Numerical simulations of visco-resistive internal kink modes with dominant poloidal and toroidal mode numbers m/n = 1 in tokamak plasma configurations have been carried out using the M3D code. The numerical scaling of the growth rate of linear visco-resistive internal kink is found to agree reasonably well with the analytical theory. The impact of toroidal effects is assessed. Nonlinear simulations show that when viscosity increases, the nonlinear evolution of resistive internal kinks transits from cyclic, Kadomtsev-like sawtooth oscillations at relatively low values of the viscosity parameter, to pulsating m/n = 1 magnetic islands at intermediate viscosity, to steady state islands at high viscosity. For the pulsating and steady state scenarios, the safety factor profile is nearly flat and almost equals to unity in the core region. Regimes with pulsating or steady state islands may be relevant to the interpretation of partial sawteeth and of the so-called snake phenomenon sometimes observed in tokamak experiments.

Linear and nonlinear simulations of the visco-resistive internal kink mode using the M3D code / Shen, W.; Porcelli, F.. - In: NUCLEAR FUSION. - ISSN 0029-5515. - 58:10(2018), p. 106035. [10.1088/1741-4326/aad9b1]

Linear and nonlinear simulations of the visco-resistive internal kink mode using the M3D code

Porcelli F.
2018

Abstract

Numerical simulations of visco-resistive internal kink modes with dominant poloidal and toroidal mode numbers m/n = 1 in tokamak plasma configurations have been carried out using the M3D code. The numerical scaling of the growth rate of linear visco-resistive internal kink is found to agree reasonably well with the analytical theory. The impact of toroidal effects is assessed. Nonlinear simulations show that when viscosity increases, the nonlinear evolution of resistive internal kinks transits from cyclic, Kadomtsev-like sawtooth oscillations at relatively low values of the viscosity parameter, to pulsating m/n = 1 magnetic islands at intermediate viscosity, to steady state islands at high viscosity. For the pulsating and steady state scenarios, the safety factor profile is nearly flat and almost equals to unity in the core region. Regimes with pulsating or steady state islands may be relevant to the interpretation of partial sawteeth and of the so-called snake phenomenon sometimes observed in tokamak experiments.
2018
File in questo prodotto:
File Dimensione Formato  
2018 Shen&Porcelli Nucl._Fusion_58_106035.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.92 MB
Formato Adobe PDF
2.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2862238