Mesoporous silica- and carbon-based materials, including bioactive glasses, have proven potential as components of medical devices and as drug carriers. From an application perspective, knowledge about the shelf-life stability of these materials under various conditions is vital. Here, mesoporous bioactive glasses (MBGs) synthesized by aerosol-assisted spray-drying and by a batch sol–gel method, mesoporous silicas of SBA-15 type, and mesoporous carbons CMK-1 and CMK-3 have been stored under varying conditions, e.g. at different temperature and relative humidity (RH), and in different storage vessels. The results show that the silica-based materials stored in Eppendorfs are sensitive to humidity. Spray dried MBGs decompose within 1 month at a RH >5%, whilst sol–gel MBGs are more stable up to a RH >60%. Changing the storage vessel to sealed glass flasks increases the MBGs lifetime significantly, with no degradation during 2 months of storage at a RH = 75%. SBA-15 stored in Eppendorfs are more stable compared to MBGs, and addition of F- ions added during the synthesis affects the material degradation rate. Mesoporous carbons are stable under all conditions for all time points. This systematic study clearly demonstrates the importance of storage conditions for mesoporous materials which is crucial knowledge for commercialization of these materials.

A shelf-life study of silica- and carbon-based mesoporous materials / Bjork, E. M.; Atakan, A.; Wu, P. -H.; Bari, A.; Pontremoli, C.; Zheng, K.; Giasafaki, D.; Iviglia, G.; Torre, E.; Cassinelli, C.; Morra, M.; Steriotis, T.; Charalambopoulou, G.; Boccaccini, A. R.; Fiorilli, S.; Vitale Brovarone, C.; Robertsson, F.; Oden, M.. - In: JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY - KOREAN SOCIETY OF INDUSTRIAL AND ENGINEERING CHEMISTRY. - ISSN 1226-086X. - ELETTRONICO. - 101:(2021), pp. 205-213. [10.1016/j.jiec.2021.06.011]

A shelf-life study of silica- and carbon-based mesoporous materials

Bari A.;Pontremoli C.;Fiorilli S.;Vitale Brovarone C.;
2021

Abstract

Mesoporous silica- and carbon-based materials, including bioactive glasses, have proven potential as components of medical devices and as drug carriers. From an application perspective, knowledge about the shelf-life stability of these materials under various conditions is vital. Here, mesoporous bioactive glasses (MBGs) synthesized by aerosol-assisted spray-drying and by a batch sol–gel method, mesoporous silicas of SBA-15 type, and mesoporous carbons CMK-1 and CMK-3 have been stored under varying conditions, e.g. at different temperature and relative humidity (RH), and in different storage vessels. The results show that the silica-based materials stored in Eppendorfs are sensitive to humidity. Spray dried MBGs decompose within 1 month at a RH >5%, whilst sol–gel MBGs are more stable up to a RH >60%. Changing the storage vessel to sealed glass flasks increases the MBGs lifetime significantly, with no degradation during 2 months of storage at a RH = 75%. SBA-15 stored in Eppendorfs are more stable compared to MBGs, and addition of F- ions added during the synthesis affects the material degradation rate. Mesoporous carbons are stable under all conditions for all time points. This systematic study clearly demonstrates the importance of storage conditions for mesoporous materials which is crucial knowledge for commercialization of these materials.
File in questo prodotto:
File Dimensione Formato  
journal of industrial and enegineering chemistry.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.36 MB
Formato Adobe PDF
3.36 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2950872