Underwater photogrammetry has become one of the most affordable and adopted methods for the documentation and the 3D reconstruction of submerged archaeological assets. In digital photogrammetry, images are captured to exploit (using computer vision-based procedures) their intrinsic metric contents. To preserve the metric consistency and to obtain reliable 3D metric products, this process must be followed according to photogrammetric principles that are even more important in underwater photogrammetry. The wide diffusion of low-cost and non-metric sensors requires that some attention be given to proper geometric calibration of the employed cameras. Via calibration, it is possible to opportunely describe geometric distortions that are observable on final images due to lens shapes and construction characteristics of the cameras and the optics used in the survey operations. This research addresses the importance of pre-calibration in underwater cameras, and for this purpose, three calibration datasets are acquired and compared: the first (A) where the camera is pre-calibrated without any addition (flat or dome ports); the second (B) in which the camera is used in combination with a dome port; and the third (C) where the camera setup has been employed in an underwater environment. For both scenarios (dry and wet), self-calibration and pre-calibration procedures are compared. Moreover, is possible to notice how the use of the right camera and lens combinations, specifically designed for underwater survey purposes, are functional to lower the distortion of the images and consequently improve the accuracy of the final 3D products. Different tests have been performed, and preliminary results are presented and discussed in this work-in-progress paper.

Pre- and Self-calibration of underwater cameras for photogrammetric documentation of archaeological sites / Calantropio, Alessio; Rissolo, Dominique; Kovacs, Evan. - STAMPA. - Proceedings of the ARQUEOLÓGICA 2.0 - 9th International Congress & 3rd GEORES - GEOmatics and pREServation Lemma: Digital Twins for Advanced Cultural Heritage Semantic Digitization.:(2021), pp. 512-514. (Intervento presentato al convegno ARQUEOLÓGICA 2.0 – 9th International Congress on Archaeology, Computer Graphics, Cultural Heritage and Innovation. GEORES – 3rd GEOmatics and pREServation. tenutosi a Online - Valencia (ES) nel 26-28 Aprile 2021) [10.4995/arqueologica9.2021.13259].

Pre- and Self-calibration of underwater cameras for photogrammetric documentation of archaeological sites

Alessio Calantropio;
2021

Abstract

Underwater photogrammetry has become one of the most affordable and adopted methods for the documentation and the 3D reconstruction of submerged archaeological assets. In digital photogrammetry, images are captured to exploit (using computer vision-based procedures) their intrinsic metric contents. To preserve the metric consistency and to obtain reliable 3D metric products, this process must be followed according to photogrammetric principles that are even more important in underwater photogrammetry. The wide diffusion of low-cost and non-metric sensors requires that some attention be given to proper geometric calibration of the employed cameras. Via calibration, it is possible to opportunely describe geometric distortions that are observable on final images due to lens shapes and construction characteristics of the cameras and the optics used in the survey operations. This research addresses the importance of pre-calibration in underwater cameras, and for this purpose, three calibration datasets are acquired and compared: the first (A) where the camera is pre-calibrated without any addition (flat or dome ports); the second (B) in which the camera is used in combination with a dome port; and the third (C) where the camera setup has been employed in an underwater environment. For both scenarios (dry and wet), self-calibration and pre-calibration procedures are compared. Moreover, is possible to notice how the use of the right camera and lens combinations, specifically designed for underwater survey purposes, are functional to lower the distortion of the images and consequently improve the accuracy of the final 3D products. Different tests have been performed, and preliminary results are presented and discussed in this work-in-progress paper.
2021
978-84-9048-872-0
File in questo prodotto:
File Dimensione Formato  
12085-34635-1-PB.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2898172