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Abstract—A large fraction of recent network management
tasks rely on Internet traffic matrices, ranging from planning and
troubleshooting to routing and anomaly detection. Despite exten-
sive research efforts over the years, acquiring a comprehensive
overview of network traffic remains a difficult and error-prone
task. While the literature has mostly proposed increasingly accu-
rate and complex Machine Learning (ML) models to reconstruct
missing information, in this paper we propose an alternative
approach to further enhance this process: combining the ML
model with eXplainable AI (XAI) to analyze the model behavior,
detect most significant features, and limit the reconstruction process
to such reduced input. With this methodology, not only we simplify
the problem, but the entire solution finds greater deployability as
the data acquisition phase is also simplified. Numerical results
demonstrate that, with our solution on a Convolution Neural
Network model, the error during completion can be lowered by
80% for a network telemetry traffic reduction of 75%.

I. INTRODUCTION

Traffic flow statistics, a key product of network diagnostics,
are often collected in Traffic Matrices (TMs) for an efficient
and intuitive representation. In detail, a traffic matrix is a bi-
dimensional array, which gathers the data about the volume
of the Origin-Destination (OD) traffic flows going through
the network in a sampled time interval. These matrices find
a multitude of uses in the fields of network and traffic
engineering, ranging from capacity planning to congestion
avoidance and route optimization [1], [2].

However, traffic matrices are not always easy to obtain in
practice for different possible reasons: (i) network devices may
lack support for measuring protocols. (ii) network devices may
suffer the computational overhead of frequent measuring under
heavy load conditions; upgrading the infrastructure to solve the
aforementioned issues is expensive. (iii) even if we assume
the network to be adequately equipped with both hardware
and software resources, protocols for data collection generally
rely on connection-less, unreliable transport mechanisms (e.g.,
SNMP on UDP) without retention, therefore some diagnosed
data may be lost during transmission through the network. (iv)
in a large network, it is impractical, expensive, or sometimes
impossible to directly obtain fine-grained measurement sam-
ples for each subset of the network infrastructure.

For these reasons, the problem of TM estimation has seen
much interest over the years, and many techniques have been
devised for both future matrix estimation and matrix comple-
tion [3], [4]. Several researchers have explored the efficient
completion of a TM in situations where only certain specific

segments are absent, as documented in prior studies [5]–[7].
A large fraction of recently proposed techniques use Deep
Learning (DL) [8], [9]. On the one hand, these solutions
produce very promising results; on the other hand, their black-
box nature prevents an understanding of the rationale behind
their predictions and hinders their applicability. With a better
understanding of the features responsible for such prediction,
network managers and applications could reduce costs associ-
ated with visibility inference, by focusing on telemetry of the
most relevant regions and by reducing data and financial costs
associated with pay-per-log solutions, faster time to solution,
and more accurate prediction with less data to process.

To reduce such complexity in the visibility inference prob-
lems, in this paper, we present an analysis of a few eXplainable
AI (XAI) techniques for the Internet traffic matrix completion
problem, and share the lesson learned in reducing the opacity
of the prediction model. The XAI methods provide information
on the most relevant input features through commonly used
tools such as LIME and Saliency techniques. Such insights
gained from the XAI methodology are then used to propose
a relevance-based feature selection algorithm with the aim
of reducing the data collection overhead within the network
infrastructure. While reducing the network telemetry overhead
is expected, one of the unexpected and surprising results that
we present in this paper is that by employing these XAI
methods we can preserve or sometimes even improve the
performance of the AI-based TM estimator.

To evaluate our methods, we perform a trace-driven study on
both a network emulator and three publicly available datasets.
We benchmark our XAI-driven solution and show how it
outperforms eight state-of-the-art TM estimation approaches.
Among our findings, when a Convolution Neural Network
(CNN) is used to reconstruct the TM and the “attention” is
posed to merely a quarter of initially available information,
filtered thanks to the XAI model, the prediction error lowers
to 65% on average under certain conditions discussed in the
result section.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of related work in the fields
of traffic matrix estimation and the application of XAI to
networking contexts. Section III formally introduces the prob-
lem of traffic matrix estimation and completion. Section IV
describes our approach to XAI-based explanation of the com-
pletion models and follows up with the definition of our XAI-



enabled feature selection algorithm. Section V presents the
results of our analysis. In Section VI we conclude our work.

