This work focuses on the proposal and the evaluation of a new consolidation system for prestressed reinforced concrete (PRC) beams of girder bridges. The system consists of two arch-shaped steel trusses placed alongside the lateral faces of the beam to be consolidated. The arches develop longitudinally along the entire span of the beam and in elevation using the available height of the PRC cross section. The consolidation system is characterized by its own external constraints, independent from those serving the pre-existing element. The efficiency of the system with respect to parameters variability is described also focusing on the ratio between the load discharged by the consolidation system and the total applied load. Referring to a case study, the consolidation of a PRC beam is presented adopting the proposed system with respect to the usually adopted external prestressing technique. The cross sections properties of the steel arch shaped trusses are defined by means of a structural optimization process using a genetic algorithm, identifying the minimum steel consumption. Finally, a preliminary cost-benefit analysis is performed for the proposed solution for a comparison with other commonly adopted techniques.

Optimal strengthening by steel truss arches in prestressed girder bridges / Cucuzza, Raffaele; Costi, M; Rosso, Marco; Domaneschi, Marco; Marano, Giuseppe Carlo; Masera, Davide. - In: PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS. BRIDGE ENGINEERING. - ISSN 1478-4637. - ELETTRONICO. - (2021), pp. 1-21. [10.1680/jbren.21.00056]

Optimal strengthening by steel truss arches in prestressed girder bridges

Cucuzza, Raffaele;Rosso, Marco;Domaneschi, Marco;Marano, Giuseppe Carlo;
2021

Abstract

This work focuses on the proposal and the evaluation of a new consolidation system for prestressed reinforced concrete (PRC) beams of girder bridges. The system consists of two arch-shaped steel trusses placed alongside the lateral faces of the beam to be consolidated. The arches develop longitudinally along the entire span of the beam and in elevation using the available height of the PRC cross section. The consolidation system is characterized by its own external constraints, independent from those serving the pre-existing element. The efficiency of the system with respect to parameters variability is described also focusing on the ratio between the load discharged by the consolidation system and the total applied load. Referring to a case study, the consolidation of a PRC beam is presented adopting the proposed system with respect to the usually adopted external prestressing technique. The cross sections properties of the steel arch shaped trusses are defined by means of a structural optimization process using a genetic algorithm, identifying the minimum steel consumption. Finally, a preliminary cost-benefit analysis is performed for the proposed solution for a comparison with other commonly adopted techniques.
File in questo prodotto:
File Dimensione Formato  
Optimal strengthening by steel truss arches in prestressed girder bridges.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
ACCEPTED_Optimal strengthening system design by steel truss arches in prestressed girder bridges.pdf

Open Access dal 06/01/2023

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2940714