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ABSTRACT

Elongated tokamak plasmas are prone to instability, initiated by vertical displacement perturbations, which can be suppressed if a perfectly conductive wall is placed
near the plasma boundary, providing passive feedback stabilization. For the more realistic case of a resistive wall, the vertical mode can still grow on the relatively
slow resistive wall time scale. Active feedback control is then required for complete stabilization. However, the slow growth is far from ideal-MHD marginal stability
on the stable side, i.e., provided that the wall is sufficiently close to the plasma. It is shown that the resistive growth rate can be significantly faster, scaling with
fractional powers of wall resistivity, if the wall position satisfies the criterion for ideal-MHD marginal stability, thus posing more stringent conditions for active

feedback stabilization.

1. Introduction

Plasma shaping and magnetic divertors have become standard in
present-day tokamak experiments, as they help optimize fusion perfor-
mance and reduce the adverse effects of plasma-wall interactions. On
the other hand, elongated plasmas are prone to instability, initiated by
an axisymmetric perturbation with toroidal mode number »n = 0, lead-
ing to Vertical Displacement Events (VDEs) [1-4], where the entire
plasma shifts vertically until it touches the vacuum chamber. Uncon-
trolled VDEs must be avoided, as they lead to plasma current disrup-
tions, which can severely damage the chamber’s first wall. Therefore,
conducting structures are embedded in a tokamak device as a way to
provide passive feedback stabilization of n = 0 modes, which, in the
ideal magneto-hydro-dynamic (MHD) limit, would otherwise grow on
Alfvén time scales, i.e., microseconds for typical experimental param-
eters. The passive stabilization mechanism is associated with the de-
velopment of currents induced on these structures and the wall. When
passive feedback stabilization is effective, active feedback stabilization,
by means of currents in coils outside the vacuum chamber, is then used
to suppress the residual growth on the slower time scale associated with
wall resistivity, typically a few milliseconds [5,6].

Given the necessity to control the vertical instability for the safe
operation of a tokamak fusion reactor, a vast amount of literature has
been dedicated to the theoretical study of n = 0 vertical modes, starting
from the pioneering work by Laval et al. [7], and continuing throughout
the years (Refs. [6-16] provide a non-exhaustive sample), until very re-
cently, where the impact of magnetic divertor X-points on n = 0 modes
was analyzed within the framework of the ideal-MHD model [17,18].
In this article, we focus on analytic theory and consider more closely
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the effect of a resistive wall when the criterion for ideal-MHD stability
is marginally satisfied, i.e., when the position of the wall is marginal for
passive stabilization of the rapidly growing (on Alfvén time scales) n = 0
mode. We demonstrate that, under these conditions, the growth rate of
n = 0 vertical displacements scales with a fractional power (smaller than
unity) of wall resistivity.

More specifically, in the thin wall limit, where the wall thickness
normalized to the minor radius of the elliptical wall is smaller than a
certain amount, as specified in Eq. (18) below, the growth rate scales
with the one-third power of resistivity. The thin wall limit is charac-
terized by the fact that the induced currents have time to diffuse and
become uniform across the thin wall. In the opposite limit of a rela-
tively thick wall, skin currents occupy only part of the wall thickness,
and the growth rate is found to scale with the one-fifth power of resistiv-
ity. In both regimes, the vertical displacement can grow on time scales
that, even though much slower than the ideal-MHD Alfvén growth time,
are nevertheless much faster than the resistive wall time normally con-
sidered in the design of active feedback control systems. Although the
ideal-MHD marginally stable case may be somewhat special, our study
indicates that there are circumstances where the active feedback control
system may fail since the n = 0 resistive wall mode tends to grow more
rapidly than normally expected.

