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ABSTRACT 17 

Dams and other in-stream obstacles disrupt longitudinal connec+vity and hinder fish from 18 
moving between habitats. Fishways and other fish passage solu+ons are used to pass fish over 19 
these ar+ficial migra+on barriers. Fish passage func+onality, however, varies greatly with fish 20 
passage design and environmental condi+ons, and depends on fish species and characteris+cs. 21 
In par+cular, swimming performance and fish behavior are considered key characteris+cs to 22 
predict fish passage performance. It is also well known, but not well quan+fied, that the 23 
presence of conspecifics affects fish passage behavior. In this study, we quan+fied individual 24 
passage rates of PIT-tagged gudgeons (Gobio gobio) over a scaled deep side notch weir in an 25 
hydraulic flume. We then quan+fied individual swimming capability (+me to fa+gue) and 26 
ac+vity level (distance moved in an open field test) for PIT-tagged gudgeons (Gobio gobio) for 27 
the same individual fish and tested for poten+al effects on fish passage rate. To check for 28 
poten+al group effects, we then repeated the passage experiment for fish individually or in 29 
groups of five. More ac+ve fish displayed higher passage rates compared to less ac+ve fish, and 30 
fish passed the obstacle at higher rates in groups of five compared to alone. No effect of fish 31 
swimming capability on passage rates was detected. This result highlights the need to take both 32 
individual varia+on as well as the presence and behavior of conspecifics into account in fish 33 
passage studies and evalua+ons. Doing so has the poten+al to improve the understanding of 34 
fish behavior, and in the end the design of fish passage solu+ons. Future studies should explore 35 
these results on free ranging fish and in rela+on to in-situ fish passage solu+ons. 36 

Keywords: fish swimming performance, behavioral type, personality, social facilita+on, gudgeon 37 
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INTRODUCTION 39 

Fish migrate for feeding, reproduc+on and refuge, and in response to environmental or 40 
developmental changes (Lucas et al., 2001). Fish migrate in the marine environment, between 41 
freshwaters and the sea, or exclusively in freshwater (Morais & Daverat, 2016). Even within rivers 42 
the scale of fish migra+on varies from meters to thousands of kilometers (Herrera-R et al., 2024; 43 
Lucas et al., 2001; Schiavon et al., 2024). For riverine fish, the presence of dams and other in-44 
stream obstacles hinder fish from migra+ng between habitats and has caused declines and 45 
some+mes even local ex+nc+ons of migratory species (Jonsson et al., 1999; Lenders et al., 2016). 46 
Maintaining open migratory routes in river systems is an important aspect of safeguarding 47 
ecological connec+vity and conserving migratory fish species (McIntyre et al., 2015). Ideally, non-48 
migra+ng fish should also be able to pass dams to maintain gene+c diversity and fish dispersal in  49 
rivers (De Fries et al., 2023; Jones et al., 2021). In face of this, fishways and other fish passage 50 
solu+ons (e.g. eel ladders, fish ligs,  trap-and-transport solu+ons, low-sloping racks) are used to 51 
pass fish over migra+on barriers (Katopodis & Williams, 2012; Noonan et al., 2012; Silva et al., 52 
2018).  53 

The need for fishways and other passage solu+ons to facilitate two way fish passage at migra+on 54 
barriers has been acknowledged for hundreds of years (Calles et al., 2013; Katopodis & Williams, 55 
2012), but their func+onality remains variable, and is ogen low (e.g. passage efficiency and 56 
aHrac+on efficiency; Bunt et al., 2012; Noonan et al., 2012). Passage performance of fish varies 57 
with fish passage design and environmental condi+ons, but also between species and related to 58 
fish characteris+cs (Nyqvist et al., 2018; Silva et al., 2018). Swimming performance is considered 59 
a key characteris+c to predict fish passage performance (Katopodis & Gervais, 2012), and fish 60 
behavior in rela+on to local condi+ons is central to successful passage (Mawer et al., 2023; 61 
Williams et al., 2011). Importantly, swimming performance and behavior differ between, but also 62 
within species, something that contributes to the high variability in fish passage func+onality 63 
(Fraser et al., 2001; Katopodis & Gervais, 2012; Silva et al., 2018). 64 

