. In fact, a
kinematic model is not affected by uncertain vehicle parameters or tyre behaviour, and can
be particularly effective in transient conditions and for large excitation magnitudes. On
the contrary, during normal vehicle operation, dynamic model-based filters provide better
performance. For example, the solution in [45] combined a consensus Kalman filter, using
a dynamic vehicle model, and a kinematic model-based Kalman filter. The architecture was
applied to an automated vehicle, with the two filters receiving heading and velocity errors
determined through a global navigation satellite system (GNSS) and a reduced inertial
navigation system (R-INS). A weighting scheme based on the lateral excitation level fused
the two outputs, bringing improved estimation accuracy during critical driving conditions.
In the architecture in [46], an algorithm adaptively determined the cornering stiffness of
a single-track model for sideslip angle estimation during quasi-steady-state cornering,
through a proportional integral (PI) controller. Additionally, a kinematic approach in the
form of an EKF was employed for transients and large excitation magnitudes. Similarly
to [45], a weighting strategy combined the filter outputs. Whilst the resulting fusion
architectures were assessed through a wide range of experimental data, neither paper
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embedded tests on low-µ surfaces, or incorporated the wheel dynamics, i.e., the tyre slip
ratios could not be accurately estimated during wheel slip control transients. Furthermore,
these approaches are more complex to tune than a single estimator, and thus, instead of
fusing two estimators to maximise performance, a covariance adaptation strategy on a
single estimator may be more practical.

In summary, the available literature lacks:

• Adaptive dynamic model-based Kalman filters that concurrently vary the process and
measurement noise covariances through vehicle-dynamics-derived heuristics. These
should be defined as a function of relevant error variables, based on the difference
between the measured and estimated outputs, with the specific scope of enhancing
performance in highly dynamic conditions, including significant longitudinal tyre slip
variations induced by wheel torque or tyre–road friction transients. These scenarios,
unlike the current adaptive implementations, require internal models accounting for
the wheel dynamics.

• The assessment of the sideslip angle, velocity and tyre slip estimation performance
benefit of adaptive Kalman filters in both high- and low-friction conditions, including
µ-jump tests, and manoeuvres with very high levels of longitudinal and lateral slip.

This paper targets the identified gap, with the following contributions:

• A UKF implementation with vehicle-dynamics-based adaptive formulations for the
following: (a) the wheel speed measurement covariances, based on variables that
are robustly representative of the longitudinal tyre slip condition; (b) the tyre–road
friction coefficient process noise covariance, based on error variables depending on the
longitudinal and lateral accelerations; and (c) the process noise covariances of the yaw
rate and the longitudinal and lateral velocity components, based on the estimation
errors with respect to the available relevant measurements.

• The experimental validation of the UKF with adaptive covariance matrices, referred to
as UKF ACM, along extreme high-friction manoeuvres, including significant longitu-
dinal and lateral accelerations.

• The validation of UKF ACM through a high-fidelity and experimentally validated
model, in conditions with very low tyre–road friction, including µ-jumps.

• The comparison of UKF ACM with a baseline UKF with fixed covariance values that
are well calibrated.

The remainder is organised as follows: Section 2 introduces the case study vehicle and
simulation models; Section 3 presents the proposed UKF implementations; Section 4 deals
with the case study manoeuvres and relevant key performance indicators; Section 5 reports
and critically analyses the experimental and simulation results; finally, Section 6 draws the
main conclusions.

2. Case Study Vehicle and Associated Models
2.1. Reference Vehicle

The case study was an Audi e-tron sport utility vehicle prototype, used as one of the
demonstrators of the European Horizon 2020 EVC1000 project. The vehicle has two on-
board electric motors, one per axle, connected to the wheels via a single-speed transmission
and mechanical differential. The main vehicle parameters are in Table 1. Figure 1 shows
a photograph of the vehicle, with a Kistler Correvit S-350 sensor mounted on the rear
left door. The sensor provides accurate measurements of the longitudinal and lateral
components of vehicle velocity, and thus sideslip angle, which are recorded for validating
the values estimated by the filters. The vehicle also includes the typical factory-installed
measuring equipment, e.g., an inertial measurement unit (IMU), as well as steering wheel
angle, individual wheel speed, accelerator pedal position, and tandem master cylinder
pressure sensors. The considered filters only used the conventional production vehicle
measurements as inputs.
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Table 1. Main parameters of the case study vehicle.

Description Symbol Value Unit

Vehicle mass in real
testing conditions mtot 2843 [kg]

Yaw mass moment of
inertia Iz 4124 [kgm2]

Front semi-wheelbase a 1.47 [m]
Rear semi-wheelbase b 1.46 [m]
Front track width t f 1.60 [m]
Rear track width tr 1.60 [m]
Centre of gravity height hCOG 0.63 [m]
Wheel radius R 0.38 [m]
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Figure 1. The case study Audi e-tron at the Ebbenjarka testing facility (Sweden), including the Kistler
Correvit S-350 sensor, providing accurate measurements of the velocity components.

2.2. High-Fidelity Vehicle Simulation Model

A high-fidelity vehicle simulation model was implemented with the CarMaker tool by
IPG, for the simulation-based assessment of the UKF performance. The model includes the
six DoFs of the sprung mass, the four DoFs associated with the unsprung mass motions, and
the four wheel rotations, and considers the associated dynamic couplings. The suspension
elasto-kinematic characteristics and nonlinearities associated with the shock absorbers and
bump stops were also accounted for. Tyre behaviour was emulated with the Pacejka magic
formula [47] including relaxation effects. The model parameters were directly provided by
the involved car manufacturer, which was part of the EVC1000 initiative.