Since the pioneering works of Coppi [19] and of Furth, Kileen and
Rosenbluth [20] in 1963 on the stability of hydromagnetic systems with
dissipation, it is well known that magnetized plasma equilibria close to
ideal-MHD marginal stability for various types of normal modes of in-
terest both in laboratory and in astrophysical plasmas are unstable to
resistive modes with growth rates proportional to the one-third power
of resistivity. Examples are interchange modes [21], internal kinks [22],
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resistive balooning modes [23]. A fundamental aspect in these regimes
is the breakdown of the so-called constant-y approximation, where y is
the perturbed magnetic flux across the layer, inside the plasma, where
magnetic reconnection can occur. Conversely, when the constant-y ap-
proximation is appropriate, tearing modes are found, whose growth rate
scales with the three-fifths power of plasma resistivity [20]. However,
for resistive wall modes, the situation is somewhat different. Instead
of perturbed current sheets developing inside the plasma near resonant
magnetic surfaces, we now have the thin wall of the plasma confine-
ment chamber, where current sheets are induced as a consequence of
nearby plasma flows. The thickness of the wall is pre-determined, and
what matters in a theoretical derivation is to check whether induced
currents have time to diffuse across the thin wall within the time scale
of plasma motion, or whether skin currents that occupy only part of
the wall thickness develop instead [24]. Standard analyses, for the rel-
evant case where passive feedback stabilization of ideal-MHD vertical
displacements is effective, consider induced currents that are uniform
across the wall and growth times of the order of the resistive wall time.
We show in this article that this standard result is valid only in regimes
far from ideal-MHD marginality on the stable side, while close to ideal-
MHD marginal stability, new possibilities arise for faster growth of re-
sistive wall n = 0 modes.

This article is organized as follows. Section 2 discusses the standard
case, where the resistive wall vertical displacement grows on the re-
sistive wall time scale. Section 3 discusses the nonstandard case, close
to ideal-MHD marginal stability, where growth rates scale with frac-
tional powers of resistivity. The thin wall limit is treated in Sec. 3.1,
and the induced skin current regime is treated in Sec. 3.2. A discussion
of the obtained results, with numerical examples representative of typ-
ical present-day tokamak plasmas, is presented in Sec. 4. Conclusions
are presented in Sec. 5. Derivations of the resistive wall stability pa-
rameter, D, (y), and of the ideal wall stability parameter, D, are shown
in the Appendix A. Formulas in this article are written according to
c.g.s. units.

2. Axisymmetric resistive wall mode: The standard case

The first part of the derivation in this article closely follows the
analysis of Ref. [25] that we summarize here for the reader’s conve-
nience. Analytic theory is possible if a relatively simple, ”straight toka-
mak” equilibrium configuration is adopted, having periodic longitudi-
nal length L, = 27xR,, where R, is the major radius of the equivalent
torus, and equilibrium flows are absent. The plasma equilibrium cur-
rent density, J,,, as well as the plasma density, p,,, are uniform up
to an elliptical flux surface, with minor semi-axis « and major semi-
axis b, which represents the actual plasma boundary; J,, and p,, are
zero outside that boundary. The analytic solution for the equilibrium
flux function in elliptical coordinates (u, ), where x = A sinh(u) cos(9)
and y = Acosh(u)sin(d), with A = /b2 — a2, was derived in [26]. The
plasma boundary is a flux surface with u = y,, such that a = Asinh g,
and b = A cosh ;. The wall of the containment chamber is also assumed
to be an ellipse, with b,, and a,, major and minor semi-axis, respec-
tively. Plasma boundary and wall are assumed to be confocal, i.e.,
b2, — a’, = b> — a°. The stability of this configuration based on the ideal
MHD energy principle for a perfectly conducting wall was studied in
the classic paper by Laval et al. [7]. As shown in [7,17,25], passive
feedback stabilization for this plasma-wall configuration requires that
magnetic X-points, associated with the elongated equilibrium, lie out-
side the confinement chamber, with the ideal-MHD marginal stability
criterion satisfied when the wall intercepts the X-points. The ”limiter
plasma scenario” treated in this article is different from the ”divertor
plasma scenario” discussed in [17,18], where the plasma is allowed to
extend to the magnetic X-points, the magnetic divertor separatrix is the
actual plasma boundary, and the first wall of the vacuum chamber lies
beyond the X-points.
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Normal mode analysis is based on the linearized, reduced ideal-MHD
(RIMHD) model [27]. A dispersion relation for n = 0 vertical modes was
derived in [25] for arbitrary values of the ellipticity parameter,

b — a®
“Fra
With the help of quadratic forms, the dispersion relation takes the form
—y261 = 6W,,,,(v). Perturbations are assumed to depend on time as & ~
exp (yt), with y = —iw the complex eigenvalue, §I = [ d*xp,,&2 /2, with
mass density p,, and plasma displacement &, and, in the low-beta limit
(beta=kinetic pressure/magnetic pressure),