Fish swimming performance is crucial for dispersal, migra+on, and predator-prey interac+ons 65 
(Katopodis & Gervais, 2012; Tudorache et al., 2013), and fish swimming capabili+es are tested 66 
explicitly to contribute to fish passage design (Castro-Santos et al., 2022; Peake et al., 1997; 67 
Romão et al., 2012). Low swimming capabili+es compared to prevailing hydrodynamic condi+ons 68 
are ogen the reason for low fish passage performance for weak swimmers and small-sized fishes 69 
(Marsden & Stuart, 2019; Volpato et al., 2009). Fish swimming performance varies with species 70 
and sizes (Katopodis & Gervais, 2012), but also between individuals (Hechter & Hasler, 2019; 71 
Oufiero & Garland Jr, 2009), poten+ally modula+ng selec+on in fish popula+ons having to pass 72 
velocity barriers (Haugen et al., 2008; Volpato et al., 2009).  73 

Fish behavior in rela+on to its environment is crucial for the fish to approach, enter, ascend, and 74 
exit the fishway (Nyqvist et al., 2016; Williams et al., 2011). Fish can be guided or repelled by 75 
hydrodynamic cues such as absolute or changing water veloci+es (Kemp et al., 2005, 2008), but 76 



also react to light (Hansen et al., 2019; Tétard et al., 2019) and sound (Heath et al., 2021), or their 77 
combina+ons (Miller et al., 2022). In addi+on, consistent inter-individual differences in ac+vity, 78 
such as explora+on or boldness can influence animal movement paHerns (Wu & Seebacher, 79 
2022). For example, both in killifishes (Rivulus har3i) and salmonids (Salmo tru6a), ac+vity in the 80 
laboratory correlates with dispersal in nature (Fraser et al., 2001; Watz, 2019).  Related to fish 81 
passage, ac+vity levels have been observed to correlate with bypass passage in Atlan+c salmon 82 
smolts (Salmo salar; Haraldstad et al., 2021). There are also indica+ons of fish with higher 83 
boldness score to be beHer upstream passers (Hirsch et al., 2017; Lothian & Lucas, 2021), 84 
although not always (Landsman et al., 2017). Even if not conclusive in the literature, high ac+vity 85 
and exploratory behavior should, intui+vely, be conduc+ve to finding and naviga+ng fishways.  86 

Contrary to most models on fish passage behavior, many fish in nature do not pass through 87 
fishways individually, but in groups (Mawer et al., 2023). The presence and behavior of 88 
conspecifics are therefore likely to affect the passage behavior of fish. Fish in larger groups can 89 
be more exploratory and bolder than single or few fish, covering more groundexploring a greater 90 
por+on of the test arena (Ward, 2012), loca+ng food faster (Pitcher et al., 1982), and feeding 91 
more efficiently and for longer periods of +me (Magurran & Pitcher, 1983). Fish can also learn 92 
from observing other fish (Johnsson & Åkerman, 1998), and fish more prone to move may be 93 
followed by more shy fish, increasing overall movement rates for fish in groups compared 94 
isolated fish (Cote et al., 2011; Harcourt et al., 2009). Related to fish passage, experiments on 95 
barbel (Barbus barbus) and trout (Salmo tru6a) show an increased mo+va+on to pass in groups 96 
(Albayrak et al., 2020) compared to alone, while salmon densi+es downstream of dams have 97 
been observed to correlate with rates of passage (Okasaki et al., 2020). S+ll, although many 98 
species are known to migrate and pass fishways in groups, liHle is known about actual group 99 
effects on fish passage rates (De Bie et al., 2020; Mawer et al., 2023).  100 

Gudgeon (Gobio gobio) is a small-sized riverine and lake-dwelling fish species na+ve in temperate 101 
Europe. Its range extend from France in the south to Southern Finland in the north, and Eastern 102 
United Kingdom in the west, while its eastern distribu+on is s+ll unclear (Freyhof & KoHelat, 103 
2007; IUCN, 2010). The species is introduced in Italy, where it is of par+cular interest as a direct 104 
compe+tor to the threatened Italian gudgeon (Bianco & Ketmaier, 2005; Schiavon et al., 2024). 105 
Gudgeon is a gregarious species (For+ni, 2016; Freyhof & KoHelat, 2007), with group sizes ranging 106 
from single fish or a few individuals to more than 20 fish (personal observa+on) and most likely 107 
varying over +me and between sites (Hoare et al., 2000; Svensson et al., 2000). It spawns from 108 
April-August in temperatures above 12°C and in shallow water (Freyhof & KoHelat, 2007). 109 
Although typically rela+vely resident, it can partake in substan+al dispersal movements (StoH, 110 
1967). While liHle is known about its fish passage behavior, it has, at places, been frequently 111 
observed in fishways (Panagiotopoulos et al., 2024).  112 