II. RELATED WORK

To highlight our contributions, we classify related solutions
into two logical dimensions: (i) traffic matrix completion
methods and (ii) XAI solutions for networking.
TM completion. A multitude of solutions of different nature
can be identified in the literature, going from mathematical and
statistical approaches to machine learning and deep learning
models. The former generally involves the definition of fitting
data models, recognition of latent properties of the traffic data
and the relationships among its components [3], [4], [10]–[12].
STGM [3], for examples, applies spectral clustering and multi-
Gaussian modeling to leverage the spatio-temporal similarities
of TMs, while NiTMC [4] combines network anomaly and
traffic estimation outperforming the models that ignore their
correlation. [12] presents the application of the Tomogravity
model [13], [14], i.e., estimating TM from indirect data such
as link measurements, for traffic engineering operations.

Recent AI-based approaches aim to leverage the built-in
capabilities of deep learning models to autonomously extract
knowledge about the properties of the data. Both spatial and
temporal features can be modeled through these architectures,
making them particularly suited to solve the problem at hand.
The authors in [8], [9] employ convolutional neural networks
because of their compatibility with multidimensional data:
the former introduces R-CNTME to tackle the traffic matrix
completion problem under the assumptions of limited, sparse
and noisy training data, the latter presents ConvLSTM, a com-
bination of CNN and LSTM models capable of modeling the
spatio-temporal features of historical traffic data and ultimately
estimate traffic matrices in successive time-steps.
XAI for computer networks. While a complete taxonomy of
XAI has yet to be released, some intuitive categorizations have
been proposed e.g., in [15]. Literature on XAI in networking
problems generally focuses on post-hoc explainability (i.e., ex-
plaining decisions of trained models), with both model-specific
and model-agnostic techniques, aiming at either distilling AI
into simplified models or calculating the relevance of the
input features and visualizing it. An example of a distillation
technique is Trustee [16], a framework using low-complexity
decision trees to detect under-specification in network traffic
classification models. Another simplification approach is pro-
posed by Metis [17], which integrates decision trees and hyper-
graphs: DNN policies are first converted to interpretable rule-
based controllers and then critical components are highlighted
based on analysis over hypergraph. Alternatively, Dethise et
al. [18] study the impact of input features in the context of
bit rate adaptation through Local Interpretable Model-agnostic
Explanations (LIME) [19]. A step further toward clarity and
understanding is represented by visual explanation methods.
As Zheng et al. [20], we adopt saliency maps [21] and
activation maximization [22]. Recent solutions, e.g., [23], [24],
tackled the problem of traffic classification with supervised
learning models, and documented the usage of XAI tools for

feature visualization and relevance attribution as an effort to
understand and/or visualize how portions (i.e., bytes) of each
data flow influence the outcome of classification.

In contrast to all previous solutions, this paper is the first to
combine both aggregate local and visual explanation methods
to improve the TM completion process.

III. THE TRAFFIC MATRIX COMPLETION: MODEL AND
PROBLEM DEFINITION

The tomographical definition for the problem of Traffic
Matrix estimation was pioneered in [25] and is formulated as
follows: given a set of directed traffic flow volumes, measured
from L links of a network with N nodes, sampled in a given
time interval, the objective is to compute the amount of traffic
running between the C = N(N − 1) Origin-Destination (OD)
couples of the network. We work under the assumption that the
network is a strongly connected directed graph, meaning that
for any pair of nodes i, j ∈ N , there exist two paths pi−→j and
pj−→i that connect said nodes in both directions. At a particular
sampling time t, we identify three main components in this
formulation: (i) Xt, a column vector sized C containing the
measurements of the OD flows between each pair of nodes.
This vector will then be used to construct the traffic matrix.
(ii) Yt, column vector sized L containing the directed flow
volumes traversing each link of the network. (iii) The routing
matrix A, sized L × C, containing information about the
network routing configuration, and defined as follows:{

Alc = 0 if link l /∈ pi−→j

Alc = 1 if link l ∈ pi−→j

where i and j are the indices of the nodes constituting the
directed pair c. Starting from the aforementioned components,
a linear relationship between the OD traffic flows and the
volume of data going through the links of the network can
be defined in these terms:

Yt = AXt (1)

The objective is finding Xt, for a given Yt and A, hence
to solve the inverse of the linear problem 1. Unfortunately, in
most real networks, the number of links L is way smaller
than the number of OD pairs C, therefore: (i) matrix A
is not invertible and (ii) the inverse problem is severely
underconstrained. Several solutions have been devised in order
to solve this issue (see e.g., [13], [25]), for example, by posing
additional constraints to the equation in order to turn it into a
determined system, or by using approximations models.