2.3. Internal Model of the Filters

The internal model embedded in the UKFs was specifically designed to achieve its
intended objectives, i.e., it includes only the essential DoFs for estimating the sideslip angle,
vehicle speed, slip angles, and slip ratios, in order to achieve computational efficiency and
real-time implementability. Therefore, the selected formulation is a nonlinear 7-DoF model,
considering the longitudinal, lateral, and yaw dynamics of the vehicle, in addition to the
rotational dynamics of each of the four wheels. The schematic in Figure 2 highlights the
key parameters and variables, together with their sign conventions, according to the ISO
standard [48]. The internal model was developed by Mazzilli et al. [49]; hence, its detailed
derivation will not be included here.
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The primary governing equations of motion are the following:

• Longitudinal force balance

ax =
.
vx − vyr =

1
mtot

 2

∑
i=1

(
Fx,icosδi − Fy,isinδi

)
+

4

∑
i=3

(Fx,i)− Fdrag

 (1)

• Lateral force balance

ay =
.
vy + vxr =

1
mtot

 2

∑
i=1

(
Fx,isinδi + Fy,icosδi

)
+

4

∑
i=3

(
Fy,i

) (2)

• Yaw moment balance

.
r = 1

Iz

a
2

∑
i=1

(
Fx,isinδi + Fy,icosδi

)
+

( t f
2 − ∆yCOG

)
(Fy,1sinδ1 − Fx,1cosδ1)

−
( t f

2 + ∆yCOG

)(
Fy,2sinδ2 − Fx,2cosδ2

)
−

(
tr
2 − ∆yCOG

)
Fx,3

+
(

tr
2 + ∆yCOG

)
Fx,4 − b

4

∑
i=3

Fy,i +
4

∑
i=1

Mz,i


(3)

• Wheel moment balance

Iweq,i
.

ωi = MEM,i − MB,i − Fx.iRl,i − My,i (4)

where the increasing values of the integer i, with i = 1,. . ., 4, used as a subscript,
refer to the front left, front right, rear left, and rear right vehicle corners; ax and
ay are the longitudinal and lateral accelerations; vx and vy are the longitudinal and
lateral components of the vehicle velocity; Fx,i and Fy,i are the longitudinal and lateral
tyre forces; δi is the steering angle of the i-th wheel; r is the yaw rate; Fdrag is the
aerodynamic drag force; ∆yCOG indicates the lateral position of the centre of gravity
with respect to the plane of symmetry of the vehicle; Mz,i is the tyre self-aligning
moment; Iweq,i is the equivalent mass moment of inertia of the wheel;

.
ωi is the angular

wheel acceleration; MEM,i is the electric motor torque level referred to the i-th corner,
computed from the measured motor current, the gearbox and final drive ratios, as
well as the respective efficiencies; MB,i indicates the braking torque at the individual
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corner, which is estimated from the measured tandem master cylinder pressure; Rl,i is
the laden tyre radius; and My,i is the rolling resistance moment.

The model computes the longitudinal and lateral load transfers through steady-state
equations based on ax and ay. The vehicle sideslip angle at the centre of gravity, βCOG,
which is one of the key variables to be estimated, is given by:

βCOG = tan−1
(

vy

vx

)
(5)

Similarly, the classical kinematic equations are used for the tyre slip ratios, σx,i, and
slip angles, αi, which are modified according to the analyses in [50,51], to ensure stability
and realism also during low-speed operation. The longitudinal and lateral tyre forces are
obtained through a simplified version of the magic formula (version 5.2, see [47]).

In summary, the formulation of the internal model of the filter is totally independent
from the CarMaker model in Section 2.2. The very substantial differences in key aspects
of the models (e.g., number of DoFs, load transfer formulations, magic formula version)
also imply different model parametrisations. To make the UKF performance assessment
more realistic and conservative, the model calibrations, based on the available vehicle
data, did not involve any further optimisation to match the collected experimental results.
The diversity in model arrangements and tuning setups makes the following simulation
analyses realistic and indicative of the operational robustness of the UKFs.

2.4. Experimental Validation of the Models

The CarMaker and internal models have been experimentally validated through series
of quasi-steady-state and transient tests in high-friction conditions, carried out during the
EVC1000 project. Further experimental data was gathered on the very low-friction ice
tracks at the Ebbenjarka testing facility in Sweden, which was characterised by variability
and unpredictability of the surface conditions.

Figure 3 reports a sample of the validation results, referring to (a) a quasi-steady-state
40 m radius skid pad manoeuvre on dry tarmac; (b) a sinusoidal steering manoeuvre from
an initial speed of ~80 kmh−1 and constant accelerator pedal position; and (c) a sinusoidal
steering manoeuvre at ~40 kmh−1 on an icy surface.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 24 
 

 

The model computes the longitudinal and lateral load transfers through steady-state 

equations based on 𝑎𝑥 and 𝑎𝑦. The vehicle sideslip angle at the centre of gravity, 𝛽𝐶𝑂𝐺 , 

which is one of the key variables to be estimated, is given by: 

𝛽𝐶𝑂𝐺 = tan−1 (
𝑣𝑦

𝑣𝑥
)  (5) 

Similarly, the classical kinematic equations are used for the tyre slip ratios, 𝜎𝑥,𝑖, and 

slip angles, 𝛼𝑖, which are modified according to the analyses in [50,51], to ensure stability 

and realism also during low-speed operation. The longitudinal and lateral tyre forces are 

obtained through a simplified version of the magic formula (version 5.2, see [47]). 

In summary, the formulation of the internal model of the filter is totally independent 

from the CarMaker model in Section 2.2. The very substantial differences in key aspects 

of the models (e.g., number of DoFs, load transfer formulations, magic formula version) 

also imply different model parametrisations. To make the UKF performance assessment 

more realistic and conservative, the model calibrations, based on the available vehicle 

data, did not involve any further optimisation to match the collected experimental results. 

The diversity in model arrangements and tuning setups makes the following simulation 

analyses realistic and indicative of the operational robustness of the UKFs. 

2.4. Experimental Validation of the Models 

The CarMaker and internal models have been experimentally validated through 

series of quasi-steady-state and transient tests in high-friction conditions, carried out 

during the EVC1000 project. Further experimental data was gathered on the very low-

friction ice tracks at the Ebbenjarka testing facility in Sweden, which was characterised by 

variability and unpredictability of the surface conditions. 

