International agricultural trade triggers inter-dependency among distant countries, not only in economic terms but also under an environmental perspective. Agricultural trade has been shown to drive environmental threats pertaining to biodiversity loss and depletion and pollution of freshwater resources. Meanwhile, trade can also encourage production where it is most efficient, hence minimizing the use of natural resources required by agriculture. In this study, we provide a country-level assessment of the future international trade for 6 primary crops and 3 animal products composing 70% of the human diet caloric content. We set up four variegate socio-economic scenarios with different level of economic developments, diets habits, population growth dynamics, and levels of market liberalization. Results show that the demand of agricultural goods and the correspondent trade flow will increase with respect to current levels by 10–50% and 74–178% by 2050, respectively. The largest increase in the amount of traded goods is expected under the Economic Optimism scenario that will see an average trade flow of 2830 kcal/cap/day (i.e., nearly doubling the current per-capita flow). Most of the increase will be driven by the trade of crops for animal feeding, particularly maize will be the most traded crop. The trade networks architecture in 2050 and 2080 will be very different from the one we actually know, with a clear shift of the trade pole from the Western toward the Eastern economies. The dramatic changes of global food-sources and trade patterns will jeopardize the water resources of new regions while exacerbating the pressure in those areas that will continue serving food also in the future. In spite of this, trade may annually save around 40–60 m3 of water per person, compared to a situation where countries are self-sufficient.

Charting out the future agricultural trade and its impact on water resources / Tuninetti, M.; Ridolfi, L.; Laio, F.. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - 714:(2020), p. 136626. [10.1016/j.scitotenv.2020.136626]

Charting out the future agricultural trade and its impact on water resources

Tuninetti M.;Ridolfi L.;Laio F.
2020

Abstract

International agricultural trade triggers inter-dependency among distant countries, not only in economic terms but also under an environmental perspective. Agricultural trade has been shown to drive environmental threats pertaining to biodiversity loss and depletion and pollution of freshwater resources. Meanwhile, trade can also encourage production where it is most efficient, hence minimizing the use of natural resources required by agriculture. In this study, we provide a country-level assessment of the future international trade for 6 primary crops and 3 animal products composing 70% of the human diet caloric content. We set up four variegate socio-economic scenarios with different level of economic developments, diets habits, population growth dynamics, and levels of market liberalization. Results show that the demand of agricultural goods and the correspondent trade flow will increase with respect to current levels by 10–50% and 74–178% by 2050, respectively. The largest increase in the amount of traded goods is expected under the Economic Optimism scenario that will see an average trade flow of 2830 kcal/cap/day (i.e., nearly doubling the current per-capita flow). Most of the increase will be driven by the trade of crops for animal feeding, particularly maize will be the most traded crop. The trade networks architecture in 2050 and 2080 will be very different from the one we actually know, with a clear shift of the trade pole from the Western toward the Eastern economies. The dramatic changes of global food-sources and trade patterns will jeopardize the water resources of new regions while exacerbating the pressure in those areas that will continue serving food also in the future. In spite of this, trade may annually save around 40–60 m3 of water per person, compared to a situation where countries are self-sufficient.
File in questo prodotto:
File Dimensione Formato  
STOTEN_2020.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.78 MB
Formato Adobe PDF
2.78 MB Adobe PDF Visualizza/Apri
2020Charting1-s2.0-S0048969720301364-main (1).pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2836049