Individual passage performance over a scaled deep side notch weir, corresponding to the passage 113 
environment of a pool-and-weir fishway, had previously been es+mated for PIT-tagged gudgeons 114 
in groups of ten, in an hydraulic flume experiment (Tarena et al., 2024). In this study, we 115 



quan+fied individual swimming performance (+me to fa+gue) and ac+vity (distance moved in an 116 
open field test) for the same PIT-tagged gudgeons, and tested for effects of individual swimming 117 
performance and ac+vity on fish passage rates. To inves+gate poten+ally modula+ng effects of 118 
the presence of conspecifics, we repeated the original passage experiment but in trials involving 119 
a single fish or a group of five fish. Passage rates were then compared between gudgeons in single 120 
fish treatments and gudgeons in group treatments. We hypothesized that higher swimming 121 
performance and higher ac+vity levels are associated with higher passage rates, and that fish 122 
pass at higher rates in groups compared to alone.  123 

 124 

MATERIAL AND METHODS 125 

Fish and tagging 126 

Gudgeons were caught backpack electrofishing (direct current; ELT60IIGI, Scubla, Italy) in the 127 
Rocca Grimalda Channel (44°39’47’’N, 8°49’51.5’’E), a tributary to Orba River (Italy) and brought 128 
to the Alessandria Province hatchery in Predosa (Italy) on 19 September 2022. The fish were PIT-129 
tagged (Oregon, USA; 12 mm * 2.1 mm; 0.10 g) in two batches on 20 September (n=14) and 4 130 
November (n=46).  131 

Before tagging, fish were anesthe+zed in clove oil (Aromlabs, USA; approximately 0.05 ml clove 132 
oil / L water). A 2-4 mm ventral incision was made anterior of the pelvic fin, slightly offset from 133 
the centre. The tag was then inserted through the incision and pushed forward in the abdominal 134 
cavity to align with the fish body (eg. Bolland et al., 2009; Schiavon et al., 2023). Fish were 135 
measured for fork length (mean ± standard devia+on = 10 ± 0.6 cm) and weighed (11.3 ± 2.2 g). 136 
Tag-to-fish weight ra+os were 1% (± 0.2%), lower than recommended in telemetry literature 137 
(Brown et al., 1999; Jepsen et al., 2005). PIT-tags have been seen not to affect burst swimming 138 
ability or voli+onal swimming performance in similar sized cypriniformes (Nyqvist et al., 2024; 139 
Schiavon et al., 2023), even just one day ager tagging (Ficke et al., 2012). Tagged fish were leg to 140 
recover in an aerated water tank for at least 20 min, before being transferred to spring fed flow 141 
through tanks (59x150x20 cm) and leg to recover for at least three days before star+ng of the 142 
experiments. All fish remained healthy looking and ac+ve ager tagging. Fish were held in standing 143 
water, under a natural photoperiod and semi-natural light condi+ons (windows and ar+ficial 144 
lights during day+me, darkness at night), had access to perforated brick shelters in the tanks, and 145 
were fed commercial fish pellets (Tetra, TabiMin, Germany) regularly. Water temperature was 146 
stable at 13±1°C. 147 

Passage experiment I  148 

Passage experiments I and II were conducted in a recircula+ng open channel flume (30x30x140 149 
cm) made of plexiglass (Fig. 1). Temperature was kept constant (mean ± SD = 13.15 ± 0.02 °C, 150 
aligned with the temperature in the holding tanks), switching on and off a chiller to counter 151 
hea+ng from the ac+on of the pump when needed. 152 



 153 

Figure. 1 – A scaled drawing of the experimental arena: (a) top view of the experimental arena inside the flume (the large arrow 154 
indicates the flow direction), (b) front view (section A-A) of the deep side notch weir. The upstream end of the flume is delimited 155 
by a flow straightener, and the downstream end by a fine meshed rack (Figure adopted from Tarena et al., 2024). 156 

