During these days of global emergency for the COVID-19 disease outbreak, there is an urgency to share reliable information able to help worldwide life scientists to get better insights and make sense of the large amount of data currently available. In this study we used the results presented in [1] to perform two different Systems Biology analyses on the HCoV-host interactome. In the first one, we reconstructed the interactome of the HCoV-host proteins, integrating it with highly reliable miRNA and drug interactions information. We then added the IL-6 gene, identified in recent publications [2] as heavily involved in the COVID-19 progression and, interestingly, we identified several interactions with the reconstructed interactome. In the second analysis, we performed a Gene Ontology and a Pathways enrichment analysis on the full set of the HCoV-host interactome proteins and on the ones belonging to a significantly dense cluster of interacting proteins identified in the first analysis. Results of the two analyses provide a compact but comprehensive glance on some of the current state-of-the-art regulations, GO, and pathways involved in the HCoV-host interactome, and that could support all scientists currently focusing on SARS-CoV-2 research.

IL6-mediated HCoV-host interactome regulatory network and GO/Pathway enrichment analysis / Politano, G.; Benso, A.. - In: PLOS COMPUTATIONAL BIOLOGY. - ISSN 1553-734X. - 16:9(2020), p. e1008238. [10.1371/journal.pcbi.1008238]

IL6-mediated HCoV-host interactome regulatory network and GO/Pathway enrichment analysis

Politano G.;Benso A.
2020

Abstract

During these days of global emergency for the COVID-19 disease outbreak, there is an urgency to share reliable information able to help worldwide life scientists to get better insights and make sense of the large amount of data currently available. In this study we used the results presented in [1] to perform two different Systems Biology analyses on the HCoV-host interactome. In the first one, we reconstructed the interactome of the HCoV-host proteins, integrating it with highly reliable miRNA and drug interactions information. We then added the IL-6 gene, identified in recent publications [2] as heavily involved in the COVID-19 progression and, interestingly, we identified several interactions with the reconstructed interactome. In the second analysis, we performed a Gene Ontology and a Pathways enrichment analysis on the full set of the HCoV-host interactome proteins and on the ones belonging to a significantly dense cluster of interacting proteins identified in the first analysis. Results of the two analyses provide a compact but comprehensive glance on some of the current state-of-the-art regulations, GO, and pathways involved in the HCoV-host interactome, and that could support all scientists currently focusing on SARS-CoV-2 research.
File in questo prodotto:
File Dimensione Formato  
journal.pcbi.1008238.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 687.38 kB
Formato Adobe PDF
687.38 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2854642