1
W eore(y) = 5 /Q d3x<ez X

where an over-tilde indicates perturbed quantities, * is the complex
conjugate of the perturbed stream function, ¥ is the perturbed magnetic
flux, and J is the perturbed current density. The volume integrals extend
to the region occupied by the plasma, boundary included. 6W,,,, is gen-
erally a complex, frequency-dependent quadratic form. The stabilizing
effect of the wall is included in 6W,,,,, as the plasma stream function is
affected by the presence of the wall. Indeed, the eddy currents induced
in the wall contribute to the perturbed flux, which, through the flux-
freezing condition, is consistent with part of the plasma displacement,
proportional to &,,,, that opposes the plasma vertical plasma shift. In-
deed, as shown below, the total plasma displacement can be written as
the difference between the no-wall displacement, ¢, and this external
contribution: ¢ =& —&,,.

More specifically, in the plasma region u < yu,, the solution of the
linearized RIMHD model for the stream function in elliptical coordinates
is given by

e o

Y y 5
y‘{f > TV + Vi), @

o1 h
P, 0) =y Ea—t
sinh

cos 6, 3)
Hp

which corresponds to a rigid vertical displacement, with the constant
amplitude ¢ representing the vertical shift of the plasma column. From
the flux freezing condition, y{ + [(fo, y/eq] = 0, we obtain the correspond-
ing perturbed magnetic flux:

sh
(0.0 = =5 O G, @
b cosh y,,
where the subscript ” - ” indicates the perturbed flux in the plasma re-

gion. In the vacuum region between the plasma boundary at 4 = y, and
the wall at y = y,,, the perturbed flux satisfies V2y+ = 0, whose solution
can be best represented as

. ¢ &, coshu .
+ _J_ (o .
Wt(u,0) = { b exp [—(u — pp)l + b cosh, } sin @, 5)

where the subscript ” + ” indicates the perturbed flux in the vacuum
region. In this expression, £, is the amplitude of the rigid vertical dis-
placement in the limit where the wall is moved to infinity, and the term
proportional to &,,, represents the contribution to the perturbed flux
due to the currents induced on the wall when this is at a finite distance
from the plasma boundary. Continuity of flux at the plasma boundary
requires that & = £ — &,,,, so the actual vertical displacement ¢ is re-
duced, as compared with the no-wall case, by the amount ¢&,,,.

A straightforward derivation, detailed in [25], leads to the normal-
ized expression for the potential energy quadratic form,
xz, l—a/b 1=-Dy,) ,

Wope x =2 L ,
core X T 2T 1= 6yD,y(7)

where D, =¢,,,/(éyé,), éy = eyb/(a + b), and to the dispersion relation

Q)

(O]

4a>p? ( _a) 1-D,

2 _ _
(rzp) = @+ ) ) 1= éODw’

where 7, = (4z0,,)'/?/ B! is the relevant Alfvén time, with B p’ the radial
derivative of the poloidal magnetic field on the magnetic axis.
Beyond the wall, the perturbed flux decays exponentially as

Wour = Woexp[—(pu — p,,)]sin 0 ®)
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The perturbed flux amplitude y;, and the resistive wall stability parameter,
D, (y), are derived in the Appendix. This parameter, which in general
is a function of y, takes into account wall effects. It has the following
expression:

éext =D }/T'IW

D, = - =D——, ©®
R 1+7y7,,
where
2.2 b, —a,
_bta b dw (10)
(b—a? b,

is a real quantity, referred to as the ideal wall stability parameter. As we
shall see below, passive ideal wall stabilization requires vales of D > 1.
The resistive wall time, z,,, is conveniently defined as

Tyw = (6/a,)T,, [€8))

where 7, = 27b,,(a, + b2)/[(a,, + b,)nc], with ¢ the speed of light,  the
wall resistivity, and §,, the wall thickness. Defining {(u, 6) = () siné,
a plot of the amplitude y(y) is shown in Fig. 1.