Our approach, while sharing the same objective of esti-
mating the OD flows in Xt, does not involve using either
the routing information contained in A or the link loads
information from Xt. Instead, we assume partial information
about the OD flows to be available, and we seek to fill the
gaps in the data by leveraging the capabilities of artificial
intelligence algorithms to infer the spatial relationship running
among the flows themselves. We can recognize three pieces
in the formalization of this new problem: (i) matrix X̃t, sized
N × N , containing the partially measured information about



the OD traffic flows, (ii) matrix Xt, sized N ×N , containing
the full information about the OD traffic flows, (iii) function
f(.), representing the non-linear function describing the matrix
completion algorithm. Bringing everything together, we get:

Xt = f(X̃t). (2)

Rather than direct measurement of traffic flow data from the
network, we estimate the missing flow volumes by leveraging
its relationships with readily available information, employing
regression techniques.

IV. THE PROPOSED METHODOLOGY: XAI FOR TM
INFERENCE

In this section, we explain the methodology of our solution.
The TM neural network models and the outputs they produce
are analyzed with XAI methods with the goal of gaining
insights into such models and using them to limit the TM
completion process to only the most significant regions.

To perform such analysis, we compare two known XAI
methods: LIME and Saliency Maps. We choose to limit our
attention to these two methods as they are both local, post-
hoc XAI techniques and representative of the two classes of
solutions: Saliency Maps are model-specific, while LIME is
model-agnostic and faster than SHAP. (i) LIME is a model-
agnostic method that builds linear, naturally interpretable
approximations of prediction models in the spatial vicinity of
a particular prediction (hence, local) by perturbing the sample
corresponding to the prediction and observing the relative
response of the black box model. From these surrogate models,
then, it is possible to derive feature contribution scores. (ii)
Saliency Maps, first introduced for image analysis [21], con-
stitute a way to visualize convolutional classification models’
spatial support for a given class. The idea behind vanilla
saliency is to rank the influence of single pixels of an image
over the score function (of a class for classifiers, or, in the
regression case, for value variation) of the output layer of
a neural network. The saliency values for each pixel are
computed by differentiating the score function of choice with
respect to the input image. Exploiting the similarity between
TMs and images, we modified the structure of this method to
consider a general 2D vector in input.

Both LIME and Saliency maps produce output matrices with
the same size as the input data, where each cell constitutes
the degree to which the feature (i.e., the traffic per flow
during a time interval) at the same position in the input is
influential in producing a particular output value. This output
containing the relevant information is then represented in the
form of heat maps where colors inform. Since both methods
are local in nature, that is, they provide explanations for single
predictions, we choose to compute the mean importance of
all features (all traffic cells in the matrix) in variably large
subsets of the datasets, thus obtaining an aggregate overview
of the weights associated to each feature. The dimension
of these subsets is lower than those used in the training
dataset for reconstruction methods, but it depends on different

computational complexities of the XAI algorithms (see details
in Section V-B).

These relevance scores are not only used to break the
black-box nature of DL models, but we investigate the impact
of these insights for a more practical telemetry system. In
particular, we implement a simple relevance-based feature
selection approach with the aim of observing to what extent
the ML models can retain compared to the baseline when only
the most relevant information is used as input. We select only
the features in the k-th percentile group of importance and
create the models with this reduced input size. We evaluate
different k values, ranging from 10% to 70%, to assess the
robustness of the telemetry data reduction and its performance
degradation threshold.

V. EVALUATION RESULTS

In this section we first describe the benchmarks used in the
evaluation and settings considered for TM completion tests.
Then we show the impact of applying XAI in general, and
LIME or Saliency in particular, over the estimation process.