A deep side notch weir (Larinier, 2002), consis+ng of a grey-painted plexiglass panel with a gum 157 
gasket to prevent leaks from the side of the weir, was fiHed to the flume dimensions (Fig. 1). A 158 
flow straightener delimited the experimental arena in an upstream direc+on while a fine meshed 159 
rack prevented fish from going downstream. The weir divided the experimental arena in an 160 
upstream (46 cm) and downstream part (94 cm). Experimental condi+ons consisted of a total 161 
discharge of 4.44 L/s that created an upstream water depth of 20 cm, a downstream water depth 162 
of 12 cm, and a streaming flow drop of 8 cm over the 5 cm wide weir slot. The drop and the 163 
downstream arena dimensions correspond to recommenda+on for small sized fish in fish passage 164 
guidelines (Marsden & Stuart, 2019b; Schmutz & Mielach, 2013), resul+ng in a maximum water 165 
velocity of 1.25 m/s (Larinier, 2002). A solid brick in the downstream part of the experimental 166 
arena offered fish shelter from the flow (Fig 1), while a perforated brick in the upstream area 167 
cons+tuted both shelter from the flow and a structural shelter to discourage downstream 168 
movements of fish.  169 

Two synced PIT-antennas (ORSR; Oregon, USA), aHached to the external wall of the flume, were 170 
used to track the movement of the fish in the flume (Fig. 1). Presence within detec+on range (a 171 
few cm) resulted in detec+on. The downstream antenna detected fish when they approached 172 
the weir, and the upstream antenna detected fish when passing. The experiments were also 173 
video recorded (Sony 4K, FDR-AX43, 100fps) from the long side of the flume. In darkness, an IR-174 
camera (Survey3, Mapir, USA) was supported by an IR-lamp (DOME 5 MPX, Proxe, Italy).  175 

For passage experiment I, fish were randomly divided into 6 groups of 10 fish each and leg to 176 
recuperate from handling for three days in perforated boxes (37 x 54 x 13 cm) within larger flow-177 
through tanks. To ini+ate the trial, a group of fish was neHed from the holding box, placed in a 178 
small bucket and gently released into the flume on the downstream side of the weir. Fish were 179 
given 90 min to pass before the experiment was ended and fish captured and returned to the 180 
flow through tanks.  181 



PIT-data were then used to assign passage success (yes/no) and passage +me (+me since start of 182 
the trial) for each fish. Single detec+ons were not used as proof of passage (to avoid occasional 183 
false posi+ves) and video recordings were scru+nized to confirm each passage event. For some 184 
fish, PIT-detec+on data did not allow a direct assignment of passage +me (for example when 185 
many fish upstream the weir caused tag collisions). In such cases video recordings were also used 186 
to extract passage +me. Although some fish passed the weir several +mes, only the +me of first 187 
passage was used in the analyses.  188 

The sixty gudgeons were tested in a series of passage tests under three different light condi+ons 189 
(daylight, darkness at night, low light at night) in the period 9-11 November 2022. The light 190 
treatments were part of another study (see Tarena et al., 2024 for details and results of the light 191 
experiment). Here only the passage data from these trials were used while taking the effect of 192 
light into account in the sta+s+cal modelling. Only the first passage trial for each fish was included 193 
to avoid learning effects, and repeated measures on the same individual. This means that, in 194 
passage experiment I, 20 fish were tested in darkness (LI = 0 lx) at night, 20 fish in lit condi+ons 195 
during day+me (= 6 ± 0.7 lx), and 20 fish in lit condi+ons during night (4 ± 0.17 lx).   196 

Fish swimming performance 197 

Individual swimming trials for the 60 gudgeons were conducted on 23 November 2022 in the 198 
same open channel flume as the passage experiment I, following Schiavon et al., (2023). The 199 
swimming arena was 97 cm long, delimited by the flow straightener in the upstream direc+on 200 
and the fine meshed rack in the downstream direc+on. An individual fish was neHed, gently 201 
released in the swimming arena, and given 5 min to habituate to the flume at a low a flow velocity 202 
of 18-20 cm/s (Ashraf et al., 2024). At the start of the swimming trial, water velocity was 203 
increased to 60 cm/s. This velocity was based on pilot trials to achieve fa+gue +mes in the range 204 
of seconds to around a minute; relevant in a fish passage context (Katopodis et al., 2019; Starrs 205 
et al., 2011). Water depth during the swimming trial was 9.4 cm. When the fish rested on the 206 
downstream grid, it was gently encouraged (poked with a s+ck) from the downstream side of the 207 
downstream grid. The fish sensed the poke but the poke could not displace the fish. A fish was 208 
considered fa+gued ager res+ng on the grid despite poking or ager res+ng again ager the third 209 
poke, and the +me from the start of the swimming trial cons+tuted the +me to fa+gue (Ashraf et 210 
al., 2024). Ager the swimming trial, the fish was scanned for PIT-ID and returned to a separate 211 
holding tank.  212 