We have assumed, for the time being, that the induced current is uni-
form across the wall. This assumption, whose validity will be checked
a posteriori, corresponds to the thin wall limit. In Sec. 3.2, this assump-
tion will be relaxed, and attention will be given to the situation where
a skin current develops, whose width is smaller than the wall thickness.

We can see from Egs. (6),(9) and (10) that, if the wall is ideal, i.e.,
in the limit z,,, = o, D,,(y) reduces to D, and 6W,,,, becomes a real
quantity corresponding to the usual ideal-MHD potential energy. The
dispersion relation (7) with D, = D is quadratic in y. In the limit where
the wall is moved to infinity (the no-wall limit), D — 0, y? is positive,
and ideal-MHD instability is found, with the growth rate

1/2
(e
Passive wall feedback stabilization requires values of D > 1. The maxi-
mum value, D,,,,, is always larger than unity and is reached when the
wall coincides with the plasma boundary, i.e., b,, = b and q,, = a. The
ideal-MHD marginal stability criterion corresponds to D = 1. A calcu-
lation detailed in Ref. [25] indicates that, for the plasma equilibrium
and wall geometry considered here, the marginality condition corre-
sponds to the wall intercepting the X-points of the magnetic flux sepa-
ratrix, while the unstable/stable case corresponds to the X-points lying
inside/outside the vacuum chamber.

When wall resistivity is considered, the dispersion relation in the thin
wall limit becomes cubic in y:
3 J/2 2 D-1 y‘i,

+ + - =0. 13
T 0= eDyty,  "®T=6,D ~ (1-éyD)ryy, 13

Let us consider the case D > 1, where the ideal-MHD instability is sup-
pressed by passive feedback. The standard ordering is y.,7,, > 1 and
(D = 1) = 0(1). In this limit, two of the three roots of the cubic disper-
sion relation are oscillatory and weakly damped by wall resistivity,

1 D(1 - éy)

e (14)

OO 7 — s
o (D = D(1 = ¢,D)

where w, = [(D — 1)/(1 — ,D)) Y 2;/00. The third root corresponds to the
weakly unstable vertical mode, growing on the resistive wall time scale:

1

~ m (15)

14
Let us focus on the latter result, representing the linear growth rate for
the standard n = 0 resistive wall mode. If we stay away from the ideal-
MHD marginal stability boundary, i.e., for as long as we can take D — 1
positive and order unity, the dominant balance for this root involves the
last two terms of the dispersion relation (13). Thus, in the linear insta-
bility phase, the vertical displacement grows on the resistive wall time,
7,,- An assumption was made for the derivation of the parameter D,,
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(see Appendix A), that on the mode growth time, the current induced on
the wall can diffuse and become nearly uniform across the wall. Let us
check this assumption. The time it takes for the induced current to dif-
fuse across the wall of thickness §,, can be estimated as 7, ~ 862 /D,
where D,, = nc?/4x is the resistive diffusion coefficient. The induced
current becomes nearly uniform across the wall if 7, <y~ ~7,,,.
This inequality is automatically satisfied in the relevant limit §,, < a,,,.

3. Axisymmetric resistive wall mode: The non-standard case
3.1. The thin wall limit

At ideal-MHD marginal stability, D =1 and the third term of the
dispersion relation (13) vanishes. In this case, and the relevant limit
Yoo Tyw > 1, the dominant balance for the unstable root involves the first
and the last term of Eq. (13), yielding

- Yeo __ @/8)"re (16)

(1= 2) Pty P (1= 80)' Py
As anticipated, the growth rate in this regime scales as the one-third
power of the wall resistivity. It is considerably larger than the growth
rate (15) of the standard n = 0 resistive wall mode (in the limit where D
is positive and D — 1 = O(1)). In the next section, estimates of the growth
rates in the standard and nonstandard regimes for typical tokamak pa-
rameters will be discussed.

The result in Eq. (16) holds for values of the parameter D close to
unity. More precisely, comparing the first and the third term of Eq. (13),
the width in parameter space where the result (15) holds is estimated
as

(1-¢p'/3

ID-1]< —0
FooTyu)*?

an
Indeed, if one replaces |D — 1| ~ (1= 6y)!/3 /(y47,,,)*/* in Eq. (15), one
can see that the growth rates (15) and (16) do match.