Figure 3 reports a sample of the validation results, referring to (a) a quasi-steady-

state 40 m radius skid pad manoeuvre on dry tarmac; (b) a sinusoidal steering manoeuvre 

from an initial speed of ~80 kmh−1 and constant accelerator pedal position; and (c) a 

sinusoidal steering manoeuvre at ~40 kmh−1 on an icy surface. 

(a) 

 

(b) 

(c) 

Figure 3. Examples of experimental validation of the CarMaker model and the internal UKF model 

on (a) a 40 m radius skid pad on dry tarmac; (b) a sinusoidal steering manoeuvre on dry tarmac, 

from ~80 kmh−1; and (c) a sinusoidal steering test at ~40 kmh−1 on an icy surface (t is time). 

The three sets of data—the experimental results and the simulation results from the 

two models—highlight that the CarMaker model provided a consistently good match for 

experiments (a–c), and therefore could be considered a reliable tool for UKF performance 

Figure 3. Examples of experimental validation of the CarMaker model and the internal UKF model
on (a) a 40 m radius skid pad on dry tarmac; (b) a sinusoidal steering manoeuvre on dry tarmac, from
~80 kmh−1; and (c) a sinusoidal steering test at ~40 kmh−1 on an icy surface (t is time).
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The three sets of data—the experimental results and the simulation results from the
two models—highlight that the CarMaker model provided a consistently good match for
experiments (a–c), and therefore could be considered a reliable tool for UKF performance
assessment across a wide range of conditions, including very low tyre–road friction. On
the contrary, although performing well in the high-µ tests, the UKF models severely
underestimated the sideslip angle magnitude in the low-friction test (c), which highlights
the necessity of the UKF ACM.

3. Adaptive Unscented Kalman Filter Architecture
3.1. Filter Architecture and Strategy

Figure 4 is an overview schematic of the filter architecture, which was implemented
and assessed in real-time on a dSPACE MicroAutoBox II unit (900 MHz, 16 Mb flash
memory), with a 10 ms sampling time.
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The system state, input, and output (corresponding to the available measurements)
vectors, respectively, x, u, and y, are:

x =
{

vx vy r ωi µmax
}

u = { δi MEM,i MB,i }

y =
{

ax ay r ωi
} (6)

As per [49], the average peak tyre–road friction coefficient (µmax) of the four tyres is
one of the states, and is estimated via a random walk model in the time update step. µmax
is used as an additional degree of freedom to provide more accurate output estimations
through the UKF, such as those of the vehicle speed and sideslip angle, as opposed to
attaining an accurate friction coefficient estimation.

The presented estimators are based on the UKF algorithm [24], which operates accord-
ing to two main steps:

1. The time update (or prediction) step, in which a predicted state vector x−k , also known
as the a priori state vector, where k is the time step, is computed by using the previous
state estimate and the internal nonlinear vehicle model. x−k is calculated by estimating
the mean of so-called sigma points, which approximate the mean and covariance
of the system, representing the state estimate and its associated uncertainty. In this
step, the process noise covariance matrix, Q, is used to influence the propagation of
the generated sigma points. High values of the elements of Q indicate significant
uncertainty and low confidence in the internal model dynamics, which consequently
affects the a priori prediction [52].
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2. The measurement update (or correction) step, in which x−k is corrected to produce the
a posteriori state vector estimate, x+k , by multiplying the error between the predicted
measurements and the real measured data, also known as the innovation, e−y,k, by the
Kalman gain, Kk, the calculation of which is beyond the scope of this paper:

x+k = x−k + Kke−y,k (7)

The measurement noise covariance matrix, R, which represents the uncertainty in the
vehicle sensors, is used to influence the spread of a second set of sigma points, generated
similarly to those in step 1., and is also directly involved in the calculation of Kk. Within the
UKF algorithms, larger values of the elements of R imply reduced significance associated
with the measurements.

A third covariance matrix, namely the state covariance matrix P, which quantifies the
uncertainty in the state vector xk, is used in both steps of the UKF algorithm. While P is a
full matrix that is updated iteratively at each time step according to the UKF equations, Q
and R are diagonal matrices to reduce the computational load, under the assumption that
the process and measurement noise sources are independent from each other. Hence, each
element of Q and R correlates to the uncertainty of a state or measurement. In the specific
implementation, Q and R are given by:

Q = diag[ Qvx Qvy Qr Qω1 Qω2 Qω3 Qω4 Qµmax ] (8)

R = diag[Rax Ray Rr Rω1 Rω2 Rω3 Rω4 ] (9)

where the subscripts in the notations of the elements of Q indicate the related state, while
the subscripts of the components of R refer to the relevant measurement. Q and R are
typically kept constant. In fact, well-calibrated fixed-covariance UKFs are sufficient in the
majority of real-world cases, but there are exceptional conditions where this is not true, and
thus an ACM setup is beneficial to robustness and convergence. In this study, two UKF
variants are presented: (i) the baseline UKF, simply referred to as UKF, with fixed values
of the matrices; and (ii) UKF ACM, including the adaptation of the elements of Q and R
indicated in the boxes in (8) and (9).

The process and measurement noise covariances of the baseline UKF were obtained
via an optimisation routine, minimising a cost function based on the error between the UKF
estimated outputs and the measurements, see [49], which was computed from test results
obtained along the high-friction handling circuit of the Lommel proving ground (Belgium).

3.2. Wheel Speed Measurement Noise Covariance Adaptation

In UKFs with constant covariances, the accuracy of the vx estimation typically worsens
as the magnitude of the longitudinal tyre slip (σx) increases. In fact, when the tyres tend to
lock or spin, the wheel speed measurements, despite remaining accurate and robust, are
not effective for straightforward vehicle speed estimation. In these conditions, it is more
effective to prioritise (i) the speed estimate from the nonlinear internal vehicle model of
the time update step, which embeds the tyre slip dynamics of each corner, if the tyre–road
friction factor is correctly estimated; and/or (ii) the ax measurement, which, through
integration in the time domain, could ideally directly bring the speed profile.

