General anesthetics, able to reversibly suppress all conscious brain activity, have baffled medical science for decades, and little is known about their exact molecular mechanism of action. Given the recent scientific interest in the exploration of microtubules as putative functional targets of anesthetics, and the involvement thereof in neurodegenerative disorders, the present work focuses on the investigation of the interaction between human tubulin and four volatile anesthetics: ethylene, desflurane, halothane and methoxyflurane. Interaction sites on different tubulin isotypes are predicted through docking, along with an estimate of the binding affinity ranking. The analysis is expanded by Molecular Dynamics simulations, where the dimers are allowed to freely interact with anesthetics in the surrounding medium. This allowed for the determination of interaction hotspots on tubulin dimers, which could be linked to different functional consequences on the microtubule architecture, and confirmed the weak, Van der Waals-type interaction, occurring within hydrophobic pockets on the dimer. Both docking and MD simulations highlighted significantly weaker interactions of ethylene, consistent with its far lower potency as a general anesthetic. Overall, simulations suggest a transient interaction between anesthetics and microtubules in general anesthesia, and contact probability analysis shows interaction strengths consistent with the potencies of the four compounds.

Insights into the interaction dynamics between volatile anesthetics and tubulin through computational molecular modelling / Zizzi, Eric A.; Cavaglia', Marco; Tuszynski, JACEK ADAM; Deriu, Marco A.. - In: JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS. - ISSN 1538-0254. - (2021), pp. 1-15. [10.1080/07391102.2021.1897044]

Insights into the interaction dynamics between volatile anesthetics and tubulin through computational molecular modelling

Eric A. Zizzi;Marco Cavaglià;Jacek Adam Tuszynski;Marco A. Deriu
2021

Abstract

General anesthetics, able to reversibly suppress all conscious brain activity, have baffled medical science for decades, and little is known about their exact molecular mechanism of action. Given the recent scientific interest in the exploration of microtubules as putative functional targets of anesthetics, and the involvement thereof in neurodegenerative disorders, the present work focuses on the investigation of the interaction between human tubulin and four volatile anesthetics: ethylene, desflurane, halothane and methoxyflurane. Interaction sites on different tubulin isotypes are predicted through docking, along with an estimate of the binding affinity ranking. The analysis is expanded by Molecular Dynamics simulations, where the dimers are allowed to freely interact with anesthetics in the surrounding medium. This allowed for the determination of interaction hotspots on tubulin dimers, which could be linked to different functional consequences on the microtubule architecture, and confirmed the weak, Van der Waals-type interaction, occurring within hydrophobic pockets on the dimer. Both docking and MD simulations highlighted significantly weaker interactions of ethylene, consistent with its far lower potency as a general anesthetic. Overall, simulations suggest a transient interaction between anesthetics and microtubules in general anesthesia, and contact probability analysis shows interaction strengths consistent with the potencies of the four compounds.
File in questo prodotto:
File Dimensione Formato  
Insights into the interaction dynamics between volatile anesthetics and tubulin through computationa.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.22 MB
Formato Adobe PDF
2.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
manuscript_accepted.pdf

Open Access dal 11/03/2022

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2874032