A. TM completion process

To evaluate our methodology, we use a benchmark of eight
alternative algorithms used to complete the TM with miss-
ing information: (i) Convolutional Neural Network (CNN),
a known subclass of neural networks used for problems
belonging to a wide spectrum, such as computer vision,
natural language processing, and image classification [26].
CNN are attractive even for our problem since they are
notoriously appealing when the input is a matrix data, given
their reduced computational complexity, number of training
parameters, and over-fitting tendencies compared to traditional
neural networks, while retaining good performance [27]. Other
two neural networks to which we apply the XAI techniques
are (ii) Convolutional Autoencoder (CAE), an architecture
also particularly suited for matrix data, and (iii) adversarial
autoencoder (AAE) [28], that resemble the architecture of
CAE but with the introduction of a discriminator network and
a modified training process typical of generative adversarial
networks (GANs). (iv) Cascaded Convolutional Autoencoder
(CCAE) [29], proposed by the authors to reconstruct the
missing values using an inpainting method typical of images,
where traffic matrices are regarded as “generalized” images.
(v) Convolutional-LSTM Network [9], an approach that in-
tegrated CNN and Long Short-Term Memory (LSTM) for
predicting current and future traffic values when the input
is in the form of a time-series. (vi) Spatio-Temporal Tensor
Completion (STTC) [11], representing network traffic as a
tensor pattern, reducing tensors to a lower-dimensional latent
space through tensor factorization, while retaining the complex
multi-dimensional characteristics of the network traffic data.
Subsequently, it leverages the interrelated structural properties
of tensors to make predictions about the absent data points.
(vii) Low-rank Matrix Fitting (LMaFit) [6], a traditional and
efficient solution for a wide array of generic matrix completion
and estimation problems, which works by introducing a low
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Fig. 1: Comparison of Traffic Matrix completion performance in terms of NMAE for the benchmarks. DL-based approaches,
e.g., CNN and CAE, can tolerate a considerable amount of missing entries.

rank matrix factorization model with the aim of reducing pro-
cessing time by avoiding the computation of the nuclear norm.
(viii) LRTC [30], a nuclear norm-based approach with the
purpose of improving reconstruction accuracy close to tensor
boundaries, which combines the nuclear norm minimization
with the low-rank matrix factorizations.

Each of these algorithms was tested with three different pub-
licly available datasets: (i) the Abilene dataset [31], featuring
48386 matrices sized 12 by 12, measured with a 5 minutes
interval, (ii) the commonly used Geant [32], sporting a total of
11460, 22 by 22 matrices representing traffic demand spanning
over four months, with a granularity of fifteen minutes, (iii)
recent network traffic traces recorded from the WIDE network
and made publicly available by the MAWI group [33]. We built
the training dataset considering ten consecutive traces from
samplepoint-F for a total of two hours and thirty minutes.
Traffic matrices were generated by aggregating traffic by
address prefix, with a one second granularity, for a total
collection of 9010, 24 by 24 matrices. We tested different
missing coordinates, i.e., traffic flows, for each dataset in order
to validate the generality of the approach.

We measure the error in this reconstruction process using
the widely used Normalized Mean Absolute Error (NMAE),
which is defined as follows:

NMAE =

∑N−1
i=0 |yti − ypi |∑N−1

i=0 |yti |
(3)

where yti and ypi represent respectively the i-th observed
value and i-th corresponding predicted value; and N represents
the number of considered matrix samples.

We report the NMAE for all eight methods over the three
datasets in Fig. 1, where we consider the evolution of the
average error for increasing noise ratios, i.e., percentage of
missing matrix entries. We can observe how deep learning
methods, e.g., CNN, CAE, and CCAE, show stable error when
the percentage of noise increases. Methods exploiting spatial
correlation, e.g., STTC and LMaFit, on the contrary, have a
higher error that is also susceptible to more missing cells.
Then, we can see how CNN consistently achieves very low
error magnitudes with diverse percentages of noise in the

matrix, and the error rises only in the case of a high noise
ratio in the Geant matrices. Autoencoder methods, AAE and
CAE, exhibit good performance and for the noisy Geant case
they outperform CNN.

B. XAI-enabled optimization

Once we established the baseline performance of the models
to be satisfactory, we applied our mean feature importance
computation approach based on Saliency and LIME to both
CNN and CAE. We omit investigations regarding AAE and
CCAE in this context because of the similarity of their results
with CAE, despite the good performance of the two models.
We display some sample outputs of the XAI methods in the
form of heatmaps in Fig. 2. The objective of these maps is to
visualize the importance each feature, i.e., traffic flow, has on
average when predictions occur: darker and more saturated
reds correspond to higher importance, while fainter colors
denote inferior relevance. For clarity, the missing cells that
must be estimated are located in the center of the matrix
for all schemes; this is only for visualization purposes, since
the missing cell may originally be in any position of the
matrix. The figures represent the importance of matrix cells
on multiple prediction rounds, and in particular we consider
1, 000 samples for the methods in order to limit the training
time. At a glance, a substantial difference can be noticed
between the LIME and Saliency maps: with the former, the
matrix cells with higher importance appear to be distributed
with a lack of consistent pattern. The latter, however, always
assigns relevance value densely around the coordinate of the
prediction target.