To achieve the desired effect, UKF ACM includes an adaptation of the R matrix values
for the four wheel speed measurements, i.e., Rωi , at each time step, according to:

Rωi = Rω,min + (Rω,max − Rω,min)(1 − ϵωi )
2 (10)

where Rω,min and Rω,max are the minimum and maximum values for Rωi , and ϵωi is an
adaptive weight.
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The weight ϵωi varies according to the following bivariate normal distribution:

ϵωi = e
− 1

2

[
(

ax,ωi−ax
σa )

2
+(

vx,ωi−v̂x,ω
σv )

2
]

(11)

where ax is the measured longitudinal acceleration; v̂x,ω is a dead reckoning estimated
longitudinal speed based on the average of the four wheel speeds; σa and σv are tuneable
standard deviation parameters for the longitudinal acceleration and speed; and ax,ωi and
vx,ωi are the longitudinal acceleration and velocity of the respective corner, obtained from
the measured i-th wheel speed and transformed to the vehicle centre of gravity, under the
simplifying assumption of zero longitudinal tyre slip:

vx,ω1 = −r
t f
2 + ω1R1cos δ1

vx,ω2 = r
t f
2 + ω2R2cos δ2

vx,ω3 = −r tr
2 + ω3R3

vx,ω4 = r tr
2 + ω4R4

ax,ωi =
.
vx,ωi

(12)

where Ri is the rolling radius of the respective tyre. The bar notation ‘
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’ in the numerator
of (11) denotes a moving average computed on four samples with 10 ms discretisation.
The term ax,ωi − ax is an indicator of the absolute rate of variation of the tyre slip in the
considered corner, since the reference is represented by the longitudinal vehicle acceleration
measurement, while the term vx,ωi − v̂x,ω highlights the wheels with significantly different
longitudinal slip from the average value among the corners. Hence, from the adaptation
mechanism perspective, the absence of criticality corresponds to conditions of rather
uniform longitudinal tyre slip distribution among the corners, and the absence of significant
longitudinal slip rates. During the filter implementation phase, it was extensively verified
through simulations and experiments that the combination of the two terms is effective
and robust in detecting the critical corners from the viewpoint of the slip ratio dynamics.

Figure 5 shows the adopted ϵωi distribution as a function of ax,ωi − ax and vx,ωi − v̂x,ω .
ϵωi varies between 0, indicating the presence of critical slip dynamics, and 1, indicating the
absence of detected longitudinal slip criticalities. Based on (10), ϵωi = 1 corresponds to
Rω,min, i.e., the condition of maximum weight given to the wheel speed measurement, while
ϵωi = 0 implies Rω,max, i.e., the minimum significance given to the wheel speed signal. The
use of a standard deviation approach in (11) enables the capture of the range of potential
values and the likelihood of their occurrence within a normal distribution framework. This
is particularly useful in the presented adaptation algorithm, in which the two variables are
interrelated and exhibit a certain level of correlation in their behaviour [53].
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During the filter calibration phase, the parametrisation of the standard deviation
coefficients σa and σv was carried out through brute-force testing in manoeuvres implying
different levels of excitation of the longitudinal vehicle dynamics. Rω,min was set to be equal
to the Rω value that was optimised for the baseline UKF, providing desirable performance
for a very wide range of operating vehicle conditions. Instead, Rω,max was determined via
a dedicated optimization process. By using the value from van Aalst’s research [37] as the
initial condition, a multi-objective genetic algorithm was executed with constant Rωi values,
equal among the corners, i.e., Rω1 = · · · = Rω4 = Rω. The routine minimises an objective
function, Jb, which includes six terms, accounting for the relevant normalized root mean
square error (NRMSE) values between the measurements and the filter estimation outputs:

arg minRω Jb =

√√√√√ 1
Ns ∑

b

 Ns

∑
p=1

[ ew,b,p
enorm,b

]2


with b = ax, vx, ω1, ω2, ω3, ω4

(13)

where the index b—used both as a main variable and as a subscript—refers to the lon-
gitudinal acceleration ax, longitudinal speed vx, and wheel speeds ωi; Ns is the number
of samples within the considered manoeuvre; enorm,b is the normalisation factor for the
corresponding error variable; and ew,b,p is the weighted estimation error of the sample p,
which is given by:

ew,b,p =


W1,b

(
b̂p − bp

)
i f
∣∣∣b̂p − bp

∣∣∣ < eth,1,b

W2,b

(
b̂p − bp

)
i f eth,1,b ≤

∣∣∣b̂p − bp

∣∣∣ < eth,2,b

W3,b

(
b̂p − bp

)
i f
∣∣∣b̂p − bp

∣∣∣ ≥ eth,2,b

(14)

where eth,1,b and eth,2,b, with eth,1,b > eth,2,b, are predefined
∣∣∣b̂p − bp

∣∣∣ thresholds; and the
scaling factors W1,b, W2,b, and W3,b, with W3,b ≫ W2,b ≫ W1,b, are set to penalise excessive
error values. The optimisation round only covered manoeuvres with extremely critical
steady-state and transient longitudinal tyre slip conditions, and the resulting optimal Rω

value was set as Rω,max. Further trial-and-error calibration of Rω,max was implemented at
the end of the overall filter adaptation mechanism tuning, by considering the adaptations
of the other UKF covariances.

3.3. Process Noise Covariance Adaptation

The process noise covariances Qr, Qvx , and Qvy are characterised by a similar adapta-
tion structure to the wheel speed measurement noise covariances. During the development
phase, it was verified that these adaptations tend to improve estimation robustness, espe-
cially in extremely critical conditions. For example, this applies to specific counter-steering
and drifting manoeuvres, in which the yaw rate and front steering angles often have oppo-
site signs. Hence, the internal model tends to be less accurate, and the UKF must increase
its reliance on measured values.