As in the standard case, the thin wall limit corresponds to the regime
where the perturbed current density induced on the wall can diffuse and
become uniform across the wall on the instability growth time scale. As
we have seen at the end of Sec. 2, this regime is automatically satisfied
in the standard case, where the instability growth time is of the order of
7,,0- For the nonstandard case treated here, the thin wall limit requires a
more stringent condition of the wall thickness §,,. The instability growth
time is now estimated to be the order of the inverse of the growth rate
in Eq. (16). The perturbed current density becomes uniform across the
wall if 8,, < 47 ~ (D, /)" ~ [(8,0/2,)"/°/(ro7,)'/*1a,, Which leads
to the following inequality for the wall thickness,

81/ < (YeuT,) 2. (18)

In these estimates, we have assumed a,, ~ b,,.

3.2. Induced skin currents

If the inequality (18) is not satisfied, the perturbed current induced
on the wall by the vertical plasma motion does not become uniform
across the wall. A skin current forms, whose width, §;, is less than the
wall width, 6,,. In this case, our derivation of the cubic dispersion rela-
tion (13) has to be reconsidered. We can proceed as in the Appendix, but
now the integral in Eq. (A4) is extended to the interval between y,, and
Uy, + (8p),, where (6u); = 6,/a,, and the subscript ”s” stands for ”skin”.
The derivation of the parameter D, can proceed as in the Appendix, and
the result is similar to that in Eq. (9), but with the important difference
that z,,, should be replaced by

7,5 = 85/ a,)T, 19

Another important difference is that, while §,, is a given parameter rep-
resenting the physical width of the wall, §; depends on the mode growth
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rate. Therefore, its value can be determined only after the dispersion re-
lation is solved. A good estimate for the skin depth is 6, = (D,,/7)"/%.
Thus, we arrive at the dispersion relation (13), with Tyw replaced by
Tys = ao(r,,/y)]/z, ag =[(1+ xi)xw]/[Z(l + k,,)] a wall geometrical fac-
tor, and «,, = b,,/a,,:

2
3 14 » D-1
+ + -
T (= aDya, /2 " "= T=¢,D

s

" (L= eD) e, /)2

The relevant dispersion relation is no longer cubic in y. However, as
was true in Sec. 3.1, the relevant unstable root in the limit D = 1 and
YeoTys > 1 can be obtained by balancing the first and the last term of
Eq. (20):

(20)

)~ Yoo
[ao(1 = &)/ (g ,)1/5

Thus, in this regime where inequality (18) is not satisfied, the growth
rate scales with the one-fifth power of wall resistivity and becomes in-
dependent of the wall thickness §,,. The growth rate (21) is larger than
the growth rate (16), their ratio being of order [(5,,/a,)(ro7,)*°1'/3.
The two growth rates match, as they should, when §,,/a,, ~ (ym'r,,)_z/ 3
In these asymptotic relations, we have assumed «, and (1 — é,) to be of
order unity.

Comparing the first and the third term of the dispersion relation (20),
the width in parameter space where the result (21) holds is estimated
as

@n

1

ID-1] £ ——.
Yooy

(22)
Indeed, if one replaces 6,,/a,, < (ym'r,,)_z/ 3 in Eq. (17), one can see that
the criteria (17) and (22) do match.

It should be pointed out [28] that the thin wall limit and the in-
duced skin current regime can be treated in a unified way following a
procedure similar to that adopted in Ref. [29].

4. Discussion

It is helpful at this stage to provide some numerical estimates for
the growth rates and asymptotic regimes that we have derived in this
article, having in mind typical tokamak parameters.

For present-day tokamak plasmas with non-circular cross sec-
tions, taking the JET tokamak as a representative machine (see, e.g.,
Ref. [30]), typical parameters in S.I. units are: magnetic field, B ~ 3T;
electron density, n ~ 3 x 10'm~3; ion species, Deuterium; plasma minor
radius, a ~ 1m; elongation, x = b/a = 2; wall distance, b,,/b ~ 1.2 — 1.5.

For the equilibrium model adopted in this article, the ideal wall sta-
bility parameter, Eq. (10), is a function of both « and b,,/b:

12
D<,< i)— Sk P 1-’f2_1<i>2 (23)
Tby) (k1) k2 \ by,

In deriving Eq. (23), the confocality condition % — a2 = b* — o has
been used, see the Appendix for details of the algebra.

