In the quarry sector, the reduction of landfill material may be obtained not only by finding a suitable recovery of the material as a by-product, but also by identifying the best available cutting technique to be used on the basis of the physical, chemical, and mechanical characteristics of the stones. The choice of the best cutting technique could lead to high efficiency and performance, high quality of the cut surfaces, and a very low environmental impact by reducing energy consumption, decreasing the concentration of heavy metals in the sludge, and producing less waste. In this context, an analysis of the procedures for cutting different types of ornamental stones into slabs together with the evaluation of sludge production for the different cutting methods has been carried out. Two types of analysis were carried out in parallel: evaluation of the stones workability and calculation of the amount of sludge produced in the three different cutting technologies and from the cutting of blocks. A comparison was carried out on the quality of the sludge produced, on type and quantity of metals present, taking into account the different cutting technologies. The performed tests were: chemical analysis, magnetic separation test, and SEM analysis of the metal fraction. The study could provide stone producers with a technological, scientific instrument to identify the best cutting techniques for the processing of their stones, in order to obtain a high-efficiency process, optimize the recovery process, increase the economic advantages, and evaluate the possible reuse of the sludge through a proactive waste management strategy.

Ornamental Stone Cutting Processing and Sludge Production Evaluation with the Goal of Ending Waste / Zichella, Lorena; Bellopede, Rossana; Marini, Paola. - In: MATERIALS PROCEEDINGS. - ISSN 2673-4605. - ELETTRONICO. - 5:1(2021), p. 57. [10.3390/materproc2021005057]

Ornamental Stone Cutting Processing and Sludge Production Evaluation with the Goal of Ending Waste

Zichella, Lorena;Bellopede, Rossana;Marini, Paola
2021

Abstract

In the quarry sector, the reduction of landfill material may be obtained not only by finding a suitable recovery of the material as a by-product, but also by identifying the best available cutting technique to be used on the basis of the physical, chemical, and mechanical characteristics of the stones. The choice of the best cutting technique could lead to high efficiency and performance, high quality of the cut surfaces, and a very low environmental impact by reducing energy consumption, decreasing the concentration of heavy metals in the sludge, and producing less waste. In this context, an analysis of the procedures for cutting different types of ornamental stones into slabs together with the evaluation of sludge production for the different cutting methods has been carried out. Two types of analysis were carried out in parallel: evaluation of the stones workability and calculation of the amount of sludge produced in the three different cutting technologies and from the cutting of blocks. A comparison was carried out on the quality of the sludge produced, on type and quantity of metals present, taking into account the different cutting technologies. The performed tests were: chemical analysis, magnetic separation test, and SEM analysis of the metal fraction. The study could provide stone producers with a technological, scientific instrument to identify the best cutting techniques for the processing of their stones, in order to obtain a high-efficiency process, optimize the recovery process, increase the economic advantages, and evaluate the possible reuse of the sludge through a proactive waste management strategy.
File in questo prodotto:
File Dimensione Formato  
materproc-05-00057.pdf

accesso aperto

Descrizione: Articolo definitivo
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 197.99 kB
Formato Adobe PDF
197.99 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2945476