Arches are employed for bridges. This particular type of structures, characterized by a very old use tradition, is nowadays, widely exploited because of its strength, resilience, cost-effectiveness and charm. In recent years, a more conscious design approach that focuses on a more proper use of the building materials combined with the increasing of the computational capability of the modern computers, has led the research in the civil engineering field to the study of optimization algorithms applications aimed at the definition of the best design parameters. In this paper, a differential formulation and a MATLAB code for the calculation of the internal stresses in the arch structure are proposed. Then, the application of a machine learning algorithm, the genetic algorithm, for the calculation of the geometrical parameters, that allows to minimize the quantity of material that constitute the arch structures, is implemented. In this phase, the method used to calculate the stresses has been considered as a constraint function to reduce the range of the solutions to the only ones able to bear the design loads with the smallest volume. In particular, some case studies with different cross-sections are reported to prove the validity of the method and to compare the obtained results in terms of optimization effectiveness.

Application of a Machine Learning Algorithm for the Structural Optimization of Circular Arches with Different Cross-Sections / Melchiorre, Jonathan; Manuello, Amedeo; Marano, Giuseppe. - In: JOURNAL OF APPLIED MATHEMATICS AND PHYSICS. - ISSN 2327-4352. - STAMPA. - 9:(2021), pp. 1159-1170. [10.4236/jamp.2021.95079]

Application of a Machine Learning Algorithm for the Structural Optimization of Circular Arches with Different Cross-Sections

Melchiorre, Jonathan;Manuello, Amedeo;Marano, Giuseppe
2021

Abstract

Arches are employed for bridges. This particular type of structures, characterized by a very old use tradition, is nowadays, widely exploited because of its strength, resilience, cost-effectiveness and charm. In recent years, a more conscious design approach that focuses on a more proper use of the building materials combined with the increasing of the computational capability of the modern computers, has led the research in the civil engineering field to the study of optimization algorithms applications aimed at the definition of the best design parameters. In this paper, a differential formulation and a MATLAB code for the calculation of the internal stresses in the arch structure are proposed. Then, the application of a machine learning algorithm, the genetic algorithm, for the calculation of the geometrical parameters, that allows to minimize the quantity of material that constitute the arch structures, is implemented. In this phase, the method used to calculate the stresses has been considered as a constraint function to reduce the range of the solutions to the only ones able to bear the design loads with the smallest volume. In particular, some case studies with different cross-sections are reported to prove the validity of the method and to compare the obtained results in terms of optimization effectiveness.
File in questo prodotto:
File Dimensione Formato  
1_2_12 Man.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 748.48 kB
Formato Adobe PDF
748.48 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2915876