We find that the ideal-MHD marginal stability criterion, D =1, is
satisfied when the elliptical wall intercepts the two magnetic X-points,
which, for the equilibrium model adopted in this article, are up-down
symmetric and located at a vertical distance, by, from the magnetic axis.
A simple analysis of the equilibrium configuration yields an analytic
formula for by:

2
K-+ 1

by = — b, 24

T k- 112 @9

and it can be easily checked that, for b,, = by, D(x,b/by) = 1. In par-

ticular, for x =2, D =1 when b,, = 1.4b. Also note that, according to
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Eq. (23), D < 1, and vertical displacements are unstable whenever the
X-points lie between the plasma boundary and the wall.

The fact that the ideal-MHD marginal stability criterion is exactly
satisfied when the wall intercepts the X-points may be peculiar to the
adopted model, where the plasma boundary and the wall are confo-
cal ellipses. Also, real tokamak plasmas have cross-sections with a de-
gree of triangularity, which is not considered by the present analysis.
Furthermore, plasma-facing conductors are often placed inside the vac-
uum chamber to provide additional passive stabilization of vertical dis-
placements. Finally, a real tokamak plasma divertor configuration is not
necessarily up-down symmetric. This implies that evaluating the actual
effect of the ideal wall on the stability of vertical displacements in a
real experiment requires numerical work. Most importantly, the last-
closed-flux-surface for a tokamak plasma with a magnetic divertor is
the magnetic separatrix, where magnetic X-points lie. As pointed out
in Ref. [17], since X-points are resonant to axisymmetric perturbations,
n = 0 perturbed currents can be induced in the vicinity of the X-points
and along the magnetic separatrix, which in turn may have a profound
impact on vertical stability. This possibility is not taken into account in
the present articles, where X-points are assumed to lie in vacuum.

With all those caveats in mind, let us consider the time scales for
the growth of the resistive wall vertical displacement. The ideal-MHD
growth rate, 7, in the no-wall limit (D = 0), gives rise to a growth time
in the linear instability phase of the order of the Alfvén, i.e., 7, ~ 73!
of the order of 1 us for the typical tokamak parameters listed above.
Clearly, this would be too fast to be countered by any feedback stabi-
lization system. Fortunately, the presence of the wall provides passive
feedback stabilization. According to the model adopted in this article,
this requires values of D > 1, which are easy to satisfy if the wall is not
too distant from the plasma. When D — 1 is positive and not too small
(i.e., when inequalities (17) and (22) are not satisfied, in an asymp-
totic sense), the characteristic growth time of the resistive wall vertical
displacement is of the order of 7,,, = (§,,/a,,)7, (cf. Eq. (15). Typical
values are 7, ~ 0.1s and §,,/a,, ~ 1072, giving rise to resistive growth
times 7,,, ~ 1 ms in standard regimes. This time is considerably longer
than the ideal-MHD growth time. Indeed, it is long enough to allow for
active feedback stabilization based on currents flowing in coils placed
outside the tokamak vacuum chamber. In essence, the active stabiliza-
tion system operates as follows. The vertical instability corresponds to
a rigid vertical shift of the whole plasma column. An appropriate diag-
nostic monitors the position of the plasma centroid, which is supposed
to correspond to the magnetic axis in the plasma. As soon as the cen-
troid starts moving, currents with the appropriate sign are driven in the
outer feedback coils to exert a force on the plasma that counters the ver-
tical plasma motion. The response time of the system is limited by the
electronics and is of the order of us. A more important limiting factor is
that the magnetic flux associated with the active feedback stabilization
system must penetrate across the resistive wall to be felt by the plasma.
The penetration time is also of the order of z,,,. Therefore, since in the
standard regime, the vertical instability does not grow on a time scale
much shorter than the resistive wall time, active feedback stabilization
based on currents flowing in external coils can be effective.