The covariances vary between minimum and maximum set values as functions of ϵj:

Qj = Qj,min +
(
Qj,max − Qj,min

)(
1 − ϵj

)2 (15)

where the subscript j, with j = r, vx, vy, indicates the relevant state; the minimum and
maximum covariance values, Qj,min and Qj,max, are computed with a similar procedure to
the one used for Rmin and Rmax; and ϵj is calculated based on a Gaussian distribution law:

ϵj = e
− 1

2

(
l̂−l
σl

)2

(16)
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where the notation l, with l = r, ax, ay, indicates the relevant measured variable; l̂ is the
value of the same variable estimated by the UKF; and σl is a tuneable standard deviation
parameter. Whilst r is used for the computation of ϵr, the accelerations ax and ay are
adopted for ϵvx and ϵvy , instead of vx and vy, as it is preferable to build the adaptation
upon the estimation error with respect to measured values such as ax and ay.

Extensive testing revealed a significant influence of the measurement covariance for
µmax, i.e., Qµmax

, on the adaptability and rate of change of µmax, especially in scenarios
characterised by high levels of lateral and/or longitudinal tyre slip. Consequently, for this
covariance, a different adaptation strategy was developed, using a two-dimensional look-
up table, based on two variables related to the lateral and longitudinal dynamics: (a) the
moving average of the error between the lateral acceleration value estimated by the UKF
and the one measured by the IMU, i.e., eay = ây − ay; and (b) the time derivative of the
moving average of the longitudinal acceleration error,

.
eax = d

(
âx − ax

)
/dt, which is a good

indicator of friction-related criticalities of the longitudinal vehicle dynamics.
The Qµmax

look-up table was designed to enhance the responsiveness of the state µmax
to the actual tyre–road friction level, and to induce rapid reactions of the random walk
model. In the generation process, initial one-dimensional maps were generated through
brute-force testing, and then were further refined through a gradient-descent optimisation
algorithm for each of the purely longitudinal and lateral test scenarios in Section 4.1. The
objective was to minimise a cost function based on the relevant key performance indicators
(KPIs) in Section 4.2, for the prevalent dynamics excited in the specific manoeuvre. The
attained optimal Qµmax

values were subsequently combined via interpolation to construct
the two-dimensional look-up tables. These were further optimised along manoeuvres with
combined high slip conditions. The tuning process was repeated for alternative look-up
table input variables. eay and

.
eax emerged as the optimal choices. Figure 6 shows the

resulting map implemented in UKF ACM.
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4. Test Scenarios and Key Performance Indicators
4.1. Manoeuvres for Performance Assessment

The resulting UKFs were tested: (i) experimentally, in high-friction conditions, at the
Lommel proving ground; and (ii) through the high-fidelity CarMaker model, in manoeuvres
with very low tyre–road friction levels, which could not be performed within the available
experimental facility. Both (i) and (ii) include very challenging conditions from the vehicle
dynamics viewpoint. The test scenarios were the following:

• Test scenario 1: experimental 60 m radius skid pad test, in which the vehicle was
slowly accelerated while the driver applied steering angle corrections for tracking the
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reference trajectory, until the car reached the cornering limit, and could no longer stay
within the reference lane.

• Test scenario 2: experimental handling circuit lap with the vehicle pushed to its limit
by a professional test driver. This test was designed to stress the vehicle at high lateral
and longitudinal accelerations, and targeted the UKF performance assessment in peak
acceleration conditions.

• Test scenario 3: simulated acceleration and braking test on a very low-friction surface
(µ ≈ 0.3). The manoeuvre involved the vehicle accelerating from a standstill to a speed
of ~ 70 kmh−1, followed by heavy braking whereby the anti-lock braking system
(ABS) module was activated throughout. A conventional ABS algorithm was chosen,
which uses a control law based on the combination of longitudinal tyre slip and wheel
deceleration [54]. The ABS was fed with the true values of the relevant variables from
the high-fidelity vehicle simulation model, and the two filters received the same inputs
from the model, i.e., the simulation results were not affected by the presence of the
filters. On the contrary, the traction controller was purposely kept inactive during
the acceleration phase, which thus implied significant wheel spinning. The overall
test targeted the assessment of the vehicle speed estimation performance in extremely
critical conditions.

• Test scenario 4: simulated acceleration test with µ-jump, i.e., with a sudden transition
from µ ≈ 0.3 to µ ≈ 1, which was followed by an immediate acceleration at the
vehicle’s maximum capability once the rear wheels had crossed over to the higher
friction surface. With the electric motors installed on this vehicle, this equated to a rise
in ax from 0 to 6 ms−2 in under 0.3 s.

• Test scenario 5: simulated slow sinusoidal steering (with a 0.25 Hz frequency and
45 deg amplitude) manoeuvre at µ ≈ 0.3 from an initial speed of 70 kmh−1, with the
torque demand set to the constant value that would maintain the entry speed if the
vehicle was operated in straight line. The steering wheel angle amplitude, δswa,max,
was set to 45 deg, corresponding to a steady-state ay of ~6 ms−2. The test focused on
the sideslip angle estimation performance in very low-friction conditions.

Although test scenario 3 involved very low-friction conditions, the filters were ini-
tialised with µmax,0 = 1, corresponding to dry tarmac operation; similarly, to make the
manoeuvre more challenging following the tyre-road friction transition, in test scenario
4 the initialisation was set to µmax,0 = 0.3. In all other scenarios, the initialisation was set to
µmax,0 = 1.

Additionally, to ascertain the robustness of the estimators with respect to realistic
variations of typical parameters, a sensitivity analysis was conducted on UKF and UKF
ACM with ±10% independent changes of the vehicle mass mtot, yaw mass moment of
inertia Iz, and tyre cornering stiffness C, for which the changes were made to the equiv-
alent scaling factor of the magic formula model, λky. Due to the inability to change the
experimental vehicle demonstrator, the analysis was performed by varying the parameters
within the internal model of the filters. For consistency, the same method was applied to
the simulation-based analyses.

