Low-power devices used in Internet-of-things networks have been short of security due to the high power consumption of random number generators. This paper presents a low-power hyperchaos-based true random number generator, which is highly recommended for secure communications. The proposed system, which is based on a four-dimensional chaotic system with hidden attractors and oscillators, exhibits rich dynamics. Numerical analysis is provided to verify the dynamic characteristics of the proposed system. A fully customized circuit is deployed using 130 nm CMOS technology to enable integration into low-power devices. Four output signals are used to seed a SHIFT-XOR-based chaotic data post-processing to generate random bit output. The chip prototype was simulated and tested at 100 MHz sampling frequency. The hyperchaotic circuit consumes a maximum of 980 μ W in generating chaotic signals while dissipates a static current of 623 μ A. Moreover, the proposed system provides ready-to-use binary random bit sequences which have passed the well-known statistical randomness test suite NIST SP800-22. The proposed novel system design and its circuit implementation provide a best energy efficiency of 4.37 pJ/b at a maximum sampling frequency of 100 MHz.

A fully CMOS true random number generator based on hidden attractor hyperchaotic system / Nguyen, N.; Kaddoum, G.; Pareschi, F.; Rovatti, R.; Setti, G.. - In: NONLINEAR DYNAMICS. - ISSN 0924-090X. - STAMPA. - 102:4(2020), pp. 2887-2904. [10.1007/s11071-020-06017-3]

A fully CMOS true random number generator based on hidden attractor hyperchaotic system

Pareschi F.;Setti G.
2020

Abstract

Low-power devices used in Internet-of-things networks have been short of security due to the high power consumption of random number generators. This paper presents a low-power hyperchaos-based true random number generator, which is highly recommended for secure communications. The proposed system, which is based on a four-dimensional chaotic system with hidden attractors and oscillators, exhibits rich dynamics. Numerical analysis is provided to verify the dynamic characteristics of the proposed system. A fully customized circuit is deployed using 130 nm CMOS technology to enable integration into low-power devices. Four output signals are used to seed a SHIFT-XOR-based chaotic data post-processing to generate random bit output. The chip prototype was simulated and tested at 100 MHz sampling frequency. The hyperchaotic circuit consumes a maximum of 980 μ W in generating chaotic signals while dissipates a static current of 623 μ A. Moreover, the proposed system provides ready-to-use binary random bit sequences which have passed the well-known statistical randomness test suite NIST SP800-22. The proposed novel system design and its circuit implementation provide a best energy efficiency of 4.37 pJ/b at a maximum sampling frequency of 100 MHz.
File in questo prodotto:
File Dimensione Formato  
Nguyen2020_Article_AFullyCMOSTrueRandomNumberGene.pdf

accesso aperto

Descrizione: Editorial Version (Open Access)
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.14 MB
Formato Adobe PDF
3.14 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2867022