A climate change mitigation refers to efforts to reduce or prevent emission of greenhouse gases. Mitigation can mean using new technologies and renewable energies, making older equipment more energy efficient, or changing management practices or consumer behavior. The mitigation technologies are able to reduce or absorb the greenhouse gases (GHG) and, in particular, the CO2 present in the atmosphere. The CO2 is a persistent atmospheric gas. It seems increasingly likely that concentrations of CO2 and other greenhouse gases in the atmosphere will overshoot the 450 ppm CO2 target, widely seen as the upper limit of concentrations consistent with limiting the increase in global mean temperature from pre-industrial levels to around 2◦C. In order to stay well below to the 2◦C temperature thus compared to the pre-industrial level as required to the Paris Agreement it is necessary that in the future we will obtain a low (or better zero) emissions and it is also necessary that we will absorb a quantity of CO2 from the atmosphere, by 2070, equal to 10 Gt/y. In order to obtain this last point, so in order to absorb an amount of CO2 equal to about 10 Gt/y, it is necessary the implementation of the negative emission technologies. The negative emission technologies are technologies able to absorb the CO2 from the atmosphere. The aim of this work is to perform a detailed overview of the main mitigation technologies possibilities currently developed and, in particular, an analysis of an emergent negative emission technology: the microalgae massive cultivation for CO2 biofixation.

Analysis of the emergent climate change mitigation technologies / Panepinto, D.; Riggio, V. A.; Zanetti, M.. - In: INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH. - ISSN 1660-4601. - ELETTRONICO. - 18:13(2021), p. 6767. [10.3390/ijerph18136767]

Analysis of the emergent climate change mitigation technologies

Panepinto D.;Riggio V. A.;Zanetti M.
2021

Abstract

A climate change mitigation refers to efforts to reduce or prevent emission of greenhouse gases. Mitigation can mean using new technologies and renewable energies, making older equipment more energy efficient, or changing management practices or consumer behavior. The mitigation technologies are able to reduce or absorb the greenhouse gases (GHG) and, in particular, the CO2 present in the atmosphere. The CO2 is a persistent atmospheric gas. It seems increasingly likely that concentrations of CO2 and other greenhouse gases in the atmosphere will overshoot the 450 ppm CO2 target, widely seen as the upper limit of concentrations consistent with limiting the increase in global mean temperature from pre-industrial levels to around 2◦C. In order to stay well below to the 2◦C temperature thus compared to the pre-industrial level as required to the Paris Agreement it is necessary that in the future we will obtain a low (or better zero) emissions and it is also necessary that we will absorb a quantity of CO2 from the atmosphere, by 2070, equal to 10 Gt/y. In order to obtain this last point, so in order to absorb an amount of CO2 equal to about 10 Gt/y, it is necessary the implementation of the negative emission technologies. The negative emission technologies are technologies able to absorb the CO2 from the atmosphere. The aim of this work is to perform a detailed overview of the main mitigation technologies possibilities currently developed and, in particular, an analysis of an emergent negative emission technology: the microalgae massive cultivation for CO2 biofixation.
File in questo prodotto:
File Dimensione Formato  
ijerph-18-06767-v2.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 332.61 kB
Formato Adobe PDF
332.61 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2944372