However, near ideal-MHD marginal stability, D ~ 1, the resistive
wall vertical displacement can grow much faster. Let us first estimate
the growth rate in the thin wall limit. With the parameter values de-
clared above, y,7,, ~ 10® and, using the growth rate in Eq. (16),
y~! ~ 10us, definitely a growth time too fast for active feedback sta-
bilization. The thin wall limit, Eq. (18), is marginally satisfied for the
value of 6,,/a,, ~ 1072 declared above, since (y,,7,)™>/> ~ 1072, Indeed,
the inverse growth rate in the regime where skin currents are induced
on the wall, i.e., using the growth rate in Eq. (21), also gives y~! ~ 10us.
Whether the thin wall limit or the induced skin current regime applies
in real tokamak experiments depends on a more accurate evaluation of
the parameters §,,/a,, and 7,7,

A numerical solution of the dispersion relation (13) for values of D
ranging between 0.9 and 1.1, focusing on the unstable root, is shown in
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105 110 115 120
(b)

Fig. 1. Perturbed flux amplitude, y(u); 1 a shows the behaviour in the three
regions, with boundaries at y,, u, and u, + §8,. A zoom close to the resistive
wall is shown in 1 b.

17}

D
0.90 0.95 1.00 1.05 1.10

Fig. 2. Growthratey, = y(D)/y(D = 1) for the the thin wall limit, with y(D = 1)
given in Eq. (16), as function of the ideal wall parameter D close to ideal-MHD
marginal stability. The blue curve shows the numerical solution of the full cubic
dispersion relation (Eq. 13), while the dashed red line represents the ideal wall
solution.

Fig. 2. We can see that the inverse growth rate, i.e., the growth time in
the linear instability phase, reduces rapidly and drastically as the ideal-
MHD marginal stability boundary is approached. A picture showing the
relative wall positions for D = 0.9 and D = 1.1 is shown in Fig. 3.

5. Conclusions

In conclusion, when the condition for ideal-MHD marginal stability
for vertical displacements is satisfied, it is found that the vertical mode
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Fig. 3. Plasma boundary for x = 2 (black curve) and relative wall positions for
D = 0.9 (blue) and D = 1.1 (red). The dashed black line represents the magnetic
separatrix.

growth rate scales with a fractional power of resistivity. In the thin wall
limit, i.e., when the wall thickness §,,, normalized to the elliptical wall
minor axis a,, is relatively small and the inequality in Eq. (18) is sat-
isfied, the growth rate of the vertical displacement scales with the one-
third power of wall resistivity multiplied by the one-third power of the
ratio a,,/5,,, see Eq. (16). In the opposite limit, which we have dubbed
the induced skin current regime, the growth rate scales with the one-fifth
power of wall resistivity and becomes independent of the wall thickness,
see Eq. (21). In both regimes, growth rates are considerably larger than
that found in the standard regime, which scales linearly with wall re-
sistivity, see Eq. (15). Growth rates near ideal-MHD marginal stability
are too large to be countered by the active feedback stabilization sys-
tem. We conclude that stable tokamak operation requires the condition
for passive wall stabilization, i.e., D > 1 according to the model in this
article, to be well satisfied. If the ideal wall stability parameter D is
only slightly above unity, in the sense that either Eq. (17) in the thin
wall limit, or Eq. (22) in the induced skin current regime, is satisfied,
then the mode growth rate becomes considerably larger and the active
feedback stabilization system can no longer be effective.

Even though growth rates scaling with fractional powers of plasma
resistivity for resistive instability leading to magnetic reconnection are
well known, we believe this is the first time resistive wall modes are
shown to grow with fractional powers of wall resistivity in regimes that
are close to ideal-MHD marginal stability.
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Appendix A. Derivation of the resistive and ideal wall
parameters, D, (y) and D(x,b/b,)

The perturbed flux function in the vacuum region, u;, < u < p,, can
be written as ¥t (u,0) = @ (u)sinf, see Eq. (5). Beyond the wall, the
perturbed flux function decays exponentially as

Woua (1, 0) = ype™ ¥ sin 6 for p > p, + (5, (A1)

where (6u),, is a small parameter, and the wall corresponds to values
of u between y,, and u,, + (64),,. Since b,, = Acosh y,,, a,, = Asinh y,,,
and b, + &, = Acosh [u,, + (6u),,], expanding the latter expression for
small (6u),, provides an expression for the wall thickness in physical
dimensions: §,, = (64),,a,,-