4.2. Key Performance Indicators

The performance of UKF and UKF ACM was analysed through the root mean square
(hence, the subscript ‘rms’ in the following notations) values of the error between the UKF
estimation outputs and the measured data. Hence, the resulting KPIs are (i) eβCOG ,rms, the
rms value of the estimation error of the sideslip angle at the centre of gravity; (ii) evx ,rms,
the rms value of the longitudinal speed estimation error; (iii) eσx,F ,rms, the rms value of the
average estimation error on the slip ratios of the front tyres; and (iv) eσx,R ,rms, the same as
(iii), but applied to the slip ratios across the rear axle.

Moreover, for each indicator (i–iv), the relative percentage reduction, ∆UKF ACM|UKF,
of the estimation error brought by UKF ACM with respect to UKF is computed for nominal
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internal model parameters. The robustness analyses also include consideration of the
following indicators:

∆UKF,rp|UKF =
ex,rms,UKF−ex,rms,UKF,rp

ex,rms,UKF
100

∆UKF ACM,rp|UKF =
ex,rms,UKF−ex,rms,UKF ACM,rp

ex,rms,UKF
100

(17)

where ex,rms,UKF indicates the KPI value for UKF, related to the estimation of the variable
x (with x = βCOG, vx, σx,F, σx,R), for nominal parametrisation of the internal model of the
filter; ex,rms,UKF,rp is the KPI value for UKF, referred to the estimation of the variable x, for a
variation of the internal model parameter indicated by the subscript ‘rp’ (i.e., robustness pa-
rameter, defined such that rp = mtot, Iz, C) in the robustness analysis; and ex,rms,UKFACM,rp
is the equivalent of ex,rms,UKF,rp for UKF ACM. Hence, ∆UKF,rp|UKF and ∆UKFACM,rp|UKF
are the percentage variations of the estimation performance of UKF and UKF ACM with
respect to the benchmarking UKF with nominal parametrisation.

5. Results
5.1. Assessment for Nominal Vehicle Parameters

For test scenarios 1–5, the UKF and UKF ACM outputs are compared against the
measured data or simulation results in the following Figures 7–11, while Table 2 re-
ports the KPIs for all tests. For simplicity of notation, the symbol ‘
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UKF 0.510 - 2.515 - 0.0157 - 0.0173 -
UKF ACM 0.501 −1.76% 2.504 −0.43% 0.0156 −0.83% 0.0171 −0.87%

Test Scenario 3—Simulated acceleration and braking with µ ≈ 0.3

UKF - - 32.254 - 1.3988 - 1.0325 -
UKF ACM - - 1.925 −94% 0.1828 −87% 0.1361 −87%

Test scenario 4—Simulated acceleration with µ-jump

UKF - - 4.993 - 0.0956 - 0.0928 -
UKF ACM - - 1.373 −72% 0.0422 −56% 0.0401 −57%

Test scenario 5—Simulated sinusoidal steering test with µ ≈ 0.3

UKF 0.508 - 0.985 - 0.0327 - 0.0328 -
UKF ACM 0.233 −54% 0.948 −3.71% 0.0322 −1.41% 0.0323 −1.40%

Test scenario 1. The maximum measured lateral acceleration achieved in this test
exceeded 10 ms−2, which implies a real tyre–road friction coefficient slightly above 1.
Figure 7 reports the time histories of the main estimated variables and the respective
measured profiles. The main useful filter outputs are βCOG and vx. Nevertheless, to assess
the overall matching of the estimated vehicle dynamics with the measured behaviour, the
figure—similarly to the following ones—also reports additional variables, in this case ax, ay,
and r, which are commonly measured in production vehicles, and µmax, the auxiliary state
that facilitates estimation convergence. Both UKFs estimate the states well in these quasi-
steady-state conditions, with some minor differences. For example, UKF ACM outputs
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a µmax profile that is higher—by almost 0.1—than the one from UKF. The increased µmax
provides modest improvements, of up to 4%, in the estimation of vx and βCOG. This is
noticeable at ~34 s, where both UKF ACM estimations are clearly closer to the measured
data, e.g., see the inset in the subplot of vx. In general, although not being cause for concern
in this specific test, the discrepancies between the measurements and the UKF estimates
were caused by the model assumptions (e.g., absence of the pitch and heave motions,
and the vertical dynamics of the unsprung masses) and mismatches, which tend to be
particularly evident in correspondence with the model nonlinearities associated with tyre,
suspension, and aerodynamic behaviour.
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Figure 7. UKF comparison plots for an experimental skid pad manoeuvre (test scenario 1).

Test scenario 2. The handling circuit excited the vehicle cornering response in quasi-
steady-state and transient conditions, including significant interactions between the lon-
gitudinal and lateral dynamics. In fact, |ax| often exceeded 6 ms−2, and

∣∣ay
∣∣ reached the

cornering limit with values of over 10 ms−2. In this test, the estimation of βCOG was
paramount for active safety purposes, as it would be used by vehicle stability controllers
and other chassis controllers. The same time history plots as in scenario 1 are shown in
Figure 8. Aside from a jump in µmax at t ≈ 80 s, which is attributed to a longitudinal
acceleration spike associated with an instance of hard braking, the outputs from the UKF
variants are substantially indistinguishable. Both UKFs accurately estimate the sideslip
response, with eβ,rms values of ~0.5 deg. This level of accuracy was particularly impressive,
considering the signal noise magnitude typical of the measurements from the production
sensors of the specific vehicle demonstrator, feeding their inputs to the UKFs. Similarly
to the first test scenario, UKF ACM brought a minor improvement in all KPIs, with a ~2%
reduction of eβ,rms.
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Test scenario 3. This was the first low-friction surface test, in which the µmax initial-
isation at 1 represented a worst-case scenario, given that the actual friction factor was
~0.3. The vehicle accelerated in the first 7.5 s, achieving an ax peak of ~3 ms−2, which
implied significant wheel spinning given the absence of traction control, before braking to
a standstill in approximately the same time, with ABS interventions throughout to prevent
wheel locking. Figure 9 reports the time histories of the most relevant variables. On the
ax profile, at the beginning of the test, there is a very sharp rise in the ax estimated by
the filters, as the driver starts to accelerate and the algorithms have been initialised for
high-friction conditions, i.e., they expect higher ax values than those actually measured,
which are limited by the surface condition. The error between the accelerations and ve-
locities is high, so ϵωi drops to its bottom boundary, and subsequently Rωi (see Rω1,n in
the figure, i.e., the normalised Rω1 profile for comparison purposes) increases, to indicate
that UKF ACM must give low weight to the measured wheel speeds. This initial transient
corresponds to large