Open field test 213 

On 24 November, the 60 gudgeons were subject to an open field test to score their movement 214 
ac+vity (Miklósi et al., 1992; Nyqvist et al., 2023; Watz, 2019). Without elici+ng an escape 215 
response, an individual fish was randomly neHed from the holding tank, placed in a small bucket 216 
and gently released into an arena (length*width*depth = 56.5*36.5*10.0 cm). Water in the test 217 
tanks was changed regularly to maintain a stable temperature across trials. Temperature was 218 
measured con+nuously in a separate tank, subject to iden+cal condi+ons as the test tanks. The 219 



fish was leg in the arena for 10 minutes: 5 minutes to habituate to the new environment and 5 220 
minutes for the open field test (Miklósi et al., 1992; Nyqvist et al., 2023; Watz, 2019). Two trials 221 
were run in parallel. The arena was filmed with an overhead video camera (Sony 4K, FDR-AX43 , 222 
50fps). Ager the open field test, the fish was scanned for PIT-ID and placed in an aerated tank. 223 
When all fish had been tested and recovered, they were returned to the holding tank. Using the 224 
video recordings and a custom-made MATLAB script (hHps://github.com/SilverFox275/manual-225 
point-tracking; R2021b The MathWorks Inc, Na+ck, MassachuseHs, USA), fish posi+ons (center 226 
of mass) were manually tracked at one frame per second. Distances in pixels were translated to 227 
distance in meters based on known dimensions of the arena (Nyqvist et al., 2023). From the series 228 
of posi+ons, a total distance moved was quan+fied for each fish (eg. Haraldstad et al., 2021; Watz, 229 
2019; Nyqvist et al. 2023). 230 

Passage experiment II – groups vs individuals 231 

To test for effects of the presence of conspecifics on individual passage rates, passage trials were 232 
repeated on 14-15 December using the same experimental design of experiment I and a subset 233 
of fish (n = 40). This resulted in 20 trials with one fish, and four trials with groups of five fish. One 234 
or five fish were randomly neHed from the holding tank and placed in the downstream part of 235 
the experimental arena. Fish were given 60 min to pass the weir, before the experiment was 236 
aborted and fish returned to a separate holding tank. Individual passage success and +mes (20 237 
per treatment) were assessed using PIT-data and videos as for the original passage experiment. 238 
The experiments were conducted under a randomized block design (1 group trial, 5 single fish 239 
trials) and in lit condi+ons during day+me and evenings. One fish (in a five fish treatment) had 240 
lost its tag and was therefore excluded from the analysis. Ager finalizing the experiments, the 241 
fish were released in an isolated pond at the hatchery premises. 242 

Sta7s7cal analysis 243 

Time-to-event analysis (also called survival analysis) is suitable for fish passage data, taking in to 244 
account both the propor+on of fish passing and the +me it takes for them to pass (Castro-Santos 245 
& Haro, 2003; Castro-Santos & Perry, 2012; Hosmer et al., 2008). It is widely applied in medical 246 
research, but during the last decades also increasingly in behavioral ecology and fish passage 247 
research (Bravo-Córdoba et al., 2021; Silva et al., 2018). Cox-regression, a type of +me-to-event 248 
analysis, was used to model effects of the categorical variable light condi+on (daylight, ar+ficial 249 
light at night, darkness at night) and the con+nuous variables swimming capability (+me to 250 
fa+gue) and ac+vity score (distance moved in the open field test) on passage rate in the first trials 251 
for each fish in experiment I. Fish were defined as available to pass from the +me of release into 252 
the downstream experimental arena. Fish not passing were censored at the end of the 253 
experiment (that is ager 90 min) but considered available to pass un+l this +me (i.e. included in 254 
the analysis as fish failing to pass ager 90 minutes of having be possibility to do so). All 255 
combina+ons of light treatment, ac+vity score, and swimming capability were included among 256 
the candidate models. The interac+on between light treatment and ac+vity score was included 257 
among the candidate models to check for context dependent effects. For the follow up 258 