Figure 1 is a sketch of the amplitude of the perturbed flux y(u) across
the wall. Two conditions at the wall determine the parameter v, and
the function D, (y). The first condition is continuity of flux at the wall,
V~/+(”w7 0) = lpout(ﬂw’ 6), which gives

S0

Wo = — 522 o~y 4 et SR Hy
b

. A2
b coshpy, (42)

The second condition involves the current flowing inside the wall. Con-
sider the resistive Ohm’s law for the perturbed magnetic flux within the
wall, dy,,/dt = (nc? /4x)V?y,,, where 7 is the wall resistivity. Since the
wall is relatively thin, we can approximate 9%y /du? >> 0%y /d6%, and
o)

1%,  4r .

o gl *3)

where h = 1/|Vu| = 1/|V6| is a scale factor. Strictly speaking, 4 depends
on yu and 6, as h? = A*(cosh2u + cos 26)/2. However, within the wall,
cosh2u,, =e;!, where e, = (b2 —a2)/(b2 + a2) is the wall ellipticity.
Assuming e, to be small, we can neglect the term cos26 and approx-
imate h% ~ h*(u,,) = (b2, + a%)/2, where the confocality condition has
been used.

We integrate Eq. (A3) across the wall,

Hwt@GWw g2y, M+ ()
/ LYPE / 2
Huw du 1z

w

n—zllfwd u (A4)
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Since the wall is thin, we can approximate ¥, (1) ~ y, in the second
integral of Eq. (A4); also, h(u) ~ h(u,,). After straightforward algebra,
we obtain

. N 2 2
Do _ AT\ dry bty %0 (AS)
du du )\, nc? 2 a,
or equivalently
Soo —(up—niy) _ Sext SNy, b, +ay
22 lmpy) _ 2 T (g T Wy Ny, A6
b ¢ b coshpu, b, | m)¥o (A6)

where Tyw is defined in Eq. (11). Equations (A2) and (A6) allows
us to determine the two unknowns y, and D, =¢&,,,/é,¢,. We use
cosh (y,,)/ cosh () = b,,/b, sinh(u,,)/cosh(u,) = a,,/b, exp(u, — p,) =
(b+a)/(b, +a,), and b* — a®> = b2 — a* . After straightforward algebra,

we obtain

a+b  Ex/b
a,+b, 1+yr

nw

Vo =~ (A7)
and Eq. (9) for D,,.

The derivation above is valid in the thin wall limit. In the induced
skin current regime (see Sec. 3.2), the same derivation applies, with §,,
replaced by §,, which depends on the growth rate y (see the discussion
at the beginning of Sec. 3.2).

We will now present the derivation of the ideal stability parameter
D as a function of the elongation « = b/a and of the parameter 5/b,,,
which measures the distance of the wall from the plasma boundary, as
given by Eq. (23). First, let us rewrite D in Eq. (10) as

2
D:K+1<1_@>_ A8
(k= 1)? by, A8

Then, using the confocality condition, b* — > = b2 — a2, the following
expression for a,,/b,, can be obtained:

) 2
Qo _ [y k-1, b ) (A9)
b, K2 b,
By substituting this relation into (A8), we obtain the final functional
relation D(x, b/b,,) given by (23).

It is useful to analyze the three relevant limits for D(x, b/b,,).

1. In the no-wall limit, where 5/b,, — 0, we obtain the anticipated re-
sult, D — 0. Note that, as the wall is moved further away from the
plasma, it becomes more circular, b,, — a,,. This is a consequence of
the confocality condition.

2. In the circular plasma limit, x — 1, Equation (23) reduces to
D(x,b/b,) ~ 2(b/b,)?*/(xk —1). In this limit, for an ideal wall,
the vertical mode is stable with an oscillation frequency w, ~
{2(b/b,)* /11 — (b/bw)z]}l/zrxl, which vanishes when the wall is
moved to infinity. To obtain this result, we have used the definition
of w, given below Eq. (14).

3. Lastly, in the limit where the wall approaches the plasma boundary,
b/b,, — 1, Eq. (23) reaches its maximum value (for a given elon-
gation «), D(k,b/b,) = D, = (k? + 1)/[x(x — 1)], which is always
larger than unity.

max
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