Separators and electrolytes provide electronic blockage and ion permeability between the electrodes in electrochemical cells. Nowadays, their performance and cost is often even more crucial to the commercial use of common and future electrochemical cells than the chosen electrode materials. Hence, at the present, many efforts are directed towards finding safe and reliable solid electrolytes or liquid electrolyte/separator combinations. With this comprehensive review, the reader is provided with recent approaches on this field and the fundamental knowledge that can be helpful to understand and push forward the developments of new electrolytes for rechargeable batteries. After presenting different types of separators as well as the main hurdles that are associated with them, this work focuses on promising material classes and concepts for next-generation batteries. First, chemical and crystallographic concepts and models for the description and improvement of the ionic conductivity of bulk and composite solid electrolytes are outlined. To demonstrate recent perspectives, research highlights have been included in this work: magnesium borohydride-based complexes for solidstate Mg batteries as well as all-in-one rechargeable SrTiO3 single-crystal energy storage. Furthermore, ionic liquids pose a promising safe alternative for future battery cells. An overview on their basic principles and use is given, demonstrating their applicability for Li-ion systems as well as for so-called post-Li chemistries, such as Mg- and Al-ion batteries.

Separators and electrolytes for rechargeable batteries: Fundamentals and perspectives / Nestler, T.; Roedern, E.; Uvarov, N. F.; Hanzig, J.; Elia, G. A.; de Vivanco, M. - In: Electrochemical Storage Materials: From Crystallography to Manufacturing Technology[s.l] : De Gruyter, 2018. - pp. 174-220

Separators and electrolytes for rechargeable batteries: Fundamentals and perspectives

Elia G. A.;
2018

Abstract

Separators and electrolytes provide electronic blockage and ion permeability between the electrodes in electrochemical cells. Nowadays, their performance and cost is often even more crucial to the commercial use of common and future electrochemical cells than the chosen electrode materials. Hence, at the present, many efforts are directed towards finding safe and reliable solid electrolytes or liquid electrolyte/separator combinations. With this comprehensive review, the reader is provided with recent approaches on this field and the fundamental knowledge that can be helpful to understand and push forward the developments of new electrolytes for rechargeable batteries. After presenting different types of separators as well as the main hurdles that are associated with them, this work focuses on promising material classes and concepts for next-generation batteries. First, chemical and crystallographic concepts and models for the description and improvement of the ionic conductivity of bulk and composite solid electrolytes are outlined. To demonstrate recent perspectives, research highlights have been included in this work: magnesium borohydride-based complexes for solidstate Mg batteries as well as all-in-one rechargeable SrTiO3 single-crystal energy storage. Furthermore, ionic liquids pose a promising safe alternative for future battery cells. An overview on their basic principles and use is given, demonstrating their applicability for Li-ion systems as well as for so-called post-Li chemistries, such as Mg- and Al-ion batteries.
2018
Electrochemical Storage Materials: From Crystallography to Manufacturing Technology
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2959213