∣∣ .
eax

∣∣, which, in turn, at t ≈ 1 s, causes a small increase in Qµmax ,n,
i.e., the normalised value of Qµmax

, responsible for the steep drop in µmax. After the drop, as
the estimated µmax matches the real friction level, the wheel speed measurements become
relevant again. Unlike UKF, UKF ACM is then able to track the measured ax and vx for
the remainder of the acceleration phase with great accuracy. For example, the maximum
magnitude of the slip ratio estimation error amounts to ~0.6 for UKF ACM, against ~3.2 for
UKF. Both UKF variants estimate vx well during the braking period, although UKF ACM
is smoother, whereas UKF staggers during the ABS cycling phase. Correspondingly, the
amplitude of the ax oscillations during the braking period is roughly halved by UKF ACM.
Overall, across the test, UKF ACM reduces evx ,rms by 94%, from 32.3 ms−1 to 1.9 ms−1, and
both eσx,F ,rms and eσx,R ,rms by 87%.
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Figure 9. UKF comparison plots for an acceleration and braking test with µ ≈ 0.3 (test scenario 3). For
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The important conclusion is that UKF ACM provided decisively superior vx estimation
performance in conditions of very high longitudinal slip. In this and the following tests, the
magnitude of the covariance variations for Qµmax

and Rωi was significantly higher than for
Qr, Qvx and Qvy , so the latter are not shown in the figures, although they are contributing
to the performance improvement. In the experiments for test scenarios 1 and 2, it was
also verified that the adoption—within UKF—of a Qµmax

value facilitating swift variations
of µmax, i.e., corresponding to the top level of Qµmax

visible in Figure 9 for test scenario
3, would provoke undesirable oscillations of the estimated variables, and unstable filter
behaviour during high-friction operation, which confirmed the necessity of the proposed
adaptation mechanism.

Test scenario 4. The µ-jump test helped ascertain how well the UKF could detect a
swift change in surface, reflecting real-world scenarios, such as road contamination, black
ice, or simply transitions from wet to dry tarmac, where accurate estimation, although
not being safety-critical, is important not to unnecessarily limit vehicle performance. The
results are presented in Figure 10. The road surface changes from low to high µ, and then
the vehicle begins to accelerate, just before t = 2 s, with maximum torque demand, which
results in an almost step-like increase in ax to ~6 ms−2. UKF fails to match the amplitude
and resulting shape of the ax curve, as its model expects the vehicle to be in low-friction
conditions, whereas UKF ACM is much more prompt. In fact, the rise in

∣∣ .
eax

∣∣ leads to a
spike in Qµmax

which allows for µmax to jump from ~0.3 to ~0.75, whereas in UKF, µmax
only reaches a value of ~0.38. Hence, UKF ACM better matches the vx measurement curve,
with evx ,rms reducing from ~5 ms−1 to ~1.4 ms−1, and the peak error value dropping from
~10 ms−1 to ~2.5 ms−1. With regards to eσx,F ,rms and eσx,R ,rms, UKF ACM reduces these KPIs
by ~57%, with the maximum magnitude of the slip ratio estimation error dropping by
~45%, i.e., from 0.175 to 0.095.
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friction conditions (test scenario 4).

Test scenario 5. In the low-friction sinusoidal steering test (Figure 11), µmax was subject
to an initial reduction to reasonable levels for both UKF and UKF ACM, occurring at the
very beginning of the simulation, when the vehicle accelerated in a straight line to reach
the required initial condition, before the relevant section of the manoeuvre reported in the
figure. Within the core part of the test, the vehicle exhibits high levels of lateral slip for
relatively low

∣∣ay
∣∣. During each steering transient, UKF overestimates the lateral accel-

eration peak, and then immediately afterwards underestimates
∣∣ay

∣∣. The eay oscillations
during the transients provoke the Qµmax ,n oscillations in the respective plot. These cause
the UKF ACM µmax profile to dip as the vehicle slips laterally, which significantly improves
the estimation of the peaks and overall shape of ay and βCOG. For example, the maximum
magnitude of the βCOG estimation error is reduced from over 1 deg to less than 0.3 deg, a
70% improvement compared to UKF. In conclusion, this test demonstrated the enhanced
performance of UKF ACM in its βCOG estimation on low-µ surfaces. Minor improvements,
amounting to less than 5%, were also seen in evx ,rms, eσx,F ,rms, and eσx,R ,rms.

5.2. Robustness Analysis

Figure 12 summarises the results of the robustness analysis along test scenarios 2 and 3
(see also Table A1 in the Appendix A for the full dataset). In the plots, the histograms refer
to ∆UKF ACM|UKF, while the error bars represent the range of variation of ∆UKF,rp|UKF and
∆UKF ACM,rp|UKF, across the sensitivity checks.
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Figure 12. Histograms of ∆UKF ACM|UKF, and error bars for ∆UKF,rp|UKF and ∆UKF ACM,rp|UKF, for
the considered robustness analyses, along (a) the experimental handling circuit (test scenario 2); and
(b) the simulated acceleration and braking test in low-friction conditions (test scenario 3).