experiment inves+ga+ng group effects (passage experiment II), all combina+ons of group 259 
treatment (one or five fish), swimming capability (+me to fa+gue) and ac+vity score (distance 260 
moved), as well as the interac+on between ac+vity score and group treatment, were included 261 
among the candidate models. The tested fish were rela+vely uniform in length and hence this 262 
variable was not included among the candidate model. To account for non-independence of 263 
observa+ons from the same trial/group, all models were clustered on trial (Kelly, 2004; Therneau 264 
& Grambsch, 2000; Therneau & Lumley, 2017). Clustering is used to deal with correlated or 265 
grouped data, allowing the use of individual event +mes for subjects within groups. It has, for 266 
example, been used to handle non-independence in spa+ally autocorrelated field data (Binning 267 
et al., 2018; Stelbrink et al., 2019), among chicks from the same nest (Christensen-Dalsgaard et 268 
al., 2018), and between mul+ple animals in experimental trials (Harbicht et al., 2022; Nyqvist et 269 
al., 2024). To select the best model among candidate models, minimiza+on of Akaike informa+on 270 
criterion (AIC) was used. Models with an AIC-value of 2 or lower from the null model, and within 271 
2 AIC units from the best model were considered good models (Burnham and Anderson 2003). If 272 
more than one compe+ng model fulfilled these criteria, all were presented and used to describe 273 
the effects of covariates. For all good models, the assump+on of propor+onality of hazard was 274 
explicitly tested (Fox, 2002). The analysis was performed in R, and packages survival (Therneau & 275 
Lumley, 2017) and mass (Ripley et al., 2013), and ploHed with ggplot (Wickham, 2016) and 276 
survminer (Kassambara et al., 2017). 277 

Ethical statement 278 

The study was performed in accordance with the Ufficio Tecnico Faunis+co e IOofauna of the 279 
Provincia di Alessandria (n.50338 of 20 September 2022), under the provisions of art.2 of the 280 
na+onal Decree n.26/2014 (implementa+on of Dir. 2010/63/EU). 281 

 282 

RESULTS 283 

In all tests, fish exhibited normal swimming behavior. Gudgeons displayed a high inter-individual 284 
varia+on in swimming performance and ac+vity in the open field test, with no correla+on 285 
between the two traits (Spearman rank test, p = 0.23; Fig. 2). 286 



 287 

Figure 2. Time to fatigue (s) in swimming performance test at a constant velocity of 0.6 m/s on the x-axis, and total distance 288 
moved (m) during 5 minutes in an open field test for the tested gudgeons (n=60). No correlation between the two traits 289 
(Spearman rank test, p = 0.23, rho = 0.15). 290 

Passage experiment I  291 

In total, 46 out of 60 fish (77%) successfully passed the barrier. Higher ac+vity in the open field 292 
test (distance moved) corresponded to higher passage rates, taking effects of the light 293 
treatment into account. No interac+on between light condi+ons and ac+vity score, nor fish 294 
swimming capability, affected passage rates (Table 1a). Light treatment also affected passage 295 
rates (see Tarena et al 2024; Table 1a).  296 

Table 1. List of good models based on the Akaike information criterion (AIC; an AIC-value of 2 or lower from the null model, and 297 
within 2 AIC units from the best model). Delta AIC (null) is the difference between the AIC of the model and AIC of the null model 298 
(without covariates).  Delta AIC (min) is the difference between AIC of the model and AIC of the best model. A) Passage 299 



experiment I (different light conditions): darkness at night as baseline for treatment. B) Passage experiment II (single fish vs 300 
groups of five): single fish as baseline in the group variable.   301 

 302 

Passage experiment II - group vs individuals 303 

The propor+on of successful passages was 94% (18/19) among the fish in groups and 75% 304 
(15/20) among single fish. Fish in groups passed at a higher rate than single fish (Fig. 3; Table 305 
1b). No effect of ac+vity (distance moved in the open field test) or swimming capability – or 306 
their interac+on with group treatment was detected (Table 1b). 307 

