Thanks to network slicing, mobile networks can now support multiple and diverse services, each requiring different key performance indicators (KPIs). In this new scenario, it is critical to allocate network and computing resources efficiently and in such a way that all KPIs targeted by a service are met. Accounting for all sorts of KPIs (e.g., availability and reliability, besides the more traditional throughput and latency) is an aspect that has been scarcely addressed so far and that requires tailored models and solution strategies. We address this issue by proposing a novel methodology and resource orchestration scheme, named OKpi, which provides high-quality decisions on VNF (Virtual Network Function) placement and data routing, including the selection of radio points of attachment. Importantly, OKpi has polynomial computational complexity and accounts for all KPIs required by each service, and for any resource available from the fog to the cloud. We prove several properties of OKpi and demonstrate that it performs very closely to the optimum under real-world scenarios. We also implement OKpi in a testbed supporting a robot-based, smart factory service, and we present some field tests that further confirm the ability of OKpi to make high-quality decisions.

KPI Guarantees in Network Slicing / Martiın-Perez, J.; Malandrino, F.; Chiasserini, C. F.; Groshev, M.; Bernardos, C. J.. - In: IEEE-ACM TRANSACTIONS ON NETWORKING. - ISSN 1063-6692. - STAMPA. - 30:2(2022), pp. 655-668. [10.1109/TNET.2021.3120318]

KPI Guarantees in Network Slicing

C. F. Chiasserini;
2022

Abstract

Thanks to network slicing, mobile networks can now support multiple and diverse services, each requiring different key performance indicators (KPIs). In this new scenario, it is critical to allocate network and computing resources efficiently and in such a way that all KPIs targeted by a service are met. Accounting for all sorts of KPIs (e.g., availability and reliability, besides the more traditional throughput and latency) is an aspect that has been scarcely addressed so far and that requires tailored models and solution strategies. We address this issue by proposing a novel methodology and resource orchestration scheme, named OKpi, which provides high-quality decisions on VNF (Virtual Network Function) placement and data routing, including the selection of radio points of attachment. Importantly, OKpi has polynomial computational complexity and accounts for all KPIs required by each service, and for any resource available from the fog to the cloud. We prove several properties of OKpi and demonstrate that it performs very closely to the optimum under real-world scenarios. We also implement OKpi in a testbed supporting a robot-based, smart factory service, and we present some field tests that further confirm the ability of OKpi to make high-quality decisions.
File in questo prodotto:
File Dimensione Formato  
OKPI_TON.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri
KPI_Guarantees_in_Network_Slicing.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2930556