This article deals with the development of a probabilistic surrogate model for the uncertainty quantification of the voltage output spectral envelope of a power converter with several stochastic parameters. The proposed approach relies on the combination of the least-squares support vector machine (LS-SVM) regression with the Gaussian process regression (GPR), but it can suitably be applied to any deterministic regression techniques. As a first step, the LS-SVM regression is used to build an accurate and fast-to-evaluate deterministic model of the system responses starting from a limited set of training samples provided by the full-computational model. Then the GPR is used to provide a probabilistic model of the regression error. The resulting LS-SVM+GPR probabilistic model not only approximates the system responses for any configuration of its input parameters, but also provides an estimation of its prediction uncertainty, such as the confidence intervals (CIs). The above technique has been applied to qualify the uncertainty of the spectral envelope of the output voltage of a buck converter with 17 independent Gaussian parameters. The feasibility and the accuracy of the resulting model have been investigated by comparing its predictions and CI with the ones obtained by five different surrogate models based on state-of-the-art techniques and by the reference Monte Carlo results.

Combining LS-SVM and GP Regression for the Uncertainty Quantification of the EMI of Power Converters Affected by Several Uncertain Parameters / Trinchero, Riccardo; Canavero, Flavio G.. - In: IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY. - ISSN 0018-9375. - ELETTRONICO. - 62:5(2020), pp. 1755-1762. [10.1109/temc.2019.2962899]

Combining LS-SVM and GP Regression for the Uncertainty Quantification of the EMI of Power Converters Affected by Several Uncertain Parameters

Riccardo Trinchero;Flavio G. Canavero
2020

Abstract

This article deals with the development of a probabilistic surrogate model for the uncertainty quantification of the voltage output spectral envelope of a power converter with several stochastic parameters. The proposed approach relies on the combination of the least-squares support vector machine (LS-SVM) regression with the Gaussian process regression (GPR), but it can suitably be applied to any deterministic regression techniques. As a first step, the LS-SVM regression is used to build an accurate and fast-to-evaluate deterministic model of the system responses starting from a limited set of training samples provided by the full-computational model. Then the GPR is used to provide a probabilistic model of the regression error. The resulting LS-SVM+GPR probabilistic model not only approximates the system responses for any configuration of its input parameters, but also provides an estimation of its prediction uncertainty, such as the confidence intervals (CIs). The above technique has been applied to qualify the uncertainty of the spectral envelope of the output voltage of a buck converter with 17 independent Gaussian parameters. The feasibility and the accuracy of the resulting model have been investigated by comparing its predictions and CI with the ones obtained by five different surrogate models based on state-of-the-art techniques and by the reference Monte Carlo results.
File in questo prodotto:
File Dimensione Formato  
FINAL VERSION.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 667.52 kB
Formato Adobe PDF
667.52 kB Adobe PDF Visualizza/Apri
08959370.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2848700