 308 

Figure 3. Kaplan-Meier curve representing the ratio of single fish (solid line) and fish in the group treatment (dashed line) 309 
remaining downstream the barrier over time. 310 



DISCUSSION 311 

Fish passage performance, even at the same site, varies between but also within species. Using 312 
repeated tests on individually tagged fish, we explored the effect of fish swimming capability 313 
(+me to fa+gue at a fixed velocity), ac+vity level (distance moved in an open field test), and the 314 
presence of conspecifics on individual fish passage rate over an in-flume weir. More ac+ve fish 315 
displayed higher passage rates compared to less ac+ve fish, and fish also passed the obstacle at 316 
higher rates in groups of five compared to alone. No effect of fish swimming capability on passage 317 
rates was detected.  318 

Fish behavioral types scored in the laboratory are known to correlate with a range of natural 319 
behaviors, making up behavioral syndromes when displaying behavioral consistency within and 320 
between individuals and contexts (Sih et al., 2004), and could help explain individual variability 321 
in fish passage performance. We demonstrate an effect of ac+vity score in an open field test on 322 
fish passage rates over a model fishway weir. Similar results are reported for Atlan+c salmon 323 
smolts passing downstream over a bypass (Haraldstad et al., 2021), and swimming speed in open 324 
field tests predicted the likelihood of juvenile American eel (Anguilla rostrata) passing an eel 325 
ladder (Mensinger et al., 2021). For brown trout (Salmo truHa) and rainbow smelts (Osmerus 326 
mordax), however, no correla+on between behavioral test scores and  passage success through 327 
nature-like fishways was seen (Landsman et al., 2017; Lothian & Lucas, 2021). In situa+on where, 328 
for example, more ac+ve fish pass at higher rates than less ac+ve fish, fish passage may exert a 329 
selec+ve pressure on ac+vity in affected fish popula+ons (Wolf & Weissing, 2012) similar to what 330 
has been observed for length selec+ve fish passage solu+ons (Haugen et al., 2008; Maynard et 331 
al., 2017; Volpato et al., 2009). Especially if the selected trait is heritable (Brown et al., 2007). 332 
With ac+vity level also correla+ng with, for example, dispersal (Fraser et al., 2001; Watz, 2019), 333 
diurnal behavior (Závorka et al., 2016), and feeding behavior (Nannini et al., 2012) there is a risk 334 
of this selec+on affec+ng a wider repertoire of fish behaviors within the popula+on, and in the 335 
end the whole ecosystem (Raffard et al., 2017; Wilson & McLaughlin, 2007).  336 

Fish in groups of five passed the barrier at higher rates compared to fish exposed to the weir in 337 
solitude. The presence of conspecifics can increase ac+vity levels of individual fish, increasing 338 
both feeding efficiencies and explora+on (Magnhagen & Bunnefeld, 2009; Magurran & Pitcher, 339 
1983; Ward, 2012), and, as shown in our study, also increasing passage rates. Mechanisms behind 340 
this social facilita+on can be manifold, including reduced perceived preda+on risk (Lima & Dill, 341 
1990) and related calming effects (reduc+on in metabolic rates; Nadler et al., 2016; Parker Jr, 342 
1973), observa+on of other fish passing (Ryer & Olla, 1991; Sundström & Johnsson, 2001), and 343 
individual fish more inclined to pass increasing passage and ac+vity rates also for others (Cote et 344 
al., 2011; Harcourt et al., 2009). Although, increased passage rates under higher densi+es 345 
downstream fishways have been reported (Okasaki et al., 2020), and it is well known that many 346 
fish species preferably pass in groups (Albayrak et al., 2020; Mawer et al., 2023), the topic has so 347 
far received liHle aHen+on in the scien+fic literature. Previously, to our knowledge, not 348 



quan+fied, our results highlight the importance for social behavior in fish passage. This, in turn, 349 
underscores the need to accommodate groups of fish in designing fish passage solu+ons.    350 