The histograms in subplot (a) show that, on the handling circuit in high-friction
conditions and with nominal internal model parametrisation, the improvements brought
by UKF ACM are marginal (~2% on average) but consistent across the KPIs. The top and
bottom caps of the error bars of UKF ACM are all at a higher level than the respective ones
for UKF, which corresponds to better performance for the considered parameter range.
This is confirmed in Table A1, in which all UKF ACM KPIs are better than those for UKF
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with the same internal model mismatch. For example, UKF occasionally performs worse
by nearly 20% in terms of eβ,rms with respect to its nominal case, particularly when altering
the tyre cornering stiffness. The maximum eβ,rms performance decay of the UKF ACM with
internal model mismatch with respect to the nominal UKF is only 7%. With the exception
of that of evx ,rms, UKF ACM has shorter error bars than UKF, which represents a smaller
spread of values, and as such is symptomatic of robustness. Notably, the error bar for
evx ,rms is longer for UKF ACM, but the increased spread is only in the positive range, where
the filter with covariance adaptation markedly improves the estimation.

For test scenario 3 (see subplot (b)), the spread of eσx,F ,rms and eσx,R ,rms is roughly the
same for both UKF variants, while the one for evx ,rms is lower for UKF ACM. Nevertheless,
the difference in estimation accuracy is so wide that the error bars for the two filter variants
do not have any overlap.

6. Conclusions

This paper presented a novel vehicle state estimator, i.e., the so-called UKF ACM, of the
vehicle longitudinal and lateral components of the vehicle velocity, tyre slip ratios, as well
as sideslip and slip angles. The novelty lies in the adaptive formulations of the process and
measurement noise covariances. For fairness of assessment, the fixed covariances of a well-
calibrated baseline UKF were also used as the baseline values for UKF ACM. The two UKF
variants were compared in a variety of experimental and simulated manoeuvres, including
very low tyre–road friction conditions as well as longitudinal and lateral dynamics.

Based on the results in Section 5, the main conclusions are the following:

• In high-friction conditions near the limit of handling, the performance of the baseline
UKF with fixed covariances was very similar to that of UKF ACM, with the latter
providing small but still noteworthy benefits.

• In extreme longitudinal slip cases on low µ with highly incorrect friction level initiali-
sation within the filters, UKF ACM performed significantly better than UKF. In fact,
unlike UKF, the variations in the process and measurement noise covariances Qµmax
and Rωi , related to the friction random walk model and wheel speed measurements,
enabled UKF ACM to promptly detect the actual tyre–road friction level, and achieve
highly accurate speed and slip ratio estimation. Similarly, UKF ACM was very effec-
tive in identifying instantaneous and extreme changes in µ, with the related positive
impact in terms of the resulting estimation.

• In extreme lateral slip conditions on very low µ surfaces, the increased sensitivity of
µmax of UKF ACM allowed it to outperform the baseline UKF, with improvements of
over 50% in eβ,rms. This highlighted a clear safety improvement, as accurate sideslip
angle estimation is necessary for typical vehicle chassis controllers.

• UKF ACM has shown notable robustness with respect to UKF. In fact, when varying—within
the internal models of the filters—parameters that would realistically change during
real-world vehicle operation, (i) the UKF ACM KPI decay was maintained within
the tolerable range of 10% of the original values for nominal conditions, while UKF
experienced a maximum performance reduction that approached 20%; and (ii) the UKF
ACM results were the same or better, e.g., by more than 80% in the high longitudinal
tyre slip conditions of test scenario 3, than the corresponding UKF ones.

Future work will include (i) experimental testing on surfaces with low and variable
tyre–road friction conditions; (ii) the production-oriented implementation of UKF ACM on
automotive control hardware; (iii) the integration of machine learning algorithms in the
UKF adaptation scheme; and (iv) the comparison of the proposed formulation with the
most promising machine learning techniques for vehicle dynamics state estimation.
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Appendix A

Table A1. KPIs for the robustness analysis for test scenarios 2 and 3.

eβ,rms evx ,rms eσx,F ,rms eσx,R ,rms

[deg] [ms−1] [−] [−]

Test scenario 2—Experimental handling circuit

UKF 0.510 2.515 0.0157 0.0173
UKF mtot+10% 0.571 2.644 0.0157 0.0175
UKF mtot–10% 0.511 2.491 0.0158 0.0171
UKF Iz+10% 0.521 2.515 0.0157 0.0173
UKF Iz−10% 0.504 2.514 0.0157 0.0173
UKF C+10% 0.537 2.489 0.0155 0.0171
UKF C–10% 0.604 2.535 0.0162 0.0177
UKF ACM 0.501 2.504 0.0156 0.0171
UKF ACM mtot+10% 0.541 2.639 0.0157 0.0174
UKF ACM mtot–10% 0.525 2.421 0.0157 0.0170
UKF ACM Iz+10% 0.524 2.504 0.0157 0.0173
UKF ACM Iz−10% 0.516 2.504 0.0157 0.0173
UKF ACM C+10% 0.525 2.503 0.0154 0.0170
UKF ACM C–10% 0.554 2.529 0.0162 0.0177

Test scenario 3—Simulated acceleration and braking with µ ≈0.3

UKF - 32.254 1.3988 1.0325
UKF mtot+10% - 31.660 1.3575 1.0047
UKF mtot–10% - 34.876 1.4454 1.0576
UKF Iz+10% - 32.253 1.3988 1.0325
UKF Iz−10% - 32.276 1.4006 1.0337
UKF C+10% - 32.211 1.4015 1.0376
UKF C–10% - 32.440 1.4161 1.0441
UKF ACM - 1.925 0.1828 0.1361
UKF ACM mtot+10% - 3.153 0.1489 0.1339
UKF ACM mtot–10% - 3.195 0.1960 0.1527
UKF ACM Iz+10% - 2.449 0.1357 0.1085
UKF ACM Iz−10% - 1.895 0.1745 0.1296
UKF ACM C+10% - 1.886 0.1744 0.1305
UKF ACM C–10% - 1.994 0.1874 0.1395
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