The outcome of these methods is thus used as the next step
in the feature selection process. As mentioned earlier, our goal
is to reduce input space to reduce telemetry overhead while
preserving model accuracy. Therefore, we used the average
values obtained from the application of LIME and Saliency
Maps to select the top k% of input features, train the simpler
models by using only the most important features as input,
and then assess the tradeoff between performance degradation
and input space. Moreover, to validate the applicability of this
approach in software-defined networking (SDN) systems we
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Fig. 2: Application of XAI methods on the CNN and CAE reconstructive models. The missing cell is centered in the figure,
darker reds stand for higher influence on the estimated real number.
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Fig. 3: TM reconstruction error variation compared to baseline after XAI-based model analysis. (a) CAE model with input
reduced through Saliency. (b) CNN model with input reduced through Saliency. (c) CNN model with input reduced through
LIME. In the CNN case, not only is the accuracy maintained, but the NMAE is lower than before.

implement our solution over Mininet, a network emulator that
permits the creation of virtual networks for the purpose of
replicating and utilizing them as a simulation testbed. The
algorithm runs over the central SDN controller that, in this
case, is implemented in Ryu. We replicated the Geant topology
of 22 nodes but hosts send traffic randomly to others to validate
different traffic patterns.

Fig. 3 displays the variation of NMAE compared to the
original reconstruction method (without the intervention of
XAI) at varying the top k% of input features. In particular,
Fig. 3a shows the test conducted with CAE. Reducing the
input size led to generally worse performance (up to 250%
increment in NMAE), with the exception made for the Geant
case, in which the model retained error rates similar to the
baseline. We then show the comparison between LIME and
Saliency methods over the CNN in Fig. 3b and Fig. 3c. The
lower NMAE obtained by CNN (in either ways) suggests that
CNN is better suited for this approach, while CAE typically
requires a more extensive input space due to the encoding
and decoding procedure. Despite this, the CAE error is still
considered acceptable when compared to other methods, e.g.,
STTC and LMaFit. When applying Saliency on CNN, we can
observe a consistent improvement as the NMAE is reduced up
to 100% with respect to the original fully featured model. Such
result can be due to the fact that, once the less impacting fea-
tures are pruned, the model learns only from significant inputs
and can more effectively learn the traffic patterns to accurately
estimate the missing values. While feature selection is often
a key aspect in ML to solve the “curse of dimensionality”,

having a more dynamic approach based on XAI proves to be
beneficial to the system.

The extent of the improvement however seems largely
dependent on the number of input features but also on the
dataset. For example, a smaller improvement is obtained in
Mininet, due to the randomness of the traffic generated. Even
when considering only the realistic traces, the improvements
varies across networks: the model in Fig. 3b, employing 45%
of the original input, yields the largest and lowest improve-
ment over the baseline with the Abilene and Geant datasets,
respectively. Compared to Saliency, LIME (Fig. 3c) struggles
in estimating the missing entries in two particular conditions:
in the presence of random traffic (Mininet) and small input size
(10%), resulting in performance degradation. However, when
increasing the number of considered features in real traffic
patterns, it improves up to 80%.

Interestingly, despite the noticeable difference between the
Saliency (Fig. 2a) and LIME (Fig. 2b) heatmaps, our XAI-
based feature selection techniques outperforms the baseline in
the majority of cases (lower error). The reason for this is likely
found in the correlation between traffic flows: even if different
features are discarded with the two methods, the information
they carry can be found, partial or whole, in features that
are retained. Furthermore, because Saliency-based selection
yields better results across the board when compared to LIME,
especially when restricting the number of features to 10%
of the original size, we conclude the model-specific solution
is more adept at determining the features carrying the most
information.



VI. CONCLUSION

In this paper we presented a novel approach to apply
eXplainable AI (XAI) during the completion of Internet traffic
matrix entries. First, we benchmarked eight methods that can
be used to solve this problem. Then, on the most promising
deep learning-based approaches, we applied two alternative
XAI methods to identify the most impacting features. Results
demonstrated that, along with reduced traffic overhead, this
subset of features is enough when using a Convolutional
Neural Network model. The impact of this approach led to
a completion error of 65% less (on average) than the original.
In the future we plan to better study the limits of this approach
and how to optimize the tradeoff between input reduction and
model accuracy.
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