Fish swimming capability is ogen deemed instrumental in the design of fishways (Castro-Santos 351 
et al., 2022; Katopodis & Gervais, 2012) but did not affect passage rates in our experiment. This 352 
is likely because the passage was rela+vely undemanding and within the performance range of 353 
the whole group of fish. Our barrier was modelled ager a deep side notch weir fishway with drop 354 
and water velocity values in line with recommenda+ons for small sized fish in fish passage 355 
literature (Marsden & Stuart, 2019a; Schmutz & Mielach, 2013), and hence expected to allow 356 
passage at high rates. In provoked swimming trials, however, maximum swimming speed for 357 
gudgeon has been es+mated to 9.8 - 13.3 BL/s (average; Nyqvist et al., 2024a; Tudorache et al., 358 
2008), which for our gudgeons would predict a sufficient swimming capability to pass for only a 359 
por+on of the fish (0-80% above 1.25 m/s). Interes+ngly, the very high passage performance 360 
observed could be due to our voli+onally passing fish outperforming the fish in the provoked 361 
swimming trials cited (Castro-Santos et al., 2013). Regardless, nder more demanding passage 362 
condi+ons, as in the passage at real fishways with a long series of (not seldom higher) drops, it 363 
must be deemed likely that fish swimming capability affects individual variability in passage 364 
success.  365 

The behavior of fish of different behavioral types have previously been found to be modulated 366 
by light condi+ons (Závorka et al., 2016), and the presence of conspecifics (Harcourt et al., 2009; 367 
Magnhagen & Bunnefeld, 2009; Webster et al., 2007). For example, high and low ac+vity scored 368 
brown trout display different diel ac+vity paHerns in streams (Závorka et al., 2016), and it is 369 
known that the presence conspecifics may shape the behavior of individual fish (Harcourt et al., 370 
2009; Magnhagen, 2012). In our study, we did not find any effect of the interac+on between 371 
ac+vity level and light treatment or group size on passage rates. It is, however, important to keep 372 
in mind that our sample sizes were rela+vely low, poten+ally hindering us to detect weaker 373 
effects on fish passage rates. Future, dedicated experiments need to further explore these 374 
poten+al interac+ons in more depth.  375 

In real fish passage situa+on, fish need to approach, enter, transi+on several compartments, exit 376 
and con+nue their upstream movement, with poten+al effects of ac+vity type and presence of 377 
conspecifics on the whole series of events (Castro-Santos et al., 2009; Nyqvist et al., 2016). This 378 
study was performed in a rela+vely small flume where small sized gregarious fish was exposed to 379 
a deep side notch weir, modelled ager a technical fishway. Future studies need to further explore 380 
these dynamics in rela+on to real fishways and free ranging fish, studying also other species. In 381 
par+cular, video data, telemetry and machine learning technologies could be useful tools for 382 
these purposes (Couzin & Heins, 2023). In transparent waters, video data could be used to 383 
understand the behavior of individuals and groups downstream, in, and upstream fishways 384 
(Zhang et al., 2022). Data from fish counters (Pereira et al., 2021), although currently 385 
underu+lized, could provide important data on the passage of groups of fish (and group sizes) in 386 
rela+on to fishway type for a range of species. Telemetry techniques can be used to study the 387 



movement of tagged individuals in rela+on to the movement of other tagged conspecifics (Monk 388 
et al., 2023), but also the behavior of the fish ager or before passage s(BurneH et al., 2017; 389 
Hagelin et al., 2016). The laHer can be used to test for correla+ons between passage behavior or 390 
success and other behaviors. This, like in our experiment, through standardized arena trials 391 
(Haraldstad et al., 2021; Lothian & Lucas, 2021), or also based on behavior (e.g. movement rates, 392 
habitat choice, spawning behavior) in nature (Sih et al., 2004).     393 

To conclude, using an in-flume barrier corresponding to a deep side notch weir fishway, we 394 
demonstrate effects of individual differences in ac+vity level on fish passage rate and that fish in 395 
groups passed at higher rates than isolated individuals. These result highlights the need to take 396 
into account both individual varia+on as well as the presence and behavior of conspecifics in fish 397 
passage studies and evalua+on, and can help explain varia+on in fish passage behavior (Bunt et 398 
al., 2012; Noonan et al., 2012). Designing fishways that allows fish to pass in groups, may increase 399 
fishway func+onality. Fishways as a poten+al selec+on mechanism on fish behavioral types, 400 
highlights a poten+al hidden ecological cost of impounded rivers (Mensinger et al., 2021). Future 401 
studies should explore these dynamics on free ranging fish and in rela+on to real fish passage 402 
solu+ons.  403 
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